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A wide variety of models Hamiltonians Swiss Army Knife of molecular simulatioh

= DFT (GGA, PBE, vdW, Hybrid)

= MP2, RPA

= Semi-Empirical (DFTB)

= Classical Force Fields (FIST)
.= Combinations (QM/MM)

= Geometry and cell optimisation

= Molecular Dynamics (NVE, NVT, NPT,
Langevin)
P K =  Simulating STM image
=  Sampling energy surface (Metadynamics)
= Finding transition state (Nudged Elastic

Band)

= Path Integral Molecular Dynamics

A first principles simulation

package for atomic structures = Kinetic Monte Carlo

Fast and accurate DFT solver
= (Gaussian basis functions
Small and sparse matrices
o Multi-grids for Gaussians of different width
= Plane waves for electron densities
FFT for electrostatics
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Large user base and active

Figure 3: Periodic electronic structure code usage
development

across systems as a function of % core hours used.
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= Standard Diagonalisation

VASP  CASTEP  CP2K  ONETEP Quantum CRYSTAL o Usage has continued to iIncrease
o Needed for solving metallic systems Espresso
_ “ HECToR Phase 2a ™ HECToR Phase 2b  HECToR Phase 3 ® ARCHER as ARCHER replaced HECToR [3]
o Slignificant speed up for larger systems using
Filter Matrix Algorithm [2] = Median job size used CP2K on
Table S: Median job sizes (in cores) for periodic .
/\ electronic structure codes on each of the systems. ARCHER is almost double that of
\ HECToR | HECToR | HECToR | ARCHER the maj()r p|anewave codes. [3]
Phase 2a | Phase 2b Phase 3
_ _ _ VASP 240 456 480 240 | | 1 - -
Filter Matrix Algorithm: General Idea CASTEP 252 720 512 360 Over 1 million lines of code, daily
- D callv red the basi  f H at . CP2K 224 1320 608 672 commits
y?tamlfza y reduce the basis set for each atom, size ONETEP 104 504 416 264
Maters: Quantum 60 72 448 192
o Optimised minimal basis for each atom Espresso
| | CRYSTAL 144 4032 3648 2808
o Takes into account the electronic structure and
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/ Filter matrix diagonalisation performance\

iInteraction with neighbouring atoms

Its

= (Consider sub-problems
neighbours in the system

Involving an atom and
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