Introduction to CP2K:

a first principles electronic structure simulation package L. Tong¹, M. Watkins², I. Bethune³ and L. Kantorovich¹

¹ Department of Physics, Kiing's College London, United Kingdom ² Department of Physics and Astronomy, University College London, United Kingdom ³ EPCC, University of Edinburgh, United Kingdom

INGS College

A wide variety of models Hamiltonians

- DFT (GGA, PBE, vdW, Hybrid)
- MP2, RPA
- Semi-Empirical (DFTB)
- Classical Force Fields (FIST)
- Combinations (QM/MM)

- Gaussian basis functions
 - Small and sparse matrices
 - Multi-grids for Gaussians of different width

Fast and accurate DFT solver

- Plane waves for electron densities
 - FFT for electrostatics
- Orbital Transform method for direct energy minimisation
 - Avoids expensive diagonalisation
 - Guaranteed to find the minimum
- Standard Diagonalisation
 - Needed for solving metallic systems
 - Significant speed up for larger systems using Filter Matrix Algorithm [2]

Filter Matrix Algorithm: General Idea

- Dynamically reduce the basis set for each atom, size matters!
 - Optimised minimal basis for each atom
 - Takes into account the electronic structure and interaction with neighbouring atoms
- Consider sub-problems involving an atom and its neighbours in the system
 - Use sub matrices of the density matrix corresponding to each atom and its interacting neighbours as a projector to map a normal basis function into the space spanned by the eigenvectors of the subproblem thus obtaining a new basis for each atom
- Because the new basis is in the eigenspace, we can take much fewer number of them to accurately describe ground state

www.cp2k.org

A first principles simulation package for atomic structures

Swiss Army Knife of molecular simulation

- Geometry and cell optimisation
- Molecular Dynamics (NVE, NVT, NPT, Langevin)
- Simulating STM image
- Sampling energy surface (Metadynamics)
- Finding transition state (Nudged Elastic Band)
- Path Integral Molecular Dynamics
- Kinetic Monte Carlo

Figure 3: Periodic electronic structure code usage across systems as a function of % core hours used. 3 10% VASP CASTEP Quantum CRYSTAL ■ HECToR Phase 2a ■ HECToR Phase 2b ■ HECToR Phase 3 ■ ARCHER

Table 5: Median job sizes (in cores) for periodic electronic structure codes on each of the systems.

	HECToR	HECToR	HECToR	ARCHER
	Phase 2a	Phase 2b	Phase 3	
VASP	240	456	480	240
CASTEP	252	720	512	360
CP2K	224	1320	608	672
ONETEP	104	504	416	864
Quantum	60	72	448	192
Espresso				
CRYSTAL	144	4032	3648	2808

Atomic Halo

 $\left| \mathbf{\mathfrak{F}}_i = \left\{ j: \left\| \mathbf{R}_i - \mathbf{R}_j
ight\| \leq R_i^{\mathrm{cut}}
ight\}
ight|$

Reduced H,S

Large user base and active development

- Second electronic most used structure code on UK's national HPC service HECToR (phase 3), as well as the new ARCHER [3]
- Usage has continued to increase as ARCHER replaced HECToR [3]
- Median job size used CP2K on ARCHER is almost double that of the major planewave codes. [3]
- Over 1 million lines of code, daily commits

── Filter Diag (Total)

---O--- Standard Diag (Total)

---- Main Eigensolver (Diag)

Atomic Eigensolver (Filter)

Filter matrix diagonalisation performance

$\operatorname{Ind}_{\mathfrak{F}_i}(J)$ $\operatorname{Ind}_{\mathfrak{F}_i}(I)$ **Atomic Eigenvectors** H, S

Overall Scheme of Implementation Diag Hamiltonian. Overlap $\tilde{\psi}_{i}{}^{Ilpha}{}_{\lambda}$ atom i $\tilde{\mathbf{H}}, \tilde{\mathbf{S}}$ Input Reduced H **Atomic Atomic** Density and S Hamiltonian Overlap Hamiltonian Diagonalise Diagonalise $(F_i)^{I\alpha J\beta}$ Diagonalise Reduced P $\operatorname{Ind}_{\mathfrak{F}_i}(J)$ Matrix K Output Normal P Density Yes Within H, SRecalculate E Force Tolerance?

.<u>B</u> 300 1400 1200 1000 (s)800 600 400 200 0.25 (Ha) 0.15 0.15

Speed up

$\operatorname{Ind}_{\mathfrak{F}_i}(I) \frac{1}{6}$

References

- [1] J. VandeVondele, et al., Comput. Phys. Commun. 167, 103 (2005)
- [2] Rayson and Briddon, Phys. Rev. B 80, 205104 (2009)
- [3] A, Turner, https://www.archer.ac.uk/documentation/white-papers/appusage/UKParallelApplications.pdf (2015)

