In this exercise, you will run different simulations to compute the NaCl dissociation curve in both gas and solution environments.
bsub -n 4.
This case is very similar to the computation of the Lennard Jones curve (See: Computation of the Lennard Jones curve ).
NaCl_gasphase.inp at a range of Na-Cl distances. This can be automathized, so we provide with an template and you have to vary the MYDIST parameter in the input. For this you have to run constrained MD simulations at 1K for a range of Na-Cl distances.
NaCl_gasphase.inp file to a new directory and rename it to something like: NaCl_MD.inp.RUN_TYPE in the new input file, from “ENERGY” to “MD”.MOTION-section provided (end of this page) to the new NaCl_MD.inp file. NaCl_MD.inp fileNaCl_MD.inp file
⇒ Each constrained MD will produce a .LagrangeMultLog-files, which look like this:
Shake Lagrangian Multipliers: -0.054769270 Rattle Lagrangian Multipliers: -0.020937479 Shake Lagrangian Multipliers: -0.020937479 Rattle Lagrangian Multipliers: -0.020937479 ...
grep Shake NACL-XXX.LagrangeMultLog | awk '{c++ ; s=s+$4}END{print s/c}'
\begin{equation} \Delta A = -\int_a^b F(x)\, dx \end{equation}
\begin{equation} A(d) = -\int_{d_{min}}^d F(x)\, dx \end{equation}
Compare the free-energy dissociation curve at 1K with the potential energy curve. What do you expect? What do you observe?
In this section, we provide an incomplete list of average Lagrange multipliers. You will habe to run a single constrained MD simulation, get the average Lagrange Multiplier. In this way you can complete the list and compute the free energy profile in water.
FORCE EVAL section in the Task 2 input with the FORCE EVAL section of Observe NaCl dissociation.This is the basic input. Note that for Task 2 and Task 3 it should be modified.
&FORCE_EVAL
METHOD FIST
&MM
&FORCEFIELD
&SPLINE
EPS_SPLINE 1.0E-8
EMAX_SPLINE 300000.0
&END
&CHARGE
ATOM Na
CHARGE 1.0
&END CHARGE
&CHARGE
ATOM Cl
CHARGE -1.0
&END CHARGE
&NONBONDED
&LENNARD-JONES
atoms Na Cl
EPSILON [kcalmol] .0838
SIGMA [angstrom] 3.63
RCUT [angstrom] 11.4
&END LENNARD-JONES
&LENNARD-JONES
atoms Na Na
EPSILON [kcalmol] 0.0469
SIGMA [angstrom] 2.7275
RCUT [angstrom] 11.4
&END LENNARD-JONES
&LENNARD-JONES
atoms Cl Cl
EPSILON [kcalmol] 0.150
SIGMA [angstrom] 4.54
RCUT [angstrom] 11.4
&END LENNARD-JONES
&END NONBONDED
&END FORCEFIELD
&POISSON
&EWALD
EWALD_TYPE spme
ALPHA .3
GMAX 12
O_SPLINE 6
&END EWALD
&END POISSON
&END MM
&SUBSYS
&CELL
ABC 12.4138 12.4138 12.4138
&END CELL
&COORD
Na 0.0 0.0 0.0 NAP
Cl MYDIST 0.0 0.0 CLM
&END COORD
&COLVAR
&DISTANCE
ATOMS 1 2
&END DISTANCE
&PRINT
&END
&END COLVAR
&TOPOLOGY
CONNECTIVITY GENERATE
&GENERATE
BONDLENGTH_MAX 7
&END
&END
&END SUBSYS
&END FORCE_EVAL
&GLOBAL
PROJECT NACL-MYDIST
RUN_TYPE ENERGY
&END GLOBAL
This section has to be added to the above input file for Task 2 and Task 3
&MOTION
&CONSTRAINT
&COLLECTIVE
COLVAR 1
INTERMOLECULAR
TARGET [angstrom] MYDIST
&END COLLECTIVE
&LAGRANGE_MULTIPLIERS
COMMON_ITERATION_LEVELS 1
&END
&END CONSTRAINT
&MD
ENSEMBLE NVT
TIMESTEP 0.5
STEPS 100
TEMPERATURE 1
&THERMOSTAT
&NOSE
LENGTH 3
YOSHIDA 3
TIMECON 1000
MTS 2
&END NOSE
&END
&PRINT
&ENERGY OFF
&END ENERGY
&PROGRAM_RUN_INFO OFF
&END PROGRAM_RUN_INFO
&END PRINT
&END MD
&PRINT
&TRAJECTORY OFF
&END
&VELOCITIES OFF
&END VELOCITIES
&FORCES OFF
&END FORCES
&RESTART_HISTORY OFF
&END RESTART_HISTORY
&RESTART OFF
&END RESTART
&END PRINT
&END MOTION
This is the Lagrange Multipliers table to be completed for Task 3
# dist avg. Shake Lagrange multiplier 2.5 0.0896372 2.6 0.0469698 2.7 0.0231717 2.8 0.0100625 2.9 <--- Take missing value from your trajectory 3.0 -0.000996937 3.1 -0.00271078 3.2 -0.00335324 3.3 -0.00348111 3.4 -0.00303697 3.5 -0.00259636 3.6 -0.00201541 3.7 -0.00119027 3.8 -0.000408723 3.9 -8.19056e-05 4.0 0.000972204 4.1 0.00136578 4.2 0.0016246 4.3 0.00212447 4.4 0.00199128 4.5 0.00183284 4.6 0.00188221 4.7 0.00166909 4.8 0.00137179 4.9 0.00114308 5.0 0.000671159 5.1 0.000780625 5.2 0.000556307 5.3 0.000397211 5.4 0.000237853 5.5 0.000119549 5.6 -0.000220194 5.7 -0.000332539 5.8 -0.000674227 5.9 -0.00075852 6.0 -0.00043128