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Abstract

Linear algebra with tensors of rank 2—4 is ubiquitous in electronic structure theory. The
occuring tensors and matrices often have a sparse representation (in which most entries
are negligibly small) if a localized basis is chosen. This work is concerned with a gen-
eral implementation of sparse tensor contractions laying the foundation for low-scaling
algorithms for RPA, GW and Hartree-Fock Exchange. These methods are based on the
resolution-of-the-identity (RI) approximation with a local metric, ensuring sparse integral
tensors, and have an effective quadratic scaling with system size. The development of a
generic and abstract tensor API overcomes the manual implementation and optimization
of application-specific code and enables systematic optimizations based on the concepts
of multi-dimensional tensors and tall-and-skinny matrices. We demonstrate that the low-
scaling implementation extends the applicability of RPA to systems with more than 5000
electrons described with a correlation-consistent triple-zeta basis. Systems of this size can
no longer be calculated with canonical RPA due to memory constraints. Our low-scaling
RPA variant is not limited to systems with convenient properties (such as a large band
gap or low dimensionality) but is of advantage also for densely packed solid state systems
as is shown by the example of 6 x 6 x 2 unit cells of bulk anatase with 864 atoms. The
novel RI-based approach to Hartree-Fock Exchange can be one order of magnitude more
expensive than the direct implementation for sparse systems and adapted basis sets but
can be advantageous for dense systems with large and accurate basis sets.

An analytical method (MME) for periodic electron repulsion integrals (ERIs) has
been derived in order to facilitate the use of Gaussian-type basis functions for periodic
systems, as an alternative to the numerical GPW method. The MME method relies
on a minimax approximation of the Fourier-transformed Coulomb potential by a sum
of Gaussians combined with Ewald-like summation techniques for rapid convergence. It
enables all-electron RI-MP2/RPA calculations for periodic systems and accelerates Image
Charge Augmented QM /MM for adsorbates on metals.



Zusammenfassung

Lineare Algebra mit Tensoren von Rang 2-4 ist allgegenwartig in der Theorie der elek-
tronischen Struktur. Die darin vorkommenden Tensoren und Matrizen haben oft eine
diinnbesetzte Darstellung (in der die meisten Eintrage vernachléassigbar klein sind), wenn
eine lokalisierte Basis gewahlt wird. Diese Arbeit beschaftigt sich mit einer allgemei-
nen Implementierung von diinnbesetzten Tensorkontraktionen, welche den Grundstein
legt fiir niedrigskalierende Algorithmen fiir RPA, GW and Hartree-Fock-Austausch. Die-
se Methoden basieren auf der Resolution-of-the-Identity (RI) Approximation mit einer
lokalen Metrik, was diinnbesetzte Integrale gewéahrleistet, und skalieren effektiv quadra-
tisch mit der Systemgrosse. Die Entwicklung einer generischen und abstrakten Tensor-
Programmierschnittstelle iberwindet die manuelle Implementierung und Optimierung
von anwendungsspezifischem Code und ermoglicht systematische Optimierungen basie-
rend auf den Konzepten von multidimensionalen Tensoren und hoch-und-diinnen Matri-
zen. Wir zeigen dass die niedrigskalierende Implementierung die Anwendung von RPA
auf Systeme mit mehr als 5000 Elektronen ermoglicht, beschrieben mit einer korrelations-
konsistenten tripel-zeta Basis. Systeme dieser Grosse konnen nicht mehr mit kanonischem
RPA berechnet werden wegen zu hohem Speicherbedarf. Unsere niedrigskalierende Va-
riante von RPA ist nicht limitiert auf Systeme mit ginstigen Eigenschaften (wie eine
grosse Bandliicke oder niedrige Dimensionalitit), sondern ist von Vorteil auch fiir dicht
gepackte Festkorper, wie gezeigt wird am Beispiel von 6 x 6 x 2 Einheitszellen von Anatas
mit 864 Atomen. Der neue Rl-basierende Ansatz fiir Hartree-Fock-Austausch kann eine
Grossenordnung teurer sein als die direkte Implementierung fiir diinnbesetzte Systeme
und angepasste Basissitze, jedoch kann er von Vorteil sein fiir dichte Systeme mit einer
grossen und genauen Basis.

Eine analytische Methode (MME) fiir periodische Elektronabstossungsintegrale (ERIs)
wurde hergeleitet um die Verwendung von Gauss’schen Basisfunktionen fiir periodische
Systeme zu erleichtern, als eine Alternative zur numerischen GPW-Methode. Die MME
Methode basiert auf einer Minimax-Approximation des Fourier-transformierten Coulomb-
Potentiales durch eine Summe von Gaussfunktionen kombiniert mit Ewald-ahnlichen
Summierungstechniken fiir schnelle Konvergenz. Sie ermoglicht All-Elektronen RI-MP2/R-
PA Berechnungen fiir periodische Systeme und beschleunigt Spiegelladung-erweitertes
QM/MM fir Adsorbaten auf Metallen.



Chapter 1
Introduction

Electronic Structure methods beyond the density functional theory (DFT) approxima-
tion are systematic improvements for the description of material properties ranging from
molecules to solid state systems, however at significant higher computational costs than
DFT. As computers become more powerful, these intrinsically expensive methods can be
extended to larger and more realistic systems. Equally important are algorithmic im-
provements that reduce computational cost and memory footprint, ideally at a reduced
scaling with system size. A promising strategy for reducing system size scaling is the use
of a sparse representation of matrices and tensors (in which most elements are negligibly
small) by expressing them in terms of local atom-centered basis functions and by the use
of the resolution-of-identity (RI) approximation with a local metric.

Linear algebra with tensors of rank 2-4 is ubiquitous in electronic structure method.
If the occuring tensors and matrices have a sparse representation, an implementation
specialized for sparse tensors is required in order to derive computational savings from
sparsity. The availability of a sparse tensor library could accelerate code development
since many algorithms can be expressed naturally in terms of tensor contraction and
tensor transformations (including data transposition and redistribution). Such operations
are often tediously developed on a case-by-case basis and a generalized tensor library
could simplify this process by providing generic operations that translate concise symbolic
notations into optimized code. This library could also inspire novel low-scaling / sparse
algorithms that were previously avoided in favor of dense algorithms only due to the
availability of efficient libraries for dense linear algebra. Dense linear algebra has the
natural advantage of being able to use high performance computing ressources more
efficiently. This advantage is however less important than scaling with system size: if

sparse algorithms have an improved scaling with system size they always outperform the
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dense variant given a large enough system size, irrespective of the absolute performance
at which the respective operations can be performed.

This work is concerned with the implementation of such a library based on the existing
DBCSR library [1] for block-sparse matrix multiplications. The DBCSR library focuses on
concurrency using distributed memory parallelism and maximizing performance relying
on optimizations for small dense blocks (including CPU and GPU backends). The tensor
generalization of this library should maintain performance at the same time as providing
an abstract API for general tensor-based operations.

Applications of such a sparse tensor library include already published algorithms for
low-scaling RPA [2] and GW [3] and an analogous Rl-based approach for Hartree-Fock
Exchange. The use of a local metric together with localized Gaussian-type basis functions
are the key ingredients enabling a sparse formulation of these methods. The dominant
scaling with respect to system size is O(N?) for all methods and all systems, even truly
3-dimensional condensed phase systems with a small band gap.

Low-scaling RPA and GW have already been demonstrated to scale to large systems
containing thousands of atoms where the largest system sizes considered were 864 water
molecules for bulk water with basis sets of cc-TZV2P quality [2] and 1734 atoms for
Graphene nanoribbons with basis sets of aug-DZVP quality [3]. The algorithm is a
prime example of sparse tensor contraction and the availability of a sparse tensor library
would not only greatly simplify the implementation but would also allow for systematic
tensor-based optimizations. In contrast to the initial implementation in which the parallel
layout of large matrices is a user input to a calculation, the final implementation should
be ideally parameter-free, except for a parameter to control the truncation of small tensor
elements.

For Hartree-Fock Exchange low-scaling algorithms do not require the use of RI and
integral screening is sufficient to achieve a scaling close to O(N) in system size [4]. The
resolution of identity approach can however still be an improvement for condensed phased
systems with high quality basis sets for which the number of integrals to be calculated

and stored grows very large already for medium-sized systems despite integral screening.



Chapter 2

Theory

2.1 Introduction

This chapter introduces the basic theoretical concepts that serve as a basis for the al-
gorithmic methods developed in the following chapters. The work described in this the-
sis finds its main applicability in ab initio electronic structure methods on the level of
Hartree-Fock Exchange, electron correlation (RPA/MP2) and GW. These methods are
thus the primary focus of this chapter and for a more general introduction into the topic
we refer to standard textbooks [5-8].

A systematic classification of the presented method is given by Perdew et al. [9]. As
methods satisfy more and more constraints of the exact limit, they get more accurate but
also more expensive. This classification sets apart ab initio methods from semiempirical
methods that typically fail to reproduce exact limits. The resulting hierarchy of methods
consists of 5 steps in Jacob’s ladder of density functional approximations: the first 3
steps are reserved to the DFT world (LSD/LDA, GGA and meta-GGA), the 4th rung
adds exact (Hartree-Fock) exchange. The MP2 & RPA methods belong to the 5th rung
as they correctly describe non-local dynamic electron correlation. Since the required
computational costs increase rapidly on the fourth and fifth run, applications for realistic
systems are typically restricted to the first three rungs. On the upside there is increasing
interest in reducing the costs of the higher rungs to make them applicable to larger
systems.

The following index notation and abbreviations are used throughout this thesis:
i,7,k,... refer to canonical occupied molecular orbitals (MOs), a,b,c,... to canonical
virtual MOs, p, v, A,... to atomic orbital basis set functions (AOs) and P,Q, R, ... to

auxiliary resolution-of-the-identity (RI) basis set functions.

3



4 CHAPTER 2. THEORY

2.2 Hartree-Fock Exchange and Density Functional
Theory

2.2.1 Hartree-Fock Exchange

The Hartree-Fock equation is an approximation of the wave function ¥(x) = ¥(ry,rs,...,ry)
and the energy of a system of N electrons in a stationary state under the following as-

sumptions:

o Born-Oppenheimer approximation: due to the nuclei being much heavier than the
electrons, the electronic and nuclear degrees of freedom can be separated such that

only the N electronic degrees of freedom are explicitly included in the Hamiltonian.

o The wavefunction can be expressed as an antisymmetrized product (Slater-determinant)

of N orthonormal one-electron functions (orbitals) 1;(x).

We emphasize that the number of electrons N is the number of valence electrons in
case pseudopotentials [10] are employed to parametrize the effective potential of the core
electrons instead of including them explicitly. Here only the second approximation is
specific to Hartree-Fock and methods that go beyond Hartree-Fock (such as RPA & MP2)
can be viewed as corrections to the second approximation. From these approximations
the ground state energy of the electronic system can be obtained by minimizing the
expression of the energy w.r.t. the orbitals 1;(x) (based on the variational principle)
under the constraint that the orbitals v; are orthonormal. The Hartree-Fock energy can

be expressed as

EUY = nqlplln (U|HPF )W) = Irllblln (Z H;(R) + % Z (Jij — KZ)> (2.1)

0,17

with the following one- and two-electron integrals

Hi(R) = / 0 (r) {—%V2+v(r,R)} r(r)dr (2.2)
* 1 *
Jij ://wi(rl)wi (rl)m%(rﬂ%(rﬂdhdrz (2.3)
* 1 *
Kij ://% (r1)¢j(r1)m¢i(r2)¢j(r2)dr1dr2 (2.4)

and the external potential v(r,R) collecting the electron-nuclei interations. The Hartree
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term J;; describes the classical Coulomb interaction of electron charge distributions
whereas the Exchange term K; describes the quantum mechanical Pauli repulsion of

electrons.

The orbitals ;(r) are expanded into a set of basis functions ¢, (r)
r) =) Curdu(r) (2.5)
o

where a finite, incomplete basis set is used in practice. It is advantageous to use basis
functions centered around the atom position for an accurate description of the chemically
active regions. Locality of basis functions can also be exploited to design efficient algo-
rithms based on integral screening and sparse linear algebra. The functions 1 (r) and
¢, (r) are referred to as molecular orbitals (MO) and atomic orbitals (AO), respectively.

The density matrix is defined as

n; being the occupation number of MO i. Without loss of generality, we consider re-
stricted closed-shell system (each orbital is occupied by two electrons with opposite spin).
We assume insulating, non-metallic systems for which the occupation number is a step

function

2, ifi<N/2
0, otherwise

The electron density p(r) can then be expressed in terms of the AOs as

N/2

r)=2) i)l Z 0 (1) 5 (X) (2.8)

In this parametrization of the wave function in terms of a finite AO basis, the energy
needs to be minimized w.r.t. the coefficients C};,. The Hartree-Fock energy is the sum
of Hartree energy Ey and Exchange energy EXF. The superscript HF indicates that the
exact exchange is specific to Hartree-Fock theory in contrast to the Hartree energy which
is identical to density functional theory. The final expression for the Hartree-Fock energy
reads as

E" =By + E)" =) Pu(Hp, +35,) (2.9)
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with the Hartree matrix given by

Hy, = (u[V"(r)|v), (2.10)
_ [ )
Vi(r) = / T r’|dr (2.11)
and the Fock matrix given by
N 1
S =3 > (uA|ov) Py (2.12)
Ao

The shorthand notation (pA|ov) refers to 4-center Electron Repulsion Integrals (ERISs)
given by

(UA0V) = (utrld0ts) = / / 610G () o (02) bty (2.13)

Ity — 1o

Eq. (2.9) must be solved for the density matrix which can be done either self-consistently

by the Self-Consistent-Field (SCF) method or by using orbital transformation (OT) [11].
With the SCF method, given an initial density matrix, an initial Fock matrix can be
built. A new density matrix can be obtained by diagonalization of the Fock matrix.
Self-consistency is achieved by updating the density matrix in each diagonalization step,
using a suitable density-mixing scheme to achieve smooth convergence. With the OT
method, a minimization procedure is applied that minimizes the energy E™F w.r.t. the
MO coefficients.

2.2.2 Kohn-Sham Density Functional Theory

An alternative approach to solve the electronic Schrodinger equation approximately is
Kohn-Sham Density Functional Theory (in the following abbreviated as DFT). DET
is based on the Hohenberg-Kohn theorems [12] that state that the electron many-body
problem can be equivalently phrased in terms of the electron density p(r) (depending only
on one degree of freedom) instead of the wave function ¥(ry,re,...,ry). To practically
solve the resulting minimization problem, one-electron orbitals (similar as in Hartree-
Fock theory) are introduced by assuming that a non-interacting system of electrons exist

with the same ground state density as the non-interacting system.
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The Kohn-Sham equation [13] can be written in a form analogous to Eq. (2.9)

EXS =" P, HY (2.14)
nv

with
KS __ KS
H,u,z/ - <:U’|H |V> )

1
HKS = —§V2 + V(I‘, R) + %ff(l') s
‘/eff(r) = VH(I') + VXC(r)

Here Vi corresponds to the Hartree term in Hartree-Fock Eq. (2.11) and Vi, is the
exchange-correlation potential. The exchange-correlation potential V.. is conceptually
introduced as the unknown potential that would make Kohn-Sham DFT an exact theory.
By definition it includes the exchange term from Hartree-Fock Eq. (2.12). Correlation is
then the electron interaction missing in the Hartree-Fock approximation. Since in DFT
Vie(r) is an unknown quantity it can only be approximated. In contrast to Hartree-Fock,
DFT can not exactly describe exchange. Exact exchange is non-local in nature in the
sense that the exchange potential depends explicitly on all orbitals, whereas in DFT it
is only a function of r. As a further disadvantage, DFT introduces a self-interaction
error since each electron interacts with the total density of all electrons including itself.
What makes DFT compelling is that it can approximate the correlation which is entirely
missing in Hartree-Fock, and that it is at least one order of magnitude cheaper than
Hartree-Fock.

2.2.3 Hybrid functionals

The close formal resemblance of DF'T and Hartree-Fock can be used to incorporate exact
exchange into density functional theory. Hybrid functionals replace a certain fraction of

approximate DFT exchange with exact exchange in V.

phybrid — o pHE L (1 — o) EXS 4 EXS (2.15)
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2.3 MP2 & RPA Electron Correlation with RI

MP2 and RPA can both be viewed as corrections to the Hartree-Fock or DFT energies
to add the missing electron correlation. The second order Mgller-Plesset energy [14—
20] is obtained by Rayleigh-Schrodinger perturbation theory in which the zeroth order
Hamiltonian is the Fock operator. The closed shell MP2 correlation energy EMF? is
obtained as .

e _ Z (ialjb)[2(ialjb) — (iblja)] (2.16)

€q T € — € — €

ij,ab
Indices i, j refer to occupied and a, b to virtual MOs and €;, €,,... to the corresponding
Hartree-Fock or DFT orbital energies. The shorthand notation (ia|jb) refers to 2-electron
electron repulsion integrals (ERIs) as defined in Eq. (2.13). In order to avoid the expen-
sive calculation of 2-electron ERIs the Resolution of the Identity (RI) Approximation is

applied to save memory and computational cost.

2.3.1 Resolution of the Identity (RI) Approximation

The computation and storage of two-electron (four-center) integrals can be a major bot-
tleneck in post-Hartree-Fock methods. The Resolution of the Identity (RI) approximation
can be used to eliminate one center so that the maximum rank of integral tensors is re-
duced from four to three. Products of AO are expanded into auxiliary basis functions
[21-29]

Z P oax(r (2.17)

so that two-electron electron repulsion integrals reduce to

(uv|\o) = Z (PlQ)CE. (2.18)

The expansion coefficients C’fl, are not uniquely determined and should be chosen to
minimize the expansion error. A least-square fit to minimize the norm of the residual
(the difference between an AO pair and its RI expansion) leads to the overlap RI metric
[25, 28, 29]

Cr =S (wQ)S5h (2.19)

Q
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with the overlap integrals

Q) = [ 6,516, (x)ofy (x) . (2:20)
Sop = /¢Q(r)¢P(r)dr (2:21)

Alternatively (and more accurately) the RI error of the original four-center integrals can
be minimized leading to the Coulomb RI metric [21-23, 25, 20]

Ch, = (|Q)Vop (2.22)
Q

where the integrals V, 2 and (uv|Q) are Coulomb integrals analogous to Eq. (2.13).

For a general potential V;(r) the 2-electron integrals of the form

(4 |ow), = / / 6 (01 S5 VA(IT2 — 1)) 6 (£2), (x2) . (2.23)

have an RI approximation

(A ov) = ) (uA@)2(QIR);  (RIS)1(S|P);  (Plov), (2.24)
PQ

where the subscript ¢ in (---); denotes the operator V;(r) of the integral. Choosing
V1 = V4 is most accurate. In practice a more local V5(r) (decaying quickly for increasing
r) is beneficial to obtain a sparser representation of the 3-center ERIs. Choosing V5(r) =
d(r) is the most local choice and recovers the overlap RI metric Eq. (2.19). Attenuated
or truncated Coulomb potentials can serve as more reasonable compromises between

accuracy and locality [28].

2.3.2 RI-MP2 & RI-RPA

Introducing the RI approximation with the Coulomb metric the 2-electron ERIs in the
MP2 energy expression Eq. (2.16) are calculated as

(ialjb) = > BEBY (2.25)
P
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with the tensor B¥ given by

B = (ia|R)Lpy, (2.26)
R

and the triangular matrix Lpg obtained by the Cholesky decomposition of (P|Q)
(PIQ) = 3 LenLhg (2.27)

Within the RI approximation the dRPA (direct RPA without exchange contributions)

energy can be expressed as a frequency integral [30-33]

1 [T°d
A /_ ) CTr(In 1+ Q) — Q) (2.28)
The matrix Q(w) is given by
Qrr(w) =2 Z B G a(w) By, (2.29)
Gia(w) = (€4 — €)((€a — &) + W) ! (2.30)

The frequency integral Eq. (2.28) can be most efficiently discretized by a minimax ap-

proximation [34].

2.4 Periodic Systems

In this section methods specific to periodic boundary conditions are reviewed. Conceptu-
ally periodic systems require k-point integration. Since the electronic structure methods
presented here are optimized for large systems, only the I'-point k = (0,0,0) is needed
which is an approximation that holds in the limit of large simulation cells [35]. Whereas
ERIs are traditionally calculated with standard analytical schemes [36], periodic bound-
ary conditions imply virtually infinite lattice sums for non-local operators so that other
approaches for ERI calculation need to be considered. One topic of this thesis is an
analytical scheme for periodic ERIs. We therefore introduce here the numerical GPW

method which is the current standard method to calculate periodic ERIs.
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2.4.1 Periodic Hartree-Fock Exchange with Truncated Coulomb
Operator

Periodic boundary systems are usually applied to facilitate the simulation of extended
systems in the condensed or liquid phase. This formally requires integration over k-
vectors. In practice the k-vector integration is discretized by a finite mesh of k-points.
The HFX energy is however troublesome to compute due to an integratable singularity
at k — k. In CP2K this is solved by replacing the Coulomb operator in the Exchange
integral Eq. (2.4) with a truncated Coulomb (TC) operator [37, 38]:

I ifr <R,

gre(r) = (2.32)

0, otherwise

The minimum required R, to yield an accurate exchange energy is a system dependent
quantity where convergence is more rapid for systems with a large band gap. This can
be seen from the Exchange energy expression Eq. (2.9) by noting that the decay of the
density matrix implies that 2-electron integrals with large separation between the centers
of p and v or A and ¢ can be neglected. The number of required k-points depends on the

cell volume V' and the cutoff radius R, according to [37, 3§]

51

4
Ny~ —R 2.33
A T-point only implementation is justified as long as the cell length L satisfies [38]
L > 1.61R. (2.34)

The optimal value for the cutoff radius R. depends on the band gap and unit cell of a
system. For cubic unit cell the recommendation R, < L/2 holds [38].

2.4.2 Periodic Electron Repulsion Integrals

An ERI over periodic functions a® (r),b% (r), ¢ (r), d¥ (r) and a general potential V (ry,rs)

has the form

(abled) = /erl /]1@3 draa” (r))bF (r1)V (11 — 1r2)c (r2)d" (r2) (2.35)
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with 2 the domain of the simulation cell and the superscript P indicating periodic repe-

tition over all unit cells (summation over lattice vectors R):

fFae)=> fae-R) (2.36)

If the potential is non-local (such as the Coulomb potential), the summation over
periodic images Eq. (2.36) is virtually infinite in Eq. (2.35) and a plane wave representa-
tion via Fast Fourier Transform is required (as will be explained in the next section). If
the potential is local (such as truncated Coulomb Eq. (2.32)), a small number of periodic
images is required and the ERI can be calculated more efficiently with analytical methods
such as the Obara-Saika scheme [306].

2.4.3 Gaussian and Plane Wave (GPW) Method

The Gaussian and Plane Waves method is based on a representation of molecular or-
bitals in terms of both atom-centric Gaussian basis functions and plane waves [39]. A
disadvantage of this method is its reliance on a smoothly varying electron density or
basis functions with a large extent. Thus all-electron calculations are not possible and

introduction of pseudopotentials [10] to describe the core electrons is a requirement.

We describe here the GPW-based calculation of ERIs over a potential V' (r). Without
loss of generality, we restrict ourselves to 3-center ERI of the form (ab|c). This is the
largest number of centers within the RI approximation and the calculation of 2-center

ERIs is analogous. The periodic 3-center ERI (ab|c) is defined as

(ablc) = /erl /RB draa” ()b (r)V (r) — 13)c’ (13) (2.37)

The GPW scheme is based on an alternative representation of a function a in reciprocal

lattice space via the Fourier series

o (r) %% 3 aG)ec (2.38)

IG|<Ge

where @ is the plane wave representation of a given by the Fourier transform

a(G) = /Q dra® (r)e "¢T = /}R ) dra(r)e "C* (2.39)
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The only approximation in Eq. (2.38) is the truncation of the sum according to the cutoff
G. which is accurate if the function a(r) is not too localized. Note that due to the
numerical evaluation of the plane waves a is not restricted to Gaussian-type. Within
the GPW method it is therefore convenient to apply any index transformation on the
Gaussian basis function itself before transforming to plane waves, instead of contracting
the ERIs. In RI-MP2/RPA, instead of calculating the 3-center ERI (ia|R) the tensor B%
Eq. (2.26) is evaluated directly by defining the third center as c®(r) = >, ¢r(r)Lpp-

We define v°(r) as the convolution

v(ry) = / dryV(ry —19)c’ (ry). (2.40)
R3
which can be expressed as a Fourier series with Fourier coefficients
7(G) =¢(G)V(G) (2.41)

For the case of the Coulomb potential the Fourier transform V (k) is known to be 47 /|k|2.

Within the GPW scheme v¢(r) can thus be obtained by an inverse Fast Fourier Transform
—1

(FFT) v°(G) ., ve(r) [40]. The 3-center ERI (ab|c) can then be expressed as

(ablc) = /Q dra (r)0F (r)oe(r) = 3 / dra(r)b(r — R)ve(r) (2.42)
R 7R

As shown in [39] this integral can be discretized over FFT real space mesh points r;

(able) = Gap(r:)v°(r;) (2.43)

r; CQ
with ,
Jan(ri) = v Z Jab(G) 0" (2.44)
|G|<G.

and g.(r) being the Gaussian product a(r)b(r —R). The numerical evaluation starts with
calculating the s-type matrix elements of v°(r) and its numerical derivatives, from which

all higher elements can be calculated by using recursion relations.
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2.5 Implementation of Exact Exchange, RPA & GW
in CP2K

This section provides a technical description of the reference implementation of exact
exchange, RPA & GW in CP2K. This work attempts to provide alternate and possibly
more efficient algorithms for these methods as introdued in Sec. 2.6. A concise sum-
mary of the reference implementations from the perspective of computational cost is thus

appropriate.

2.5.1 Hartree-Fock Exchange

The dominant operation in Eq. (2.9) is the calculation of the 4-center ERIs (uA|ov). A
naive implementation would scale as O(N*) with respect to system size N in terms of
both computational cost and memory footprint. By inspecting the full expression for the

exchange energy from Eq. (2.9)

1
EMF — -5 > PuPos(pv|)o) (2.45)

12X

it can be seen that only those ERIs are needed that are contracted with non-vanishing
elements of the density matrix. Combined with the Schwarz inequality the screening

criterion can be formulated as [4]

P Por(uv|Aa) < max (|, | Poal) % /[ ()] - [(AaAo)] < esctwars, (2.46)

such that all ERIs (ur|Ao) that satisfy this inequality (given some screening threshold
€schwarz) can be skipped. Due to ERI symmetries the number of integrals can be further
reduced by a factor of 8. Once the ERIs are calculated they can be reused in all SCF steps
in the self-consistent SCF procedure if enough memory is available to store them in-core.
The total execution time of a Hartree-Fock calculation is then dominated by the integral
calculation in the first SCF step. The required memory can be reduced by a large factor
by compressing the ERI data and decompressing them on-the-fly as needed during the
SCF procedure. The scaling with basis size is O(N*). High quality basis sets thus make
Hartree-Fock much more expensive, even more so if they are highly contracted, if they
have a high angular momentum quantum number or if they are very diffuse since all these

feature increase the number of primitive Gaussians that contribute to ERI calculation.
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A resolution-of-the-identity scheme to Hartree-Fock (RI-HFX) has the potential ad-
vantage of being less sensitive to the number of primitive Gaussians since integral calcula-
tion should not be the bottleneck of such an implementation and the remaining operations
scale with the number of contracted basis functions. Furthermore the 3-center quantities
are much less heavy in memory so that storage should be less of a problem in a RI-HFX
scheme. A RI-HFX implementation has the disadvantage that due to the indirect eval-
uation of the Fock matrix, avoiding the calculation of 4-center integrals, the strategy of

imposing sparsity based on the decay of density matrix elements can not be applied.

2.5.2 RPA

The by far most dominant step in RPA is the contraction Eq. (2.29) B'(w)TB/(w) with
B'(w) = G(w)"?B which is a multiplication of tall-and-skinny matrices that can be
efficiently performed with a GPU-accelerated Scalapack [41]. The matrix B’ grow as
O(N?) in memory so that the feasible system size is limited by the amount of RAM
provided even by the largest machines available (the largest system calculated so far

being 512 water molecules).

A low-scaling implementation of RPA & GW promises to provide a reduced scaling
of O(N?3) w.r.t. both memory and execution time [2, 3]. Such an implementation relies
on sparse tensor contractions which is a highly non-standard and customized operation.
Therefore good performance and a stable, easy-to-use implementation can only be ex-
pected if more effort is spent on the development and optimization of numerical primitives
that serve as the backbone of the actual RPA implementation. Even with an optimized
implementation of sparse tensor contractions, it can not be expected that a high per-
centage of the peak performance of modern supercomputers will be achieved since sparse
computations with heterogeneous block sizes are inherently problematic for GPUs. De-
spite this disadvantage in terms of absolute performance, the hope is that the reduced
scaling will eventually win against an efficient quartic scaling RPA implementation and
enable RPA for system sizes that were previously out of reach. The potential advan-
tage of the low-scaling algorithms has already been demonstrated in [2], even though the

comparison was performed on CPUs.
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2.6 Low-scaling Algorithms

This section introduces alternative formulations of Hartree-Fock Exchange, RPA and GW
that attempt to reduce the scaling and/or required memory. The presented algorithms
have in common that they exploit sparsity by the use of a local RI metric and Gaussian
basis functions. The tensor operations that are needed for an actual implementation will

be discussed later in chapter 4.

2.6.1 RI Hartree-Fock Exchange

The Fock matrix ¥¥, can be written within the resolution-of-the-identity (RI) approxi-
mation as
RI

1 1 _ _
S =3 D (pAov) Py = -3 > (HAP)SpRVRsS56(Qlov) Py, (2.47)
Ao Ao PQRS

where the 2-center ERIs Vig are integrals over the Hartree-Fock potential V; which is the
Coulomb operator for isolated systems and the truncated Coulomb operator with some
cutoff radius for periodic systems. The 2-center ERIs Spgr and the 3-center ERIs (uA|P)
are integrals over the RI metric Vg;. For accuracy Vg should approximate V, and for
efficiency it should be local such that (uA|P) = 0 if the centers of both functions u, v are

far off from the center of P. More precisely the screening criterion
(M)\‘P) ~ 0 if (d'up > dVRI + d# + dp) and (d)\p > dVRI +dy + dp) (248)

holds where d,p is the distance between the centers of p and P, dy;, is the extent of the
RI metric (equal to the cutoff radius in case of a truncated potential) and d,,, d, and dp
are the radii of the functions u, A and P which are assigned according to some truncation

threshold. The screening criterion
(M)\‘P) ~0if d#)\ > d# + dy (2.49)

always holds independently of Vg;.

The only quantity that changes over the course of a self-consistent SCF procedure
is the density matrix. As in canonical Hartree-Fock the quantities independent of the
density matrix should be evaluated in the first SCF step only. The following contractions

are thus computed in the first SCF step (mentioning also the formal scaling with system
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size):
Contraction scaling: cost/memory
Kpq = ZS;}%VRS‘SEcl) O(N?)/O(N?) (2.50)
MG, = ZWP)KPQ O(N?)/O(N?) (2.51)
P

The remaining contractions which are repeated in each SCF step are:

Contraction scaling: cost/memory
M3, = Z(QUV)PM O(N?)/O(N?) (2.52)
Z oMo O(N?)/O(N?) (2.53)

For the scaling relations we did not assume decaying density matrices. If density matrices
become sparse for large systems, formal scaling of Eq. (2.52) and Eq. (2.53) is reduced
to O(N) (cost and memory).

The matrix Kpq is dense irrespective of the chosen RI metric. Even though some
sparsity remains in Mé) iu (the sparsity associated with criterion Eq. (2.49)), the quantity
Mg/\)u is expected to be the largest tensor (with the largest number of non-zeros). This
tensor must be fully stored in memory so that it does not need to be recomputed in every
SCF step. The large memory requirements can be reduced by a strategy combining a
compression scheme with partial contraction in multiple batches: Each portion of M, /\) ol
calculated and compressed immediately. The respective batches are decompressed when
needed in each SCF step (where the contractions are also performed in multiple batches).
The compression algorithm that was developed for the direct HFX implementation [4]
can be reused for that purpose. The batches are defined by a static decomposition of
the indices Q and A. If each of the two indices is split into ny,em batches, the associated

memory savings are n2 . This strategy can thus reduce the memory footprint by a large

m*

factor, ideally without any additional computations or communications.

2.6.2 Low-scaling RI-RPA

The scaling of RPA and SOS-MP2 can be reduced from O(N?) to O(N?), or even better
by alternative analytical formulations of the methods [34, 42—-46]. Here we describe the
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CP2K-specific implementation that was initially developed by J. Wilhelm [2]. The effec-
tive system size scaling is O(N?) (O(N?) in the limit of very large systems), independently
of the properties of the system under consideration. The universal O(N?) scaling makes
the low-scaling approach applicable to systems of all nature, including dense condensed-
phase systems with a small (but non-vanishing) band gap. Low dimensionality or local
electronic structure giving rise to sparse density matrices improve performance and bring

down effective scaling to O(N).

For low-scaling RPA, the matrix Q) pg(w) (2.29) is transformed to imaginary time |2,

46] Qpq(T) by a cosine transformation

Oro(w) =2 /0 " Qo () cos (7w) (2.54)

and discretized on minimax grids for time and frequency with M grid points each

M

QPQ (wk) =2 Z )\kapQ (Tj) COS (Tjwk) (255)

J=1

where \j; are the integration weights. The tensor B Eq. (2.26) is transformed from
occupied-virtual molecular orbital pairs ia to pairs pv of atomic orbital basis set functions.
This decouples the sum over occupied and virtual orbitals and thereby reduces the formal
scaling from quartic to cubic. Further requirements for a cubic scaling behavior are the
use of localized atomic Gaussian basis functions and the localized overlap RI metric such

that the occurring 3-center integrals are sparse.
The working equation for low-scaling RPA is
Prr(1j) =) (Zuau%) :;&C(m) (Z(MT)DZ?@)) (2.56)
no A v

with the pseudodensity matrices

occ

Docc Z CMC/\Z 61 €F T] (257)
virt
Dv1rt Z C’uaoaae_l(ea er) Tl (258)

The 3-center ERIs (Ac|R) are integrals over the RI metric Vg;.
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The matrix Q(7;) can then be obtained from P(7;) by
Q(7;) =K"P(m)K (2.59)
with the matrix K defined by
K=5"L (2.60)

The Cholesky factor L is defined in Eq. (2.27) and S is the 2-center ERI over Vgi.

The expression Eq. (2.56) is evaluated for each time grid point j in terms of the

following tensor contractions

Contraction scaling: cost/memory
Mygr(7;) = ;(AJ\R)DZKC(@) O(N?*)/O(N?) (2.61)
M (T ):Z(NWT)DVM(TJ‘) O(N?)/O(N?) (2.62)
Prr(7;) ZM;::,CR )My (75) O(N?)/O(N?) (2.63)
Qro(T)) Z Kgp Z KrqPrr(r O(N?)/O(N?) (2.64)

For the scaling relations we did not assume decaying density matrices. If density matrices
become sparse for large systems, formal scaling of the first 3 contractions is reduced to
O(N) (cost and memory). As for the RI-HFX method, the full storage of the large M
tensors can be avoided by partitioning indices p and ¢ into npe, index ranges and by

executing the corresponding n2, . tensor contraction batches consecutively, leading to a

mem

memory reduction by a factor of nyem.

2.6.3 Low-scaling GW

All theories described so far relate to the ground state only and electronically excited
states are not accessible. Green function techniques allow to go beyond the ground state
description such that ionization energy, electron affinity and the fundamental band gap
can be obtained. The GyW; method approximates the quasiparticle wavefunctions by the
MOs from Kohn-Sham DFT (including Hartree-Fock contribution / hybrid functionals)
[47].

The eigenvalue problem of generalized Kohn-Sham (GKS) DFT (equivalent to Eq. (2.14)
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with the inclusion of exact exchange) can be written as

00 5) [ e o, 1) = e, (2.65)

with h° containing the external and the Hartree potential as well as the kinetic en-
ergy. In Kohn-Sham DFT, the exchange-correlation potential v*¢(r,1’) is a local potential

v*(r, 1) = 0(r,r')vik(r). In Hartree-Fock theory, v*° is equal to the exact exchange

occ

Z %'r i ;,| (2.66)

After solving the GKS equations self-consistently, the GoW, quasiparticle energies are

obtained in effectively O(N?) computational cost according to
e = €, + X% + ReXy (¢7°"0) — w3 (2.67)

The low-scaling variant of GW has been originally developed by J. Wilhelm [3] based on
the low-scaling RPA algorithm. The correlation self-energy 3¢ is calculated in imaginary

time by

e (iT) ZZGW (i1)(n|uP) ZWPQ iT)(Qun) (2.68)

vP

where the 3-center ERIs (n|uP) are integrals over the RI metric Vg and the first index
is contracted to the selected MOs n corresponding to the desired range of quasiparticle
energies €500, The Green’s function G(iT) can be written in terms of the pseudodensity

matrices from low-scaling RPA

. Dece(r), if 7 <0,
G(it) = . (2.69)
—DV*(7), if7>0

and the scaled screened Coulomb interaction is defined as
We(it) = ST'We(iT)S ™! (2.70)
The quantity W¢(i7) is the cosine transform from W¢(iw) defined by

W¢(iw) = L(e ! (iw) — 1)L, (2.71)
e(iw) = 1 — LTx°(iw)L, (2.72)



2.6. LOW-SCALING ALGORITHMS 21

x'(ir) = ST (ir)S (2.73)

where x"(i7) is identical to P(7) in Eq. (2.56).
The static exchange self-energy is obtained by

S5 ==Y Du(nuP) Y Veo(Qun) (2.74)
Q

vP pu
with D,,, the density matrix and V = 8~1VS§~!.
The scaling of Eq. (2.74) and Eq. (2.68) is O(N?) (not assuming sparse density matri-

ces) and all matrix-matrix multiplications scale as O(N?), however with a much smaller

prefactor such that the effective scaling is O(N?) even for large systems [3].



Chapter 3

Analytical MME Method for
Periodic ERIs

The Gaussian and Plane Wave method allows the computation of matrix elements for
periodic systems with the use of a Gaussian basis. The GPW method is the core ingredient
of CP2K as it allows accurate and efficient electronic structure calculations of extended
systems. It was originally developed for the calculation of the Kohn-Sham matrix elements
and found later reuse for the periodic electron repulsion integrals (ERIs) appearing in
the electron correlation methods RI-MP2 & RI-RPA.

The GPW method relies on a numerical representation of the density or basis functions
in terms of plane waves with a finite cutoff. It therefore requires that the basis functions
and the density are smoothly varying in real space. Only the valence electrons can
thus explicitly be treated within the GPW scheme and the interaction with the ionic
core is included via pseudopotentials. An extension of the GPW method Gaussian and
augmented-plane-wave (GAPW) [48] was developed to enable all-electron calculations
within the DFT formalism. No such equivalent exists yet for wavefunction correlation
methods.

An alternative analytical method for 2- and 3-center periodic ERIs is proposed here,
the Minimax-Ewald (MME) method based on two techniques:

e The Fourier-transformed Coulomb potential 1/k? is approximated by a sum of

Gaussians using the minimax approximation of 1/ by exponential sums [49]

« Inspired by Ewald summation [50], the ERIs are expressed as a sum over periodic

image cells which converges rapidly for both narrow and diffuse basis functions.

22
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3.1 Periodic ERIs in the Reciprocal Lattice Repre-

sentation

Periodic 2-center and 3-center ERIs (a|b) and (a|bc) are integrals of the form of Eq. (2.35):

(alb) = /erl /RS dragl (r1)V (r1 — 12) ¢y, (r2) (3.1)
(abie) = [ dry [ deaol )l eV —rael ) 32

where the potential is assumed to be of Coulomb type V(|r; —r3|) = 1/|r; —rof.

The domain €) corresponds to the simulation cell with volume V. The simulation
cell is spanned by 3 vectors aj,ap,as. Lattice vectors are defined by R = h - s with
h = [a;,a,a3] and s a vector of integers. For periodic boundary conditions the basis

functions are periodically repeated over all image cells
0p(r) =) du(r—R) (3.3)
R
The periodic basis functions can be expanded into a Fourier series
1 ~ .
P _ iGr
0 (r) = ch 0a(G)e (34)
with the Fourier coefficients
(@) = [ dof ) = [ drouwye e (35)
Q R3

Reciprocal lattice vectors are defined as G = 2w(h')~'g with g an integer vector.

The basis functions are the product of a Gaussian radial part with a spherical harmonic
and can be created by transformation of a set of simpler basis functions such as Cartesian

Gaussians C),(r) or Hermite Gaussians Hj,(r):
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Following the work of Reine et al. [51] we choose to integrate over Hermite Gaussians
and we express our basis functions as ¢,(r) = Hyo(r — A), ¢p(r) = Hmp(r — B), ¢.(r) =
Hy ,(r — C) because, as will become apparent shortly, this choice leads to a simpler
analytical form of the lattice sum expression of the ERIs. Moreover Hermite Gaussians
are a convenient choice for ERI derivatives since differentiation by nuclear coordinates

simply increments the [ quantum number according to

0
o Hya(r = A) = Hipolr — A) (3.
0A
Thus ERI derivatives of arbitrary order are available in the same scheme and there is
no need for a specialized implementation of derivatives. It is also shown in [51] that
Hermite Gaussians transform in exactly the same way to spherical-harmonic Gaussians

as Cartesian Gaussians after rescaling them as H;,(r) — 1/(2a) H; o(r).

The Coulomb potential is expressed in terms of its Fourier transform

1 1
1 kL |
v 2 / i (3:9)

By inserting the Fourier transformed Coulomb potential Eq. (3.9) and the Fourier
series Eq. (3.4) into Eq. (3.1) & Eq. (3.2) we obtain a discrete form of the ERIs as a

reciprocal lattice sum:

4
(alb) = WZIGP (—G) (3.10)
G0
(able) Z‘G‘Q%b 0e(—G) (3.11)
G;«éO

with ¢ (r) = ¢ (r)éf (r). We excluded the divergent G = 0 component which is equiv-
alent to subtracting the average from the functions ¢,, ¢y, . so that their Fourier trans-
forms vanish at G = 0. Whether or not this modification affects the physical results (and
needs to be corrected) depends on the method in which the ERIs are used [37, 52].
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3.2 Derivation of the MME Method

2-center ERIs

The Fourier coefficient of a basis function gga can be expressed in terms of the Fourier
coefficient of a Hermite Gaussian according to ¢q(G) = ¢~ ®AH, (G). The Fourier

coefficient of a Hermite Gaussian maps to a Cartesian Gaussian (and vice versa):

Fia(@) = (=3) (5) " Gl (@)
Cua(@) = () (1) Hraor1 (@) (3.12)

For the derivation we used the Fourier transform of a Gaussian, the recurrence relation
Hio(r) = =% H;_4(r) together with the Fourier transform of the derivative Fi(k) =

-~

ik f(k). Using the product rule Cj,(r)Cp, 5(r) = Crim.ats(r) Eq. (3.10) now reads

A7t e (1N 1 ,
(a|b) = 7(—1)lll+ (@) GZ;éO @ exp(—zG : (A - B))Cl+m,(4a)—1+(46)—1(G) (313)

where we introduced the short-hand notation | = [ + I3 + l3. The choice of Hermite
Gaussian basis is crucial for the simple form of Eq. (3.13). If a Cartesian basis was used
instead, the summand would contain a product of Hermite Gaussians which could not be
reduced as elegantly to a single Gaussian.

The potential 1/|G?| can be eliminated by expanding it into a linear combination
of Gaussians. This is mathematically justified by the minimax approximation of 1/z in

terms of exponential functions which is well-studied [49]:

i ~ Zwi exp(—a;r) for z € [1, R (3.14)
i=1
For a given number of points n and a given cutoff R, for x the minimax approximation
minimizes the maximum error F,(R.) of Eq. (3.14) for z € [1, R.]. A larger cutoff R,
implies a larger minimax error. For each number of points n there is a critical value of
R, so that the minimax error applies not only within [1, R.], but for the full range [1, o).
The minimax error decays exponentially with the square root of the number of points
n and already 20 points are sufficient to obtain a minimax error Eyy(co) < 1077. The
actual error oscillates evenly between —E,,(R,) and E, (R.), a feature favorable for error

cancellation.
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Approximation Eq. (3.14) can be applied to the Coulomb potential 1/|G?| by fixing
the minimum Gy, corresponding to the smallest reciprocal lattice vector |G| > 0 for a

given simulation cell. By the substitution z = G*/G2,;, we obtain

W ~ Zw, exp(—a;|G|?) for |G| € [Gin, Gc), (3.15)

and &; = o; /G2, . For convenience

min*

with the rescaled minimax coefficients @; = w; /G2,
we omit the tilde from here on so that w; and «; denote the rescaled coefficients. The error
of this approximation relates to the minimax error as £, (|G|) = 1/G2 .. En([Gmax/Gmin]?),
implying that larger systems require a larger cutoff R, and a larger number of minimax
points. However since the minimax error stays constant after the critical value of R. has
been reached, the error scales asymptotically with L? exp(—cy/n) (L being the cell length
in one dimension). Consequently the number of minimax points should be scaled with

the edge length L of the cell as n ~ log(L)?.

By inserting the minimax approximation Eq. (3.15) into Eq. (3.13) we obtain the

working expression

3/2 n
(alb) ~ 4—7T4<_1)lil+m (i) Y wi Y exp(—iG - (A—B))Ciyms,(G) (3.16)
4 aﬁ =1 0<|G|<G.

with the compound exponent d; = «; + (4a)~! + (48)~t. Using analytical properties of
Gaussians and exponential functions this equation can be evaluated efficiently as long as
the reciprocal lattice sum converges rapidly. This is the case only if one of the exponents
is small enough. Since Eq. (3.16) has the form of a Fourier series it can be converted
to an equivalent sum over direct lattice vectors by the means of the Poisson summation

formula for a periodic function f(R)

Zf (2r)” Zf (3.17)

In order to convert Eq. (3.16) to a direct lattice sum the term G = 0 is formally
included to complete the Fourier series. The finite sum (truncated by G.) is extended
over all reciprocal lattice vectors which is justified by the property that 1/|G|? is an
upper bound for the minimax approximation for |G| > G. [49]. Then Eq. (3.16) can be
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Y C(G,a)
G

1.0

Figure 3.1: Improving convergence by converting the reciprocal lattice sum over a Gaus-
sian (left panel) to a direct lattice sum over a Gaussian of inverse width (right panel).

converted to a direct lattice sum

) 1 3/2 n 1 3/2 1
(a|b) ~ A4 (_1)m (a_ﬁ) Zwi <M) Z Hl+m,(4&,~)—1<R + A — B) — V51+m’0
=1 R
(3.18)

where the term %5l+m,0 is the G = 0 component implicitly included in the lattice sum
which needs to be subtracted. We find that Eq. (3.18) typically converges faster since
even diffuse basis functions extend over not too many periodic image cells, as illustrated
in Fig. 3.1. The analytical conversion to a direct lattice sum is the core feature to enable
efficient all-electron calculations since expression Eq. (3.18) converges especially fast for

narrow basis functions with large exponents.

3-center ERIs

The Fourier coefficient of the product ¢, (r) = ¢ (r)¢! (r) can be calculated according

to the second convolution theorem
n 1 n N /
a(G) = 17 ; ¢a(G) (G — @) (3.19)

The discrete convolution coupling two sums over G and G’ is rather inconvenient, espe-
cially when it comes to deriving a direct lattice evaluation analogous to Eq. (3.18). A

more promising strategy is to expand the double-periodic function ¢%, (r) into a sum over
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single-periodic functions ¢g, g (r) according to

Z Z Ga(r —R)op(r —R') = ) ol r(r) (3.20)

R

where the single-periodic product gbanR is defined as the periodic repetition Eq. (2.36) of
the product function ¢ur(r) = ¢u(r — R)gy(r).

Inserting this expansion of ¢%,(r) into Eq. (3.2) yields (ablc) = Y z(ab,R|c). The
Fourier transform of the product function ¢, r would yield a convolution that is best
avoided by first expanding ¢, r into a linear combination of single Hermite Gaussians

by the ansatz

3 lp+my

Pabr(T) HHlka ri— Ak —Ri)Ho, p(ri—Bi) = [[ Y F*™ Hyavs(re—Pi) (3.21)

k=1 t=0

with the Gaussian product center P = (a(A +R) + B)/(a + f3). The coefficients F/+™
are generated for each combination of basis sets by simple recurrence relations derived in
[53].

The Fourier transform of ¢}, g can now easily be evaluated according to

3 lgtmy
oror(G) =[] . Ci=me P H, o 5(G) (3.22)
k=1 t=0
- 3/2 3 lpg+myg
::<a—kﬁ) eCPTT D (CES™ Crataran-1 (Gh) (3.23)
k=1 t=0

The minimax-approximated 3-center ERI in reciprocal lattice representation reads as

4

T —3/2
(PQ|R) % ( o+ ﬁ sz (3.24)
3 lk+mk
TS N S G 329
R G#0 k=1 t=0

with the compound exponent

. a+fB+y

Note that the coefficients F/*™ and P are functions of R which is hidden by the abbre-
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viated notation. Since the summand consists of a single Cartesian Gaussian, the Poisson

summation formula Eq. (3.17) can be applied in the same way as for the 2-center case:
(able) ~4rt (=1)°((a 4 B)7y) %2 Zw

3 l;ﬁ-mk
(47@ SENCT] D FF™ Hipop a1 (Ck — P — Ry)

RR k=1 t=0

3
1 i
— dooy; [[ G ) (3.27)

k=1

3.3 Interaction Potential Types

So far we discussed ERIs for the Coulomb potential only. A generalization of the MME
method to other potentials is possible as long as the potential (or its Fourier transform)
can be approximated by a linear combination of Cartesian Gaussians. Here we discuss
the generalization to Yukawa potential and shortrange/longrange Coulomb potential.
The Yukawa potential V,(r) = e~ /|r| has the Fourier transform F(V,,)(k) = 4 /(k*+
w?). This potential can be mapped to the minimax approximation Eq. (3.14) by the sub-

stitution * = (G? + w?)/(G%,, + w?) such that the minimax approximation has the
exact same form as Eq. (3.15) with the coefficients &; = «;/(G?%;, + w?) and @; =

Wi exp(_ )/(G?mn )
The Coulomb potential can be split into a short-range and a long-range part according

to
1 erfe(wr) N erf(wr) (3.28)

T T T

The Fourier transform of the long-range part is

F (@) (k) = i_g exp(—wk?) (3.29)

We insert the minimax approximation for 1/k* according to Eq. (3.15) to obtain

f(‘erf(w)‘) (@)~ dn Y- drexp(—(A +w)@)  for @] € [Con, G (330)

r

so that the range parameter w leads to a shift in the exponent &;. The short-range part

can be calculated indirectly by subtracting long-range ERIs from Coulomb ERIs.
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3.4 Efficient Numerical Evaluation

Evaluation of Hermite Gaussians

The direct lattice sums Eq. (3.18) & Eq. (3.27) are the starting point of the implementa-
tion since these sums typically converge much faster than the reciprocal lattice sum. The
Hermite Gaussians are evaluated by expanding them into Cartesian Gaussians according

to

Hyo(x ZleCka (3.31)

The matrix D is involutory so that D is also the back transformation matrix from Hermite
to Cartesian Gaussians (as can be seen by Fourier transforming Eq. (3.31) with use of
Eq. (3.12)).

The transformation matrix elements Dy, can be found recursively starting from the

derivative of a Cartesian Gaussian [53]

0
%C;m(x) = kCi-1.4(7) — 2aCk11.4(x) (3.32)
to expand Hj 1 ,(x) as
Hipyo(z) 9y Z D O
a\l) = a a_ a
I+1, ot kg, Ok,
!
Z lekC’k 1 a + 2c0 Z leCkH,a (ZL‘) (333)
k=1 k=0
By comparing with the trivial expansion
I+1
Hii1a( Z D11 £Ch.a( (3.34)

the recurrence relation for the matrix elements Dy is obtained
Diy1p=—(k+1)Dygy1 + 20Dy (3.35)

Lattice Summation

The working expressions to be implemented are given by Eq. (3.18) for 2-center ERIs and
Eq. (3.27) for 3-center ERIs. For the case of orthorhombic simulation cells the lattice
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vectors are mutually orthogonal and the sum factorizes into the 3 Cartesian components.
More precisely Eq. (3.18) and Eq. (3.27) can be described as a sum ) ¢ f(R) with a sum-
mand that can be factorized as f(R) = fi(R1)f2(R2)f3(R3). The Cartesian components

of the lattice sum can be separated according to

DR =D > f(hs)

s1 S22 S3

- <Z(hnsl)> (Z(h2252)> (Z(h3353)>

51 52 53
3

=1I>_ f(Rw) (3.36)

k=1 Ry

where we used that h is diagonal for orthorhombic cells. Since the angular momentum
quantum numbers are restricted to small numbers, loops come with a significant overhead
and a complete loop unrolling up to a certain maximum number is applied. Such an
unrolling can be easily implemented and maintained by writing the loops in an external
preprocessor language (Fypp [54]). The most expensive part in evaluating the lattice
sums is the calculation of powers and exponentials for each lattice grid point. Due to
the equidistant spacing of the grid points powers and exponentials can be evaluated
recursively based on the value at the previous grid point, effectively replacing many exp

and pow calls by much cheaper multiplication.

The number of grid points in the lattice sum over Gaussians is determined by assigning
a static range to each Gaussian according to some truncation threshold. An accurate
default is chosen for converging the lattice sums since performance does not strongly

depend on the number of points thanks to the recursive evaluation of exp and pow.

Integral screening methods, relying on a cheap estimate of the magnitude of an inte-
gral, are important for performance to avoid the calculation of negligibly small integrals.
3-center ERIs (ab|c) are small if the local basis functions a and b are sufficiently far apart.
The minimax approximation allows for an efficient screening method since the cost of cal-
culating an integral is proportional to the number of minimax points and a small number
of points (such as 5) already gives a good estimate of the integral magnitude. After a
coarse screening based on assigning a static radius to each basis function the screening is
refined by calculating the integral with a small number of minimax points. If the result
is below a certain threshold, the integral is approximated by this value. If the result is

larger than the threshold the integral is recalculated with a larger and more accurate
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number of points.

Parameter Optimization

The generation of the minimax approximation is numerically problematic and should not
be done dynamically at run time. Instead we use the pre-tabulated minimax approxima-
tions from [49] covering a sufficiently large number of different ranges for each number of
points. The remaining problem is to pick a sufficiently large cutoff G translating to the
fit range of the minimax approximation. This parameter G. can not easily be converged
by the user since both a too-large value and a too-small value lower the accuracy (in
contrast to the GPW method where a large cutoff will always provide an exact reference
value). This is due to a combination of two unrelated sources of errors: A too-small
value of G. leads to a truncation of significant contributions in the lattice sum and a
too-large value reduces the accuracy of the minimax approximation. To ensure stability
of the MME method and to make it parameter-free, a good default for G, is derived
systematically based on error estimates for both sources of errors in dependence of the
basis parameters. The error estimates and the cutoff calibration procedure is described

in detail in Appendix A.

3.5 Results

3.5.1 RI-MP2 & RI-RPA

The accuracy and performance of the newly developed MME is compared with GPW for
RI-RPA calculations of water with the use of GTH pseudopotentials. For pseudopotential-
based calculations the MME method allows calculations at an accuracy comparable to
the GPW method, see Fig. 3.2. The MME method comes with a small overhead of
roughly 20% in computational costs due to 3-center ERIs being more expensive in the
MME approach, see Fig. 3.3. Since the ERIs are calculated over Gaussian functions, the
transformation with the Cholesky factor L' Eq. (2.26) has to be performed explicitly
after the ERI calculation whereas this transformation is implicit in the GPW scheme.
This transformation step scales as O(N*) and starts to show for 128 water molecules,
although adding only 20% overhead relative to the RPA energy calculation.

The GPW method is restricted to smoothly varying functions due to the FFT-based
approach. This restriction is lifted in the MME method due to the analytical evaluation

of Fourier transforms, enabling periodic all-electron RI-RPA/MP2 calculations. An at-
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Figure 3.2: Comparison of the numerical accuracy of the MME method with the GPW
method for an RPA calculation of a system of 32 water molecules. The results suggest
that 20 minimax points are sufficient to converge the error to a value lower than 10~
a.u./electron, comparable to the GPW error using a cutoff of 400 Ry. The reference energy
has been obtained by a GPW-based calculation with a planewave cutoff / rel. cutoff of
1000 / 200 Ry.
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Figure 3.3: benchmarking MME (20 minimax points) vs. GPW method (400 Ry cutoff) for
the RI-RPA method and water systems of different sizes between 32 and 128 molecules, using
a cc-TZV2P basis. The 2-center ERIs are significantly cheaper due to the simple analytical
formulation of the MME method. The same cannot be stated for 3-center integrals where
the MME method has a small overhead over the GPW method. The total ERI calculation
scales as O(IN?) with system size. An additional integral transformation with L~! is needed
in the MME scheme scaling as O(N?).



34 CHAPTER 3. ANALYTICAL MME METHOD FOR PERIODIC ERIS

tractive feature of the MME method is that the ERI calculation over narrow functions
is feasible within the same scheme as for smooth functions and does not add any rela-
tive computational overhead. The only parameter is the number of minimax grid points
and a sufficiently large cutoff is optimized automatically using the scheme derived in
Appendix A.

The smooth convergence for accurate all-electron calculation is demonstrated in Fig. 3.4
and results for water systems of different size and basis set quality are shown in Fig. 3.5.
The augmented correlation consistent orbital basis sets [55] and auxiliary basis sets [56]
have been obtained from Basis Set Exchange [57].

The restriction to relatively small system sizes is not due to computational costs but
due to large memory requirements. This is explained by inefficient ERI storage in the
atomic orbital basis which could be overcome by a scheme calculating integrals in batches

and immediately transforming each batch to molecular orbitals.
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Figure 3.5: Demonstrating the capability of the MME ERI method to perform periodic
all-electron RI-RPA calculations for the case of water systems of different sizes and different
basis quality.
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3.5.2 Image Charge Augmented QM /MM

The MME method can be applied as a fast method to calculate the charge distribution
in a metal slab induced by an adsorbate. We briefly introduce the IC-QM /MM method
by following the work of D. Golze [58] and demonstrate the use of the MME method to
speed up the image charge integrals so that IC-QM/MM calculations can be performed
at the cost of regular QM/MM calculations.

The image charge method [58] is a model to include polarization effects within the
metal in QM/MM simulations of metal-adsorbate systems. Realistic systems of such
interfaces consist of several layers in the metallic substrate and require sufficient lateral
dimensions so that large simulation cells are needed. Quantum mechanical (QM) methods
such as DFT are often not affordable. Classical molecular mechanics (MM) based on force

fields are computationally much less expensive but cannot capture electronic effects.

Alternatively the electronic structure of the adsorbate can be described accurately by
using a hybrid scheme combining QM and MM methods in which the adsorbate is treated
by DFT and the metal by classical force fields. The interactions between adsorbate
and metallic substrate are described at the MM level of theory. In the image charge
augmented QM /MM scheme the charge distribution induced within the metallic substrate
is modeled by a set of Gaussian charges (image charges) with constant width centered at
the metal atoms. The image charges and the electrostatic response of the QM potential
are determined self-consistently by imposing the constant-potential condition within the
metal. Even though the electronic properties of the metallic substrate are not taken
into account explicitly, the augmented QM/MM scheme can reproduce characteristic

polarization effects of the adsorbate.

Within the IC-QM/MM approach the induced charge distribution is expressed in

terms of the image charge Gaussians g,(r,R,) = exp (—a|r — R,|?) by

p(X) = ) caga(r.Ro) (3.37)

a

where R, is the position of metal atom a. The Gaussian width is determined by a single
parameter « that is set to a constant value. The expansion coefficients ¢, are obtained
by imposing that the electrostatic potential is constant in the metallic slab, equivalent

to the minimization of the electronic energy w.r.t. the coefficients ¢,

o~ (040 = Vilgaloyde + Y T =0 (3.39)
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where V}, is the Hartree potential and Vj is a constant external potential. The matrix T,

consists of ERIs between pairs of image charges

T,y = // 9(r Rb 900 R) (3.39)

—I“

The calculation of T}, is typically more expensive than the actual QM /MM calculation
if the GPW method is used. Fig. 3.7 shows timings of IC-QM/MM using the MME
method, in comparison with the GPW method and regular QM /MM calculations without
image charge correction. The much faster MME method renders the costs of the image
charge correction negligible so that IC-QM/MM can be performed at about the same
costs as regular QM /MM.

Both, IC-QM/MM and standard QM /MM calculations, are performed for a large flat
tris-terpyridine-derived molecule (TTPB) on a Au(111) surface, see Fig. 3.6. In order to
avoid superios interactions of the T'TPB molecule on the surface, the metallic substrate is
modeled laterally with a p(12 x 24) repetition of the unit cell and vertically by four metal
layers. In order to decouple the periodic image along the vertical axis, a vacuum of 23 A
has been added above the TTPB molecule. We employ an asymmetric slab-structure, i.e.
TTPB is only added on one side of the Au(111) slab. To assess the performance of the IC-
QM/MM calculations dependent on the system size, the unit cell of the TTPB@QAu(111)
model has been repeated up to six times in one of the lateral dimensions. The number
of SCF step has been set to 40.

The setup for the QM /MM and IC-QM/MM calcuations is the same as for the adsor-
bate@Aulll systems in Ref [58], except for the plane wave cutoff which is set to 300 Ry.
The TTPB molecule is described at the DFT level of theory using the Perdew-Burke-
Ernzerhof (PBE) functional [59], whereas the metallic substrate is described at the MM
level. The interactions between the molecule and the metal are MM-based. Dispersion
and Pauli repulsion are described by a modified Born-Mayer potential. Electrostatic

interactions are accounted for by the IC correction. For more details, see Ref. [58].
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Figure 3.6: Orthorhombic unit cell of TTP
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QM/MM and IC-QM /MM timings measured on a Cray XC30 system for
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time tyor and (b) ratio t1c—matrix/ttot, Where tic_matrix is the time for calculating the IC-

matrix.
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3.6 Conclusion and Outlook

The MME method for electron repulsion integrals is a general analytical approach to cal-
culate integrals over Gaussians with a polynomial factor and potentials of Coulomb type
under periodic boundary conditions. This method facilitates the development of elec-
tronic structure methods that combine Gaussian basis functions with periodic boundary
conditions. For local potentials the periodicity can be taken into account explicitly by
summing over all image cells and the integrals can be calculated non-periodically by
traditional methods such as Obara-Saika. The MME method fills the gap of analytical
integration methods for the case that the potential is non-local. The method is generaliz-
able to other types of potentials as was demonstrated for the case of attenuated-Coulomb
and Yukawa potentials.

Compared with the numerical GPW method the MME method has the advantage
of being applicable to narrow Gaussians that require a very high plane-wave cutoff at
the same efficiency as Gaussians with an extended width. By means of this feature the
MME method enables efficient all-electron RI-RPA and RI-MP2 calculations of peri-
odic systems. The MME method is particularly efficient for the case of 2-center ERIs
and yields significant speedups for methods relying on this type of integrals. This was
demonstrated for the image-charge-augmented QM /MM method that extends QM/MM
to metal-adsorbate systems where the charge induction in the metal can now be calculated

at insignificant costs compared with the QM /MM part of the calculation.



Chapter 4

Sparse Tensor Contraction

Framework

4.1 Introduction

In electronic structure methods, most algebraic expressions involve matrices and tensors
and the operations performed can be generally classified as tensor contractions. Tensors
derived from two-electron integrals have a rank of 4 and the introduction of the RI
approximation reduces the maximum rank to 3. Under the assumption of local basis
functions the atomic orbital representation of tensors is often sparse so that most elements
are small and can be neglected.

Traditionally dense tensor contractions are implemented by a conversion to a matrix
representation in order to delegate the calculation to a matrix multiplication library. This
is motivated by the availability of optimized numerical libraries such as ScaLAPACK.
However due to missing abstractions for multi-dimensional data, conversion operations
need to be manually written for each individual contraction. Even mathematically simple
operations such as index transpositions are troublesome and require a complete change
in the data layout and a redistribution of all data.

For sparse tensor contractions the same approach is even more problematic in practice
due to the bookkeeping of indices and block sizes which map a certain data element to
its logical tensor index. The format of sparse tensors needs to be adapted to a heteroge-
neously structured sparsity pattern consisting of small dense blocks. A suitable mapping
to a compatible sparse matrix format is less evident than in the dense case.

In order to implement the low-scaling algorithms described in Sec. 2.6 a tensor library

must necessarily be optimized for large block-sparse tensors based on distributed memory

39
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parallelism. Several tensor libraries have been developed in recent years that provide a
simple symbolic language for arbitrary tensor contractions, most notably the libtensor
project [60], optimized for shared-memory parallelism, and the Cyclops Tensor Frame-
work (CTF) [61] for large-scale distributed-memory applications. The libtensor project
has been recently integrated into CTF' to enable distributed-memory parallelization [62].
Both libraries have been extended to handle sparse data, C'T'F relying on an element-wise
sparse layout [63] for generality but with limited sequential efficiency, and libtensor opti-
mized for block sparsity [64] but not supporting distributed memory parallelism. Finally
the TiledArray framework [65, 66] is optimized both for block-sparse data and large-scale
parallelization using a task-based implementation of the 2d SUMMA algorithm. In con-
trast to statically distributed algorithms the task-based approach should be capable of
hiding communication costs and load imbalance that arise due to data inhomogeneity
attributed to block sparsity. They show large-scale applications exploiting block sparsity
and low-rank sparsity within blocks [67-69]. Another project for large-scale block-sparse
tensor contractions on multi-GPU nodes based on the task-focused PaRSEC runtime was

recently reported [70].

Our approach towards a sparse tensor contraction library is based on the DBCSR
matrix library [71]. The most distinctive feature of the DBCSR library compared with the
libraries mentioned above are sequential performance optimizations specifically targeting
multiplication of small blocks, including CPU and GPU backends.

4.2 'Tensor Contractions as Matrix Multiplications

It can be easily seen that tensor contractions are mathematically equivalent to matrix-
matrix multiplications, matrix-vector and vector-vector (inner or outer) products. A
promising approach towards tensor contractions is to express them in terms of these sim-
pler numerical primitives. A tensor contraction API could be implemented as a mapping
between the abstract notation and the concrete evaluation using an existing linear algebra

library.

For a systematic treatment we introduce a mathematical notation adapted from [61]
that expresses the mapping between tensors and matrices systematically. Let A(iy, do, ..., 4,,)
be the element of a tensor of rank n; with index tuple I = (i1, 42, . . .4,,). The shape is the

size in each dimension and is referred to as S = (Iy, Is, ..., 1,,). We consider 3 tensors
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A B, C that appear in a contraction of the form

Clin, . iny- e ring) =
Z A(il,...,in,kl,...,an)B(kl,...,an,in+1,...,inl) (41)

where the indices may be permuted arbitrarily and are ordered here just for simplicity of
notation. The index K collects all indices that are contracted (summed over), appearing

in both A and B, and the index I collects the indices remaining in the contraction result

C.

We define the compound index E = (iy,...,%,,k1,...,kn,) containing all indices
appearing in the contraction. Let p, pg and pc be the functions that map the compound
index E to indices of the respective tensor, e.g. pa(E) = (i1, ..., 0n, k1,..., kn,). These
must be defined in a way that each index in F occurs in exactly two of the three tensor
index tuples p4(F), pp(E) and pc(E). Then a general tensor contraction can be expressed

in the closed-form notation

Cloc(E) = Y Alpa(E)) - B(ps(E)) (4.2)

pa(E)Npp(E)

To clarify the notation, we consider the example

C(i, j, k ZA (I,m,1)B(k,m,j,1) (4.3)

In this case the general notation Eq. (4.2) can be recast by considering

E=(i,5,k,1,m) (4.4)
pa(E) = (I,m,1) (4.5)
pe(E) = (k,m,j,1) (4.6)
po(E) = (i, 4, k) (4.7)

and by noting that ps(E) Npp(E) = {l,m,i} N {k,m,j,1} = {l,m}.

In order to demonstrate the connection between tensor contraction and matrix multi-
plication, we define a one-to-one mapping between a tensor and its matrix representation:
for a tensor T'(I) with index I, My(I) defines its matrix representation with 2-dimensional

index I = (4y,5). The relation between tensor index I and matrix index 1 is established
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by a one-to-one mapping

] = (mTl(I),mTQ(I)) (48)

where

mp; = f o T © Sp (4-9)

is a composition of three functions:
o sp; selects an arbitrary subset of indices
o 7r; is an arbitrary index permutation that maps a set of indices to an ordered tuple

e f maps an index tuple to a single compound index (one-to-one), also known as

indez folding

The selection functions s7; and spe must be defined so that each element of I must occur
in either sr(I) or spo(I) but not both. It is permissible that sp; selects no indices or
all indices in I. The index folding function f can be arbitrarily chosen as long as it’s
one-to-one. For simplicity we assume that f is the same function for all tensors T and
for both matrix indices ¢, however this is not a strict requirement.

For the tensor contraction involving tensors A, B, C as defined in Eq. (4.2) and with

contraction indices I = py(F),J = pp(F), K = pc(E), we define the matrix mappings

SAl(I) = ch(K) =INK
Sae(I) =sp(J)=1NJ
SBQ(J) = SCQ(K) =JNK

The corresponding permutation functions w4, = 71, Tae = 71, T2 = T2 can be ar-
bitrarily chosen. Then the tensor contraction Eq. (4.2) can be expressed as a matrix

multiplication:
Mc(mei(K), me2(K)) = Ma(mai (1), maz(1)) - Mp(mpi(J), mpa2(J)) (4.10)
For the example of Eq. (4.3) we have

Mc(f(i), f(5, k) = Ma(f (@), f(I,m)) - Mp(f(I,m), f(J, k)) (4.11)
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or establishing a short-hand notation which we will use from now on
Me(i, k) = Ma(i,lm) - Mg(lm, jk) (4.12)

As mentioned before, the selection function sp; may select zero indices, then the matrix
representation of a tensor T'(I) is a row vector VJ(mrpo(I)) = Mr(, mpo(I)) or a column
vector Vi(mri(I)) = Mp(mri(I),). Thus tensor contractions map not only to matrix-

matrix multiplications but also to different products involving matrices and/or vectors:

e matrix-vector product

Va(mea(K)) = Vi(mas(I)) - Mp(mpi(J), mpa(J)) (4.13)

e vector outer product

Me(mei (K), mea(K)) = Vilma(1)) - Vg(mpa(J)) (4.15)

« vector inner product (S¢ denoting a scalar)

So = Va(max(1)) - Vg(mp(J)) (4.16)

4.3 DBCSR Sparse Matrix Library

The DBCSR library implements sparse matrix primitives in the Distributed Block Com-
pressed Sparse Row format. This format is derived from the Compressed Sparse Row
format which allows to store non-zero elements only. This format is however inefficient
for any matrix operation since every single scalar operation requires an indirect address-
ing step, mapping a certain index (row, column) to an address in the array storing all
non-zero elements [72]. Often the sparsity structure consists of small dense blocks. In
electronic structure methods the sparse matrix representation of quantities such as the
density, the Hamiltonian or Electron Repulsion Integrals (ERIs) are defined in the atomic
orbital (AO) basis where multiple basis functions are centered on the same atom. Defin-
ing a blocked matrix index in terms of atomic submatrices instead of single elements,
indirect addressing steps occur only once for each block, such that its overhead is re-

duced dramatically and efficient dense compute kernels can be applied to the submatrix
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operations. The atomic blocks can have arbitrary sizes adapted to the number of basis
functions per atom. Small and heterogeneous block sizes are problematic since estab-
lished linear algebra libraries such as BLAS gain their performance from sufficiently large

blocks.

DBCSR matrices are distributed over a two-dimensional grid of Np MPI processes
where the assignment of matrix indices to process coordinates can be chosen arbitrarily.
To achieve good load balancing, the distribution should be aware of the different block

sizes and should randomize over the structured sparsity pattern.

DBCSR consists of several layers according to the separation of concerns between data

exchange, data access, index operations and computations [71, 73]:

e Data exchange: communication pattern used for transferring data for the multipli-

cation based on Cannon’s algorithm [74]

e Data access: In order to improve memory locality, the largest dimension in {m, n, k}
of a local sparse matrix multiplication is recursively divided until sufficiently small

matrix dimensions have been obtained.

o Index operations: Submatrix multiplications involving blocks of ideally the same
size are gathered into a stack. An on-the-fly filtering procedure optimizes away
unneeded computations by skipping blocks with a pre-estimated norm falling below

a certain filtering threshold.

o Computations: stacks are executed on the CPU or offloaded to the GPU which

perform the small matrix multiplications.

In order to obtain good performance for the small matrix multiplications belonging to
a stack, two libraries for small matrix multiplications have been developed: LIBXSMM
[75] for CPUs and LIBSMM_ACC for GPUs. These libraries contain optimized kernels for
arbitrarily small multiplication sizes. At the limit of large block sizes ({m,n,k} > 80)
BLAS libraries become efficient and DBCSR directly calls cuBLAS or BLAS. Thanks to
the generality of the sparsity structure, supporting dense blocks of arbitrary size, DBCSR
performs well not only for sparse matrices, but also for nearly-dense or dense matrices
where a performance comparable to ScaLAPACK’s PDGEMM [76] has been reported [71].
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4.4 Generalizing DBCSR to Tensors

With the formalism of mapping tensor contractions to matrix multiplications Sec. 4.2 at
hand, it’s possible to use a matrix multiplication library as a backend for tensor con-
tractions as long as the tensor-matrix mapping can be implemented efficiently at low
computational overhead. The advantage of such an approach is that all tensor contrac-
tions can be reduced to a much smaller class of operations that are already efficiently
implemented in the matrix library. This allows to obtain consistently good performance
in a generic library design without case-by-case optimizations or implementations. A
requirement is however that the shape and properties of the matrix representation of a
tensor can be handled efficiently in the matrix library.

Regarding the properties of the matrix representations of tensors, the following ob-
servations need to be considered which are summarized here and addressed in details

below

1. Tall-And-Skinny (TAS) matrices: due to the tensor index folding, one matrix di-
mension may be larger by several orders of magnitude than the other matrix di-
mension. For the example of a rank-3 tensor of shape (N, N, N), the matrix repre-
sentation has shape (N? N), so that the ratio of the matrix dimensions increases

linearly with system size N.

2. Sparsity / data locality: the index folding function f in Eq. (4.9) should preserve
the sparsity pattern in terms of blocks such that each tensor block maps to a single

matrix block.

3. Block sizes: Tensor blocks are generally much larger than matrix blocks since the
number of elements per block scales as s where s is the block size in one dimension

and d is the tensor rank.

4. Parallelism: The mapping between tensors and matrices should take into account
the distribution such that switching between tensor and matrix representation does

not involve data exchange.

Tall-And-Skinny (TAS) matrices

The matrix shape and occupancy affect the communication volume in the parallel matrix
multiplication and the memory footprint of storing index-related metadata. Cannon’s

algorithm is known to be communication optimal for matrices with equal occupancies
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but not for rectangular or even tall-and-skinny matrices [77]. The memory footprint of
storing index-related information (distribution and block sizes) scales linearly with the
largest matrix dimension or as O(N?) for 3-rank tensors. Since this data is not dis-
tributed, the O(NN?) scaling holds for the local data stored on each processor. Eventually,
for large systems, the memory consumed by index metadata will exceed the memory re-
quired to store the actual matrix data. To conclude, the DBCSR matrix format is not
appropriate for TAS matrices and a specialized format for matrices with one large di-
mension should be developed. A communication-avoiding parallel matrix multiplication
algorithm that reduces communication volume compared to Cannon’s algorithm is an

important optimization for tensor contraction.

Data locality

Data locality can be ensured by defining a mapping reminiscent to the Z-order curve [78]
which maps multidimensional data to one dimension while maintaining locality of the
data points. In our case the mapping should take into account the block sizes to ensure

that elements belonging to a block have contiguous indices also in the one-dimensional

or linear representation. A direct way of mapping an index tuple I = (iy, i, ... ,4,,) wWith
associated shape (11, Is, ..., I,,) to a one-dimensional index is given by the mapping
nr
fal Z Hfz (i — 1)+ 1 (4.17)
k=1 \l=

the subscript ¢l indicating column-major order with indices starting at 1. The block-
preserving mapping can then be defined by addressing an element indirectly with 2 in-
dices: the index B of the block it belongs to and the index E of the element inside a
specific block. Each of the two indices are independently folded by f.; so that the linear
indices are obtained by B = f.;(B) and E = f.1(E). This mapping ensures that blocks
don’t get split apart by the folding.

Block sizes

Large block sizes have the advantage of providing more operations per submatrix multi-
plication such that a higher performance can be achieved. On the downside large blocks
make it more difficult to obtain a load-balanced distribution since there are less blocks per
core. Then load imbalances due to sparsity and heterogeneous block sizes do not average

out as easily. Splitting blocks into smaller sizes is advantageous for exploiting subblock
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sparsity by e.g. adapting block sizes to a set of basis functions with the same widths.
The optimal block sizes will depend on the exact sparsity pattern and will be defined by
the user. However optimized block sizes may render data access complicated when the
block indices no longer corresponds to an intuitive property such as atom number. For
manipulating blocks manually (as for creating and filling a tensor), different block sizes
may be chosen than for performing contractions, and API routines should be provided

for adapting block sizes dynamically.

Parallelism

DBCSR distributes blocks over a two-dimensional grid of Np MPI processes. The Np
processes are factorized as Np = P; X P, into P; rows and P, columns such that every
process p is assigned the coordinate pair (py,p2) with p = ps + P, - p;. Here we adopt
the MPI convention of indices starting with 0 and row-major ordering of process grids.
Matrix block coordinates (b1, by) are mapped to processes by a distribution D = (d;, ds),
with d;(by) mapping row index b; to a process row p; and dy(be) mapping column index
by to a process column p,. The distribution D can be chosen arbitrarily by the user of

the library.

A generalization of matrix distribution to tensors is straightforward: for a tensor of
rank n;, the Np processes are factorized as Np = Z’: 1 P The process coordinates are
P =(p1,...,pn,) with

nr nr
p=foP)=>_ ( II B) Pr (4.18)
k=1 \i=k+1
the subscript r0 denoting row-major ordering with indices starting at 0. The distri-
bution mapping block indices B = (by,...,b,,) to process coordinates has the form

D = (dy,...,d,,) with dg(bx) mapping block index by to a process coordinate py.

The mapping between tensors and matrices should take into account the distribu-
tion so that switching between tensor and matrix representation does not involve data
exchange. Thus a mapping between a 2-dimensional process grid for the matrix repre-
sentation and a ny-dimensional process grid for the tensor representation is established.
This mapping is formally the same as the mapping between matrix and tensor block
index Eq. (4.8) with the folding function f,o Eq. (4.18).
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4.5 Tall-and-Skinny (TAS) Matrices

The TAS matrix format was developed as an optimized format on top of DBCSR to store
and multiply tall-and-skinny matrices with one large dimension efficiently. We first review
limitations of the DBCSR matrix format and of the parallel multiplication algorithm
implemented in DBCSR. Then we review parallel matrix multiplication algorithms for
TAS matrices. Finally we present an optimized TAS matrix format that enables both

reduced communication and efficient storage.

4.5.1 DBCSR Matrix Format

As the largest matrix dimension grows as O(N?), it is crucial to avoid holding its full
index metadata (block sizes and block distribution) in local memory. The need for such
an optimization can be exemplified by considering a tensor of block shape (N, N, N),
N = ny, - N, with ny, the number of blocks per atom and N, the number of atoms. We
restrict the available memory per core for index metadata to 1 GB which is generous
given that ideally the majority of available memory should be reserved for storing the
matrix data. The index metadata consists of 2 4-byte integer arrays of size N2, the
block distribution and block sizes. We assume n;,, = 4 blocks per atom such that the
total memory corresponds to 2 - N? - 4 bytes = 128 - N2 bytes. Under these assumptions
the memory limit of &~ 1GB corresponds to &~ 3000 atoms. This estimate is rather
conservative, assuming a sophisticated memory management and assuming that only one
TAS matrix layout is held in memory at a time which is not practical. Even so the
limiting system size is below the maximum system size treated so far with low-scaling
RPA consisting of 6000 atoms [79]. These hypothetical findings can be backed up by
looking at the tensor dimensions of an actual calculation of low-scaling RPA for 1536
water molecules:' the dimensions of the largest tensor M. are (12288,12288,30720),
mapped to the large matrix dimension of size 12288 x 30720 =~ 3.8 - 10® (in terms of
blocks), corresponding to 1.5 GB of local storage (for only one index array). We conclude
that the DBCSR matrix format is not suitable for large sparse tall-and-skinny matrices
since the memory excess of index management becomes unaffordable for large systems.
The O(N?) scaling of index metadata is an inherent issue of matrix representations of
tensors, not of tensors themselves: in the tensor representation, index metadata consists

of n; vectors whose sizes scale as O(N) where n; is the tensor rank. Explicit storage of

'the even larger system of 6000 atoms has not been repeated in the new implementation due to our
focus on realistic systems extended in all dimensions.
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the matrix index data can be avoided by delegating the handling of index data to the

tensor layer.

4.5.2 Data Exchange

An important aspect in designing efficient parallel algorithms for distributed-memory
machines is the communication volume or bandwidth cost which is the amount of data
that is exchanged (sent and received) by each processor. An algorithm is said to be com-
munication optimal when it does not perform more communications than is necessary
to solve the problem in parallel under the assumption of perfectly load-balanced data.
Communication lower bounds for matrix multiplications were proven by [80]. Demmel et
al. [81] reviewed communication optimality of different parallel matrix-matrix multipli-
cation algorithms for arbitrary matrix dimensions, and suggested the CARMA algorithm
as asymptotically optimal for all matrix dimensions. Even though they assume dense
matrices, their result is transferrable to the case of sparse matrices by expressing commu-
nication costs as a function of the matrix occupancies instead of the matrix dimensions.

Another important aspect is the load balancing of the data which is trivial for the
dense case but hard to achieve for sparse data with irregular block sizes. The DBCSR
library relies on a grid-based distribution and the distribution is chosen adapted to the
block sizes so that roughly the same number of elements is assigned to each process.
Randomization over rows and columns should homogenize the sparsity structure of the
matrix. Parallel matrix multiplication algorithms for the sparse case should be oblivious
to the distribution to leave as much freedom as possible to load-balance the data.

The communication volume of the parallel multiplication algorithm depends on the
occupancy of the matrices A, B, C in C = A - B, assuming a random sparsity pattern. For
the case of sparse tall-and-skinny matrices, occupancies can vary a lot for the 3 matrices,
if for instance a tall-and-skinny matrix is multiplied with a small square matrix. Thus
it is important that the chosen algorithm performs well for all possible combinations of

varying occupancies in the 3 matrices.

Communication costs of parallel matrix multiplication algorithms

The CARMA algorithm [81] is communication-optimal for all matrix occupancies. This
algorithm is based on splitting the largest dimension M, N, K involved in a matrix multi-
plication, yielding 2 smaller subproblems. A generalized version of this algorithm uses an

arbitrary split factor s. The splitting is repeated recursively on the resulting subproblems.
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By imposing an initial distribution of matrix elements that is adapted to the recursive
splitting scheme, only the smallest matrix of a subproblem is ever communicated. To

assess the bandwidth costs Tarva three cases need to be distinguished :

1. Np < Ny/N; (one large dimension):

Tearma = O(Ny) (4.19)

2. Ny/Ny < Np < Ni/(NiNy) (two large dimensions):

N1 N.
Tearma = O ( ]i[ 2) (4.20)
P

3. N3/(NiNy) < Np (three large dimensions):

(4.21)

Ny N, N3 )3
Teams = O (&)

N

These costs were originally derived for the dense case [81] and were generalized here to
the sparse case by rephrasing the costs in terms of matrix occupancy instead of matrix di-
mensions. For case 3 we ignored memory restrictions that would increase communication
volume.

The hierarchical CARMA distribution is fundamental different from a grid-based dis-
tribution as is used in DBCSR, and the initial distribution is rather restrictive: it requires
that the two large matrices of a subproblem can be split so that each of the two subprob-
lem is mapped to half of the processors. This requirement applies recursively down to
some block size. This basically predetermines the distribution which conflicts with our
requirement that an algorithm for sparse matrix multiplication should be oblivious to the
distribution. However a simplified and grid-based variant of CARMA is still possible in
which only one split step is performed.

We consider the bandwidth cost associated with Cannon’s algorithm for a multipli-
cation C = A - B given by [77]

T B Ns+ Np
Cannon \/N_P

and assume the unfavorable situation that the occupancies are Ny > Ng > Ng. The
bandwidth cost of Cannon’s algorithm is O(N4/+/Np). The bandwidth cost of CARMA is

(4.22)
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either O(N¢) or O(y/NpN¢/Np), depending on the actual occupancy and parallelization,
but in any case much lower than for Cannon. We conclude that Cannon’s algorithm has
bandwidth costs much larger than the optimum for the case that one or two matrices are

much larger than the other matrices.

Hybrid TAS algorithm

This section presents a novel algorithm for multiplying sparse tall-and-skinny (TAS)
matrices which combines Cannon’s algorithm [74] with a simplified, non-recursive version
of CARMA [81], which is equivalent to the dimension splitting technique going back to
Frigo, Leiserson, Prokop and Ramachandran (1999) [82]. The main objective of such a
hybrid algorithm is to lower communication costs of Cannon’s algorithm at the same time
as maintaining a grid-based approach. We call this algorithm TAS-hybrid because it is
specifically optimized for tall-and-skinny matrices and uses a combination of dimension
splitting with any other parallel matrix multiplication algorithm.

We first outline the TAS-hybrid parallel multiplication algorithm. We compare the
bandwidth cost with Cannon’s algorithm and with the communication lower bound. The
dimension-splitting algorithm is oblivious to the parallel algorithm it is combined with,
therefore we describe Cannon’s algorithm only with respect to its communication volume.
For a description of the DBCSR implementation of Cannon’s algorithm, we refer to [71].

The communication scheme is illustrated in Fig. 4.1. Only the smallest of the three
matrices needs to be communicated if the two other matrices have a compatible layout
(either tall-and-skinny or short-and-fat) and if the rows or columns of the largest matrix
dimension map to the same process coordinates. The split factor s is required to be a
divisor of the respective process grid dimension. Since no assumptions are made for the
grid-based distribution, the splitting of the matrix to disjoint process subgroups requires
a row or column permutation so that the new rows or columns are assigned contiguously
to subgroups. The permutations are only logical operations and do not require a change
in the matrix layout, data reshuffling or data exchange. The resulting mapping between
matrices and submatrices is depicted in Fig. 4.2.

We compare the communication volume of TAS-hybrid with Cannon and with the
bandwidth lower bound of CARMA. For the matrix-matrix multiplication C = A - B the
communication volume is expressed in terms of the occupancies Ny, Ng, No which we
sort according to Ny < Ny < N3. In order to discuss bandwidth costs independently of

the ordering of N4, Ng, N¢, we focus on the extreme cases of bandwidth of Cannon’s
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Figure 4.1: Grid-based communication scheme for TAS-hybrid algorithm with split factor
s=2: the largest dimension is split into s parts. Depending on which of m,n,k is the
largest dimension, three different cases arise. Grey arrows indicate mapping steps (grid-
based dimension splitting, see Fig. 4.2) that do not involve communications. Red arrows
indicate communication steps where data is exchanged between processors, see Fig. 4.3. A
precondition for the former to not involve data exchange is that the two largest matrices
are both in either tall-and-skinny layout (more rows than columns) or short-and-fat layout
(more columns than rows), and that the distribution associated with the largest dimension
is the same for both matrices. The multiplication of submatrices is performed in parallel
on the process subgroups using any parallel matrix-matrix multiplication algorithm.
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algorithm TCannon,min S TCannon S TCannon,max with

N1+ Ny
TCannon,min = (423)
v Np
Ny + N-
TCannon,max - g (424)

The favorable case Tcannonmin = O(N2/+/Np) is achieved if the output matrix C has the
highest occupancy. If A or B has the highest occupancy, the bandwidth is Tcannon =
O(N3/V/Np).

The TAS-hybrid is composed of two algorithms which we call TAS-CARMA (di-
mension splitting) and TAS-Cannon (multiplication of submatrices). For TAS-CARMA,
there are s subgroup of processors, each subgroup consisting of Np/s processors holding
a full copy of the smallest matrix with occupancy N;. Thus each processor of a subgroup
holds N;s/Np data of the replicated matrix and each processor holds N;/Np data of
the distributed matrix. The gather and scatter communication steps outlined in Fig. 4.3

perform the following data exchange?

Gather: each processor sends N;/Np data to each of s other processors and receives
Nis/Np data.

Scatter: each processor sends N;s/Np data and receives Nj/Np data from each of s

other processors.

For both operations the communication volume is

N18

i (4.25)

TTAS—CARMA =

For the case that N, < Ny/N;, we choose s = Np and the multiplication of submatrices
is local to each processor. This case is equivalent to the CARMA algorithm and thus
also communication optimal. Otherwise the TAS-hybrid algorithm runs Cannon on Np/s
processes with the two largest submatrices split by a factor of s. The matrices thus have
occupancies Nj = Ni, N5 = No/s, N3 = N3/s. The bandwidth cost depends on the
ordering of N4, Ng, N¢:

2the terms gather and scatter stand for complex data movement operations that don’t relate
to the MPI routines MPI Gather and MPI_Scatter but that are reminiscent of the MPI routines
MPI_ Allgather and MPI_Reduce_ scatter, however with the crucial difference that data is not broad-
cast/reduced to/from each processor but to/from each subgroup of processors of size Np/s.



4.5. TALL-AND-SKINNY (TAS) MATRICES 95

1. Ny=N;,Ng=N; = N;=N;,Ns=Ny/s

N1'8+N2 <N2+N3

T —Cannon — > 4.26
TAS—C s NS ( )
9. No=N,Ng=N; = N;=N,,Ns=Ny/s
N1 'S+N3 2N3

T —Cannon — < p—— 4.27
TAS—C s A ( )

3. Noa= Ny, Npg = N3 = N~:N2/8,NB:N3/S

Ny + N-

2 b (4.28)

TTAS—Cannon e~y
vV Np - S

We introduced the condition s < N3/N; for simplicity and we assumed without loss of

generality Ng > N4. An upper bound for the communication volume is thus given by

2N3
T —Cannon S e 4.29
The communication volume of the TAS-hybrid algorithm is the sum
Nis 2N:.
Tras—nybria = TTas—cArRMA + TTAS—Cannon < 4 ’ (4.30)
Np Np * S

The split factor s was not specified so far and is obtained by minimizing Tras_nybrid

w.r.t. s under the conditions s < Np and s < N3/Ny, resulting in

Sopt = IMin (Np, %j’> (4.31)
The memory overhead of Trag_nybria Over the minimum memory required for storage
was not discussed so far and it is equal to Nys, the memory for creating s copies of the
smallest matrix N; (ignoring the additional memory required by Cannon). With this
choice of sq, we have Nys < N3z hence the total memory required is within a factor
of 2 of the minimum required memory. Given this rather benign memory overhead, we
don’t introduce any memory constraint for the choice of s. A more promising strategy to
reduce memory is to perform matrix multiplications in smaller batches (avoiding the full

storage of an intermediate result in a series of multiplications) which will be discussed in
Sec. 4.5.3.
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Inserting sep into Eq. (4.30) we obtain the bandwidth costs

Ny if Np < N3/N1
T AS—hybrid = (4.32)
y N NiN3 -
Mo yog) fNNsf Np > Ny/Ny

The bandwidth for the first case is lower than predicted from Eq. (4.30) because we re-
moved Cannon communications due to Cannon being executed on a single processor. We

calculate the ratio Tras—nybrid/7Cannon to decide in what cases the TAS-hybrid algorithm

(58
) e

If only the upper bound of Cannon’s bandwidth Tannon max is considered, TAS-hybrid has

is favorable over Cannon’s algorithm

Tras—hybrid _ 0 ( )

TCannon,min Nl + N2

Tras—hybrid _ 0 ( VN1 N3 )
Ny + N3

TC annon,max

always lower communication volume. But inspection of Cannon’s lower bound bandwidth
TCannon,min Shows that there is one case where Cannon is expected to perform better: If
Ny = O(N), then Tras_nybrid/ T Cannon,min = O(\/W) We summarize that Cannon
has a lower asymptotic communication volume by a factor of \/m over TAS-hybrid
only for the specific case that C has the highest occupancy and Ny ~ Ni. TAS-hybrid
has a lower asymptotic communication volume by a factor of \/m over Cannon if A
or B have the highest occupancy or if N3 ~ Ns.

Next we estimate the ratios Tras_nybria/Zcarma as a measure of the deficiency of the

TAS-hybrid algorithm w.r.t. the theoretical communication lower bound:

O(l if Np <N2/N1
Trasawa _ ) 0 (,/52) if Na/Ny < Np < N2/(NyN) (4.34)
TCARMA 1/4 1/4
0 ([%} N} ) if N2/(N\Ny) < Np

We conclude by establishing a hierarchy of decreasing asymptotic communication cost
between the three algorithms with TAS-hybrid performing in general better than Cannon
but worse than CARMA:

1. Cannon: T = O(N3/+/Np)
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2. TAS-hybrid: T — T//N3/ N,

3. CARMA:

o 2 large dimensions: T — T /y/ N3/ N
o 3 large dimensions: T — T/ ((Nl/N2)1/4 . NPI,/4>

The communication reduction of TAS-hybrid over Cannon by a factor of \/W is
substantial for the case N3 > N;. The shortcomings of TAS-hybrid is a factor of \/m
increased communication volume over both CARMA and Cannon’s optimal case. Thus
TAS-hybrid is most adapted to the situation Ny ~ N3 and N3 > N;. For the case of
3 large dimensions TAS-hybrid scales worse with the number of processes than CARMA
by a factor of NFI,/4.

Not studied here but equally interesting is the combination of TAS-hybrid with an
algorithm different from Cannon. We note that the remaining deficits of TAS-hybrid in
communication costs are actually deficits of the Cannon algorithm - if it was combined
with an algorithm that is communication optimal for either N3 = Ny or Ny = Ny, the
communication costs would be equal to CARMA.

The only reason we used Cannon is that it is well-established in the DBCSR library
and showed good performance for sparse matrices, but TAS-hybrid is oblivous to the
underlying algorithm for parallel matrix-matrix multiplication (only the split factor sqp;
must be adapted to the underlying algorithm). The DBCSR library also comes with a
2.5D algorithm [83] that has lower communication bounds than Cannon and it would
be interesting to benchmark TAS-hybrid combined with 2.5D against the Cannon-based

version for different situations.

4.5.3 TAS Matrix Format

Previously we identified two needs that should be satisfied by the dedicated TAS matrix

format for tall-and-skinny matrices:

 Storage: no replicated storage of index-related data scaling with O(Npax), Nmax

being the large matrix dimension.

o Multiplication Algorithm: by splitting the large matrix dimension with a factor of
s, s submatrices on disjount subgroups of processors should be obtained in DBCSR

format.
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Both requirements can be met by storing TAS matrices as DBCSR submatrices on disjoint
process subgroups, split along the large dimension. It is desirable to have an API for TAS
matrices that is mostly identical to the DBCSR API. This can be achieved most effectively
by designing the TAS format as a wrapper library on top of DBCSR, inheriting most of
the functionality of the DBCSR library. The TAS format is then reduced to a logical
index mapping that associates rows or columns of the DBCSR submatrices to rows or
columns of the TAS matrix. There are two layouts depending on whether the matrix is

split along the rows (tall-and-skinny type) or along the columns (short-and-fat type).

Index data

The DBCSR format refers to submatrices and hence the TAS format must implement its
own meta data describing the global structure of the matrix, most importantly block sizes
and the parallel layout. The implementation should allow for an arbitrary distribution
on a grid and arbitrary block sizes but the associated data should not be stored as
explicit arrays in memory. Hence the way the index data is obtained is delegated to
the user of the library. The TAS implementation implements index data as abstract
derived types with type-bound procedures to obtain a certain value for a certain index.
The user of the library implements block sizes and distribution as extensions of this
abstract index type. The TAS implementation then calls this external implementation
to obtain block size or process grid coordinate for a specific index on-the-fly. This trades
storage for computations. However the associated computational costs are negligible in
practice because for locally stored blocks, their index data can be calculated once and
stored in local memory. The indirect indexing is then only needed during communication

operations to receive blocks from other processes.

Data Exchange

Methods of the DBCSR library can be inherited only if they are local operations, acting on
single matrix blocks. Non-local operations such as multiplication and redistribution are
implemented based on the TAS matrix format. Three different data exchange operations

provide the building blocks for the parallel matrix multiplication algorithm:
Replicate (gather): Replicates a distributed matrix to all s subgroups of processors
Merge (scatter): Merge the s replicated matrices to one distributed matrix by sum

Redistribute: Redistribute a distributed matrix to a different parallel layout
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The first two communication patterns were already described in Fig. 4.3 and are the
ingredients for the parallel matrix multiplication algorithm depicted in Fig. 4.1. The
redistribute operation is additionally required since the algorithm assumes that the two
largest matrices are both in either tall-and-skinny or short-and-fat layout, and that the
distribution associated with the large dimension is the same for both matrices. If this is
not the case, the redistribute operation is needed to redistribute the second largest matrix
to a distribution compatible with the largest matrix. This operation is not only provided
for ease-of-use but is strictly needed if the same matrix is involved in different multi-
plications, since a different layout may be required for each of the multiplications. It is
instructive to compare the communication bounds of the matrix multiplication Tras_nybrid

Eq. (4.32) with the communication volume of redistributing one or both of the largest

matrices, contributing an additional communication volume of Ty, = Ny/Np and/or
TN3 = N3/Np2
TN2 > TTAthybrid < Np < N2/N1 (435)
jj]\/3 > TTAthybrid < Np < Ng/Nl (436)

We conclude that complete redistribution may require more communication than matrix
multiplication for the case of tall-and-skinny matrices. The implementation thus avoids
the redistribution of the two large matrices involded in a matrix multiplication if not

strictly needed.

Practical considerations for TAS-hybrid algorithm

There are several practical complications in the implementation that were not yet covered
by the idealized description of the multiplication algorithm so far. A more complete

description is given in Alg. 1. We point out 3 issues:
1. The result occupancy N¢ is required to get sopt Eq. (4.31) but is unknown
2. The split factor s must be a divisor of the respective process grid dimension
3. Cannon’s algorithm performs best only for square process subgrids [71]

Issue 1 requires an estimate of the occupancy of C prior to the multiplication, based
on the occupancies of A;B. Such an estimate is obtained by replacing each block in
A, B with its Frobenius norm. These smaller matrices are then multiplied at much lower

costs than the multiplication of the original matrices. For all elements present in the
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Algorithm 1 TAS multiplication algorithm

procedure MULTIPLYTAS(A, B,C, P) >C=A-B
> A, B,C: TAS matrices
> P: Process grid (Py, P2) with Np = P; x P, processors

> Estimate optimal split factor s:

N4 « Occupancy(A); Np + Occupancy(B) > Number of non-zero elements
Agman < BlockNorms(A); Bsman < BlockNorms(B) > Small matrices containing block norms
MUItiplyTAS(ASInalh BSmalh CSmalla P)

N¢g ZZJ (BlockSize(Cjj) if Csman,ij > 0) > Estimate Occupancy of C
Ny Min(NA, NB, Nc)

Ny < Median(N4, Ng, N¢)

N3 N[aX(]VA7 NB7 Nc)

s + Min (Np, %—f)

> Split process grid:
if largest TAS matrix in row layout then
s+ SplitToGrid(s, P1, P») > Adapt s so that it divides P, and Py /s =~ P
P (2R
else if largest TAS matrix in column layout then
s < SplitToGrid(s, Py, Py)
P — (Pl, %)
end if

> Parallel Multiplication Algorithm:
if Ny = N; then

A + Replicate(A, P) > Send full copy of matrix to each subgrid P
else

A ¢+ Submatrix(A, P) > Extract submatrix on local subgrid P
end if

if NB = N1 then

B < Replicate(B, P)
else

B « Submatrix(B, P)
end if
if No # N; then

C + Submatrix(C, P)

end if
]5Sq < SquareGrid(]-:’) > Optimize subgrid so that ]58%1 ~ ]55%2
if P,y # P then
Ay + Redistribute(A, Py
By, ¢ Redistribute(B, Ps)
Csq ¢ CreateDBCSR(C, P.,)
MultiplyDBCSR(Agq, Bsg, Csq) > Multiply DBCSR, submatrices
C ¢+ Redistribute(Cyy, P)
else
MultiplyDBCSR(A, B, C) > Multiply DBCSR submatrices
end if
if No = N; then
C + Merge(CN’7 P) > Distribute and merge submatrices by sum
end if

end procedure
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result matrix the respective block sizes of the original matrix C are summed up to give
an estimate of the C occupancy. Due to the submultiplicativity of the Frobenius norm
this gives an upper bound of the occupancy of C (given some filter threshold € to discard
small blocks in C).

The two issues 2 and 3 impose additional restrictions on the choice of the process
grid P = (P, P,): for a given split factor s the dimensions P;, P, must be chosen so that
P,=Psand P~ Pyor P, = Pysand P, ~ D, (depending on the layout). Condition 2
is less of a problem since the communication cost Eq. (4.30) is not very sensitive to the
exact choice of s. Condition 3 on the other hand can not be met in practice since the
optimal split factor is unknown when the process grids are created. Hence an additional
redistribution of the submatrices may be needed, mapping them to a more square subgrid.
The associated communication costs equal to Tk, Eq. (4.36) are not negligible in practice.

We remark that the multiplication algorithm based on the partitioning of the proces-
sors into ideally square subgrids gives best performance if the total number of processors

consists of mostly small prime factors.

Batched multiplication

In a series of multiplications of TAS matrices, densification of the result matrices leads to
growing memory requirements, which is often only temporary if the final result matrices
are small in size. A natural memory optimization is the decomposition of a large matrix
dimension into ngen batches. The multiplication is then performed consecutively for
each batch and large intermediate TAS matrices are never fully held in memory. Since
the smallest matrix is roughly the same in size for each consecutive step, batched mul-
tiplication increases communication by a factor of nye, in the TAS multiplication. A
mechanism is implemented adapting data exchange to the batched multiplication so that
communication is performed only in either the first or last batch. This optimization is
activated by API methods that define the scope of the batched multiplication and that
are called before the first and after the last batch is processed. The only communica-
tion overhead for batched multiplication is then only due to Cannon’s part of Eq. (4.32)
amounting to a factor of \/Mmem.

4.6 Tensor API

The main practical challenge of implementing a tensor library is the large number of

different cases that arise concerning different combinations of tensor ranks. Partly this
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challenge has already been addressed by identifying tensor contraction as isomorphic to
matrix multiplications and by separating the tensor API from the implementation and
optimization in terms of tall-and-skinny (TAS) matrices. This leads to the design decision
to consider tensors as a special representation of matrices, so that the tensor descriptor
can be implemented as a set of mapping functions acting on indices instead of data.
The general design of the DBCSR tensor library is illustrated in Fig. 4.4 and is based

on 3 nested layers:

» Tensor: abstract API for tensors of arbitrary rank, mappings to represent tensors

as matrices

o TAS: communication and memory optimizations for tall-and-skinny matrices with

one large dimension
« DBCSR: storage and multiplication of submatrices on subgroups of processors

Tensor data is fully distributed and stored in the DBCSR format. Index information
(block sizes and distribution) is replicated and maintained in the tensor format. Con-
versions between the 3 representations are implemented by on-the-fly index and data
transformations.

A tensor of rank n is represented on a n-dimensional process grid. Process grid
coordinates and tensor indices are folded to the matrix representation by the folding
functions described in Sec. 4.4. All tensor data is stored in the DBCSR matrix format
and is reshaped to the tensor format whenever a block is accessed. The index data
is maintained in the tensor layer due to the compact index size. Index access in the
TAS layer is implemented by derived types simulating function objects that calculate the

matrix index based on the tensor-specific index folding function.

API methods

We do not describe in further details the tensor procedures that map trivially to DBCSR
matrix procedures such as methods to create or destroy tensor objects, methods to obtain
or insert blocks or methods to iterate over blocks. These methods are written as simple
wrappers that convert between tensor and matrix index before or after calling the respec-
tive DBCSR matrix method. In case of data access, the wrappers also reshape a given
matrix block in 2d format to the shape of the respective tensor block (or vice versa).
More interesting are the methods specific to tensor contraction. Two operations serve

as the building blocks for any more complex contraction:
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Figure 4.4: Schematic overview of the DBCSR tensor implementation consisting of the
Tensor API, the TAS (Tall-And-Skinny) matriz layer and the DBCSR backend. The index
data (green) containing block sizes and the parallel distribution is replicated on each core
and is maintained in the compact tensor format. The data (blue) is distributed and stored in
the DBCSR matrix format. Storing a large TAS matrix in terms of smaller submatrices leads
to reduced communication costs in the parallel multiplication algorithm and circumvents
the problem of storing large replicated index data in favor of flexible function objects. The
connection between the layers is established with logical index mappings: Index folding
mapping a multi-dimensional tensor index to a 2-dimensional matrix index and Dimension
splitting resulting in s DBCSR submatrices on disjoint process subgroups. Data is accessed
in terms of blocks and a local reshape operation converts on-the-fly between matrix blocks
and n-dimensional tensor blocks. The rank of n = 3 is chosen only for illustrative purposes
and the tensor implementation can deal with arbitrary ranks > 2.
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Copy: Copy a tensor from one layout to a different layout with optional index permu-

tation and optional sum

Contract: Perform a contraction involving 3 tensors

The Contract procedure implements contraction according to Eq. (4.2). The Copy pro-
cedure is provided to transform a tensor between different layouts, including change of
matrix representation, change of distribution and change of block sizes. Typically the
Copy method is invoked between two contractions to convert a tensor that is involved
in both contractions to a layout compatible with the second contraction. Block sizes are
chosen according to an intuitive description to facilitate interfacing between DBCSR and
the application code, however smaller block sizes may be beneficial for contraction since
they allow to exploit sub-block sparsity. Changing block sizes is thus a crucial optimiza-
tion that can easily be implemented with the Copy method. Finally, the Copy method
can be used to implement arbitrary sums of 2 tensors including index permutations. If
symmetries are present in a tensor, only the unique elements need to be calculated and
the Copy method can then be used to desymmetrize by adding the transposed data.

In the current implementation only those types of contractions are implemented that
map to a matrix-matrix multiplication. An extension to matrix-vector type contractions
would rely on the same communication patterns and could be implemented in a future
version of the library.

An example for the translation of a complex tensor contraction to the two tensor
API procedures is given in Alg. 2. The Fortran source code for this example is listed in

Appendix B.

Algorithm 2 Tensor contraction
C(na 0) = C(”? O) + Zi,j,k,l,m A(Z7.]7 k) ’ A(lv m, k) ’ B<Z7 la TL) ’ [B(m7 0, ]) + B(07 m, j)]

D(i,j,l,m) < >, A(i, 4, k) - A(l,m, k) > Contract
E(j,m,n) « Zi,l D(i, j,l,m) - B(i,l,n) > Contract
F(jim, o) + B(m,o0,]) + Blo,m, ) > Copy
C(n,o0) < C(n,0) + >, ,, E(j,m,n) - F(j,m,o0) > Contract

Matrix representation

The tensor API was designed to match the DBCSR matrix API as close as possible,
consisting of natural generalizations of all methods to ranks > 2. One important concept
that is only present in the tensor API is the notion of mapping tensors to matrices. Con-

ceptually this should be fully internal to the library and the user of the library should
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not be bothered to understand how tensors relate to their matrix representations. How-
ever the matrix representation needs to be adapted to the tensor contraction according
to Eq. (4.10). If the tensors involved in a contraction don’t have a compatible matrix
representation, an additional redistribution is required prior to invoking the matrix multi-
plication. This is to be avoided since the communication volume of redistribution (given
by N3/Np) potentially exceeds the communication costs of TAS matrix multiplication
Eq. (4.32). Thus, for optimal performance, the user should provide the matrix repre-
sentation when creating a tensor. The matrix representation is uniquely determined by
specifying the subset of tensor indices that are mapped to each of the two matrix di-
mensions. Given 3 tensors involved in a contraction C = A - B with contraction indices
I =ps(E),J =pp(E),K =pc(F) (according to Eq. (4.2)) the matrix indices should be

chosen as follows:

A: (INK,InJ)or (INJ,INK)

B: (InJ,JNnK)or (JNK,INJ)

C: (InK,JnK)or (JNK,INK)

The exact order of the matrix indices is dictated by the TAS multiplication algorithm
which requires that the largest of the three matrix dimensions (occuring in two of the
three matrices) should correspond to either the rows in both matrices or to the columns
in both matrices. For instance if 1N .J is the largest dimension it should map to either the
rows of both A and B or to the colums of both matrices (not imposing any index order
on C). If the matrix indices are chosen arbitrarily, a compatible layout is automatically
chosen in the contraction procedure, albeit at the expense of a redistribution of both

large matrices.

Parameters and Optimizations

The tensor API was developed with the purpose of facilitating translation of arbitrary
sparse tensor contractions from mathematical notation to optimized code. Ideally all
optimizations should be internal to the library so that the user is concerned only with ex-
pressing equations in a high-level language. Well-established tensor contraction libraries
such as TensorFlow [84], PyTorch [85] and the massively parallel Cyclops Tensor Frame-
work [61] provide domain-specific languages based on Einstein notation in which tensor

contractions can be expressed naturally. Our approach for sparse data sacrifices some
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of the abstraction for the sake of a communication-avoiding scheme. This implies some

additional complexity in the library API:

« the user controls for each tensor its matrix representation that should be compatible
with the contraction to be performed. The two largest tensors should both map to

either tall-and-skinny or short-and-fat matrices

o the tensor contraction API is not based on Einstein notation but on the mapping

to matrix multiplication Eq. (4.10)

Alternatively the matrix representation could be abstracted away from the API, in this

case there is an additional cost of redistributing all tensors per contraction amounting to

_ Na+ Np+Ne

T
Np

(4.37)

and exceeding the matrix multiplication communication costs Eq. (4.35). In our matrix-
aware API, redistribution of a tensor is required only if the same tensor occurs in two
different contractions. Even in this case only one redistribution is needed compared to two
redistributions in a matrix-oblivious API. The design decision of a matrix-aware tensor
API is thus justified by the performance gain outweighing the additional complexity. A
more user-friendly and fully abstract tensor API could still be implemented on top of the
current expert API.

Two optimizations have already been discussed for the TAS matrix implementation:

Batched contraction: different indices are split into contiguous ranges and the corre-

sponding tensor batches are contracted consecutively for memory reduction.

Process grid optimization: performance of the TAS matrix multiplication is sensitive
to the chosen process grid dimensions and the optimal process grid may be dif-
ferent for each contraction. A suitable process grid can be proposed by the TAS
matrix multiplication algorithm and can be obtained after a contraction has been

performed.

Both optimizations are enabled automatically by calling procedures that define the scope
(start and end) of a batched contraction. All batches contain roughly the same amount
of data and thus the process grid can automatically and continuously be optimized over
the iterations of a batched contraction. Alg. 3 shows tensor contraction performed in
batches for the same contraction as Alg. 2. The complete Fortran source code is provided

as a standalone tensor example that comes with the DBCSR source code [1].
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Algorithm 3 Batched tensor contraction
C(n,0) = C(n,0) + 3 s kim Al 5y k) - A(L,m, k) - B(i,1,n) - [B(m, 0, j) + B(o,m, j)]

Nmem > number of batches for each index
tmem = (1,14s,...,m;) > split 4 into Nyem ranges by Nyem + 1 index offsets
Jmem s lmem s Mmem > split 7,7 and m into Nyem ranges each
BatchedStart(A), - - - , BatchedStart(F') > enables optimizations for batched contraction
for ny =1, Nypem do
J  [Jmem (1), Jmem (g + 1) — 1] > range of j belonging to batch n
for nyr = 1, Nypem do
M + [Mmem (Mar)s Mmem (Nar + 1) — 1] > range of m belonging to batch nj,
E(j,m,n) =0
for n;y =1, Nypem do
I < [imem(11), tmem(ny + 1) — 1] > range of ¢ belonging to batch nj
for n, =1, Nyyern do
L+ [lmem(mL), lmem(nr + 1) — 1] > range of [ belonging to batch ny,
D(i,j,1,m) < >, A(i, 4, k) - A(l,m, k) foriel,jeJle L mmeM
E(j,m,n) + E(j,m,n) + Ziel,leL D(i, j,l,m) - B(i,l,n) forjeJmeM
end for
end for
F(j,m,0) + B(m,o0,5)+ B(o,m,j) forjeJmeM
C(n,0) + C(n,0) + Zje],mel\/[ E(j,m,n) - F(j,m,o0) forjeJmeM
end for
end for

BatchedEnd(A), - - - , BatchedEnd(F)

All relevant parameters of the tensor API are summarized in Tab. 4.1. Parameters
related to sparsity (block sizes and filtering threshold) have not been mentioned so far
because they are not specific to the tensor implementation. Using smaller block sizes may
expose more sparsity but leads to less operations per block such that the performance
may suffer if blocks are too small. The best block size depends on the nature of the
sparsity pattern. The filtering threshold needs to be set empirically to meet the accuracy

requirements of the application.

Generic implementation

The generic implementation of operations on data of different ranks poses challenges
because the built-in Fortran array type and array syntax is specific to the rank of an
array. Thus rank-generic algorithms necessarily lead to code duplication with a specific
implementation for each combination of data type and rank. Given 4 data types (complex
& real in single & double precision) and 3 different ranks (between 2 and 4), 12 specialized
implementations are needed for each data operation. This asks for a template engine

or code generator. Since Fortran does not come with templates or a powerful-enough
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Parameter internal (automatic) external (user)
process grid optimized for batches initial process grid
distribution default distribution custom distribution
block sizes - adapted to sparsity pattern
filtering threshold  — converged to accuracy needs
contraction batches — custom index partitioning
TAS parameters split factor s compatible matrix layouts

Table 4.1: Parameters of the tensor API categorized as internal and external. The param-
eters process grid and distribution define the parallel layout of tensors. The parameters block
sizes and filtering threshold relate to the sparsity structure of tensors. Contraction batches
reduce the memory footprint. For best performance the parallel TAS matriz multiplication
requires a compatible matrix representation.

preprocessor, we deploy the Fypp preprocessor which combines a macro language with
the evaluation of Python expressions [54]. All rank-specific code is expressed in terms of
Fypp macros and the DBCSR tensor API can be compiled for arbitrary maximum rank

specified by a configuration variable.

4.7 Validation

In this section we discuss the performance of the DBCSR tensor library and we validate
parameters that affect performance and memory footprint of the library. Target applica-
tions of the library are any algorithms that can be formulated in terms of sparse tensor
contractions.

The sparsity structure of a tensor has however an important effect on how the sparsity
propagates over contractions. A homogeneous random sparsity structure in a multiplica-
tion of two large matrices does not conserve sparsity and the result matrix may be dense,
even if the two other matrices are very sparse (reminiscent of the birthday paradox [86]).
The notion of sparse matrix multiplication is only meaningful if the sparsity has a struc-
ture that is conserved over multiple multiplication steps. Such a structure is present if
tensor elements decay with increasing difference between indices as is naturally the case
if tensors are represented in terms of a localized basis.

The different ways of index blocking is a large tuning space where the index order
and the block sizes affect the sparsity (favoring small block sizes) and the performance
of the library (favoring large block sizes).

Due to the above-mentioned reasons there exists no simple example or test case that
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is representative for all possible applications of the library, even though the library is
general (for sparse and dense tensors of arbitrary shape and rank) and is not favoring
any specific application. We thus validate the library by directly applying it the low-
scaling RPA algorithm introduced in Sec. 2.6.2.

We consider the two contractions

ZD““ Ao|R) = M, (4.38)
Z MSE MY = Prr (4.39)

In terms of matrices, contraction a) is an example for the case m x = = mu (m symbol-
izing a small matrix and == symbolizing a large tall-and-skinny matrix). Contraction b)
represents the case m x | = m. These two cases are representative for the two different
algorithmic situations for tall-and-skinny multiplications where in case a) the result ma-
trix is the largest and in case b) the result matrix is the smallest (see Fig. 4.1). These
two cases also cover the two communication scenarios in Eq. (4.33), case a) favorable for
Cannon and case b) favorable for the TAS algorithm (occupancies N3 > Ny > Ny):

a) THybrid—s/TCannon = O(\/Nl/NQ \/NS/NQ) (440)
b) THybridfs/TCannon = O( V NI/NB) (441)

All validation tests and benchmarks have been performed on the Piz Daint supercom-
puter of CSCS (Swiss National Supercomputing Centre) with Cray XC50 architecture.
One node has 12 cores and 64 GB of RAM. In all calculations a flat MPI setup (12 ranks
per node) has been found superior to a hybrid MPI/OpenMP setup. The GPU backend
of DBCSR has been disabled since it showed inferior performance to the LIBXSMM [75]
CPU backend.

The TAS matrix multiplication algorithm (introduced in Sec. 4.5.2) has been validated
by modifying the split factor s so that s = sopt/p With sepr = N3/ N; the predicted optimal
split factor and p the parameter to be varied in the tests. There are 3 important limits

to be evaluated:

DBCSR limit (s =1 or p = sept): equivalent to Cannon’s algorithm (no communica-
tion within TAS)

Hybrid DBCSR-TAS (s = sop or p = 1): the predicted optimum minimizing commu-

nication costs
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TAS limit (s = Np or p = sept/Np): mapping each DBCSR subproblem to a single core

(no communication within DBCSR)

The test results presented in Fig. 4.5 confirm that the predicted optimum p = 1
performs always better than the DBCSR and TAS limits. For case a) the speedup of
the DBCSR-TAS algorithm over Cannon’s algorithm is not significant and the measured
optimum value of p is shifted towards the DBCSR limit. The shift can be explained by
the inequality in Eq. (4.26) where for simplicity and generality the communication upper
bound for Cannon’s algorithm was replaced by a less tight bound. In this example the
ratios of Eq. (4.40) Ny/N; =~ 72 and N3/N, ~ 18 are more in favor of the DBCSR-TAS
algorithm than of the DBCSR limit. This leads us to the conclusion that the DBCSR-
TAS algorithm may perform significantly worse than the DBCSR limit if tested on an
example with Ny ~ N;. A switch to s = 1 for this case may then significantly improve
performance, however we did not find this optimization relevant or worthwhile for our
applications and thus a simple and general scheme using always the same value for s is
preferred. For case b) we find that the DBCSR-TAS algorithm performs better by a factor
of 4 compared to the DBCSR limit. For this case sqp is indeed the measured optimum
and we conclude that our performance model based on communication cost estimates
holds in practice. We note that neither the TAS limit nor the DBCSR limit exhibit
good performance for the general case, justifying the choice of a hybrid algorithm that
combines the two algorithms instead of relying on the DBCSR~internal implementation
of Cannon’s algorithm [74] or of the TAS limit [86].

Next we test the batching scheme that reduces memory usage at ideally low overhead
in execution time. A memory reduction of n,., can be achieved by splitting both indices
p and o in Eq. (4.39) into nyen batches, performing the n? contractions consecutively.
As shown in Fig. 4.6 a memory reduction by a factor of 8 can be achieved at only 50%
overhead in terms of execution time.

Of more practical relevance is an experiment in which the number of cores is reduced
reciprocally to the number of batches such that the memory used per core stays approx-
imately constant. This shows the capability of simulating larger systems within given
memory constraints. This experiment is a part of the strong scaling benchmark Fig. 4.7
in the range between 16 and 512 nodes, where a batching of n., = 32 is applied for
16 nodes. The batching is reduced linearly with increasing number of nodes until no
batching is applied for 512 nodes. Surprisingly roughly the same performance is obtained
on 16 nodes as on 512 nodes (73% relative to the best performance measured), suggesting

that the overhead for heavy batching for 16 nodes is comparable to the effect of non-ideal



4.7. VALIDATION

Al a)mxm=—m T4
n
5 —@— b)mx=n
e
) 3 1 )
e
o
£
(] e
g2 -2
8
o
s h--- -=-1
=R L
51 1
[¢]
&
<+ TAS limit DBCSR limit —>
0 T T+ ()

1072 107! 10° 10!

102

108 10% 10°

p dividing TAS split factor

71

Figure 4.5: Comparing total execution time for different choices of split factors s for
a system of 128 water molecules on 3072 compute cores. The slit factor s is controlled
by the parameter p so that s = sqpt /p with Sopt the predicted split factor minimizing
total communication volume. Case a) with matrices of occupancies 5.3 - 107,3.8 - 10?, 7.0 -
100 corresponds to the situation that the result matrix is the largest and case b) with
occupancies 3.3 - 10'°,7.0 - 10'°,3.0 - 10® to the contrary situation that the result matrix
is the smallest. The two limits marked with dashed lines correspond to the DBCSR limit
equivalent to Cannon’s algorithm and the TAS limit where all communications are done in
the TAS library layer. The hybrid algorithm exploiting both levels of parallelism at p = 1
outperforms both limits, most importantly the speedup over Cannon’s algorithm is a factor

of 4 for case b).
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parallel scaling for 512 nodes. We conclude that the batching scheme allows a memory
reduction of up to a factor of 16 without compromising performance by more than 10%.
Real strong scaling is demonstrated in the range between 512 nodes (6144 cores) and
2048 nodes (24576 cores), showing a steady drop of performance by roughly 20% in each

step doubling the number of nodes.
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speedup
efficiency [%]
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16 1 == ideal speedup
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Figure 4.7: Strong scaling experiment for 256 water molecules. The number of batches
was set to 32 for the lowest node count (16 nodes) and then decreased linearly with the
number of nodes up to 512 nodes. The deficiencies in scaling towards lower node counts
is thus attributed to an overhead associated with heavy batching and does not reflect the
parallel performance. Real strong scaling (without batching) is demonstrated in the range
between 512 and 2048 nodes.

Due to the use of Gaussian basis functions sparsity is an approximation controlled
by the filter threshold eger, discarding blocks with a Frobenius norm < e€gye,. Both
performance and accuracy of a calculation are affected by egie; as shown in Fig. 4.8.
The effect on accuracy is system-dependent in electronic structure methods and systems
with a more delocalized electronic structure need tighter thresholds. For an algorithm
composed of multiple contractions of different shapes and sparsities the effect of egyer On
the result may vary for each contraction. A system-specific optimization of g, adapted
to the required accuracy for each type of contraction is thus recommended.

Sparsity is best exploited by defining blocks of heterogeneous sizes, each block cor-
responding to a bunch of functions centered at the same position. Even more sparsity
is exposed if the functions belonging to the same center are sorted with respect to their

widths such that each block contains functions of similar extent. Smaller block sizes en-
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only a factor of 2 in execution time. The system

able a more refined screening, thus reducing the

is 128 water molecules.

tensor occupancy. Small blocks however

decrease the arithmetic intensity and decrease floating point performance. After defining

elementary blocks with functions of the same width, block sizes smaller than some min-

imum size are combined into larger blocks and the minimum block size is optimized for

performance. Execution time as a function of minimum block size has been measured for

two different systems and as shown in Fig. 4.9, a minimum size of 5 is a reasonably good

default.
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Figure 4.9: Effect of the
minimum tensor block size
(in each dimension) on per-
formance for 2 different sys-
tems. Each elementary
block contains exactly one
set of Gaussian basis func-
tions sharing the same ex-
ponents.

In contrast to the DBCSR matrix library where performance gains were reported from

coalescing atomic blocks [71], the tensor library has best performance if subatomic blocks

on the level of single basis sets are exploited. This behaviour is due to the higher rank of

tensor blocks: if s is the minimum block size in one dimension, tensor blocks of rank 3 are
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of minimum total size s,

much larger than the minimum matrix block size s, making a
smaller default for s less problematic for tensors.

More insights into the overall performance and scalability of the tensor library can
be obtained by profiling the three library layers for different system sizes as depicted in
Fig. 4.10. The amount of time spent in each layer stays approximately the same when
increasing system size, where about 70% (H20) or 80% (TiO,) is spent in the DBCSR
core library. The larger portion of time spent in the Tensor & TAS layers for HyO is due
to this system being sparser than TiO,, so that less time is spent in computations. The
overhead of data exchange in the tensor layer is small but not insignificant (< 20% for HyO
and < 10% for TiOy), justifying our careful optimizations to avoid tensor redistributions.
The vast majority of time spent in the DBCSR core library confirms that the complex
tensor abstractions based on on-the-fly data and index conversions between Tensor, TAS

and DBCSR representations do not impede overall performance of the library.
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Figure 4.10: Profiling of the 3 layers of the DBCSR tensor library in dependence of the
system size for 2 different systems (left panel: HyO, right panel: TiO2). The time spent
in the Tensor layer corresponds to the redistribution to bring tensors into a contraction-
compatible layout. The TAS layer takes care of the communication steps optimized for
tall-and-skinny matrices, effectively reducing the amount of communication in the DBCSR
layer. The DBCSR layer performs parallel multiplication of submatrices on subgroups and
executes the local multiplication.



Chapter 5

Results for Low-Scaling RPA, GW
& HFX

Promising applications of the DBCSR tensor library are RI-based formulations of Hartree-
Fock Exchange, RPA and GW in the electronic structure code CP2K. The main root for
sparse tensors is the use of a local RI metric (preferrably the overlap metric) leading
to sparse 3-center integral tensors. Low-scaling RPA and GW were initially developed
by Jan Wilhelm [2, 3] who provided a first implementation without the comfort of hav-
ing a general sparse tensor contraction library at hand. The initial implementation was
based on the DBCSR matrix library and tensor operations were implemented as static
code specifically developed and optimized for each expression of Eq. (2.61). The initial
implementation already contained the essential concepts that inspired the development
of a general tensor library, including the concept of reducing communications by split-
ting large tall-and-skinny matrices and memory reduction by performing contractions in
batches. However the lack of a tensor abstraction made the code very cumbersome to
develop, optimize and maintain. The development of the DBCSR tensor library can thus
be seen as a generalization and systematic optimization of the original low-scaling RPA
code [2].

The new implementation is stripped down to a translation of mathematical expres-
sions to operations provided by the DBCSR tensor API, only requiring a few hundred
lines of code, all performance optimizations being internal to the DBCSR tensor library
and automatic. The effort of providing an abstract tensor API does not only facilitate
high-level code development but should also improve performance because important
optimizations require a generic approach and could not have been provided in a direct

implementation. These new optimizations include

5
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o heterogeneous block sizes in all tensor dimensions that can be chosen arbitrarily

adapted to the structure of basis sets.
« automatic optimization of the parallelization strategy minimizing communications.

Especially the second feature greatly improves ease-of-use, ensuring that calculations
always run at best performance, in contrast to the initial implementation where optimal
performance required running several preparatory calculations testing different choices of
parameters.

A RlI-based implementation of Hartree-Fock Exchange is based on the same tensor
framework, demonstrating the transferability of the library to other tensor-based algo-
rithms. Even though the RI-based algorithm is scaling worse with respect to system size
than the direct evaluation of the Hartree-Fock energy, we demonstrate that dense solid
state systems with a large basis are prohibitively expensive in the direct Hartree-Fock

approach but feasible in the RI-based implementation.

5.1 Low-scaling RI-RPA and GW

We demonstrate improvements in the low-scaling algorithms for RPA and GW compared
with the initial publications [2, 3] both in terms of performance and usability. The switch
to the DBCSR tensor API facilitated the application of low-scaling RPA & GW and made
performance more reliable since previously manually set parameters (mostly MPI group
sizes) are now automatic.

The low-scaling RPA algorithm has been introduced in Sec. 2.6.2 and here we give
a short summary of the equations, their scaling in memory and execution time, and
their implementation in terms of operations provided by the DBCSR tensor library. The
dominant part of the calculation is the evaluation of tensor contractions for each time

grid point j

Contraction scaling: cost/memory
pn(1i) = D (| R)DiS (7)) O(N?)/O(N?) (5.1)
Mg (7 )ZZ(WIT)D“”(T-) O(N?*)/O(N?) (52)

Prr(7y) Z o () Mo (75) O(N?)/O(N?) (5.3)
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Qro(7)) =Y  Krp Y  KrqPrr(7) O(N?)/O(N?) (5.4)

R T
This can be translated to high-level code based on the DBCSR tensor API according to

the pseudo code given in Alg. 4. The actual implementation performs the contractions

in batches by splitting the atomic orbital indices u, o into nyen batches each.

Algorithm 4 Implementation of low-scaling RPA in terms of the operations Contract &
Copy of the DBCSR tensor library

M°°(Ro, i) < (Ro, \) x D°°(\, p) > Contract
Me¢(R, uo) + M°*°(Ro, ) > Copy
MY (T, o) < (Tp,v) x DV (v, o) > Contract
MY"Y(T, po) + MV(Tu, o) > Copy
P(R,T) + M°(R, o) x M (T, uo)T > Contract

We compare performance of different implementations and configurations of RPA as
implemented in CP2K:

e the canonical variant of RI-RPA based on RI with the Coulomb metric and a

minimax quadrature for the frequency integration scaling as O(N%) [41]
« the legacy implementation of low-scaling RPA scaling effectively as O(N?) [2]
o the new tensor-based implementation of low-scaling RPA

The execution time of canonical RPA is dominated by dense matrix multiplications based
on ScaLAPACK PDGEMM. We choose the best possible configuration for each RPA
variant given the supercomputing power of the Piz Daint Cray XC50 machine at CSCS.
Thus we run the canonical variant of RPA with a GPU-accelerated version of PDGEMM
as provided by the COSMA library [87]. The COSMA library was chosen over other GPU-
accelerated ScaLAPACK implementations since it reaches the highest percentage of the
GPU peak performance on Piz Daint compared with other PDGEMM implementations
[88].

Even though the DBCSR library has a sophisticated GPU backend [73] that is specif-
ically optimized for small blocks of heterogeneous size, we found that better performance
can be achieved for tensors by using the LIBXSMM [75] CPU backend. More investi-
gations are needed to state if GPU performance can be improved. Generally speaking
the basic unit of computation performed on a GPU is a stack, collecting small block
multiplications of the same shape. Since GPU performance is best for large stacks, the

number of different block sizes shouldn’t be too large and best performance is achieved
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O(N?) RPA
method system basis Qmin, [) 7 grid points  €ge, for M / P

( )
RPA  H,0  cc-TZV2P (0.15,1) 10 10797 / 10797
RPA  TiO,  cc-TZV2P (0.13,2) 10 10798 / 10707
GoWo, GNR  aug-DZVP (0.11,1) 12 1071 /10710

Table 5.1: Parameters of all RPA/GoW, calculations. Coordinates and basis sets are
taken from the supplementary informations of [2, 3, 89]. We also list the most diffuse basis
function with exponent o, and its maximum [ quantum number. The number of grid
points refers to the minimax grids for imaginary time and frequency. The main input for
low-scaling RPA are two filter thresholds, the first one applying to the tensors MY'™* and
M Eq. (5.1) and the second one applying to the P matrix Eq. (5.3).

with large blocks. For matrix-based algorithms and atomic block sizes the number of
different block sizes corresponds to the number of atom types N, (e.g. N, = 2 for H,0).
For tensor-based algorithms best performance was found by using subatomic blocks so
that there are at least two different block sizes per atom or 2N, distinct elementary block
sizes. Tensors have blocks of at least rank 3 where 2 dimensions are mapped to a single
matrix dimension. Thus we have (2N,)? different combined block sizes or 16 distinct
block sizes for HoO which is inherently problematic for GPU performance. We conclude
by stating that efficiently exploiting GPUs for the DBCSR tensor library is an open and
challenging problem and here we rely on the CPU-based configuration of DBCSR.

The benchmarks are performed for the three different systems liquid water (H,O) [2],
bulk anatase (TiOy) [89] and graphene nanoribbons (GNR) [3]. Both H,O and TiO, are
true bulk systems and system size was in increased regularly in all 3 dimensions in order to
assess scaling with respect to system size. All calculations employ Goedecker-Teter-Hutter
pseudopotentials and start from a PBE-based DFT wavefunction. The parameters for
the 3 calculations are listed in Tab. 5.1. A full documentation of the parameters for each
system size is given in Appendix C. The performance of the low-scaling algorithm depends
strongly on the chosen filtering thresholds and we have converged these parameters to
an error in RPA energy smaller than 5 - 107¢ Ej, per electron for all systems (including
the error due to the overlap instead of the Coulomb RI metric). A better accuracy could
be achieved by using an attenuated or truncated Coulomb metric, however this would
reduce sparsity and increase computational costs by possibly a factor of 2.

The node count has been adapted to each method, using the minimum number of

nodes required in order to have sufficient amount of memory. For canonical RPA the

required memory scales as O(N?3) and the node count has been scaled accordingly. For
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Figure 5.1: weak scaling benchmark comparing different implementations of RPA for
different system sizes of bulk water. The two low-scaling O(N?) calculations refer to differ-
ent implementations of the same algorithm, the old implementation based on the DBCSR.
matrix library and the new implementation based on the tensor API of the DBCSR li-
brary. The canonical O(N*)-scaling RPA implementation is mostly PDGEMM-based and
we consider an MKL-based configuration and a 3-times faster GPU-accelerated configura-
tion using the COSMA library. The crossover between the best canonical and the best
low-scaling implementation of RPA lies shortly above 128 molecules.

low-scaling RPA the memory scales as O(N?) and by using the feature of batched con-
traction the node count can be kept relatively low even for large systems. As previously
shown (Fig. 4.7) 256 water molecules can be calculated on only 16 nodes with the low-
scaling implementation where for the same system 256 nodes are required for canonical
RPA with MKL. The COSMA library seems to rely on excess memory to minimize com-
munication so that a 2—4 times higher node count seems to be required compared with
MKL. Ultimately memory constraints limit the largest systems within reach of canonical
RPA where we were restricted to use a maximum node count of 2400 nodes.

The benchmark results for the 3 systems are shown in Fig. 5.1, Fig. 5.2 and Fig. 5.3.
The effective scaling of the low-scaling RPA variant is O(N?) for all systems, comprising
all sparse tensor contractions that strongly dominate for not too large systems. The
O(N?) scaling Eq. (5.4) starts to show only for the largest water system as analyzed in
Fig. 5.4. The comparison with the legacy implementation of low-scaling RPA for water

in Fig. 5.1 reveals that the new implementation is more than one order of magnitude
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Figure 5.2: weak scaling benchmark comparing low-scaling O(N?) with canonical O(N*)
implementation of RPA for bulk anatase. This system is less favorable than water for
low-scaling due to a more delocalized electronic structure, requiring a tighter egier and
exhibiting no sparsity in the pseudo-density matrices. Nevertheless the low-scaling variant
is roughly 2.4 faster than the extrapolated costs of the O(N*) RPA for the largest system.
More importantly it is questionable whether 864 atoms could be run with the canconical
RPA due to the large memory footprint.
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Figure 5.3: weak scaling benchmark comparing low-scaling O(N?) with canonical O(N*)
implementation of GoWj for graphene nanoribbons of varying horizontal length. Due to
the limited accuracy (0.1 eV) of the calculation with the overlap metric (RI-id), a more
accurate calculation has been performed with the truncated Coulomb metric (RI-tr) and
30 minimax points. Both variations of low-scaling GoWj scale to larger system sizes than
the canonical variant which is restricted to 438 atoms due to memory constraints.
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faster, adding the word of caution that the subpar scaling w.r.t. system size of the legacy
implementation suggests that it was not run with optimal choice of parameters. By
taking the benchmark from [2] as reference, the speedup of the new implementation can
be estimated more realistically by only considering the crossover with the CPU-based
canonical RPA, suggesting a speedup by a factor of 6 to 7. An empirical comparison for
the two other systems reveals a speedup of a factor 2.3 for TiO, and a factor 2.8 for the
graphene nanoribbon system. The more pronounced speedup for water can be attributed
to water being more sparse than the other two systems so that the optimizations of block

sizes and communications have a stronger effect on the total performance.
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2 101_; the system-size scaling of low-
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21072 = . . . the O(N?) scaling steps have a
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noticeable (though small) effect

number of molecules (H,0) on the total time.

Comparing low-scaling vs. canonical RPA, the water system is highly advantageous
for the low-scaling variant: already for systems larger than 128 molecules the low-scaling
variant performs much better. Up to 864 molecules can be computed at affordable com-
putational costs. Due to the onset of the O(N?3) scaling step computational costs are
expected to increase steeply for even larger systems. For TiO, and the graphene nanorib-
bon system the advantage of the low scaling algorithm is less pronounced in terms of
computational costs because these systems require a tighter threshold for ege, and an
even tighter threshold is required to converge the quasiparticle energies for GoWj.

The most limiting factor of the canonical RPA is memory scaling as O(N?) so that
the maximum system that could be calculated was TiOy with 432 atoms / 3456 electrons
on 2400 nodes with 64 GB of RAM each (which is the maximum allocation possible on
Piz Daint). The low-scaling RPA has a much lower memory footprint due to a better
O(N?) scaling and due to the batching feature which allows to reduce memory by a large
factor. The theoretical memory consumption estimated from the largest tensor for both
RPA variants is illustrated in Fig. 5.5. For all systems considered here the low-scaling
RPA could be extended to systems 2- to 4-times larger than the maximum system size

feasible in the canonical variant, eventually being limited not by memory but by the
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computational costs. The largest Graphene nanoribbon system consisting of 1734 atoms
is clearly out of reach for canonical RPA - if we ignore the overhead of COSMA in terms
of memory and extrapolate the MKL calculation of 222 atoms on 32 nodes, 1734 atoms

would require 15000 Piz Daint nodes.
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Figure 5.5: Ideal RPA memory consumption approximated by the number of elements
in the largest tensor. Actual memory consumption may be larger but within a constant
factor of these estimates. The fitted scaling laws match closely the theoretical expectation
of O(N3) for canonical RPA and O(N?) for low-scaling RPA (water being sparser due to
decaying pseuodensity matrices). Memory is the most limiting factor for canonical RPA and
the low-scaling variant relaxes the memory requirements for large systems. The batching
feature of the low-scaling variant was not taken into account here and allows to further
reduce memory by a large factor.

For GW calculations the choice of the overlap metric and a small number of grid
points is a compromise on the accuracy of the quasiparticle energy levels as shown in
Fig. 5.6: the induced error on the zigzag and transport gap is on the order of 0.1eV in
comparison with a more accurate calculation using a truncation radius of 2A and 30 grid
points. The more accurate variant has been benchmarked as well in Fig. 5.3 and is a
constant factor of 4 more expensive.

The theoretical scaling with system size of the low-scaling RPA is revealed by counting
the number of floating point operations performed in DBCSR. The results in Fig. 5.7
suggest that the scaling is exactly O(N?) for TiO, and GNR which is equivalent to the

expected scaling if the pseudodensity matrices are dense. For water the scaling shifts
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Figure 5.6: transport gap Axc ([HOMO — 1] — [LUMO + 1)) (left panel) and zigzag gap
(HOMO —LUMO) A,, (right panel) for graphene nanoribbons of varying horizontal length.
Both gaps saturate when increasing the ribbon length. The results were obtained with
two different configurations of low-scaling GoWy: an exact calculation with 30 minimax
points and a truncated Coulomb RI metric with truncation radius of 2A, and a 4-times less
expensive calculation with 12 minimax points and the identity RI metric. The difference

in both gaps (A,, and Aac) is less than 0.1eV, demonstrating that meaningful results can
be obtained already from the cheaper calculation.

slightly towards O(N) for large system sizes due to the onset of sparse pseudodensity

matrices. Note that this study includes only the FLOPs performed in DBCSR and does
not include the FLOPs of the O(N?3) operations.
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Figure 5.7: Scaling with system size of the total number of floating point operations of
the dominating sparse tensor contractions. The expected scaling limits are depicted by grey
lines. TiO2 and GNR match the O(N?) limit (upper grey line) exactly. For HoO the scaling

evolves gradually into O(N), however still being close to a O(N?) scaling for the system
sizes considered.

The fitted scaling based on execution time of O(N??) for water, O(N?%?) for TiO and
O(N?**) for GNR suggests non-ideal weak scaling of DBCSR. This is more thoroughly
evaluated in Fig. 5.8, showing the performance in terms of FLOP/s for the different
system sizes. The fact that the performance regression is more pronounced for the two

denser systems suggests that it does not have to do with sparsity but hints at limited
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scalability with number of processors. Indeed the total communication costs Eq. (4.32)
reveal that if Np is increased proportionally to /N3, the communication cost increases as
T = O(v/N;) = O(N) = O(/Np) (assuming Ny, Ny, N3 = O(N?)). The same weak-
scaling behaviour has already been reported for the DBCSR library in [71, 90]. Even if
a communication-optimal matrix multiplication algorithm was used, the communication
would increase as T' = O(N) Eq. (4.20) or T = O(N?/3) Eq. (4.20), so that we conclude
that the degradation in weak scaling is not due to the choice of algorithm and no evident

solution exists to improve scaling with number of processors.
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5.2 RI Hartree Fock Exchange

The RI Hartree-Fock (RI-HFX) algorithm has been introduced in Sec. 2.6.1 and here we
give a short summary of the equations, their scaling in memory and execution time, and
their implementation in terms of operations provided by the DBCSR tensor library. The

algorithm evaluates once per SCF procedure the contraction of the 3-center integrals with
the matrix K = S7'VS~!

Contraction scaling: cost/memory
Mg, = > (WAP)Kpg O(N*)/O(N?) (5.5)
P

In each SCF step the Fock matrix 3%, is evaluated using the density matrix P of the
current SCF step

Contraction scaling: cost/memory

M, = (Qov)Py, O(N?)/O(N?) (5.6)

g
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Z Mo O(N?)/O(N?) (5.7)

It is not evident that this contraction order is the most efficient possible and the following

alternate formulations have been thoroughly tested:

o Contracting the 3-center integrals with the molecular orbital coefficients instead of
the density matrix, resulting in smaller though dense tensor contractions (scaling
as O(N?) instead of O(N?)) that could be more efficiently accelerated using GPUs

(unP) = Z Cn(LAP)

Mg = ZmnP)Kl”
P

IS Z ManuMany
Qn

« Contracting the same 3-center integral tensor (QAu) with the K and P matrix

2 1
Mé)?u = Z M( U)'VP)‘U
Y = Z(NAQ)M@)

QX

so that the other tensor (uAQ) remains very sparse, allowing for a prescreening

(2) : only those pairs of (@, \) need to cal-

reducing the number of elements in Mg
culated in M ,, for which non-zero entrles in (uAQ) exist. This way of imposing a
sparsity Structure is equivalent to the notion of emergent sparsity as discussed by

Manzer et al. [64]

Though conceptually interesting, both alternate variants turned out to perform worse so
that the approach presented as first seems to be the most preferrable within a sparse
contraction scheme.

The implementation of RI-HFX is analogous to low-scaling RPA and summarized in
terms of pseudocode in Alg. 5. The actual implementation performs the contractions in
batches by splitting the indices A, Q) into nyen batches each.

Parameters for the calculations are listed in Tab. 5.2. A full documentation of the
parameters for each system size is given in Appendix C. For both variants of Hartree-

Fock the integral screening and filter thresholds have been set to the loosest values still
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Algorithm 5 Implementation of RI-HFX in terms of the operations Contract & Copy
of the DBCSR tensor library

MD(Q, ) + K(Q, P) x (P, \p) > Contract
MW AQ, p) = MIN(Q, \p) > Copy
MY « compress(M®M(A\Q, 1)) > Compress full tensor
while SCF not converged do
M (vQ,\) + (vQ,0) x P(a,\) > Contract
M@ (\Q,v) + M3 (vQ, \) > Copy
MONQ, i) + decompress(Mc(l)) > Decompress batch-wise
¥, v) «— MOAQ, )T x MA(\Q,v) > Contract
end while

ensuring stable SCF convergence to a target accuracy of 10~7. For each calculation a
full SCF procedure has been performed, restarted from a PBE-based wavefunction. The
error induced by the RI approximation and the overlap metric is smaller than 5-107°E),
per electron for all systems.

Benchmarks on 2 different systems are shown in Fig. 5.9 and Fig. 5.10: water rep-
resenting a sparse system with localized electronic structure for which the combined
Schwarz and density matrix based integral screening Eq. (2.46) are expected to work
very well, and bulk anatase TiO, for which density matrix based screening fails. For H,O
we employ a TZVP basis set that was specifically optimized for direct HFX (favoring a
small number of contractions per set). For TiO, the same cc-TZV2P basis was used as
for RPA, which is problematic for direct HFX, due to the presence of a diffuse function
with quantum number [ = 2 in the basis of Titanium, causing a large number of inte-
grals to be calculated. In order to assess the influence of basis set quality the basis set
has been reduced to a TZV2P basis by removing the respective polarization functions.

Additionally the [ = 2 quantum number of the most diffuse primitive has been reduced

RI-HEFX direct HFX
method system basis Qmin, [)  Cutoff radius  €pier / Estorage  Eschwarz / Estorage

( )
HFX  H,0  TZVP  (0.15,1) 40 1077 /107% 1079 /1007
HFX  TiO,  cc-TZV2P (0.13,2) 45 1079 /1079 1079 / 1010
HFX  TiO, TZV2P  (0.13,1) 45 107% /107% 1079 /1010

Table 5.2: Parameters of all Hartree-Fock calculations. The main input for RI-HFX is a
threshold egier for sparse tensor contractions. For direct HFX egcpwars 1S the threshold for
integral screening. Both implementations also have a threshold €siorage for compression. All
parameters have been optimized by trying out the largest value which still ensures stable
SCF convergence. We also list the most diffuse basis function with exponent ay,i, and its
maximum [ quantum number.
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Figure 5.9: weak-scaling benchmark comparing the RI-HFX method with direct HFX:
continuous lines for the fully converged SCF procedure, dashed lines for initializations taking
place only in the first SCF iteration. The RI-based algorithm scales slightly worse with
system size and is roughly one order of magnitude slower than the direct HFX. Performance
of direct HFX declines for the largest system due to the memory-driven necessity of using
threading (3 threads per rank).

to [ = 1. The error in the Hartree-Fock energy induced by this modification of the basis

set is as small as 7-107° E}, per electron.

For water, the RI-HFX is roughly one order of magnitude more expensive for all
system sizes. Direct HFX does not show ideal O(N) scaling which is memory-driven
by the replication of the density matrix. More precisely, the replication of the density
matrix requires either more nodes or a hybrid parallelization employing a larger number
of threads, reducing the overall performance. The effective scaling of RI-HFX is measured
as O(N'#®), close to the theoretical scaling of O(N?) and slightly worse than the scaling
of direct HFX.

The performance comparison between RI-HFX and direct HFX depends on the num-
ber of SCF steps performed because for direct HF X, the dominant part of the calculation
is performed only once in the first SCF step, whereas in RI-HFX the first step is the
most expensive but all subsequent steps still need to perform relatively costly tensor con-
tractions. Typically the subsequent steps each take roughly 1/3 of the time of the first

SCF step in RI-HFX. It is interesting to also compare the time for initializations only
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taking place in the first SCF step (depicted by dashed lines in Fig. 5.9), corresponding
to Eq. (5.5) for RI-HFX and to the integral calculation for direct HFX.

For TiO, Fig. 5.10 and the larger cc-TZV2P basis, direct HFX is limited by memory
so that the integrals for systems larger than 216 atoms could not have been stored in
core (given 2400 compute nodes with 64 GB each). This makes the full SCF procedure
unaffordable so that only the first SCF step has been performed for direct HFX (depicted
by dashed lines). The RI-HFX method requires much less memory (the largest calculation
of 864 atoms being feasible on 512 compute nodes). If unlimited amount of memory was
available, RI-HFX would still perform better in terms of execution time, taking into
account imperfect strong scaling of direct HFX which does not show in Fig. 5.10 because
a much smaller number of nodes have been used than necessary to store the integrals
in-core.

For the reduced TZV2P basis, direct HFX performs better by more than a factor of
7 compared with the larger cc-TZV2P basis, even though the basis is smaller in size by
only 25%. Direct HFX is very sensitive to the features of the basis and the costs increase
rapidly with diffuse functions and functions with large values for {. For RI-HFX the
reduced TZV2P basis leads to a speedup by a factor of only 2.3. This corresponds to a
scaling of O(N?3) with respect to basis set size and not to the expected O(N*) scaling,
which can be attributed to the fact that the RI basis has not been optimized for the
smaller basis (only the functions with largest [ have been removed). Using an optimized
RI basis, RI-HFX would perform slightly better. RI-HFX and direct HFX have similar
computational costs for the reduced TZV2P basis. An advantage of RI-HFX is still the
reduced memory footprint so that the largest calculation could be done on only 256 nodes,
whereas direct HFX required 2400 nodes for the largest system.

A comparison of the theoretical memory consumption (estimated by the number of
elements in the largest tensor) is given in Fig. 5.11. The memory use of direct HFX
is highly system dependent because the screening depends on the decay of the density
matrix and the number of diffuse basis functions. H,O is thus favorable for direct HFX,
exhibiting a linear memory scaling in contrast to the quadratic scaling for the case of
TiO,. For RI-HEFX, memory consumption is very similar for the two systems because the
sparsity of the largest tensor MM doesn’t benefit from a sparse density matrix. For H,O
the memory consumption of RI-HFX is therefore much higher compared with direct HFX
but for TiO,, the RI-HFX approach uses roughly 2 orders of magnitude less memory than
direct HFX.
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e RI-HFX cc-TZV2P, fit O(N'9?)
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Figure 5.10: weak-scaling benchmark comparing RI-HFX with the direct implementation
of HFX for anatase with a cc-TZV2P basis and a smaller TZV2P basis. Continuous lines
for the fully converged SCF procedure, dashed lines for initializations taking place only in
the first SCF iteration. The RI-based implementation performs better for cc-TZV2P basis
and, more importantly, has a smaller memory footprint so that the largest system of 864
atoms can be calculated on 512 compute nodes. For direct HFX, the ERI storage requires
much more memory and the limiting system size for the cc-TZV2P basis is already reached
for 216 atoms (given 2400 compute nodes with 64GB of RAM each). For this reason, ERIs
are not stored in-core and timings for only the first SCF step are reported (performed on a
smaller number of nodes). For the reduced TZV2P basis, direct HFX becomes affordable
for up to 864 atoms and both variants of HFX have roughly the same cost (direct HFX
requiring 2400 nodes compared to 256 nodes for RI-HFX)
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Figure 5.11: Comparison of memory use between RI-HFX and direct HFX where memory
was approximated by the number of tensor elements to be stored (4-center ERIs for direct
HFX and tensor M1 for RI-HFX). Both algorithms use the same compression technique
so that the comparison by counting tensor elements is reasonable. Due to density-matrix-
based screening direct HFX memory scales linearly for water. For TiO2 the scaling is

quadratic due to a non-decaying density matrix. The memory use of RI-HFX always scales
quadratically.
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5.3 Conclusion and Outlook

The benefit of exploiting an efficient tensor-based implementation of sparse linear algebra
has been demonstrated for three electronic structure methods: Hartree-Fock Exchange,
RPA and GW. The algorithms make efficient use of the locality of basis functions and
the sparsity of 3-center integrals due to a RI expansion with a local metric. The overlap
metric is the metric of choice for highest sparsity even if it is known to be less accurate
than the Coulomb metric. The error induced by RI and the overlap metric is less than
5-107%Ej, per electron which is acceptable and is still small compared to orbital basis
set errors. For GW the overlap metric is more problematic due to errors on the order of
0.1 eV for the quasiparticle energy levels which can be systematically improved by using
a truncated Coulomb metric.

Making use of tensor sparsity to reduce the number of operations performed is key to
the low-scaling behaviour of the algorithms presented here. Without the use of sparsity,
the methods presented here would scale as O(N?) instead of O(N?). The occupancy of
the largest tensors in both low-scaling RPA and RI-HFX is depicted in Fig. 5.12, revealing

typical occupancies of less than 10% for the largest systems considered.

102 102

10! 4
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—
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Figure 5.12: Occupancy of the largest tensor, illustrating the effect of increasing sparsity
and the importance of a sparse tensor library. For low-scaling RPA and very sparse systems
(such as H2O) occupancy goes down below 1%, otherwise occupancy between 1% and 10%
is typical for large systems.

For RPA and GW, the reduction of memory and computational costs extends the
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applicability of these methods to system sizes that are clearly out of reach within a
canonical formulation. This benefit has been demonstrated not only for sparse systems
of linear or planar extension and/or with a large band gap, but also for bulk crystalline
systems by the example of anatase. The comparison of low-scaling vs. canonical RPA has
been performed with a configuration most favorable for canonical RPA, on Cray XC50
nodes maximizing the performance of canonical RPA by exploiting GPUs, even though
the low-scaling implementation can currently not take advantage of GPUs. The benefit
of low-scaling RPA would be even more pronounced (by a factor of 3) on CPU machines.
It is not evident how sparse tensor contractions can efficiently be accelerated on GPUs
since the tensor layout is optimized for small heterogeneous block sizes. Sacrificing some
of the sparsity in favor of more homogeneous block sizes will probably not lead to overall
better performance, even if GPUs could be exploited more efficiently.

For Hartree-Fock Exchange, the benefits of using an RI-based approach is less pro-
nounced due to the already very efficient integral screening, exploiting sparsity much
better than a tensor-based algorithm. However the RI approximation reduces the num-
ber of integrals by a large amount so that RI-HFX can deal better with accurate basis
sets (containing diffuse functions and large [ quantum numbers) and for densely packed
systems. The auxiliary density matrix method (ADMM) [91] is already a more efficient
approach to make Hartree-Fock Exchange calculations available for problematic basis
sets. ADMM is an approach that is orthogonal to RI and a combination of the two
methods could be of interest, however the small basis sets employed in ADMM are pre-
sumably better-suited for direct HFX. RPA calculations in the EXX/RPA formalism [52]
require a single-point Hartree-Fock calculation with a typically large and accurate basis
for which the RI approach is always better suited. Independently of the basis, RI-HFX
is always less costly than the corresponding low-scaling RPA calculation (for the largest
system of TiO,, a RI-HFX single point calculation costs roughly 20% of a low-scaling
RPA calculation).

Finally, we emphasize again that the implementation of both RI-HFX and low-scaling
RPA / GW are of low complexity and consist mainly to calls to the DBCSR tensor library,
providing a complete set of operations in terms of which these algorithms have been
implemented. Other tensor-based algorithms (dense or sparse) could be implemented
with little effort and we hope that the availability of a sparse tensor library will fuel the

use of sparse tensor algorithms within electronic structure theory.



Appendix A

MME Cutoff Calibration

The cutoff calibration is based on an error estimate of 2-center ERIs in dependence of
the cutoff G.x which determines the fit range in which the minimax approximation is

valid according to Eq. (3.15). The total accuracy is affected by two sources of errors:

1. Minimax error Ap,: the error within the fit range |G| < Guax caused by the

approximative expansion of the potential into a sum of Gaussians

2. Cutoff error: the error outside of the fit range |G| > Guax Where the minimax

approximation falls off faster than the potential it approximates

The error should refer to normalized basis functions in order to approximate the error of
the final representation of the ERIs in the normalized spherical harmonics Gaussian basis.
It is more convenient to estimate the error based on Hermite Gaussians which should be
comparable with the magnitude of the error in the spherical harmonics Gaussian basis if
the Hermite basis Eq. (3.6) is first normalized.

For the following we assume an orthorhombic simulation cell so that h is diagonal and
the reciprocal lattice vectors are mutually orhogonal. For the normalization of Hermite

Gaussians we use their relation to Hermite polynomials [53]
Hyo(x) = e o2 Hy(\Jax) (A1)

The normalization constant N so that 1/NH;,(z) is normalized can be calculated ac-

N? :/Z iz K—d%)lexp(—ax?)]
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where the solution of the last integral is given in [92], Eq. 22.13.17.

We proceed by an expression for the Minimax error A, which is the error of the
minimax approximated integral (a|a)mm compared with the integral (a|a) with the exact
potential but |G| < Gax:

Anm = |(ala) = (ala)mm| =

=) (H [(20) 5=/l + 1/2))*])

> Ay(G)exp(—iG - (A — B))Coy20)-1 (G) (A.2)
|G| <Gmax
with ,
Ay (G) = 2] Z w; exp(—a;G?) (A.3)

whose maximum absolute value is the minimax error Eym, = max|gj<cu.. (|Av(G|). The

absolute value of the lattice sum in Eq. (A.2) can be estimated as

3
| cee | < Ernrn Z ‘021,(204)—1((;” < Emm8 H Z C2lk,(2a)_1 (G>

G|<Gimax k=1 0<G<Grmax

3
h 0
S Emm8 H (% / dGCQlk,(ga)fl (G) + Cgl]ﬁ(ga)fl(\/ 2lk0é) - 5lk,0>

™ Jo

< Emm8H (—F (Ix + 1/2)(204)1’“+1/2 + (2lkoc)l’“ exp (—lx) — 6lk70> ,
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where the lattice sum was split into two parts for G < Gg and G > Gy with Gy =
argmax(Cay, (20)-1(G)) = V2l . Then we integrated over the two domains such that
each sum is the lower Darboux sum of the respective integral. The additional summand
is an upper bound for the term closest to Gy which has not been included in the Darboux

sums. If [ = 0 then Gy = 0 and the extra term is excluded by subtracting d;, .

Collecting all terms we find

Amm < = Fm H (hkk \/7(;?:)! [(42k)" exp(—1x) — 5lk,0]> (A.4)

The term 1!/(20)![(41)" exp(—1) — d;0] < 3/4 for all [ as can be verified numerically. The

estimate for the minimax error can thus be written as

A < mmH (h’“’“ \/77T ) (A.5)

For the cutoff error, we know that the minimax approximation of the potential is

greater than 0 and smaller than the exact potential. For deriving an upper bound of the
error induced by G,.x we consider a hard cutoff treating the minimax approximation as
0 for |G| > Gmax or neglecting all terms |G| > Gax. An efficient estimate of the error in

the potential for G > G, is given by the inequality of arithmetic and geometric means

1 1 1 1/3
A < — <D = A.
Vm”WGP—3Q%%GQ (A.6)

The bounding function factorizes in the 3 Cartesian directions which allows for an efficient
evaluation of the cutoff error. The cutoff error is the error of the integral (a|a). calculated

with a hard cutoff G,,.x compared with the exact integral and is given by
A. = |(ala) — (ala)| = (A7)

7 () (H [(20) A0+ 1/2>>‘1]>

_g(ﬁmgzawm<wﬂm )HZZ‘WMMW{f)

k=1 G1,>Gmax
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We note that the cutoff error A, is the largest for basis functions that are extended
in reciprocal space, i.e. that have a large exponent o and a large maximum number of
[. For a given basis set the largest error A, is found by a parameter search (complete
sampling for [, golden section search for «). An upper bound for the total error is then
given by the sum of minimax and cutoff error A = A, + Ac. A good estimate for the

cutoff minimizing the total error A can be found by bisection on the difference A, — App,.



Appendix B

Tensor Contraction Example

Fortran source code for the tensor contraction example of Alg. 2, documenting the tensor
API. Left-out code is marked with ‘.] Complete source code for this example is provided
together with the DBCSR source code (https://github.com/cp2k/dbcsr).

type(dbesr_t_pgrid_type) :: pgrid ! process grid

type(dbesr__t__distribution__type) :: dist ! distribution

type(dbesr_t_type) :: A_ijk, A_lmk, B_iln, C_no, D_ijlm, E_jmn, F_jmo ! tensors
type(dbcsr__t_iterator__type) :: iter ! block iterator

real(real64), dimension(:, :, :), allocatable :: blk values 3d ! wariable for tensor blocks

integer, dimension(3) :: pdims_3d, shape_3d, blk_ind_3d, blk_size_3d

integer, dimension(4) :: shape 4d, pdims_4d

integer, dimension(:), allocatable :: blk_size i, blk size j,
integer, dimension(:), allocatable :: blk_ind 1, blk_ind_ 2,
integer, dimension(:), allocatable :: dist_1, dist_2,

! —— create process grid for rank 3 tensors
pdims_3d = 0
call dbcesr_t_pgrid_ create (mpi_comm_world, pdims_3d, pgrid)

blk size i = [...] ! block sizes along dimension i
blk_size_j = [...] ! block sizes along dimension j

! and so on for k, l, m, n, o

create temsor A(i,j, k) —

shape_3d = [...] ! shape in terms of block sizes

! default distribution wvectors in 8 dimensions

call dbcesr_t_default distvec(shape 3d(1), pdims 3d(1), blk_size i, dist_1)
call dbcesr_t_default distvec(shape_3d(2), pdims_3d(2), blk_size j, dist_2)

call dbcsr_t_default distvec(shape 3d(3), pdims 3d(3), blk_size k, dist_3)

! create distribution
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call dbcsr_t_distribution new(dist, pgrid, dist_1, dist_2, dist_3)
deallocate (dist_1, dist_2, dist_3)
call dbesr_t_ pgrid destroy(pgrid)

! create tensor

call dbesr_t_create(A_ijk, ”A(ij,k)”, dist, &
mapl_2d=[1, 2], map2_2d=([3], &
blk__size_i, blk_size_j, blk_size_k)

call dbesr_t_distribution_destroy (dist)
! —— fill tensor A(i,j, k) —

! block indices corresponding to local non—zero blocks

blk_ind_1 = [...]

blk_ind 2 = [...]

blk_ind_3 [...]

call dbcsr_t_ reserve blocks(A_ijk, blk ind 1, blk ind 2, blk ind 3)

! iterate over local non—zero blocks

call dbesr_t_iterator_start(iter, A_ijk)

do while (dbcsr_t_iterator__blocks_left(iter)
call dbcesr_t_iterator_next__block(iter , blk_ind_3d, blk_size=blk_size_3d)
allocate (blk_values 3d(blk_size 3d (1), blk size 3d(2), blk_ size 3d(3)))
blk values 3d = [...] ! fill block
call dbcesr_t_put_block(A_ijk, blk_ind_3d, blk_size_3d, blk_values_3d)
deallocate (blk_ values 3d)

enddo

call dbcsr_t_iterator_stop(iter)

copy A(Z’]’k) to A(l,m,k) -

call dbcsr_t_create(A_ijk, A Imk, name="A(lm,k)”)
call dbcesr_t_copy(A_ijk, A Imk)

! — create D(i,j,l,m) —

pdims_4d = 0
call dbcesr_t__pgrid_ create (mpi_comm_world, pdims_4d, pgrid)

shape_4d = [...]

call dbcesr_t_default_distvec(shape_4d (1), pdims_4d(1), blk_size_i, dist_1)
call dbcesr_t_default_distvec(shape_4d(2), pdims_4d(2), blk_size_j, dist_2)
call dbcesr_t_default_distvec(shape_4d(3), pdims_4d(3), blk_size_1, dist_3)
call dbcesr_t_default distvec(shape_ 4d(4), pdims_4d(4), blk_size m, dist_4)

call dbcsr_t_distribution new(dist, pgrid, dist_1, dist_2, dist_3, dist_4)
deallocate (dist_1, dist_2, dist_3, dist_4)
call dbcesr_t_pgrid destroy(pgrid)

call dbcsr_t_ create(D_ijlm, ”D(ij ,lm)”, dist, &
mapl 2d=[1, 2], map2 2d=[3, 4], &
blk_size_i, blk_size_j, blk_size_1, blk_size_m)
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call dbcsr_t_distribution destroy (dist)

omitted: creation of temsors B, C, E —
! — F(j7m70) = B(m707j) + B(o,m,j) -

! F(j,mo) =B(mo,j)
call dbcesr_t_copy(B_iln, F_jmo, order=[2, 3, 1])

! F(j,mo) =F(j,mo) + B(o,m,j)
call dbcsr_t_copy(B_iln, F_jmo, order=[3, 2, 1], summation=.true.)

! ——— D(i,j,l,m) =A(i,j,k) v A(l,m k)

! The arguments of dbcsr_t_contract define the mappings to the matriz representation

! wusing the following convention:

! tensor_3(map 1, map 2) := alpha * tensor_1(notcontract 1, contract_ 1) z
! tensorf?(contractﬁ?, notcontract__2)
! + beta * tensor_3(map_1, map 2)

! (’z’ standing for matriz—matriz multiplication)

call dbcsr_t__contract(alpha=dbcsr__scalar (1.0 _real64), tensor__1=A_ijk, tensor_2=A_lmk, &
beta=dbcsr__scalar (0.0 _real64), tensor_3=D_ijlm, &
contract_1=[3], notcontract 1=[1, 2], &
contract_2=[3], notcontract_ 2=[1, 2], &
map_1=[1, 2], map_2=[3, 4], &
filter __eps=filter__eps)

| ——— E(];m;n) :D(izj;l;m) T B(Zzl;n)

call dbcsr_t_contract(dbcsr_scalar (1.0 _real64), D_ijlm, B_iln, &
dbesr__scalar (0.0 _real64), E jmn, &
contract_1=[1, 3], notcontract_1=[2, 4], &
contract_2=[1, 2], notcontract 2=[3], &
map_1=[1, 2], map 2=[3], &
filter__eps=filter__eps)

! ——— C(n,0) = C(n,0) + E(j,mn) = F(j,mo0)

call dbcesr_t_contract(dbesr__scalar (1.0 _real64), E_jmn, F_jmo, dbcsr_scalar(1.0_real64), C_no, &
contract_1=[1, 2], notcontract 1=[3], &
contract_2=[1, 2], notcontract 2=[3], &
map_1=[1], map 2=[2], &
filter _eps=filter_eps)
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Parameters for Benchmark Systems

H20 cc-TZV2P O(N?) RPA O(N*) RPA

# atoms error # batches  # nodes # nodes COSMA  # nodes MKL
(electroms, orb basis, RI basis)  [E}, /electron] (MPL,OMP) (MPI,OMP) (MPI,OMP)
96 (256, 1824, 4352) 3-.1077 2 2 (12, 1) 2 (1, 12) 2 (12, 1)
192 2.1076 2 8 (12, 1) 2 (1, 12) 4 (12, 1)
384 3.1076 4 16 (12, 1) 128 (1, 12) 2 (12, 1)
768 2.1076 4 32 (12, 1) 1024 (1, 12) 256 (12, 1)
1152 4 64 (12, 1)

1728 4 128 (12, 1)

2592 (6912, 49248, 117504) 4 256 (12, 1)

The system size was increased in all 3 dimensions by taking supercells of (1,1,1), (2,1,1), (2,2,1), (2,2,2), (3,2,2),
(3,3,2), (3,3,3) of a basic unit cell containing 32 H2O of dimensions (9.8528, 9.8528, 9.8528) A.

TiOz cc-TZV2P O(N3) RPA O(N*) RPA
# atoms error # batches  # nodes # nodes
(electrons, orb basis, RI basis)  [E}/electron] (MPI,OMP) (MPI,OMP)
108 (864, 4068, 11520) 3.1076 3 32 (12, 1) 64 (1, 12)
216 3.10-6 5 64 (12,1) 256 (1, 12)
432 3.1076 3 256 (12, 1) 2400 (1, 12)
864 (6912, 32544, 92160) 6 512 (12, 1)

The systems correspond to (3,3,1), (6,3,1), (6,6,1), (6,6,2) unit cells of dimensions (3.782, 3.782, 9.502) A.

GNR aug-DZVP O(N3) GoWoy O(N*) GoWo
# atoms # batches  # nodes # nodes
(electrons, orb basis, RI basis) (MPI,OMP) (MPI,OMP)
114 (366, 2118, 5160) 4 8 (12, 1) 64 (1, 12)
222 4 6 (12, 1) 256 (1, 12)
438 4 4 (12, 1)

870 4 256 (12, 1)

1734 (5766, 33078, 80940) 8 512 (12, 1)
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H,O TZVP RI-HFX direct HFX

# atoms error # SCF  # batches # nodes # nodes
(electrons, orb basis, RI basis)  [E}, /electron] (MPL,OMP) (MPI,OMP)
96 (256, 1280, 6816) 1-10-¢ 16 2 4(12, 1) 4 (12, 1)
192 1-1076 15 2 8 (12, 1) 4 (12, 1)
384 2.10-6 14 2 32 (12, 1) 8 (12, 1)
768 5.1077 18 3 64 (12, 1) 16 (12, 1)
2592 (6912, 34560, 184032) 5.10°7 12 8 256 (12, 1) 128 (4, 3)
TiO2 cc-TZV2P RI-HFX direct HFX

# atoms error # SCF  # batches # nodes # nodes
(electrons, orb basis, RI basis)  [E},/electron] (MPI,OMP) (MPI,OMP)
108 (864, 4068, 11520) 3.10-6 20 5 32 (12,1) 128 (12, 1)
216 20 5 64 (12,1) 256 (12, 1)
432 19 6 128 (12,1) 512 (12, 1)
864 (6912, 32544, 92160) 3 4 512(12,1)

For the largest system 3 SCF steps have been performed and the execution time has been extrapolated to 19 SCF

steps to save ressources.

TiO2 TZV2P RI-HFX direct HFX

# atoms error # SCF  # batches # nodes # nodes
(electrons, orb basis, RI basis)  [E}, /electron] (MPI,OMP) (MPI,OMP)
108 (864, 3060, 10404) 3.1076 21 2 32 (12, 1) 64 (12, 1)
216 2106 20 2 64 (12, 1) 150 (4, 3)
432 2.10-6 19 3 128 (12, 1) 600 (4, 3)
864 (6912, 24480, 83232) 5.10~7 18 5 256 (12,1) 2400 (1, 12)




Appendix D

Exemplary Inputs

Listing D.1: Exemplary input file for low-scaling RPA

&GLOBAL
PROJECT H20-RPA
RUN_TYPE ENERGY
EXTENDED_FFT LENGTHS
&FEND GLOBAL
&FORCE_EVAL
METHOD Quickstep
&DFT
BASIS_SET FILE_NAME BASIS_RI_cc—T7Z

! sort basis functions wit respect to their exponents,
I this improves sparsity for tensor—based low—scaling algorithms
SORT__BASIS EXP
&SCF
EPS_SCF 1.0E—6
MAX_SCF 20
&OUTER, SCF
EPS_SCF 1.0E—6
MAX SCF 5
&FEND
&OT
MINIMIZER CG
PRECONDITIONER FULL_ALL
&FND
&FND SCF
&XC
&XC_FUNCTIONAL PBE
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&FEND XC_FUNCTIONAL
&WE_CORRELATION
&RI
&RI_METRIC
! select overlap RI metric
! for highest sparsity
POTENTIAL_TYPE IDENTITY
&FND
&END
&LOW_SCALING

! number of batches, reducing memory by this factor
MEMORY_CUT 2

! Filtering threshold for first tensor contraction
EPS_FILTER 1.0E-7

! Filtering threshold for second tensor contraction,
I expressed relatively to EPS_FILTER
EPS_FILTER, FACTOR 1.0

&END

&RI_RPA

! Perform minimax grid based variant of RPA

MINIMAX QUADRATURE

! Number of grid points
RPA_NUM_QUAD_POINTS 10
&END
&INTEGRALS

! Enable fast analytical 2—center integrals
ERL_ METHOD MME
&WEC_GPW

! integral accuracy criterion affecting memory
! consumption of 3—center integral calculation
EPS _GRID 1.0E—-04
&FEND
&END
&END
&END XC
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&END DFT
&SUBSYS
&CELL
ABC 9.8528 9.8528 9.8528
MULTIPLE UNIT CELL 1 1 1
&FEND CELL
&TOPOLOGY
COORD_FILE_NAME H20—32.xyz
COORD_FILE FORMAT cp2k
MULTIPLE UNIT CELL 1 1 1
&FEND TOPOLOGY

&KIND H
BASIS_SET cc—TZ
BASIS_SET RI AUX RI TZ
POTENTIAL GTH-PBE—q1

&END KIND

&KIND O
BASIS_SET cc—T7Z
BASIS_SET RI_AUX RI _TZ
POTENTIAL GTH-PBE—q6

&END KIND

&END SUBSYS

&END FORCE EVAL

Listing D.2: Exemplary input file for low-scaling GoW,

&GLOBAL
PROJECT GNR-GW
RUN_TYPE ENERGY
EXTENDED_FFT LENGTHS
&END GLOBAL
&FORCE_EVAL
METHOD Quickstep
&DFT
BASIS SET FILE NAME ./BASIS
SORT_BASIS EXP
UKS
MULTIPLICITY 1
&SCF
EPS_SCF 1.0E—6
MAX SCF 20
&OUTER, SCF
EPS_SCF 1.0E—6
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MAX SCF 5
&END
&OT
MINIMIZER CG
PRECONDITIONER FULL_SINGLE INVERSE
&END
&END SCF
&XC
&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL
&WF _CORRELATION
&LOW__SCALING
EPS FILTER 1.0E-11
MEMORY CUT 4
&END
&INTEGRALS
&WVFC_GPW
EPS GRID 1.0E—6

! improves stability of

! Cholesky decomposition
EPS PGF ORB_S 1.0E—20
&FEND
&END
&RI

&RI-METRIC
! select overlap RI metric
POTENTIAL_TYPE IDENTITY
! alternatively use truncated Coulomb metric
for more accurate GW levels
'POTENTIAL_TYPE TRUNCATED
!CUTOFF_RADIUS 2.0
&FEND
&END
&RI_RPA
MINIMAX  QUADRATURE
RPA_NUM_QUAD_POINTS 12
&GW
CORR_OCC 15
CORR_VIRT 15
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CROSSING_ SEARCH NEWTON
OMEGA_MAX FIT 1.0
ANALYTIC CONTINUATION PADE

RI SIGMA X
&END GW
&END RI_RPA
&END
&END XC
&END DFT
&SUBSYS
&CELL

ABC [angstrom] 440.0 22.0 12.0
PERIODIC NONE
&FND CELL
&KIND H
BASIS_SET aug-DZVP-GTH
BASIS_SET RI_AUX RI_aug DZ
POTENTIAL GTH-PBE—q1
&FND KIND
&KIND C
BASIS_SET aug—DZVP-GTH
BASIS_SET RI_AUX RI_aug DZ
POTENTIAL GTH-PBE—q4
&FEND KIND
&KIND C1 ! Breaking spin—up/spin—down symmetry on
! specific atoms in order to find correct spin state
ELEMENT C
BASIS_SET aug-DZVP-GTH
BASIS_SET RI_AUX RI_aug DZ
POTENTIAL GTH-PBE—q4
&BS
&ALPHA
NEL 1
L1
N 2
&END
&BETA
NEL —1
L1
N 2
&END
&END



&FEND KIND
&KIND C2
ELEMENT C

BASIS_SET aug-DZVP-GTH
BASIS SET RI AUX RI aug DZ

POTENTIAL GTH-PBE—q

&BS
&ALPHA
NEL —1
L1
N 2
&END
&BETA
NEL 1
L1
N 2
&END
&END
&END KIND
&TOPOLOGY

4

COORD_FILE._NAME struc.xyz
COORD_FILE FORMAT xyz

&CENTER COORDINATES
&END

! generate reorder to preserve spin symmetry breaking

&GENERATE
REORDER
&END GENERATE
&END TOPOLOGY
&END SUBSYS
&END FORCE EVAL

Listing D.3: Exemplary input file for low-scaling RI-HFX

&GLOBAL
PROJECT TiO2
RUN_TYPE ENERGY
EXTENDED_FFT LENGTHS
&FND GLOBAL
&FORCE_EVAL
METHOD Quickstep
&DFT
BASIS_SET FILE NAME

./BASIS_ TiO2
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SORT BASIS EXP
&QS
EPS DEFAULT 1.0E—12
EPS PGF ORB 1.0E—20
EPS FILTER. MATRIX 0.0e0
&END QS
&SCF
EPS SCF 1.0E—7
MAX_SCF 20
&OUTER_SCF
EPS SCF 1.0E—07
MAX_SCF 3
&FEND
&OT
PRECONDITIONER FULL SINGLE INVERSE
MINIMIZER DIIS
&END OT
&END SCF
&XC
&XC_FUNCTIONAL NONE
&END XC_FUNCTIONAL
&HF
&RI
RI_METRIC IDENTITY

! reduce memory by this factor (should be a square number,
! number of batches is square root of this number)
MEMORY_CUT 16

I filter criterion for tensors
EPS FILTER 1.0E—08

I filter criterion for storage,
I expressed relatively to EPS_FILTER
EPS_STORAGE_SCALING 100

&END

&INTERACTION_POTENTIAL
POTENTIAL_TYPE TRUNCATED
CUTOFF_RADIUS 4.5

&END

&END HF
&END XC



&END DFT
&SUBSYS
&CELL
ABC 11.346 11.346 9.502
MULTIPLE UNIT CELL 1 1 1
&FEND CELL
&TOPOLOGY
COORD_FILE_NAME tio2.xyz
COORD_FILE FORMAT cp2k
MULTIPLE UNIT CELL 1 1 1
&FEND TOPOLOGY
&KIND O
BASIS _SET cc—T7Z
BASIS_SET RI_HFX RI_TZ
POTENTIAL GTH-PBE—q6
&END KIND
&KIND Ti
BASIS SET cc—T7Z
BASIS_SET RI_HFX RI TZ
POTENTIAL GTH-PBE—q12
&END KIND
&END SUBSYS
&FND FORCE_EVAL

109



Acknowledgements

First of all I would like to thank Professor Jiirg Hutter for his support, for the fruitful
discussions and for his ideas that helped to initiate and shape this work. I'm grateful for
the possibility of attending various summer schools and conferences.

This thesis owes a great deal to the work by Jan Wilhelm who derived and imple-
mented the theoretical framework of low-scaling RPA and GW. Without his experience in
the implementation and optimization of tensor expressions, I could never have generalized
these concepts to a tensor library.

Dorothea Golze contributed the calculations for the IC-QM/MM method and I'm
deeply thankful for this rewarding collaboration.

Alfio Lazzaro and Ilia Sivkov were my collaborators in the DBCSR, PASC project and
I'm grateful for discussions that helped me understand the inner workings of the DBCSR
library. I'm grateful to Alfio for sharing his experience with MPI and high-performance
computing in general.

The group of Joost VandeVondele at CSCS developed the COSMA library and con-
tributed to the DBCSR library. Marko Kabi¢ is the main author of the COSMA li-
brary (which was used as a reference for benchmarking) and I'm thankful for the discus-
sions I had with him and Joost about parallel matrix multiplication algorithms. I thank
Shoshana Jakobovits from the same group for her valueable improvements on the GPU
side of the DBCSR library and for the effort she put into documentation of DBCSR.

I’d like to thank Frederick Stein for contributing important ideas concerning the
generalization of the MME method for electron repulsion integrals to other potentials,
and for the motivating exchange of ideas we had while working on the MP2 / RPA code.

I want to thank Augustin Bussy and Maximilien Ambroise for reusing my work.
Special thanks go to Maximilien Ambroise for contributing the C interface to the DBCSR
tensor API. T hope that the DBCSR tensor API will help you make fast progress, and
that the library meets your expectations.

Special thanks go to my officemate Tiziano for the technical support, for sharing

110



111

his broad knowledge of computer science and software development, and for the many
insightful discussions we had over the years.

I'm grateful to the CMSZH graduate school for the support I received, and for the
organization of the annual retreat.

Finally, I thank all former and current members of the Hutter group for the great
time at UZH. Staying in contact during an extended time of ‘home office’ helped me to

stay motivated to work from home.



Bibliography

[10]

[11]

The CP2K Developers Group. DBCSR: Distributed Block Compressed Sparse Row
matriz library. 2020. https://github.com/cp2k/dbcsr.

J. Wilhelm et al. Large-Scale Cubic-Scaling Random Phase Approzimation Correla-
tion Energy Calculations Using a Gaussian Basis. In: Journal of Chemical Theory

and Computation 12.12 (2016), pp. 5851-5859.

J. Wilhelm et al. Toward GW Calculations on Thousands of Atoms. In: The Journal
of Physical Chemistry Letters 9.2 (2018), pp. 306-312.

M. Guidon et al. Ab initio molecular dynamics using hybrid density functionals. In:
The Journal of Chemical Physics 128.21 (2008), p. 214104.

A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory. Mineola: Dover Publications, Inc., 1996.

R. G. Parr and W. Yang. Density functional theory of atoms and molecules. Oxford
University Press USA, 1989.

T. Helgaker, P. Jorgensen, and J. Olsen. Molecular electronic-structure theory. John

Wiley & Sons, 2014.

D. Marx and J. Hutter. Ab initio molecular dynamics: basic theory and advanced

methods. Cambridge University Press, 2009.

J. P. Perdew et al. Prescription for the design and selection of density functional
approximations: More constraint satisfaction with fewer fits. In: The Journal of
Chemical Physics 123.6 (2005), p. 062201.

S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopoten-
tials. In: Phys. Rev. B 54 (3 July 1996), pp. 1703-1710.

J. VandeVondele and J. Hutter. An efficient orbital transformation method for elec-
tronic structure calculations. In: The Journal of Chemical Physics 118.10 (2003),
pp. 4365-43609.


https://github.com/cp2k/dbcsr
http://dx.doi.org/10.1021/acs.jctc.6b00840
http://dx.doi.org/10.1021/acs.jctc.6b00840
http://dx.doi.org/10.1021/acs.jpclett.7b02740
http://dx.doi.org/10.1063/1.2931945
http://dx.doi.org/10.1063/1.1904565
http://dx.doi.org/10.1063/1.1904565
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1063/1.1543154
http://dx.doi.org/10.1063/1.1543154

BIBLIOGRAPHY

P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. In: Phys. Rev. 136 (3B
Nov. 1964), B864-B8T71.

W. Kohn and L. J. Sham. Self-Consistent Fquations Including Fxchange and Cor-
relation Effects. In: Phys. Rev. 140 (4A Nov. 1965), A1133-A1138.

C. Mgller and M. S. Plesset. Note on an Approximation Treatment for Many-
FElectron Systems. In: Phys. Rev. 46 (7 Oct. 1934), pp. 618-622.

J.-Q. Sun and R. J. Bartlett. Second-order many-body perturbation-theory calcu-
lations in extended systems. In: The Journal of Chemical Physics 104.21 (1996),
pp. 8553-8565.

M. Katouda and S. Nagase. Efficient parallel algorithm of second-order Moller—Ples-
set perturbation theory with resolution-of-identity approzimation (RI-MP2). In: In-
ternational Journal of Quantum Chemistry 109.10 (2009), pp. 2121-2130.

P. Y. Ayala, K. N. Kudin, and G. E. Scuseria. Atomic orbital Laplace-transformed
second-order Moller—Plesset theory for periodic systems. In: The Journal of Chem-
ical Physics 115.21 (2001), pp. 9698-9707.

C. Pisani et al. Local-MP2 electron correlation method for nonconducting crystals.
In: The Journal of Chemical Physics 122.9 (2005), p. 094113.

M. Marsman et al. Second-order Mgller—Plesset perturbation theory applied to ex-
tended systems. 1. Within the projector-augmented-wave formalism using a plane
wave basis set. In: The Journal of Chemical Physics 130.18 (2009), p. 184103.

A. Grineis, M. Marsman, and G. Kresse. Second-order Moller—Plesset perturbation
theory applied to extended systems. Il. Structural and energetic properties. In: The
Journal of Chemical Physics 133.7 (2010), p. 074107.

J. L. Whitten. Coulombic potential enerqy integrals and approzimations. In: The
Journal of Chemical Physics 58.10 (1973), pp. 4496-4501.

J. W. Mintmire, J. R. Sabin, and S. B. Trickey. Local-density-functional methods in
two-dimensionally periodic systems. Hydrogen and beryllium monolayers. In: Phys.
Rev. B 26 (4 Aug. 1982), pp. 1743-1753.

F. Weigend. A fully direct RI-HF algorithm: Implementation, optimised auxiliary
basis sets, demonstration of accuracy and efficiency. In: Phys. Chem. Chem. Phys.
4 (18 2002), pp. 4285-4291.


http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.46.618
http://dx.doi.org/10.1103/PhysRev.46.618
http://dx.doi.org/10.1063/1.471545
http://dx.doi.org/10.1063/1.471545
http://dx.doi.org/10.1002/qua.22068
http://dx.doi.org/10.1002/qua.22068
http://dx.doi.org/10.1063/1.1414369
http://dx.doi.org/10.1063/1.1414369
http://dx.doi.org/10.1063/1.1857479
http://dx.doi.org/10.1063/1.3126249
http://dx.doi.org/10.1063/1.3126249
http://dx.doi.org/10.1063/1.3126249
http://dx.doi.org/10.1063/1.3466765
http://dx.doi.org/10.1063/1.3466765
http://dx.doi.org/10.1063/1.1679012
http://dx.doi.org/10.1103/PhysRevB.26.1743
http://dx.doi.org/10.1103/PhysRevB.26.1743
http://dx.doi.org/10.1039/B204199P
http://dx.doi.org/10.1039/B204199P

BIBLIOGRAPHY

[24]

[25]

[20]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Feyereisen, G. Fitzgerald, and A. Komornicki. Use of approzimate integrals in
ab initio theory. An application in MP2 energy calculations. In: Chemical Physics
Letters 208.5 (1993), pp. 359-363.

O. Vahtras, J. Almlof, and M. Feyereisen. Integral approximations for LCAO-SCF
calculations. In: Chemical Physics Letters 213.5 (1993), pp. 514-518.

B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin. On some approzimations in ap-
plications of X theory. In: The Journal of Chemical Physics 71.8 (1979), pp. 3396—
3402.

X. Ren et al. Resolution-of-identity approach to Hartree—Fock, hybrid density func-
tionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions.
In: New Journal of Physics 14.5 (May 2012), p. 053020.

Y. Jung et al. Auxiliary basis expansions for large-scale electronic structure calcula-
tions. In: Proceedings of the National Academy of Sciences 102.19 (2005), pp. 6692—
6697.

S. Reine et al. Variational and robust density fitting of four-center two-electron inte-
grals in local metrics. In: The Journal of Chemical Physics 129.10 (2008), p. 104101.

D. C. Langreth and J. P. Perdew. Fxchange-correlation energy of a metallic surface:
Wave-vector analysis. In: Phys. Rev. B 15 (6 Mar. 1977), pp. 2884-2901.

G. E. Scuseria, T. M. Henderson, and D. C. Sorensen. The ground state correlation
enerqy of the random phase approzimation from a ring coupled cluster doubles
approach. In: The Journal of Chemical Physics 129.23 (2008), p. 231101.

W. Klopper et al. Spin flipping in ring-coupled-cluster-doubles theory. In: Chemical
Physics Letters 510.1 (2011), pp. 147-153.

H. Eshuis, J. Yarkony, and F. Furche. Fast computation of molecular random phase
approximation correlation energies using resolution of the identity and imaginary
frequency integration. In: The Journal of Chemical Physics 132.23 (2010), p. 234114.

M. Kaltak, J. Klimes, and G. Kresse. Low Scaling Algorithms for the Random
Phase Approximation: Imaginary Time and Laplace Transformations. In: Journal

of Chemical Theory and Computation 10.6 (2014), pp. 2498-2507.

J. Hutter et al. cp2k: atomistic simulations of condensed matter systems. In: WIREs
Computational Molecular Science 4.1 (2014), pp. 15-25.


http://dx.doi.org/https://doi.org/10.1016/0009-2614(93)87156-W
http://dx.doi.org/https://doi.org/10.1016/0009-2614(93)87156-W
http://dx.doi.org/https://doi.org/10.1016/0009-2614(93)89151-7
http://dx.doi.org/https://doi.org/10.1016/0009-2614(93)89151-7
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1073/pnas.0408475102
http://dx.doi.org/10.1073/pnas.0408475102
http://dx.doi.org/10.1063/1.2956507
http://dx.doi.org/10.1063/1.2956507
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1063/1.3043729
http://dx.doi.org/10.1063/1.3043729
http://dx.doi.org/10.1063/1.3043729
http://dx.doi.org/https://doi.org/10.1016/j.cplett.2011.04.101
http://dx.doi.org/10.1063/1.3442749
http://dx.doi.org/10.1063/1.3442749
http://dx.doi.org/10.1063/1.3442749
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1002/wcms.1159

[36]

[37]

BIBLIOGRAPHY

S. Obara and A. Saika. Efficient recursive computation of molecular integrals over
Cartesian Gaussian functions. In: The Journal of Chemical Physics 84.7 (1986),
pp. 3963-3974.

J. Spencer and A. Alavi. Efficient calculation of the exact exchange energy in pe-
riodic systems using a truncated Coulomb potential. In: Phys. Rev. B 77 (19 May
2008), p. 193110.

M. Guidon, J. Hutter, and J. VandeVondele. Robust Periodic Hartree—Fock Fx-
change for Large-Scale Stmulations Using Gaussian Basis Sets. In: Journal of Chem-
ical Theory and Computation 5.11 (2009), pp. 3010-3021.

B. G. LIPPERT, J. HUTTER, and M. PARRINELLO. A hybrid Gaussian and
plane wave density functional scheme. In: Molecular Physics 92.3 (1997), pp. 477—
488.

M. Del Ben, J. Hutter, and J. VandeVondele. Second-Order Moller—Plesset Pertur-
bation Theory in the Condensed Phase: An Efficient and Massively Parallel Gaus-
sian and Plane Waves Approach. In: Journal of Chemical Theory and Computation
8.11 (2012), pp. 4177-4188.

M. Del Ben et al. Enabling simulation at the fifth rung of DFT: Large scale RPA
calculations with excellent time to solution. In: Computer Physics Communications
187 (2015), pp. 120-129.

D. Neuhauser, E. Rabani, and R. Baer. Fxpeditious Stochastic Calculation of Random-
Phase Approximation Energies for Thousands of FElectrons in Three Dimensions.
In: The Journal of Physical Chemistry Letters 4.7 (2013), pp. 1172-1176.

J. E. Moussa. Cubic-scaling algorithm and self-consistent field for the random-phase
approximation with second-order screened exchange. In: The Journal of Chemical
Physics 140.1 (2014), p. 014107.

Y. Gao et al. Sublinear scaling for time-dependent stochastic density functional
theory. In: The Journal of Chemical Physics 142.3 (2015), p. 034106.

M. Kallay. Linear-scaling implementation of the direct random-phase approrima-

tion. In: The Journal of Chemical Physics 142.20 (2015), p. 204105.

H. F. Schurkus and C. Ochsenfeld. Communication: An effective linear-scaling
atomic-orbital reformulation of the random-phase approximation using a contracted
double-Laplace transformation. In: The Journal of Chemical Physics 144.3 (2016),
p. 031101.


http://dx.doi.org/10.1063/1.450106
http://dx.doi.org/10.1063/1.450106
http://dx.doi.org/10.1103/PhysRevB.77.193110
http://dx.doi.org/10.1103/PhysRevB.77.193110
http://dx.doi.org/10.1021/ct900494g
http://dx.doi.org/10.1021/ct900494g
http://dx.doi.org/10.1080/002689797170220
http://dx.doi.org/10.1080/002689797170220
http://dx.doi.org/10.1021/ct300531w
http://dx.doi.org/10.1021/ct300531w
http://dx.doi.org/10.1021/ct300531w
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2014.10.021
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2014.10.021
http://dx.doi.org/10.1021/jz3021606
http://dx.doi.org/10.1021/jz3021606
http://dx.doi.org/10.1063/1.4855255
http://dx.doi.org/10.1063/1.4855255
http://dx.doi.org/10.1063/1.4905568
http://dx.doi.org/10.1063/1.4905568
http://dx.doi.org/10.1063/1.4921542
http://dx.doi.org/10.1063/1.4921542
http://dx.doi.org/10.1063/1.4939841
http://dx.doi.org/10.1063/1.4939841
http://dx.doi.org/10.1063/1.4939841

BIBLIOGRAPHY

[47]

[48]

[57]

[58]

F. Hiser, T. Olsen, and K. S. Thygesen. Quasiparticle GW calculations for solids,
molecules, and two-dimensional materials. In: Phys. Rev. B 87 (23 June 2013),
p. 235132.

G. Lippert, J. Hutter, and M. Parrinello. The Gaussian and augmented-plane-wave
density functional method for ab initio molecular dynamics simulations. In: Theo-
retical Chemistry Accounts 103.2 (1999), pp. 124-140.

D. Braess and W. Hackbusch. Approximation of 1/ by exponential sums in [1, co).
In: IMA Journal of Numerical Analysis 25.4 (Oct. 2005), pp. 685-697.

P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. In:
Annalen der Physik 369.3 (1921), pp. 253-287.

S. Reine, E. Tellgren, and T. Helgaker. A unified scheme for the calculation of dif-
ferentiated and undifferentiated molecular integrals over solid-harmonic Gaussians.

In: Phys. Chem. Chem. Phys. 9 (34 2007), pp. 4771-4779.

M. Del Ben, J. Hutter, and J. VandeVondele. Electron Correlation in the Con-
densed Phase from a Resolution of Identity Approach Based on the Gaussian and
Plane Waves Scheme. In: Journal of Chemical Theory and Computation 9.6 (2013),
pp. 2654-2671.

T. Helgaker and P. R. Taylor. Gaussian basis sets and molecular integrals. In:

Modern Electronic Structure Theory: Part 1. 1995, pp. 725-856.

B. Aradi. Fypp — Python powered Fortran metaprogramming. https://github.
com/aradi/fypp. 2020.

R. A. Kendall, T. H. Dunning, and R. J. Harrison. Electron affinities of the first-row
atoms revisited. Systematic basis sets and wave functions. In: J. Chem. Phys. 96
(1992).

F. Weigend, A. Kohn, and C. Hattig. Ffficient use of the correlation consistent basis
sets in resolution of the identity MP2 calculations. In: J. Chem. Phys. 116 (2002).

B. P. Pritchard et al. A New Basis Set Exchange: An Open, Up-to-date Resource
for the Molecular Sciences Community. In: J. Chem. Inf. Model. 59 (2019).

D. Golze et al. Simulation of Adsorption Processes at Metallic Interfaces: An Image
Charge Augmented QM/MM Approach. In: J. Chem. Theory Comput. 9.11 (2013),
pp. 5086-5097.


http://dx.doi.org/10.1103/PhysRevB.87.235132
http://dx.doi.org/10.1103/PhysRevB.87.235132
http://dx.doi.org/10.1007/s002140050523
http://dx.doi.org/10.1007/s002140050523
http://dx.doi.org/10.1093/imanum/dri015
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1039/B705594C
http://dx.doi.org/10.1039/B705594C
http://dx.doi.org/10.1021/ct4002202
http://dx.doi.org/10.1021/ct4002202
http://dx.doi.org/10.1021/ct4002202
https://github.com/aradi/fypp
https://github.com/aradi/fypp
http://dx.doi.org/10.1063/1.462569
http://dx.doi.org/10.1063/1.462569
http://dx.doi.org/10.1063/1.1445115
http://dx.doi.org/10.1063/1.1445115
http://dx.doi.org/10.1021/acs.jcim.9b00725
http://dx.doi.org/10.1021/acs.jcim.9b00725
http://dx.doi.org/10.1021/ct400698y
http://dx.doi.org/10.1021/ct400698y

[61]

[62]

[63]

[64]

[65]

BIBLIOGRAPHY

J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approxzimation
Made Simple. In: Phys. Rev. Lett. 77 (18 Oct. 1996), pp. 3865-3868.

E. Epifanovsky et al. New implementation of high-level correlated methods using a
general block tensor library for high-performance electronic structure calculations.
In: Journal of Computational Chemistry 34.26 (2013), pp. 2293-23009.

E. Solomonik et al. A massively parallel tensor contraction framework for coupled-
cluster computations. In: Journal of Parallel and Distributed Computing 74.12
(2014), pp. 3176-3190.

K. Z. Ibrahim et al. Cross-scale efficient tensor contractions for coupled cluster
computations through multiple programming model backends. In: Journal of Parallel
and Distributed Computing 106 (2017), pp. 92-105.

E. Solomonik and T. Hoefler. Sparse Tensor Algebra as a Parallel Programming
Model. In: CoRR abs/1512.00066 (2015).

S. Manzer et al. A General Sparse Tensor Framework for FElectronic Structure
Theory. In: Journal of Chemical Theory and Computation 13.3 (2017), pp. 1108—
1116.

J. A. Calvin, C. A. Lewis, and E. F. Valeev. Scalable Task-Based Algorithm for
Multiplication of Block-Rank-Sparse Matrices. In: Proceedings of the 5th Workshop
on Irreqular Applications: Architectures and Algorithms. IA3 ’15. Austin, Texas:
Association for Computing Machinery, 2015.

J. A. Calvin and E. F. Valeev. Task-Based Algorithm for Matrixz Multiplication: A
Step Towards Block-Sparse Tensor Computing. In: CoRR abs/1504.05046 (2015).

C. Peng et al. Massively Parallel Implementation of Fxplicitly Correlated Coupled-
Cluster Singles and Doubles Using TiledArray Framework. In: The Journal of Phys-
ical Chemistry A 120.51 (2016), pp. 10231-10244.

C. Peng, J. A. Calvin, and E. F. Valeev. Coupled-cluster singles, doubles and pertur-
bative triples with density fitting approximation for massively parallel heterogeneous
platforms. In: International Journal of Quantum Chemistry 119.12 (2019), e25894.

X. Wang, C. A. Lewis, and E. F. Valeev. Efficient evaluation of exact exchange for
periodic systems via concentric atomic density fitting. In: The Journal of Chemical
Physics 153.12 (2020), p. 124116.


http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1002/jcc.23377
http://dx.doi.org/10.1002/jcc.23377
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.06.002
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.06.002
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.02.010
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.02.010
http://dx.doi.org/10.1021/acs.jctc.6b00853
http://dx.doi.org/10.1021/acs.jctc.6b00853
http://dx.doi.org/10.1145/2833179.2833186
http://dx.doi.org/10.1145/2833179.2833186
http://dx.doi.org/10.1021/acs.jpca.6b10150
http://dx.doi.org/10.1021/acs.jpca.6b10150
http://dx.doi.org/10.1002/qua.25894
http://dx.doi.org/10.1002/qua.25894
http://dx.doi.org/10.1002/qua.25894
http://dx.doi.org/10.1063/5.0016856
http://dx.doi.org/10.1063/5.0016856

BIBLIOGRAPHY

[70]

[71]

[72]

[74]

[75]

T. Herault et al. Distributed-memory multi-GPU block-sparse tensor contraction for
electronic structure (revised version). Research Report RR-9365. Inria - Research
Centre Grenoble — Rhone-Alpes, Oct. 2020, p. 34.

U. Borstnik et al. Sparse matriz multiplication: The distributed block-compressed

sparse row library. In: Parallel Computing 40.5 (2014), pp. 47-58.

R. Barrett et al. Templates for the solution of linear systems: building blocks for
iterative methods. STAM, 1994.

O. Schitt et al. GPU-Accelerated Sparse Matrixz—Matriz Multiplication for Linear
Scaling Density Functional Theory. In: Electronic Structure Calculations on Graph-
ics Processing Units. John Wiley & Sons, Ltd, 2016. Chap. 8, pp. 173-190.

L. E. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD
thesis. Montana State University-Bozeman, College of Engineering, 1969.

A. Heinecke et al. LIBXSMM: Accelerating Small Matriz Multiplications by Runtime
Code Generation. In: SC' ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 2016, pp. 981-991.

J. Choi et al. ScaLAPACK: a portable linear algebra library for distributed memory
computers — design issues and performance. In: Computer Physics Communica-
tions 97.1 (1996), pp. 1-15.

E. Solomonik et al. Scaling Betweenness Centrality Using Communication-Efficient
Sparse Matriz Multiplication. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. SC '17. Denver,
Colorado: Association for Computing Machinery, 2017.

G. M. Morton. A computer oriented geodetic data base and a new technique in file

sequencing. In: (1966).

J. Wilhelm. Low-Scaling Many-Body Perturbation Theory for Nanoscopic Systems.
PhD thesis. University of Zurich, 2017.

D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-

memory matriz multiplication. In: Journal of Parallel and Distributed Computing

64.9 (2004), pp. 1017-1026.

J. Demmel et al. Communication-Optimal Parallel Recursive Rectangular Matrix
Multiplication. In: 2013 IEEE 27th International Symposium on Parallel and Dis-
tributed Processing. 2013, pp. 261-272.


http://dx.doi.org/https://doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/https://doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/https://doi.org/10.1002/9781118670712.ch8
http://dx.doi.org/https://doi.org/10.1002/9781118670712.ch8
http://dx.doi.org/10.1109/SC.2016.83
http://dx.doi.org/10.1109/SC.2016.83
http://dx.doi.org/https://doi.org/10.1016/0010-4655(96)00017-3
http://dx.doi.org/https://doi.org/10.1016/0010-4655(96)00017-3
http://dx.doi.org/10.1145/3126908.3126971
http://dx.doi.org/10.1145/3126908.3126971
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2004.03.021
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2004.03.021
http://dx.doi.org/10.1109/IPDPS.2013.80
http://dx.doi.org/10.1109/IPDPS.2013.80

[88]

[89]

[90]

BIBLIOGRAPHY

M. Frigo et al. Cache-oblivious algorithms. In: 40th Annual Symposium on Foun-
dations of Computer Science (Cat. No.99CB37039). 1999, pp. 285-297.

A. Lazzaro et al. Increasing the Efficiency of Sparse Matriz-Matriz Multiplication
with a 2.5D Algorithm and One-Sided MPI. In: Proceedings of the Platform for
Advanced Scientific Computing Conference. PASC ’17. Lugano, Switzerland: Asso-
ciation for Computing Machinery, 2017.

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. 2015. https://wuw.tensorflow.org/.

A. Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach et al. Curran Associates, Inc., 2019, pp. 8024-8035.

I. Sivkov et al. DBCSR: A Blocked Sparse Tensor Algebra Library. 2019.

G. Kwasniewski et al. Red-Blue Pebbling Revisited: Near Optimal Parallel Matriz-
Matriz Multiplication. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. SC '19. Denver, Colorado:
Association for Computing Machinery, 2019, pp. 1-22.

K. Marko. COSMA: Communication-Optimal Matriz-Multiplication. https : //
github.com/eth-cscs/COSMA. 2020.

C. Spreafico and J. VandeVondele. The nature of excess electrons in anatase and
rutile from hybrid DFT and RPA. In: Phys. Chem. Chem. Phys. 16 (47 2014),
pp. 26144-26152.

J. VandeVondele, U. Borstnik, and J. Hutter. Linear Scaling Self-Consistent Field
Calculations with Millions of Atoms in the Condensed Phase. In: Journal of Chem-
ical Theory and Computation 8.10 (2012), pp. 3565-3573.

M. Guidon, J. Hutter, and J. VandeVondele. Auxiliary Density Matriz Methods for
Hartree—Fock Exchange Calculations. In: Journal of Chemical Theory and Compu-
tation 6.8 (2010), pp. 2348-2364.

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with for-
mulas, graphs, and mathematical tables. Vol. 55. US Government printing office,
1948.


http://dx.doi.org/10.1109/SFFCS.1999.814600
http://dx.doi.org/10.1145/3093172.3093228
http://dx.doi.org/10.1145/3093172.3093228
https://www.tensorflow.org/
http://dx.doi.org/10.1145/3295500.3356181
http://dx.doi.org/10.1145/3295500.3356181
https://github.com/eth-cscs/COSMA
https://github.com/eth-cscs/COSMA
http://dx.doi.org/10.1039/C4CP03981E
http://dx.doi.org/10.1039/C4CP03981E
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1021/ct1002225
http://dx.doi.org/10.1021/ct1002225

CMSZH

CHEMICAL MOLECULAR SCIENCES ZURICH

GR4 Dl e 5(—/7‘00[



	Introduction
	Theory
	Introduction
	Hartree-Fock Exchange and Density Functional Theory
	Hartree-Fock Exchange
	Kohn-Sham Density Functional Theory
	Hybrid functionals

	MP2 & RPA Electron Correlation with RI
	Resolution of the Identity (RI) Approximation
	RI-MP2 & RI-RPA

	Periodic Systems
	Periodic Hartree-Fock Exchange with Truncated Coulomb Operator
	Periodic Electron Repulsion Integrals
	Gaussian and Plane Wave (GPW) Method

	Implementation of Exact Exchange, RPA & GW in CP2K
	Hartree-Fock Exchange
	RPA

	Low-scaling Algorithms
	RI Hartree-Fock Exchange
	Low-scaling RI-RPA
	Low-scaling GW


	Analytical MME Method for Periodic ERIs
	Periodic ERIs in the Reciprocal Lattice Representation
	Derivation of the MME Method
	Interaction Potential Types
	Efficient Numerical Evaluation
	Results
	RI-MP2 & RI-RPA
	Image Charge Augmented QM/MM

	Conclusion and Outlook

	Sparse Tensor Contraction Framework
	Introduction
	Tensor Contractions as Matrix Multiplications
	DBCSR Sparse Matrix Library
	Generalizing DBCSR to Tensors
	Tall-and-Skinny (TAS) Matrices
	DBCSR Matrix Format
	Data Exchange
	TAS Matrix Format

	Tensor API
	Validation

	Results for Low-Scaling RPA, GW & HFX
	Low-scaling RI-RPA and GW
	RI Hartree Fock Exchange
	Conclusion and Outlook

	MME Cutoff Calibration
	Tensor Contraction Example
	Parameters for Benchmark Systems
	Exemplary Inputs

