
CP2K Developers Meeting
February 6th, 14:00-16:00 2023

CP2K Developers Meeting

1. Introduction
2. Current Development Efforts
3. CP2K on Intel Xeon Max
4. DBM and DBT
5. ERI on FPGAs (UPB)
6. Modernization of the MPI wrapper (Frederick Stein)
7. …
8. Current Issues when running CP2K
9. New member (GLB-UZH)

10. CP2K Release (all)
11. CP2K-related Events (all)

Introduction

Current Development Efforts

Development Efforts: CP2K on Intel Xeon Max

There are “several” workloads benefitting from memory bandwidth, and “a few”
that benefit from compute (FLOPS)*
● GPUs can be beneficial in both cases with global memory exposing high

mem. B/W at the expense of cost/capacity (compared to typical CPUs).
● Recent GPU generations grew FLOPS faster than mem. B/W, and “machine

balance” shifted to FLOPS (at least when considering specialized CUs).

For scientist, above is acknowledged but often remains abstract even when
argumenting with the Roofline model, etc.

→ Intel made its 2nd attempt with high-B/W memory on CPUs and the
generational speedup for CP2K can be up to 3x

* Meant to be a fair rather than a scientific statement.

Development Efforts: CP2K on Intel Xeon Max (cont.)

Intel 4th Gen. Xeon 9480 w/ 2x64 GB HBM2e and 2x56 cores (8480 w/ DDR5)

Workload Speedup* Comment

diag_cu144_broy, bench_dftb,
RI-MP2_ammonia, H2O-gga

TTS < 20 seconds Too small since a few generations

32-H2O/RPA/MP2 1.8x (1.6x) more compute-bound

QS_ot_ls/H2O-256 1.8x (1.5x)

QS/H2O-512 1.8x (1.5x)

QMMM/ClC-19 1.9x (1.7x)

QMMM/CBD_PHY 3.1x (2.8x)

QS_DM_LS/H2O-DFT-LS
(NREP=3, MAX_SCF=20)

2.2x (1.8x) LS regularly shows GPU
acceleration (DBCSR)

* Comparison with previous gen. Intel Xeon (8360Y) using same binary built with GNU Compiler Collection, Intel MKL, and LIBXSMM.

Development Efforts: DBM and DBT

● Nice 3x GPU speed up on LUMI
● Limited by Host-to-Device communication:

○ Remove optimization for square proc grids in dbt_contract.
○ GPU-to-GPU communication could unlock further 2x speedup.
○ For dbm_multiply rather straightforward.
○ For dbt_reshape requires major refactoring (not planed ATM).

● Multi-GPU is essentially a new architecture:
○ Data has to remain on GPU.
○ GPU-to-GPU communication is key.
○ More workloads onto GPU (Amdahl's law).

LUMI GPU Node

https://docs.lumi-supercomputer.eu/hardware/compute/lumig/

Development Efforts: cuSOLVERMp

● New Eigensolver from Nvidia (documentation, code example).

● Supports multi-node and multi-GPU.

● Faster than ELPA.

● Show case with VASP.

● Nvidia is looking for a large science case with CP2K.
○ Good opportunity to finally fix grid code for large basis sets (#1785).

● For AMD GPUs there will soon also be DLAF from CSCS.

https://docs.nvidia.com/hpc-sdk/cusolvermp/index.html
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuSOLVERMp/mp_syevd.cpp
https://www.nvidia.com/en-us/on-demand/session/SC2022-T-12/
https://github.com/cp2k/cp2k/issues/1785
https://github.com/eth-cscs/DLA-Future

Development Efforts: Revive PAO-ML

● Apply Equivariant Neural Networks to PAO-ML.

● Use pyTorch for the ML.

● Enable Linear Scaling DFT via DBM:
○ Introduce intermediate API layer (remember cp_dbcsr_ ?).

○ Reduce API surface: Support only REAL(dp) and avoid dbcsr_get_data_p.

○ Allow switching between DBCSR and DBM via input keyword.

https://doi.org/10.1038/s41467-022-29939-5
https://dx.doi.org/10.1021%2Facs.jctc.8b00378

Development Efforts: Revamp Documentation

● Move user docs out of the wiki...

● Use git and pull requests instead.

● Use Markdown and Sphinx for formatting.

● Use Algolia for search.

● Use The documentation system:
○ Tutorials: Migrate cp2k.org/exercises:common.

○ Howtos: Migrate cp2k.org/howto.

○ Reference: Port manual generator from XSLT to Python.

○ Explanation: Write / curate textbook style articles.

https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.algolia.com/for-open-source/
https://documentation.divio.com/
https://www.cp2k.org/exercises:common:index
https://www.cp2k.org/howto
https://github.com/cp2k/cp2k/blob/master/tools/manual/cp2k_input.xsl

Development Efforts: ERIs on FPGA (UPB)

● Compute and compress Cartesian ERIs
○ Rys quadrature and arbitrary bitwidth compression
○ reach 10 GERIS (10 x 109 ERIs per second) on one

Intel Stratix 10 GX 2800 FPGA
○ on two Stratix 10 GX 2800 cards outperforms libint

■ on 40 Xeon Gold 6148 CPU cores by up to 6.0x
■ on 128 EPYC 7713 CPU cores by up to 1.9x
■ PCIe (6 GB/s) is a practical bottleneck

● Ongoing work for FPGA kernels:
compute and compress spherical ERIs

○ preliminary results for [ff|ff]:
■ 7.27 GERIS on one Stratix 10 GX 2800
■ 2.16 GERIS for libint on 128 EPYC 7713 CPU

cores

from [ss|ss] to [ff|ff]

Development Efforts: ERIs on FPGA (UPB)

Current Work: integration into CP2K

● ERIs on FPGAs require large batches of ERI-classes
● support for multiple FPGAs per node
● both CPUs and FPGAs need to be used for FPGAs
● → currently replacing atom-based HFX-distribution code by a

batched-ERI-class code with global load balancing

Modernization of the MPI wrapper (Frederick Stein)

● Currently/Before: CP2K employs the Fortran-90 based MPI wrapper
○ drawbacks: integers as handles, unclear what interfaces the libraries actually provide (rank

combinations, derived types), non-blocking communication, …
○ Solution: mpi_f08 (fully compatible with Fortran 2008+TS29113)
○ Currently tested with OpenMPI and Intel oneAPI
○ Current issues: Not available with Gfortran version <9, compiler bugs with MPICH+Gfortran 11

(our standard build at the dashboard)
● Latest developments:

○ Drop support for MPI 2 (already applied to DBCSR, too)
○ Wrap integer handles in derived types (serial mode!)
○ Switch to mpifort and mpiexec in favor of mpif90 and mpirun
○ Apply OOP to handles (to be merged today)
○ Drawback: Finalization lacks compiler support
○ Currently: cp_para_env_types, cp_para_cart_types, cp_blacs_env

Current Issues when Running CP2K

Using the CP2K API to launch multiple instances of CP2K on modern supercomputers with GPU
support.

● How are the GPUs allocated to the individual CP2K processes?
● Is it necessary to change to code to enable correct allocation of GPU hardware to each CP2K call?

CP2K-Release
CP2K v2023.1:

● Add gradients for SOS-MP2 and RPA incl. benchmarks (#2208,#2271,#2473)
● TDDFT/Linear Response: Add GAPW/GAPW_XC and ADMM/GAPW options (#2200)
● TDDFT: Add excited state forces as property (#2363)
● RI-RPA: Allow for XC correction in ADMM RI-RPA (#2216)
● RTP: Velocity gauge and magnetic delta pulse (#2343)
● GW: Automatically extrapolate k-point mesh (#2229)
● xTB: Add vdW options (#2431)
● xTB: Fix electronic energy dependence on EPS_DEFAULT (#2287)
● Vibrational analysis: Raman Intensities (#2263)
● New pseudopotentials and basis sets (#2472, #2193)
● Improve NewtonX interface (#2443)
● Fist: Add LAMMPS style tabulated pair potentials (#2313)
● EC: Variational Density-Corrected DFT (DC-DFT) (#2322)
● Update active space interface (#2346)
● Helium: Add missing xyz output format (#2432)
● SIRIUS: Add support for libvdwxc (#2270)
● ELPA: Fix block size issue on GPU (#2407)
● Drop Support for MPI 2.0 (#2438)
● Add experimental CMake build system (#2364)
● Fix regtests on ARM64 (#1855)
● Start testing with Address Sanitizer (#2306)
● Start testing on macOS Apple M1 (sponsored by MacStadium)

https://github.com/cp2k/cp2k/pull/2208
https://github.com/cp2k/cp2k/pull/2271
https://github.com/cp2k/cp2k/pull/2473
https://github.com/cp2k/cp2k/pull/2200
https://github.com/cp2k/cp2k/pull/2363
https://github.com/cp2k/cp2k/pull/2216
https://github.com/cp2k/cp2k/pull/2343
https://github.com/cp2k/cp2k/pull/2229
https://github.com/cp2k/cp2k/pull/2431
https://github.com/cp2k/cp2k/pull/2287
https://github.com/cp2k/cp2k/pull/2263
https://github.com/cp2k/cp2k/pull/2472
https://github.com/cp2k/cp2k/pull/2193
https://github.com/cp2k/cp2k/pull/2443
https://github.com/cp2k/cp2k/pull/2313
https://github.com/cp2k/cp2k/pull/2322
https://github.com/cp2k/cp2k/pull/2346
https://github.com/cp2k/cp2k/pull/2432
https://github.com/cp2k/cp2k/pull/2270
https://github.com/cp2k/cp2k/pull/2407
https://github.com/cp2k/cp2k/pull/2438
https://github.com/cp2k/cp2k/pull/2364
https://github.com/cp2k/cp2k/issues/1855
https://github.com/cp2k/cp2k/pull/2306
https://www.macstadium.com/opensource

CP2K-related events:

Ideas: Paderborn

- QM/MM together with Gromacs
- Post-HF in CP2K (EXX, RPA, GW,...)

- M. Watkins
- Regular CP2K Workshop/School

