To get the band structure for graphene (or h-BN), only a few changes are required compared to the previous example for calculating the PDOS:
&GLOBAL
PROJECT graphene_kp_dos
RUN_TYPE ENERGY
PRINT_LEVEL MEDIUM
&END GLOBAL
&FORCE_EVAL
METHOD Quickstep
&DFT
BASIS_SET_FILE_NAME BASIS_MOLOPT
POTENTIAL_FILE_NAME POTENTIAL
&POISSON
PERIODIC XYZ
&END POISSON
&QS
EXTRAPOLATION USE_GUESS ! required for K-Point sampling
&END QS
&SCF
SCF_GUESS ATOMIC
EPS_SCF 1.0E-6
MAX_SCF 300
ADDED_MOS 2
&SMEAR ON
METHOD FERMI_DIRAC
ELECTRONIC_TEMPERATURE [K] 300
&END SMEAR
&DIAGONALIZATION
ALGORITHM STANDARD
EPS_ADAPT 0.01
&END DIAGONALIZATION
&MIXING
METHOD BROYDEN_MIXING
ALPHA 0.2
BETA 1.5
NBROYDEN 8
&END MIXING
&END SCF
&XC
&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL
&END XC
&KPOINTS
SCHEME MONKHORST-PACK 3 3 1
SYMMETRY OFF
WAVEFUNCTIONS REAL
FULL_GRID .TRUE.
PARALLEL_GROUP_SIZE 0
&BAND_STRUCTURE
ADDED_MOS 2
FILE_NAME graphene.bs
&KPOINT_SET
UNITS CART_BOHR ! work around a bug in CP2K, should be B_VECTOR
SPECIAL_POINT 0.0 0.0 0.0
SPECIAL_POINT 1./2. 0.0 0.0
NPOINTS 5
&END
&END BAND_STRUCTURE
&END KPOINTS
&END DFT
&SUBSYS
&CELL
ABC [angstrom] 2.4612 2.4612 8
ALPHA_BETA_GAMMA 90. 90. 60.
SYMMETRY HEXAGONAL
PERIODIC XYZ
MULTIPLE_UNIT_CELL 1 1 1
&END CELL
&TOPOLOGY
MULTIPLE_UNIT_CELL 1 1 1
&END TOPOLOGY
&COORD
SCALED
C 1./3. 1./3. 0.
C 2./3. 2./3. 0.
&END
&KIND C
ELEMENT C
BASIS_SET TZVP-MOLOPT-GTH
POTENTIAL GTH-PBE
&END KIND
&END SUBSYS
&END FORCE_EVAL
UNITS specification for the special point coordinates: even though the unit is set to Cartesian coordinates (in Bohr), the special points are multiplied by the reciprocal vectors and must therefore be given in terms of the b-vectors.
Some notes on the input file:
KPOINT section you are enabling the K-Point calculation.MONKHORST-PACK specify the tiling of the brillouin zone.KPOINT_SET (when you check the documentation you will note that this section can be repeated).NPOINTS specifies how many points (in the addition to the starting point) should be sampled between two special points.SPECIAL_POINT keyword is used to specify the start-, mid- and endpoints of the line. Those points usually denote special points in the reciprocal lattice/unit cell, like the $\Gamma$, $M$ or $K$ point. You can find the definition for these in the appendix section of this paper. This keyword can also be specified multiple times, making it possible to directly get the band structure for a complete path.
Now, when you run this input file you will get in addition the the output file, a file named graphene.bs which will look similar to the following:
SET: 1 TOTAL POINTS: 6
POINT 1 0.000000 0.000000 0.000000
POINT 2 0.500000 0.000000 0.000000
Nr. 1 Spin 1 K-Point 0.00000000 0.00000000 0.00000000
8
-15.30752034 -3.31285773 0.93143545 1.03651421
8.71874068 12.74920179 12.83785311 15.50144316
Nr. 2 Spin 1 K-Point 0.02500000 0.00000000 0.00000000
8
-15.29453364 -3.29547462 0.87472486 1.00321991
8.31998068 12.81500348 12.93001933 15.45108207
Nr. 3 Spin 1 K-Point 0.05000000 0.00000000 0.00000000
[...]
For each set there is a block named SET with the special points listed as POINT, followed by sub-blocks for each K-Point containing the energies for each MO.
Your tasks:
To convert the band structure file to a file which can be loaded directly into MATLAB for example, you can use the script cp2k_bs2csv.py from below, which when passed a band structure file graphene.bs as an argument will write files graphene.bs-setN.csv for each set containing the K-Point coordinates and the energies in one line.
#!/usr/bin/env python """ Convert the CP2K band structure output to CSV files """ import re import argparse SET_MATCH = re.compile(r''' [ ]* SET: [ ]* (?P<setnr>\d+) [ ]* TOTAL [ ] POINTS: [ ]* (?P<totalpoints>\d+) [ ]* \n (?P<content> [\s\S]*?(?=\n.*?[ ] SET|$) # match everything until next 'SET' or EOL ) ''', re.VERBOSE) SPOINTS_MATCH = re.compile(r''' [ ]* POINT [ ]+ (?P<pointnr>\d+) [ ]+ (?P<a>\S+) [ ]+ (?P<b>\S+) [ ]+ (?P<c>\S+) ''', re.VERBOSE) POINTS_MATCH = re.compile(r''' [ ]* Nr\. [ ]+ (?P<nr>\d+) [ ]+ Spin [ ]+ (?P<spin>\d+) [ ]+ K-Point [ ]+ (?P<a>\S+) [ ]+ (?P<b>\S+) [ ]+ (?P<c>\S+) [ ]* \n [ ]* (?P<npoints>\d+) [ ]* \n (?P<values> [\s\S]*?(?=\n.*?[ ] Nr|$) # match everything until next 'Nr.' or EOL ) ''', re.VERBOSE) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('bsfilename', metavar='bandstructure-file', type=str, help="the band structure file generated by CP2K") args = parser.parse_args() with open(args.bsfilename, 'r') as fhandle: for kpoint_set in SET_MATCH.finditer(fhandle.read()): filename = "{}.set-{}.csv".format(args.bsfilename, kpoint_set.group('setnr')) set_content = kpoint_set.group('content') with open(filename, 'w') as csvout: print(("writing point set {}" " (total number of k-points: {totalpoints})" .format(filename, **kpoint_set.groupdict()))) print(" with the following special points:") for point in SPOINTS_MATCH.finditer(set_content): print(" {pointnr}: {a}/{b}/{c}".format( **point.groupdict())) for point in POINTS_MATCH.finditer(set_content): results = point.groupdict() results['values'] = " ".join(results['values'].split()) csvout.write("{a} {b} {c} {values}\n".format(**results))