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Introduction



Current Development Efforts



Development Efforts: CP2K on Intel Xeon Max

There are “several” workloads benefitting from memory bandwidth, and “a few” 
that benefit from compute (FLOPS)*
● GPUs can be beneficial in both cases with global memory exposing high 

mem. B/W at the expense of cost/capacity (compared to typical CPUs).
● Recent GPU generations grew FLOPS faster than mem. B/W, and “machine 

balance” shifted to FLOPS (at least when considering specialized CUs).

For scientist, above is acknowledged but often remains abstract even when 
argumenting with the Roofline model, etc.

→ Intel made its 2nd attempt with high-B/W memory on CPUs and the
generational speedup for CP2K can be up to 3x

* Meant to be a fair rather than a scientific statement.



Development Efforts: CP2K on Intel Xeon Max (cont.)

Intel 4th Gen. Xeon 9480 w/ 2x64 GB HBM2e and 2x56 cores (8480 w/ DDR5)

Workload Speedup* Comment

diag_cu144_broy, bench_dftb, 
RI-MP2_ammonia, H2O-gga

TTS < 20 seconds Too small since a few generations

32-H2O/RPA/MP2 1.8x (1.6x) more compute-bound

QS_ot_ls/H2O-256 1.8x (1.5x)

QS/H2O-512 1.8x (1.5x)

QMMM/ClC-19 1.9x (1.7x)

QMMM/CBD_PHY 3.1x (2.8x)

QS_DM_LS/H2O-DFT-LS 
(NREP=3, MAX_SCF=20)

2.2x (1.8x) LS regularly shows GPU
acceleration (DBCSR)

* Comparison with previous gen. Intel Xeon (8360Y) using same binary built with GNU Compiler Collection, Intel MKL, and LIBXSMM.



Development Efforts: DBM and DBT

● Nice 3x GPU speed up on LUMI
● Limited by Host-to-Device communication:

○ Remove optimization for square proc grids in dbt_contract.
○ GPU-to-GPU communication could unlock further 2x speedup.
○ For dbm_multiply rather straightforward.
○ For dbt_reshape requires major refactoring (not planed ATM).

● Multi-GPU is essentially a new architecture:
○ Data has to remain on GPU.
○ GPU-to-GPU communication is key.
○ More workloads onto GPU (Amdahl's law).

LUMI GPU Node

https://docs.lumi-supercomputer.eu/hardware/compute/lumig/


Development Efforts: cuSOLVERMp

● New Eigensolver from Nvidia (documentation, code example).

● Supports multi-node and multi-GPU.

● Faster than ELPA.

● Show case with VASP.

● Nvidia is looking for a large science case with CP2K.
○ Good opportunity to finally fix grid code for large basis sets (#1785). 

● For AMD GPUs there will soon also be DLAF from CSCS.

https://docs.nvidia.com/hpc-sdk/cusolvermp/index.html
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuSOLVERMp/mp_syevd.cpp
https://www.nvidia.com/en-us/on-demand/session/SC2022-T-12/
https://github.com/cp2k/cp2k/issues/1785
https://github.com/eth-cscs/DLA-Future


Development Efforts: Revive PAO-ML

● Apply Equivariant Neural Networks to PAO-ML.

● Use pyTorch for the ML.

● Enable Linear Scaling DFT via DBM:
○ Introduce intermediate API layer (remember cp_dbcsr_ ?).

○ Reduce API surface: Support only REAL(dp) and avoid dbcsr_get_data_p.

○ Allow switching between DBCSR and DBM via input keyword.

https://doi.org/10.1038/s41467-022-29939-5
https://dx.doi.org/10.1021%2Facs.jctc.8b00378


Development Efforts: Revamp Documentation

● Move user docs out of the wiki...

● Use git and pull requests instead.

● Use Markdown and Sphinx for formatting.

● Use Algolia for search.

● Use The documentation system:
○  Tutorials: Migrate cp2k.org/exercises:common.

○  Howtos: Migrate cp2k.org/howto.

○  Reference: Port manual generator from XSLT to Python.

○  Explanation: Write / curate textbook style articles.

https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.algolia.com/for-open-source/
https://documentation.divio.com/
https://www.cp2k.org/exercises:common:index
https://www.cp2k.org/howto
https://github.com/cp2k/cp2k/blob/master/tools/manual/cp2k_input.xsl


Development Efforts: ERIs on FPGA (UPB)

● Compute and compress Cartesian ERIs
○ Rys quadrature and arbitrary bitwidth compression
○ reach 10 GERIS (10 x 109 ERIs per second) on one 

Intel Stratix 10 GX 2800 FPGA
○ on two Stratix 10 GX 2800 cards outperforms libint

■ on 40 Xeon Gold 6148 CPU cores by up to 6.0x
■ on 128 EPYC 7713 CPU cores by up to 1.9x
■ PCIe (6 GB/s) is a practical bottleneck

● Ongoing work for FPGA kernels:
compute and compress spherical ERIs

○ preliminary results for [ff|ff]:
■ 7.27 GERIS on one Stratix 10 GX 2800
■ 2.16 GERIS for libint on 128 EPYC 7713 CPU 

cores

from [ss|ss] to [ff|ff]



Development Efforts: ERIs on FPGA (UPB)

Current Work: integration into CP2K

● ERIs on FPGAs require large batches of ERI-classes
● support for multiple FPGAs per node
● both CPUs and FPGAs need to be used for FPGAs
● → currently replacing atom-based HFX-distribution code by a 

batched-ERI-class code with global load balancing



Modernization of the MPI wrapper (Frederick Stein)

● Currently/Before: CP2K employs the Fortran-90 based MPI wrapper
○ drawbacks: integers as handles, unclear what interfaces the libraries actually provide (rank 

combinations, derived types), non-blocking communication, …
○ Solution: mpi_f08 (fully compatible with Fortran 2008+TS29113)
○ Currently tested with OpenMPI and Intel oneAPI
○ Current issues: Not available with Gfortran version <9, compiler bugs with MPICH+Gfortran 11 

(our standard build at the dashboard)
● Latest developments:

○ Drop support for MPI 2 (already applied to DBCSR, too)
○ Wrap integer handles in derived types (serial mode!)
○ Switch to mpifort and mpiexec in favor of mpif90 and mpirun
○ Apply OOP to handles (to be merged today)
○ Drawback: Finalization lacks compiler support
○ Currently: cp_para_env_types, cp_para_cart_types, cp_blacs_env



Current Issues when Running CP2K

Using the CP2K API to launch multiple instances of CP2K on modern supercomputers with GPU 
support.

● How are the GPUs allocated to the individual CP2K processes?
● Is it necessary to change to code to enable correct allocation of GPU hardware to each CP2K call?



CP2K-Release
CP2K v2023.1:

● Add gradients for SOS-MP2 and RPA incl. benchmarks (#2208,#2271,#2473)
● TDDFT/Linear Response: Add GAPW/GAPW_XC and ADMM/GAPW options (#2200)
● TDDFT: Add excited state forces as property (#2363)
● RI-RPA: Allow for XC correction in ADMM RI-RPA (#2216)
● RTP: Velocity gauge and magnetic delta pulse (#2343)
● GW: Automatically extrapolate k-point mesh (#2229)
● xTB: Add vdW options (#2431)
● xTB: Fix electronic energy dependence on EPS_DEFAULT (#2287)
● Vibrational analysis: Raman Intensities (#2263)
● New pseudopotentials and basis sets (#2472, #2193)
● Improve NewtonX interface (#2443)
● Fist: Add LAMMPS style tabulated pair potentials (#2313)
● EC: Variational Density-Corrected DFT (DC-DFT) (#2322)
● Update active space interface (#2346)
● Helium: Add missing xyz output format (#2432)
● SIRIUS: Add support for libvdwxc (#2270)
● ELPA: Fix block size issue on GPU (#2407)
● Drop Support for MPI 2.0 (#2438)
● Add experimental CMake build system (#2364)
● Fix regtests on ARM64 (#1855)
● Start testing with Address Sanitizer (#2306)
● Start testing on macOS Apple M1 (sponsored by MacStadium)

https://github.com/cp2k/cp2k/pull/2208
https://github.com/cp2k/cp2k/pull/2271
https://github.com/cp2k/cp2k/pull/2473
https://github.com/cp2k/cp2k/pull/2200
https://github.com/cp2k/cp2k/pull/2363
https://github.com/cp2k/cp2k/pull/2216
https://github.com/cp2k/cp2k/pull/2343
https://github.com/cp2k/cp2k/pull/2229
https://github.com/cp2k/cp2k/pull/2431
https://github.com/cp2k/cp2k/pull/2287
https://github.com/cp2k/cp2k/pull/2263
https://github.com/cp2k/cp2k/pull/2472
https://github.com/cp2k/cp2k/pull/2193
https://github.com/cp2k/cp2k/pull/2443
https://github.com/cp2k/cp2k/pull/2313
https://github.com/cp2k/cp2k/pull/2322
https://github.com/cp2k/cp2k/pull/2346
https://github.com/cp2k/cp2k/pull/2432
https://github.com/cp2k/cp2k/pull/2270
https://github.com/cp2k/cp2k/pull/2407
https://github.com/cp2k/cp2k/pull/2438
https://github.com/cp2k/cp2k/pull/2364
https://github.com/cp2k/cp2k/issues/1855
https://github.com/cp2k/cp2k/pull/2306
https://www.macstadium.com/opensource


CP2K-related events:

Ideas: Paderborn

- QM/MM together with Gromacs
- Post-HF in CP2K (EXX, RPA, GW,...)

- M. Watkins
- Regular CP2K Workshop/School


