CP2K Developers Meeting

March 8th, 2024 14:00-16:00 CET (see also https://www.cp2k.org/dev:meetings)

CP2K Developers Meeting

1. Current Development Efforts (all)
2. On-the-fly potentials (Martin Brehm)
3. GW and BSE for excitation energies (Max Graml)
4. Updates (Jan Wilhelm)
5. ...
6. CP2K-HFX FPGA Update (PC2)
7. CP2K@CASUS (Frederick Stein)
8. Current Issues when running CP2K (all)
9. Feature Deprecation (all)
10. CP2K Release (all)
11. Open CP2K-Related Positions (all)
12. CP2K-related Events (all)

On-the-fly MLFF (Martin Brehm)

What are you currently working on or planning to work on?

- Jürg Hutter: there is overlap with a planned project
- Thomas Kühne: i-pi protocol might be an alternative integration option
- Ole: pytorch interface

Machine-Learning Force Fields

- Have become very popular recently (e.g., Behler's NNPs)
- Towards the vision „ab initio accuracy at force field speed"

However:

- Training process is not straight-forward (coverage of full configuration space?) \rightarrow Requires an expert
- Often, configurations outside of the high-confidence space are encountered during production run...
\rightarrow Stop production run, re-training, resume production run
Conclusion: If ...
- ... you are a „standard AIMD user" without ML background,
- ... you want to run a single long trajectory,
- ... there is no trained MLFF available for your system,
..., today's MLFFs are not an option for you :-/

Standard AIMD

On-the-Fly Machine-Learning Force Field

Implementation in VASP

2019: Ryosuke Jinnouchi, while Postdoc in Wien, implements such an approach in VASP:

„On-the-fly machine learning force field generation: Application to melting points",
Phys. Rev. B 2019, 100, 014105, DOI 10.1103/PhysRevB.100.014105

- It is not based on neural networks - uses Bayesian Inference ML
- It is a true black box (can be applied to any AIMD, no parameters need to be tuned, no expert needed)
- After a few hundred AIMD steps, already 90% of steps via MLFF. \rightarrow can easily save a factor of >10 in computer time
- This is not an empty marketing promise (a few colleagues of mine already use it for production)

I find that's a really big thing.
I personally don't like VASP so much (commercial), see it as a part of my mission to convince scientists to use free software...

Introducing Prokyon

I am planning to develop a C++ library „Prokyon"
for on-the-fly MLFF applications (will be either GPL or L-GPL license).

- Will contain several models; the first one will be the Bayesian Inference ML as implemented in VASP
- Can be interfaced to any AIMD code in the future, but the prime target will be CP2k

Two planned modes of operation:
a) CP2k drives the AIMD. Prokyon is invoked via

MULTIPLE_FORCE_ENV as a second FORCE_ENV
b) Prokyon drives the AIMD. CP2k is invoked via libcp2k (as Gromacs QM/MM does)

- Interfacing Fortran $\leftrightarrow \mathrm{C} \leftrightarrow \mathrm{C}++$ works well (experience from Libvori)
- Technical details are currently being discussed (parallelization)
- Expect an Alpha version (hopefully) in summer...

GW and BSE for excitation energies (Max Graml)

What are you currently working on or planning to work on?

Bethe Salpeter equation for computing electronic excitations

Bethe Salpeter equation

$$
\left(\begin{array}{ll}
\mathrm{A} & \mathrm{~B} \\
\mathrm{~B} & \mathrm{~A}
\end{array}\right)\binom{\mathbf{X}^{(n)}}{\mathbf{Y}^{(n)}}=\Omega^{(n)}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\mathbf{X}^{(n)}}{\mathbf{Y}^{(n)}}
$$

$$
\mathrm{A}_{t a, j b}=\left(\epsilon_{a}^{\mathrm{G}_{0} \mathrm{~W}_{0}}-\epsilon_{i}^{\mathrm{G}_{0} \mathrm{~W}_{0}}\right) \delta_{i j} \delta_{a b}+\alpha^{S / T} v_{i a, j b}-\mathrm{W}_{i j, a b}(\omega=0)
$$

$$
\mathrm{B}_{t a j b}=\alpha^{S / T} v_{t a, b j}-\mathrm{W}_{t b, a j}(\omega=0)
$$

Hermitian equation

$$
\mathrm{C} \mathbf{Z}^{(n)}=\Omega^{(n)^{2}} \mathbf{Z}^{(n)}
$$

$$
C=(A-B)^{0.5}(A+B)(A-B)^{0.5}
$$

Tamm Dancoff approximation

$$
\mathrm{A} \mathbf{X}_{\mathrm{TDA}}^{(n)}=\Omega_{\mathrm{TDA}}^{(n)} \mathbf{X}_{\mathrm{TDA}}^{(n)}
$$

Canonical computational cost: $O\left(N^{6}\right)$

Benchmark on Thiel's set

Bethe Salpeter equation for computing electronic excitations

Bethe Salpeter equation

$$
\begin{gathered}
\left(\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\mathrm{~B} & \mathrm{~A}
\end{array}\right)\binom{\mathbf{X}^{(n)}}{\mathbf{Y}^{(n)}}=\Omega^{(n)}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\mathbf{X}^{(n)}}{\mathbf{Y}^{(n)}} \\
\mathrm{A}_{t a, j b}=\left(\epsilon_{a}^{\mathrm{G}_{0} \mathrm{~W}_{0}}-\epsilon_{l}^{\mathrm{G}_{0} \mathrm{~W}_{0}}\right) \delta_{i j} \delta_{a b}+\alpha^{S / T} v_{i a, j b}-\mathrm{W}_{i j, a b}(\omega=0) \\
\mathrm{B}_{t a j b}=\alpha^{S / T} v_{l a, b j}-\mathrm{W}_{i b, a j}(\omega=0)
\end{gathered}
$$

Hermitian solution

$$
\mathrm{C} \mathbf{Z}^{(n)}=\Omega^{(n)^{2}} \mathbf{Z}^{(n)}
$$

$$
C=(A-B)^{0.5}(A+B)(A-B)^{0.5}
$$

Tamm Dancoff approximation

$$
\mathrm{A} \mathbf{X}_{\mathrm{TDA}}^{(n)}=\Omega_{\mathrm{TDA}}^{(n)} \mathbf{X}_{\mathrm{TDA}}^{(n)}
$$

Canonical computational cost: $O\left(N^{6}\right)$

Typical excitation energy: $3-5 \mathrm{eV}$

BSE@GOW0@PBEO on Thiel's set cp2k vs FHI aims

Bethe Salpeter equation for computing electronic excitations

BSE@GOW0@PBEO on Thiel's set - cp2k vs FHI aims

Updates (Jan Wilhelm)

What are you currently working on or planning to work on?

- GW on 2D materials is factor 10000 to 100000 faster compared to plane-wave GW

GW with atomic-orbital basis set

$$
\chi_{P Q}=\left\langle\varphi_{P}(\mathbf{r})\right| \chi\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\left|\varphi_{Q}\left(\mathbf{r}^{\prime}\right)\right\rangle
$$

https://doi.org/10.1021/acs.jctc.3c01230

- Memory efficient iteration of 3-center integrals, extreme example: 11×11 cell of MoS_{2} (363 atoms, 2D material), TZVP-MOLOPT, 1 node on Noctua (1024 GB RAM), 204 hours

$$
\Sigma_{\lambda \sigma}(i \tau)=\sum_{\operatorname{atom} A} \sum_{\operatorname{atom} B} \sum_{\nu(\text { at atom } A)} \sum_{Q(\text { at atom } B)}\left[\sum_{\mu}(\lambda \mu \mid Q) G_{\mu \nu}(i \tau)\right]\left[\sum_{P}(\nu \sigma \mid P) W_{P Q}(i \tau)\right]
$$

code in src/gw_methods ; input:
\&PROPERTIES
\&BANDSTRUCTURE \&GW NUM_TIME_FREQ_POINTS 10 MEMORY_PER_PROC 15 ! Used 64 MPI processors -> memory per process: 1024 GB/64 $=16$ GB \&END
\&END
\&END

Comparison computation time:
„old": store 3c integrals: 7488 core hours „new": recalc 3c integrals: 26122 core hours (recalculation of 3 c : 9600 core hours)

- Optimization of CP2K on Supermuc-NG Phase 2 (Intel-GPU Ponte Vecchio, Hans Pabst)
- Any plans for SCF with spinors and SOC from GTH pseudos?
(KS-matrix will be complex with SOC and double in size, SCF with SOC will be important for calculation of forces with SOC)

Outliers in verification paper, e.g. for gold.

https://www.nature.com/articles/s42254-023-00655-3
https://acwf-verification.materialscloud.org

Outliers in verification paper: UZH Protocol

Outliers in verification paper: UZH Protocol

CP2K HFX with accelerators (PC2)

Electron repulsion integral engines:

- Intel FPGA (Xin Wu, Tobias Kenter)
- Xilinx FPGA (Zhenman Fang) and Xilinx AI Cores (Johannes Menzel)
- Nvidia GPUs (Marcello Puligheddu)
- AMD GPUs (just started)

Ongoing: integration into CP2K (rewrite of HFX and load balancing)

Current Development Efforts

What are you currently working on or planning to work on?

* Importing a code for machine learning potential into CP2K (Alireza Ghasemi)
> Possible solutions?
- Interface as a library?
- Experience with previous case imported into CP2K?
$>$ Compilation?
$>$ Input files?

FLAME: a library of atomistic modeling environments

Use cases:
I._Machine learning interatomic potentials: using drivers/sampling methods available in CP2K (libcp2k?)
II. Global optimization: using CP2K DFT energy/forces (libcp2k?)

Dependencies: 1

1) spglib
2) futile from BigDFT

Compilation: two independent options

1) Using autotools: in the case of futile via jhbuild
2) Using FPM, no autotools and no jhbuild even futile

Input files:

- If an external package is imported into CP2K, how about input files diffferences?

CP2K@CASUS

- Job offering as CP2K developer at CASUS
- deadline was in March 6
- still pending interview
- FFTW3+MPI:
- prepare PR for some refactoring
- in progress: switch to FFTW3 blocking scheme
- Performance Engineering (Andreas Knüpfer)
- Finite Temperature RPA

manual.cp2k.org

Input Reference

- Input descriptions support Latex-formulas, Markdown, and unicode incl. emoji.
- Special treatment for XC SECTIONS.
- Highlighting of mentioned keywords
- New precommit check for missing spaces in multi-line descriptions.

Methods Section

- Curated structure, see e.g. the section on X-Ray or HFX.
- Live preview for pull requests on GitHub.
- Most howtos have been moved over from Wiki to Github.
- Still missing:
- Older topics, e.g. Metadynamics
- Overview pages that, e.g. Optical Spectroscopy

Current Issues when Running CP2K

CP2K-Release

Open CP2K-Related Positions

- position in Jürg Hutters group
- position at CASUS: see slide CP2K@CASUS

CP2K-Related Events:

Plans:

- Paderborn+CASUS/HZDR:
- 3rd and 4th of April: "Post-DFT/HF methods for the condensed phase with CP2K": ADMM, RI, RPA,... (workshop with talks, virtual)
■ https://events.uni-paderborn.de/e/cp2kpostdft
- ~Q3/24: Gromacs \& CP2K on QM/MM (school with tutorial, 3-4 days in person)
- UK computer centre ARCHER2 is running an online workshop on use of CP2K on the 8 th April.
- If anyone would like to contribute a short presentation (20-30 mins) ideally linked to a tutorial or example page it would be really appreciated. RPA, LS, excited state contributions would be particularly great.
- mwatkins@lincoln.ac.uk if interested.

