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1 Introduction

At the heart of computational chemistry lies the elucidation of structures. Knowing the exact
positions of atoms in a molecular system is the prerequisite for any further investigation.
This is most pronounced in computational biochemistry, where the protein folding problem,
i.e. finding the natural structure of a protein through computer simulations is considered the
”holy grail” of the field [1].

For many solid systems, the structure elucidation is equivalent to a global optimization prob-
lem of the potential energy with respect to the coordinates. In contrast to local optimization,
a global optimization can only be guided by heuristics. Since the search space increases
exponentially with the system size, this problem is NP hard [2].

Based on different heuristics a number of global search algorithms have been proposed. Un-
fortunately, these algorithms are not yet widely available in established chemistry software
packages. Only these large software packages allow to easily combine numerous simulation
techniques as it’s necessary for everyday usage.

The goal of this thesis is to extend the popular software package CP2K with the functionality
for performing parallel global geometry optimization.

Global optimization algorithms are typically designed for serial execution. However, serial
computers have become irrelevant due to the physical limitations on clock speed [3]. The full
power of today’s super computers can only be leveraged by utilizing thousands of CPU cores
in parallel [4]. A parallelized implementation is therefore inevitable.

CP2K is a software package for performing atomistic and molecular simulations [5]. It is an
open source program that has been under development for more than ten years, and contains
now over 1 million lines of Fortran 95 code. It is freely available under the General Public
License and is used by many research groups. CP2K has been designed from the ground up
as a parallel program, targeting current super computer architectures by using the Message
Passing Interface standard.

Fortunately, all global optimization methods follow a common working-principle: They it-
eratively explore the configuration space by successively calculating the potential energy for
new configurations. This allows to factor out common functionality into a framework. For
the asynchronous handling of multiple parallel energy calculations, a master/worker software
architecture is most suitable. For this purpose, a novel swarm-framework was implemented
in CP2K. It takes care of most of the technical and boilerplate work and simplifies the im-
plementation of the actual optimization algorithm considerably.

On top of the swarm-framework two optimization algorithms were implemented: Minima
Hopping and Minima Crawling.
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1 Introduction

The structure of this thesis is as follows:

Chapter 2 gives a general introduction to the problem of global geometry optimization. The
established benchmark system of Lennard-Jones clusters serves as an example.

As part of this thesis the Minima Hopping optimization method was implemented. It was
proposed by Stefan Goedecker in 2004 and it is well suited for optimizing molecular clusters [6].
The method and the techniques it utilizes are presented in Chapter 3 and 4.

Furthermore, a novel optimization scheme, named Minima Crawling, was developed and
implemented. It shows superior parallel performance over the Minima Hopping scheme and
is described in Chapter 5.

The swarm-framework and other implementation details are covered in Chapter 6.

Eventually, in Chapter 7 the implemented global optimization schemes are compared using
the established benchmark system of a Lennard-Jones cluster with 38 atoms.
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2 Global Geometry Optimization

The global geometry optimization of molecular systems refers to the problem of finding the
configuration of atoms, which yields the lowest possible potential energy. A configuration in
this context refers to the set of coordinates of all atoms in the molecular system.

The field of computational chemistry has developed a wealth of methods to calculate the
potential energy of a molecular system. Whereas some of these methods provide extremely
accurate results, they come at tremendous computational costs. The other extreme are meth-
ods which capture the chemical reality only in an approximate and empirical way, but their
costs are many orders of magnitude lower.

For the study and development of global geometry optimization algorithms, chemical accuracy
is of less importance as long as the typical structure of the optimization problem remains
realistic. One model that fulfills these requirements is the Lennard-Jones potential. It is the
de facto standard system used for benchmarking global geometry optimization algorithms.
In the following, the Lennard-Jones potential is introduced and it is used to sketch some of
the main concepts of global geometry optimization.

2.1 Lennard-Jones Potential

The Lennard-Jones potential (LJ) is a simple pair potential, which models the interaction
between two uncharged atoms. A pair potential V (r) gives the potential energy of two
particles with respect to their distance r. The LJ potential was first proposed by John
Lennard-Jones in 1924 [7] and is defined as:

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
.

The LJ potential has two parameters: The σ parameter determines the equilibrium distance
between the atoms, which is 21/6σ. The ε parameter determines the energy at the equilibrium
distance, and hence the depth of the potential well. The potential consists of an attractive and
a repulsive term. Figure 2.1 shows these two terms together with the resulting LJ potential.

The r−6 term describes the attractive long-range interaction between the atoms, which are
called van der Waals or London dispersion force [8]. They originate from instantaneous
dipole-induced dipole forces. The long range field of an electric dipole decays with r−3, which
leads to the r−6 dependency of the dipole-induced dipole interaction.
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2 Global Geometry Optimization
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Figure 2.1: The Lennard-Jones Potential and its two constituent terms.

The r−12 term describes the short range repulsions, also called Pauli repulsion or exchange
interaction, between two atoms. It is a purely quantum mechanical effect due to the fermionic
nature of electrons. Fermions have to fulfill the Pauli exclusion principle, which states that
two electrons must not occupy the same orbital [9]. When two atoms are brought in close
contact, their electrons are forced onto higher orbitals in order to avoid occupying the same
orbital. These excitations require energy, which leads to the repulsive force. The underlying
quantum theories suggest that the Pauli repulsion depends exponentially on the distances, as
pointed out by Buckingham [10]. However, the r−12 approximation used in the LJ potential
is usually preferred, because it can be easily computed as the square of r−6.

It should be emphasized that the LJ potential is merely an approximation and that more
accurate models exist. However, due to its computational simplicity it is still used extensively
in computer simulations.

2.2 Characterizing Potential Energy Surfaces

In the following a system consisting of N atoms is considered. All the atoms interact via the
LJ potential with each other. The total energy E of such a system is given as the sum of the
individual pair potential contributions:

E(r1, . . . , rN ) =

N∑
i=1

i−1∑
j=1

V (|ri − rj |) .

The total energy depends on the positions of all particles and is also called a Potential
Energy Surface (PES) defined in the configuration space. Since the PES is a high dimensional
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2.3 Lennard-Jones Cluster

function, it can only be visualized indirectly. In this regard, a very helpful concept is the basin
of attraction. Each local minimum has an associated basin, which is defined as the region
wherefrom a local optimization would be attracted towards the minimum. This is illustrated
in Figure 2.2 for the one-dimensional case.
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y

Coordinate

local
minimum

local
optimisation

Basin

Figure 2.2: Illustration of a basin of attraction within a PES.

The basins are separated from each other by energy barriers of different heights. By choosing
a threshold energy ET, the basins can be further grouped together into disjoint sets called
super-basins. A super-basin is defined in such a way that between each of its basins there
exists a connecting path, which never crosses an energy barrier higher than the threshold
energy ET.

For a very high ET there exists only a single super-basin. As the threshold energy is lowered,
the super-basins split up into smaller super-basins. By performing the super-basin analysis
for a series of decreasing threshold energies, a so-called disconnectivity graph can be created.
These graphs were first introduced by Becker and Karplus [11]. In such a disconnectivity
graph, a node represents a super-basin at a certain energy level. The edges connect nodes of
adjacent energy levels and represent the splitting of super-basin towards a lower energy. In real
systems the threshold energy could be provided by a heat bath with a certain temperature.
Hence, the graphs show which regions of the configuration space are connected at a given
temperature.

Figure 2.3 shows three examples of a one dimensional PES and their corresponding discon-
nectivity graphs for five energy levels. Here, a key concept is that of a funnel, which was
originally developed in the protein folding community [12]. A funnel is a set of downhill
pathways that converge towards a single low-energy minimum. Figure 2.3a shows an example
of a PES with a single funnel. Finding the global minimum in such a system is rather easy.
Figure 2.3b shows a PES with three main funnels. Such a system is much harder to optimize,
because at high energies the ”right” funnel has to be entered. The PES shown in Figure 2.3c
has many funnels, which is characteristic for amorphous materials such as glass [13].

2.3 Lennard-Jones Cluster

Much of the initial interest in LJ clusters was motivated by the need to calculate nucleation
rates for noble gases. However, the LJ potential has also become an established ”testing
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2 Global Geometry Optimization

(c)(a) (b)

Figure 2.3: PES with corresponding disconnectivity graphs featuring dif-
ferent number of funnels. Graphics taken from Wales et al. [14]

ground” for global optimization algorithms. In a combined effort, likely candidates for the
global minimum of LJ clusters with up to 1000 atoms have been found [15, 16, 17].

In general, finding the global minimum of a cluster is a NP hard problem [2]. However, in
practice the level of difficulty depends very much on the structure of the PES. A prominent
example is the Lennard-Jones cluster LJ55, which consists of 55 particles. It has at least
1010 local minima, not counting permutational isomers. Nevertheless, in this specific case the
global minimum is easy to locate, because the PES has only a single deep funnel as shown in
Figure 2.4a. This is because 55 is a so called magic number, which allows to form the very
symmetric complete Mackay icosahedron [15].

The Lennard-Jones cluster LJ38, consisting of 38 atoms, is a prominent example for a double-
funnel system [18]. Its global minimum structure is a face-centered-cubic (fcc) truncated
octahedron with an energy of −173.928427ε. Its second lowest minimum is an incomplete
Mackay icosahedron with an energy of −173.252378ε. Although these two lowest minima are
less than 0.7ε apart, they are well separated in configuration space, because they are at the
bottom of two different funnels (see Figure 2.4b).

When the LJ38 cluster is cooled down from a ”liquidlike” state and its temperature drops
below the melting point of around 0.18εk−1B , it gets trapped in one of the two funnels. The
optimization of the LJ38 is especially complicated, because it is very likely to enter the ”wrong”
funnel. The reason is that at high temperatures most configurations lead to the icosahedral
funnel. In terms of thermodynamics, the configuration is favored entropically. Figure 2.5
shows the probability of the two structures over temperature. Near the melting-point there
is still a high preference towards the icosahedral structure. The crossing point is at around
0.12εk−1B , which is well below the melting-point where the system is already solidified and
trapped in one of the funnels. [18]
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2.3 Lennard-Jones Cluster

(a) single-funnel LJ55 cluster (b) double-funnel LJ38 cluster

Figure 2.4: Disconnectivity graphs of two archetypal energy landscapes.
Graphics taken from Wales et al., and Doye [14, 19]

Figure 2.5: Probability of the LJ38 cluster to assume certain structures over
temperature. Graphics taken from Doye and Wales [20]
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2 Global Geometry Optimization

The difficulties associated with the optimization of the LJ38 cluster have made it an estab-
lished benchmark for global optimization algorithms. In this thesis, the LJ38 is used for all
performance analysis.
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3 Minima Hopping

In this chapter the Minima Hopping method for global geometry optimization is presented.
The method was introduced in 2004 by Stefan Goedecker [6]. It has been successfully used to
optimize silicon and gold clusters [21, 22], predict crystal structures [23], and to fold a small
protein [24].

For this thesis Minima Hopping was chosen as the first scheme to be implemented. Among
its advantages is the explicit usage of atomic forces to perform Molecular Dynamics. This
suggests that the scheme is very well suited for the application to molecular systems. Fur-
thermore, it only requires a small number of parameters compared to other schemes. This
avoids the common problem of optimizing the parameters of the optimization scheme.

3.1 Remarks on Other Methods

Stefan Goedecker introduced Minima Hopping to resolve some of the weaknesses he saw in
existing algorithms [6]:

Many algorithms for global optimization are based on thermodynamic principles. This in-
cludes standard algorithms such as simulated annealing [25], basin hopping [15], and multi-
canonical methods [26]. They explore the configuration space with a Markov process based
on the Metropolis algorithm [27] with an acceptance probability given by the Boltzmann fac-
tor exp(−∆E/kBT ). For a sufficiently low temperature the ground state configuration will
eventually dominate the sampling. However, this thermodynamic equilibration is most often
prohibitively slow. The reason is the exponential decay of the acceptance probability for large
energy increases ∆E. This effectively restricts the search to one funnel, because the climbing
and crossing of high barriers, which separate different funnels, is very unlikely.

Another problem of many global optimization algorithms are repeated visits of certain regions
in the configuration space. In an extreme case an optimization could get stuck by just jumping
back and forth between two configurations. As a consequence, methods like flooding were
developed [28, 29]. These methods artificially lift the PES for configurations that have been
visited, which will eventually lift the PES of entire basins. However, the volume of a basin
in configuration space can be enormous, which makes flooding inefficient. Furthermore, if a
transition basin that connects two funnels is flooded, the optimization is slowed down.

Goedecker summarizes: ”What is needed is a strategy that limits repeated visits, but does
not penalize crossings through important transition basins.” [6, p.9912]
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3 Minima Hopping

Alternative methods for global optimization include basin hopping [15], gradient tabu search [30],
genetic and evolutionary algorithms [31, 32], and biomimetic approaches, such as the artifi-
cial bee colony algorithm [33]. A very recent review on the topic was given by Heiles and
Johnston [34].

3.2 Original Minima Hopping

The Minima hopping explores the PES iteratively. It has a current position x0, which is
advanced by performing promising escape jumps. The original algorithm consists of two
nested loops, as illustrated in Figure 3.1. The inner loop performs escape attempts until
an escape succeeds in discovering a new minimum x′. A successful escape is proposed as
a possible jump to the outer loop. The outer loop accepts or rejects jumps based on their
energy difference with repect to the current position. When a jump is accepted the current
position is changed to the new minimum: x0 ← x′.

Start

Escape Attempt

Short MD with temp. T

Local optimization

Minimum
in history?

Decrease T

∆E < Eaccept ?

Increase T

Increase Eaccept

Decrease EacceptAdd to history

No

No

Yes

Yes

Figure 3.1: Flowchart of the original Minima Hopping scheme.

An escape attempt consists of a short Molecular Dynamics simulation followed by a local
optimization: Starting from the current position x0, the velocities are initialized according to
a Boltzmann distribution of temperature T . During the MD the potential energy is observed.
Once the potential energy has crossed a certain number of maxima and minima, typically
three, the MD simulation is terminated. Afterward, the final configuration of the MD is used
as a starting point for a local geometry optimization. The local optimization terminates when
it has converged onto a local minimum x′.

If the found minimum is new, the escape attempt was successful. In order to determine if
an escape attempt was successful, a database of previously found minima is maintained. In
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3.3 Revised Minima Hopping

the following this database is referred to as history. When an escape attempt is successful
the temperature is decreased and the minimum is proposed to the outer loop as a possible
escape jump. When an escape attempt is unsuccessful, because the minimum x′ was already
stored in the history, the temperature T is increased and a new escape attempt is made,
starting from the original position x0. By using increasingly higher temperatures, the MD
will eventually manage to escape and discover a new minimum. This works even for deep
funnels, e.g. by melting the molecular cluster.

The outer loop receives proposals for escape jumps from the inner loop. A jump is always
accepted if its energy E′ is lower than the energy of the current position E0. Jumps that
lead to an increase in energy are only accepted if the energy increase is below a certain
threshold Eaccept. Like the temperature T , the threshold Eaccept is adjusted on-the-fly: When
a jump gets accepted Eaccept is decreased. When a jump is rejected Eaccept is increased. This
mechanism leads to a strong downwards preference, while also allowing for upward jumps
after a funnel has been thoroughly explored.

The adjustment of the acceptance energy Eaccept and the temperature T are carried out by
multiplying or dividing with fixed factors, which are close to one. This introduces the two
parameters α and β into the method, for which typical values are between 1.01 and 1.1 :

Tincr = βTold , Tdecr =
1

β
Told , β > 1 ,

Eincr = αEold , Edecr =
1

α
Eold , α > 1 .

3.3 Revised Minima Hopping

In the previous Section 3.2 the Minima Hopping scheme according to the original publica-
tion from 2004 was described. In the meantime further refinements were made. Professor
Goedecker kindly provided his latest implementation of the algorithm [35]. For his research
he uses a stand-alone Fortran program, which has the Lennard-Jones potential hard-coded.
From this code the revised Minima Hopping algorithm was extracted (see Figure 3.2).

In the revised Minima Hopping scheme the two nested loops of the original scheme are fused
into a single loop. Instead of the outer loop, which waits for the inner loop to make good
escape proposals, there is now a variable xhop, which stores the best possible escape found
so far. This addresses a weakness of the original scheme related to increases of Eaccept: In
the original scheme a good escape proposal might at first get rejected because of Eaccept.
After a number of iterations Eaccept is increased to the point where the good proposal would
be accepted. However, the inner loop has to find the good escape again. In the meantime
the inner loop has increased its temperature, which makes it unlikely to re-discover the low
energy escape. Therefore, the original scheme sometimes missed a good escape route.

The revised scheme actually allows for hopping back and forth between known minima. This is
a desired effect, because it allows for trying out different basins as starting point for an escape
from a super-basin. Since rediscoveries lead to an increase of the temperature, eventually an
escape will always be found.

11



3 Minima Hopping

Start
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Short MD with
temperature T
starting at x0

Local optimization
finds minimum x′

with energy E′

x′ ≡ x0 ? Increase T
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Minimum x′
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Increase T
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Add x′ to history
No
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E′ < Ehop ?

Improve Hop
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Figure 3.2: Flowchart of the revised Minima Hopping scheme as ex-
tracted from the Fortran code, which was kindly provided by Professor
Goedecker [35].
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3.4 Bell–Evans–Polanyi Principle

3.4 Bell–Evans–Polanyi Principle

The on-the-fly adjustment of the temperature is essential for the success of the Minima
Hopping scheme [6]. By keeping the temperature of the MD as low as possible, the search
will mostly find escapes across low barriers. This is advantageous, because escapes across low
barriers are more likely to lead into lower minima. In the field of chemistry this is well known
as the Bell-Evans-Polanyi principle [36, 37]. It is an empirical observation made for many
chemical reactions, which states that highly exothermic chemical reactions tend to have a low
activation energy. Applied to the problem of global optimization this means that low energy
minima are more likely to be found when crossing low energy barriers.

Figure 3.3: The Bell–Evans–Polanyi Principle: The deeper an adjacent
minimum lies in energy, the lower is its transition barrier. Graphics taken
from Goedecker [6]

The reason for this can be seen from Figure 3.3. It shows two neighboring minima, which
are approximated with parabolas. For the right minimum two parabolas are drawn for two
different energy levels. It shows that if the right minimum were higher in energy (dashed line)
the transition barrier would also be higher in energy. An in-depth discussion of the topic was
given by Roy et al. [38].
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4 Escape Attempt Techniques

The Minima Hopping scheme makes use of a number of other simulation techniques. In this
chapter these techniques are briefly introduced. Most of the techniques are needed to perform
escape attempts. The calculation and comparison of descriptors is needed at the end of an
escape attempt to decide whether it was successful or not.

4.1 Velocity Initialization

At the beginning of each MD simulation initial velocities are generated: A set of velocities is
drawn from a standard normal distribution N (0, 1) using a random number generator. The
velocities of each atom are weighted according to its mass mi:

v′i ∼
1√
mi
N (0, 1) .

Then the rigid body motion is subtracted from the velocities. This includes the linear velocity
of the center of mass v′com as well as angular velocities with respect to the center of mass
ϑ′com:

v′′i = v′i − v′com − ϑ′com .

Based on these velocities the kinetic energy is calculated:

E′′kin =
N∑
i=1

1

2
mi|v′′i |2 .

Eventually, the velocities are scaled to ensure that on average each degree of freedom has a
kinetic energy of kBT/2:

vi = αv′′i with α =

√
3N kBT

2E′′kin
.

The scaled velocities vi are then used for the initial time step of the MD simulation.

15



4 Escape Attempt Techniques

4.2 Velocity Softening

Originally, the velocities were chosen in a completely random fashion, as described in the
previous Section 4.1. However, it is known that the low energy saddle points often lie at
the end of low-curvature modes [38]. Henkelman and Jónsson proposed a Dimer method
for finding saddle points, which only requires the first derivatives of the PES i.e. atomic
forces [39]. Schönborn et al. adopted this method to beneficially bias the initial velocities
used in the Minima Hopping scheme and named it velocity softening [40].

The velocity softening method finds the direction of such a low-curvature mode iteratively.
The direction is given as the difference between the current position x and a test-point yi,
which is updated in every iteration. The initial y0 is chosen at a fixed distance d in the
direction of the original random velocity v:

y0 = x + d
v

|v| .

In each iteration the force at the test-point yi is calculated:

Fi = F(yi) .

Then, the force component, which is perpendicular to the current direction N̂i, is calculated:

F⊥i = Fi − (Fi · N̂i)N̂i where N̂i =
yi − x

|yi − x| .

The test-point is then updated with the force component F⊥i using a fixed mixing-factor α:

yi+1 = yi + αF⊥i .

After the last softening iteration was performed, the direction N̂i is used as input for the new
velocities. Again, the rigid body motion has to be subtracted and they have to be scaled to
match the requested temperature, as described in Section 4.1.

The velocity softening method will eventually converge when F⊥i becomes zero. This would
remove all of the initial randomness and make the velocities deterministic. However, a certain
amount of randomness is essential for the Minima Hopping scheme to work. Otherwise, the
MD will always escape into the same soft mode direction and would not discover any other
escape routes. Therefore, only a few softening iterations should be performed. Schönborn et
al. reported that 20 softening iterations give the best results for Lennard-Jones clusters (see
Section 7.2).

4.3 Molecular Dynamics

In this section Newton’s notation for differentiation is used:

ṁ ≡ dm

dt
, ṙ ≡ dr

dt
, r̈ ≡ d2r

dt2
.
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4.4 Cluster Defragmentation

The goal of Molecular Dynamics simulations is to integrate Newton’s second law of motion.
This law relates the position of a particle r(t) at a time t to the force F that acts upon the
particle. Under the assumption of constant mass ṁ = 0 it states:

F = mr̈ .

The simplest way to numerically integrate Newton’s second law is to iteratively propagate it
in small time steps τ . An expression for a small time step can be obtained from a Taylor
expansion. It gives the particle position at time t + τ in terms of its position r, velocity ṙ,
and acceleration r̈ at time t:

r(t+ τ) = r(t) + τ ṙ(t) +
τ2

2
r̈(t) +O(τ3) . (4.1)

Alternatively, one can also start at t+τ and use a time-step of −τ to propagate backwards:

r(t) = r(t+ τ)− τ ṙ(t+ τ) +
τ2

2
r̈(t+ τ) +O(τ3) . (4.2)

Adding the two previous equations (4.1) and (4.2) yields:

ṙ(t+ τ) = ṙ(t) +
τ

2
r̈(t) +

τ

2
r̈(t+ τ) +O(τ2) . (4.3)

Together the equations (4.1) and (4.3) define the velocity Verlet algorithm [41]. It has the
benefits of being symplectic and time-reversible, which leads to a good conservation of energy
and momentum. Furthermore, it minimizes round-off errors by avoiding the addition of small
and large terms. Unlike the Leapfrog algorithm, velocities and positions are calculated for the
same points in time. The position’s error is of order 3, although only one force evaluation
is required per time step. In combination, these features make the velocity Verlet algorithm
the integrator of choice for Molecular Dynamics simulations.

For further readings about Molecular Dynamics and related techniques the book by Allen
and Tildesley [42], as well as the book by Tuckerman [43] are recommended.

4.4 Cluster Defragmentation

During an MD simulations, it sometimes occures that one or more particles are ejected from
the cluster. The subsequent local optimization does usually not correct for this, because the
long range term of the Lennard-Jones potential decays very quickly with r−6. Therefore,
after every MD simulation the cluster has to be explicitly checked for fragmentation and if
necessary merged back together.

For the fragmentation analysis, a graph is created which reflects the cluster’s topology. The
nodes of this graph are the atoms. Two atoms are connected with an edge if they are closer
than a given threshold. If the graph has more than one connected component, the cluster
got fragmented. The smaller fragments are then translated towards the largest fragment
such that their outermost atoms are just below the threshold distance. From there on the
subsequent local optimization will compact the fragments further.
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4 Escape Attempt Techniques

4.5 Local Optimization

The goal of a local optimization is to find the nearest local minimum on the PES. Typically,
the optimization is performed iteratively: The current position is advanced stepwise such that
the potential energy is lowered until it’s converged onto the local minimum. In each step a
search direction pk and a step length αk has to be chosen:

xk+1 = xk + αkpk .

Once a direction is chosen, the optimal step length αk can be found through a line search
within the one-dimensional subspace. A popular method for line search is the golden section
search [44]. The method works by successively approaching the minimum from both sides
with a point. A third middle point ensures that the minimum remains between the two outer
points. In each step the interval is narrowed by moving one of the points. The distances
between the three points are always kept in a golden ratio, which guarantees good convergence
even for the worst case. The search terminates when the distance between the outer points
drops below a certain threshold.

A very popular scheme for choosing the search direction pk is the Conjugate Gradient method
(CG). It chooses the directions as the gradient at the current position plus a correction based
on the direction from the previous step:

pk+1 = −∇f(xk+1) + βk+1pk .

For the pre-factor β multiple options exists, a popular choice is the following, called Fletcher-
Reeves method [45]:

βk+1 =
|∇f(xk+1)|2
|∇f(xk)|2 .

For the special case of f(x) being a strongly convex quadratic function, and given that the
line search is exact, it can be shown that the conjugate gradient method converges in at most
n steps, where n is the dimension of the configuration space. In practice these conditions
are hardly ever met. Nevertheless, the convergence is guaranteed if the line search provides
sufficient accuracy to satisfy the strong Wolfe conditions [46, 47]:

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)T · pk ,
|∇f(xk + αkpk)T · pk| ≤ −c2∇f(xk)T · pk ,

with 0 < c1 < c2 <
1

2
.

Another very popular class of local optimization algorithms are Quasi-Newton methods. They
work by maintaining an approximation Bk of the Hessian matrix ∇2f . In each step Bk is
updated to incorporate the additional information gained by calculating the gradient at a
new position. One of the most popular formulas for updating Bk is the BFGS formula, which
was named after its inventors, Broyden [48], Fletcher [49], Goldfarb [50], and Shanno [51]:

sk = xk+1 − xk , yk = ∇f(xk+1)−∇f(xk) , Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
.
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4.6 Minima Descriptors

From the approximated Hessian Bk the new direction of a search step is obtained via:

pk = −B−1k · ∇f(xk) . (4.4)

Normally, the Quasi-Newton optimizers are considered superior over the conjugate gradient
method. However, for the cheap Lennard Jones potential it turned out that the additional
computational cost for the matrix inversion of Bk in (4.4) outweighs the benefits. Therefore,
after an initial phase of experimentation the CG method was used in this thesis.

For proofs and an in-depth discussion of numerical optimization the book by Nocedal and
Wright [52] is recommended.

4.6 Minima Descriptors

The identification of previously visited minima is essential for the Minima Hopping scheme.
It requires that a database of the search history is maintained during the optimization. When
this database is queried it should recognize the contained configurations regardless of rotation,
translation or permutation of equivalent particles. Therefore, the configurations have to be
represented in a form that is invariant under these operations. Such an abstract representation
is called a descriptor. The database can then store and compare descriptors instead of the
coordinates.

In the case of classical force fields the potential energy can serve as a descriptor, because it
can be determined with sufficient accuracy to be considered as unique. However, with other
methods, e.g. Density Functional Theory [53, 54], this is not the case, because they contain
more numeric noise. For these applications Goedecker suggested to extend the descriptor
with the sorted list of all inter-atomic distances [55].

For this thesis another descriptor is used, which was obtained from the code provided by
Professor Goedecker [35]. It uses the eigenvalues of the following symmetric matrix A as
descriptor, where ri denotes the position of the i-th atom:

Aij = e−|ri−rj |
2/2 .

Two descriptors are compared based on their Euclidean distance. If the distance is smaller
than a given threshold, the two configurations are considered equal. If multiple configurations
fall below the threshold, the closest match is selected.

Over the course of a longer optimization run, the history can be filled with a large number
of visited minima. In order to make the look-up efficient, a simple two step strategy is used:
At first, the entries are filtered based on their energy. Only those entries are selected, which
lie within the threshold-window. This reduces the number of candidates to just a few entries.
For these remaining entries all components of the descriptor have to be compared. In order to
speed up the initial energy-filtering, a sorted list of the minima is maintained. The elements
are located within the sorted list by using interpolation search [56, p.419].
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5 Minima Crawling

The Minima Hopping scheme was developed as a serial algorithm. It can not be parallelized
in a straight forward way, because of data dependencies between the iterations.

Schönborn et al. suggest to parallelize the Minima Hopping scheme by letting multiple workers
share a single history of visited minima. The idea is that due to the feedback mechanism
and the common history an overlap of search area will be penalized. They claim an ”almost
linear speedup in runtime” can be achieved [40, p.5].

This thesis’ benchmarks (see Chapter 7) show that the runtime does indeed reduce signif-
icantly, when multiple Minima Hopping workers with a shared history are used. However,
basically the same performance can be observed for an embarrassing parallelization. In an em-
barrassing parallelization multiple completely independent workers are launched. This shows
that the shared history scheme is not able to take advantage of the information exchange
between the workers.

Given that the master has the collective information of all workers, it should be able to make
much better decisions than a single worker with its smaller amount of information. Therefore,
it should be possible to design a parallelization scheme for Minima Hopping that performs
significantly better than an embarrassing parallelization. The Minima Crawling scheme is
the attempt made in this thesis to develop such an improved parallelization scheme.

The history sharing scheme seems to suffer from two weaknesses:

1. The information exchange between the workers is too little: The course of one worker
is only affected by another worker when they both happen to visit the same minimum,
which is a rare event.

2. The state of a Minima Hopping worker does not solely consists of its minima history. It
also includes the current temperature, acceptance energy, and hopping candidate. By
affecting only the minima history, the scheme leads to inconsistencies within this state.

Furthermore, the poor performance of the history sharing scheme could also be the result
of subtle effects such as two workers systematically interfering with each others progress.
Unfortunately, it is very hard to investigate these phenomenas thoroughly. After all, a run
with multiple workers constitutes a highly parallelized program with many state-variables, a
fair amount of random behavior and race conditions.

The idea of the Minima Crawling scheme is to simplify the situation by making the workers
state-less and instead gathering all available information in a central data structure. The key
operation of performing an escape attempt is adopted without change from the Minima Hop-
ping scheme. All encountered minima are stored in a central history together with additional
status information.
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5 Minima Crawling

An overview of the Minima Crawling scheme is shown by the flowchart in Figure 5.1. For
each escape attempt a minimum from the history is chosen based on a ranking. The chosen
minimum will be referred to as the starting minimum. Then an appropriate temperature
is drawn from the starting minimum’s temperature distribution. The starting minimum’s
configuration and the drawn temperature are used to perform an escape attempt. After the
escape attempt, the record of the starting minimum will be updated with the newly gained
information.

Start

Choose most promissing
available minimum from history

Draw temperature from
minimum’s temp. distribution

Perform escape attempt

Update history with results

It
er
a
te

Figure 5.1: Flowchart of the Minima Crawling scheme.

5.1 Choosing a Promising Minimum

In order to choose a minimum as a starting configuration it has to be available. For this two
conditions have to be met:

1. The minimum must be active. New minimums are always added as active, but they
can get deactivated over the course of the optimization.

2. The minimum must not already be in use by too many other workers. The maximum
number of worker that are allowed to simultaneously work on a minimum is a user-
defined parameter, a typical value is three.

Among the available minima the most promising minimum is chosen based on a scoring
function. The minimum with the lowest score is chosen. The score of a minimum is defined
as the average over its list of escape energies. This list contains the energies of the last minima
that were found when it was used as a starting configuration. Hence, the escape energies of
a minimum are something like the track record of the minimum’s recent performance. After
all ”nearby” minima are discovered, the performance of a minimum degrades. In order to
account only for recent escapes, the list of escape energies is kept rather short. The length is
a user-defined parameter, a typical value is three.
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5.2 Drawing a Temperature

Once a minimum has been chosen, its number of active workers is increased by one. Limiting
the maximum number of active workers per minimum prevents that all workers chose the
same minimum and perform redundant work.

5.2 Drawing a Temperature

In the Minima Hopping scheme the temperature is increased when a previously found mini-
mum is encountered again. This includes the case that the escape attempt fails and ends up
at the original starting configuration. When a new minimum is discovered the temperature is
decreased. This scheme tunes the temperature such that on average a new minimum is found
during every second escape attempt.

The Minima Hopping scheme chooses temperatures with a 50% success probability without
explicitly maintaining the corresponding probability distribution. For a parallelized scheme
this probability distribution has to be maintained explicitly in order to allow for the different
workers to combine their information. Therefore, in the Minima Crawling scheme every
minimum has an associated temperature distribution ρ(T ). It gives for each temperature the
probability for an escape attempt to succeed. The distribution is discretized in temperature
steps Ti given by:

Ti = βi with β > 1 . (5.1)

The parameter β plays the same role as in the Minima Hopping scheme. There the tem-
perature is increased by repeatedly multiplying with β, which leads to the same discretized
exponential increase.

For choosing the temperature for an escape attempt, the distribution ρ(T ) is transformed in
the following way:

θ(T ) = 1− 2 |ρ(T )− 0.5| . (5.2)

The derived distribution θ(T ) gives the probability that the success-rate at a given temper-
ature is near 50%. The new temperature is then sampled from this distribution θ(T ). The
sampling is performed by drawing a temperature step i and a floating point number α be-
tween 0 and 1 from a random number generator. When θ(Ti) > α is fulfilled, the temperature
Ti is used for the escape attempt, otherwise new sets of random numbers are generated until
the condition is fulfilled.

As initial temperature distribution ρ0 a Fermi-like step-function centered around an initial
temperature Ta is used:

ρ0(Ti) =
1

1 + e
a−i
τ

. (5.3)

The slope of the step is controlled by the user-provided parameter τ , a typical value is τ = 5 .
However, the importance of the initial temperature distribution is small, because it’s only
used for the first discovered minimum. The following new minima inherit the temperature
distribution from their starting minimum.
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5 Minima Crawling

5.3 Updating the Temperature Distribution

After an escape attempt with a certain temperature Tj was performed, the newly gained
information has to be incorporated into the starting minimum’s temperature distribution.
For this the distribution is modified around Tj by adding or subtracting a small Gaussian:

ρ′(Ti) = max

[
0, min

[
1, ρ(Ti)± ε · e−( j−iσ )

2
]]

. (5.4)

In (5.4) the ”+” sign is used to increase the success probability if the attempt was successful,
the ”-” sign is used to decrease the success probability if the attempt failed. The protection
with max() and min() ensures that 0 ≤ ρ ≤ 1 remains satisfied. The width σ and the height
ε of the Gaussian are user-parameters, typical values are σ = 2 and ε = 0.2 .

Figure 5.2 shows a temperature distribution ρ(T ) together with its derived distribution
θ(T ). The distribution was recorded only a few steps after the Minima Crawling scheme
was launched. Therefore, it still shows the remains of the initial Fermi-distribution around
10 K. The bumps in the distribution are caused by the updates with Gaussians. Over the
course of a Minima Crawling run, the step in the temperature distribution tends to become
much steeper as the optimal temperature is narrowed down.
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Figure 5.2: A temperature distribution ρ(T ) together with its derived dis-
tribution θ(T ). The distribution was recorded from a Minima Crawling
run shortly after the launch.
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5.4 Adding a New Minima

5.4 Adding a New Minima

When an escape attempt was successful and a new minimum is found, it is added to the
history of encountered minima. The list of escape energies for the new minimum is initialized
by setting all values to the minimum’s own potential energy. The temperature distribution
of the new minimum is initialized with the distribution of the starting minimum.

Furthermore, the potential energy of the newly encountered minimum is added to the list of
escape energies of the starting minimum. The list has a fixed length and works as a first in,
first out queue. Hence, the oldest entry gets removed in the process.

If the new minimum has a lower energy than the starting minimum, the starting minimum
is disabled to prevent it from being sampled any further. This is equivalent to the Minima
Hopping scheme, where a minimum with a lower energy is always accepted. Since a mini-
mum is only disabled when a new minimum gets added, the number of active minima never
decreases.
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6 Implementation

In this chapter the implementation of the previously introduced methods in CP2K is pre-
sented. The code is split into two parts: At first a novel parallelization framework is im-
plemented. Within this framework the actual optimization algorithms are implemented as
plugins.

Global optimization algorithms typically operate via iterative exploration of the parameter
space. New information is obtained by evaluating the optimization objective at promising
points in the parameter space. Based on the new information the next evaluation points
are chosen. This evaluation of the objective usually dominates the computational costs of a
global optimization. In order to speedup an optimization, the objective can be evaluated at
multiple points in parallel, because these are independent tasks.

In the context of geometry optimization of molecular systems, the optimization objective is
the potential energy. In the field of computational chemistry the potential energy is very
often calculated with so-called self consistent field methods [54]. These methods are iterative
algorithms with a varying number of iteration steps. Hence, the computation time required
to calculate the potential energy varies from one geometry to the next.

Many parallelization schemes are organized in a lock-step fashion, where all processors have
to finish their work at the same time. In the case of a global optimization the tasks require
different amounts of time. It is therefore not suitable for a lock-step scheme. Instead a
master/worker scheme is more appropriate, in which the master process assigns tasks to the
worker processes, the workers perform their assigned tasks and send their results back to the
master asynchronously.

6.1 Swarm-Framework

The swarm-framework implements such a master/worker scheme in CP2K. The name swarm
was chosen, because the workers collectively solve a common problem. This is similar to the
swarm behavior observed with certain animals, e.g. ants and bees.

The architecture of the framework is based on the simple picture of a master having a dialog
with its workers (see Figure 6.1). The master sends a command to a worker, the worker
executes the command, replies with a report and awaits the next command. The entire
process is bootstrapped by sending reports with the status ”initial hello” to the master.

The design goal of the swarm-framework was to make it as simple as possible to implement
new optimization algorithms as plugins. The framework is clearly separated from the plugins
and takes care of most of the technical and boilerplate work.
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6 Implementation

:Master :Worker 1 :Worker N

initial hello

command

report

command

initial hello

command

report

command

Figure 6.1: Sequence diagram illustrating the communication between the
master and workers within the swarm-framework, including bootstrapping.

A major design decision was to make the main driver loops part of the swarm-framework. As
a consequence the plugins are merely called by the framework when needed. On the workers
the routine execute is called. As arguments it gets passed in a command and is expected to
return a report. On the master the routine steer is called. It gets passed in a report from a
worker and is expected to return a new command for the same worker. Commands and reports
are stored as the swarm message data-type. The entire scheme of the swarm-framework is
shown in Figure 6.2. The green and red arrows represent the exchange of swarm-messages.

Master

Receive report (blocking)

CALL steer(report, command)

Send new command as reply
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Worker 1

Send report

CALL execute(command, report)

Receive command (blocking)

Worker N

MPI

Figure 6.2: Architecture overview of the swarm-framework. The black ar-
rows indicate control flow, the red arrows indicate the exchange of reports,
the green arrows indicate the exchange of commands.
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6.1 Swarm-Framework

Swarm-Messages

A swarm-message is a data structure, which stores key/value pairs and is used for any commu-
nication between the master and the workers. The keys in a swarm-message are always strings,
while the values can also be integer or floating point numbers or an array of numbers. The
swarm-message is very easy to use. Entries are added with the routine swarm message add

and retrieved with swarm message get. This programming convenience comes at some perfor-
mance costs. In any case, the swarm-framework is not intended for communication dominated
algorithms.

In high performance computing the Message Passing Interface (MPI) is the de facto standard
API for network communication [57]. A group of communicating processors is represented by
a MPI communicator. Within a communicator each processor is assigned a unique address,
called a MPI rank. A processor may belong to multiple communicators.

By using the swarm-messages the plugin-programmer does not have to deal with the MPI at
all. The swarm-framework transparently serializes and deserializes the message for transport
over the network with MPI. While the master is always assigned a single process, each worker
can consist of several MPI-processes. This allows for further parallelization, because many
routines in CP2K, which the workers utilize, are MPI parallelized.

Master

rank 0

Worker 1

rank 1

rank 0

rank 1

rank M
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Worker N

rank N

rank 0

rank 1

rank M
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Figure 6.3: Communication scheme adopted by the swarm-framework. Ar-
rows indicate MPI communication, color indicates the associated MPI com-
municator.

The communication scheme adopted by the swarm-framework is illustrated in Figure 6.3. The
arrows indicate MPI communication, their color indicates the associated MPI communicator.
The purple communicator contains the master process and the first process of each worker,
i.e. the foreman processes. Additionally, there exists one communicator per worker, which
contains all its processes. As a consequence, each foreman process belongs to two MPI
communicators, in which it takes a different MPI rank.

In CP2K the convention was adopted that after a MPI parallelized operation has finished
all processors have to be in the same state. For example, after performing a local geometry
optimization all processes posses the final position and potential energy values. Hence, the
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foreman process has all necessary information to assemble and send reports to the master.
However, when receiving a command from the master, the foreman process has to broadcast
this information to the other processes belonging to its worker to fulfill the convention.

Single Worker Mode

The swarm-framework was developed to coordinate a large number of workers. However,
sometimes it is necessary to run with only a single worker. This was for example the case,
when the serial performance of the Minima Hopping algorithm was benchmarked. In this
situation a separate master process is not needed, running one anyways would be a waste of
resources. Therefore, the swarm-framework has a special single worker mode, which requires
only a single process to run. Instead of sending commands and reports over MPI they are
just passed on locally between the master and the worker code. The code of the main driver
loop for this mode is listed in Figure 6.4.

1 CALL swarm_master_init(master, n_workers=1, ... )
2 CALL swarm_worker_init(worker, worker_id=1, ... )
3 CALL swarm_message_add(report, "worker_id", 1)
4 CALL swarm_message_add(report, "status", "initial_hello")
5

6 DO WHILE(TRIM(command) /= "shutdown")
7 CALL swarm_master_steer(master, report, cmd)
8 CALL swarm_message_free(report)
9 CALL swarm_worker_execute(worker, cmd, report)

10 CALL swarm_message_get(cmd, "command", command)
11 CALL swarm_message_free(cmd)
12 END DO
13

14 CALL swarm_message_free(report)
15 CALL swarm_worker_finalize(worker)
16 CALL swarm_master_finalize(master)

Figure 6.4: Code listing of the main driver loop for the single worker mode.

Generic Restart Mechanism

High performance computations are often interrupted by time limits or failures. Hence, it
is vital that a computation can be restarted close to the point were it was left off. The
implementation of a restart mechanism requires a serialization of the program’s internal state
and a way to restore it later. The set of variables that make up the internal state depends on
the algorithm employed. Therefore, usually for each algorithm a special serialize and restore
routine has to be written.

The swarm-framework has a generic restart mechanism build in. It works by recording all
communication between master and workers. For a restart the communication is simply
replayed to the master. When the end of the communication log is reached, the last command
appointed to each worker is send out and the computation continues in a normal fashion.
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6.1 Swarm-Framework

The generic restart mechanism is based on three assumptions:

1. The master’s steer-routine is deterministic. During a restart, the master is presented
with the previously recorded reports and it has to reply by issuing exactly the same
commands again. The commands are compared with the recorded ones, when they
don’t match the restart is aborted.

2. The master’s steer-routine executes quickly. During a restart, the master’s state is
restored by stepping through the entire computation in an accelerated fashion. The
time required to perform a restart basically depends on the execution speed of the
steer-routine, because the worker’s reports are on file and instantly available. If the
steer-routine performs too heavy computation a restart will consume an unreasonable
amount of time. In this case, work should be migrated from the master to a worker by
launching additional tasks.

3. The workers are stateless. During a restart, the workers wait idle for their first com-
mand. When the entire communication log has been replayed to the master, the workers
are sent only the latest command appointed to them. Based on this single command
they must resume their operation as if they were never interrupted. Therefore, the
workers must not have any internal state. This restriction could be mitigated some-
what by allowing for a few stateful commands to be send in between stateless commands.
Restarts would then always continue after stateless commands. However, this feature
was not yet needed and was therefore not implemented as part of this thesis.

Waiting Queue

After a worker has send its report it awaits a new command in reply. However, sometimes the
master does not have an immediate task for the worker. This occures when the master has
to receive reports from other workers as well before generating new tasks. In this situation
a few workers have to idle for a short time. The simplest way to implement this would be
to command the worker to sleep for a certain period of time, they would then send back a
”wake-up” report. However, choosing this time period is difficult: If the time is chosen too
short, the master might get overwhelmed with ”wake-up” reports. If the time is chosen too
long the workers notice too late that new tasks are available and computer time would be
wasted.

The swarm-framework offers a solution to this problem, which allows to retain the simple
architecture without losing performance: Whenever the master has no immediate new task
available it just returns the command ”wait”. The swarm-framework will filter this command
and it is not passed on to the worker. Instead the worker’s id is added to a list of waiting
workers. Since each incoming report provides the master with new information, it might
trigger the generation of new tasks. Therefore, whenever the master receives a report it is
afterward given the opportunity to also send commands to the waiting workers. For this
purpose a report with the status ”wait done” is emitted for each waiting worker.

From the master’s perspective the workers are actually going to sleep, but they just happen
to always wake up right after a new report was received. The workers do not notice any
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of this. They will just remain in a blocking call to mpi recv until the master sends out a
real command. In order to not clutter up the communication log, continued waiting is not
recorded, i.e. ”wait done”-reports replied by with another ”wait”-command. Of course, the
master should never ask all of its workers to wait at the same time, but this would make no
sense anyways.

6.2 Minima Hopping and Crawling

Based on the swarm-framework the Minima Hopping and the Minima Crawling schemes were
implemented. The basic operation of both schemes is to perform an escape attempt. Each
escape attempt requires several force evaluations, which constitutes the main computational
costs. Therefore, this task is off-loaded to the workers and implemented in their execute

routine. Both optimization schemes use the same implementation for their workers.

A worker receives for each escape attempt a set of coordinates and a temperature. The worker
then performs all the steps as described in Chapter 4. At the end of the local optimization the
worker sends back a report, which contains the final configuration and its potential energy.

Each worker has its own trajectory file. To this file the intermediate configurations of the
MD and the local optimization are written. The frames in a trajectory file are numbered
consecutively. However, CP2K does not keep track of the last written frame number. Hence,
the current frame number has to be passed explicitly when calling the MD simulation and the
local optimization. In order for the generic restart mechanism to work properly, the worker
has to be state-less. As a consequence, the frame number can not be stored on the worker
in-between the execution of commands. It is therefore send back to the master as part of the
report. The master will return the frame number to the worker as part of the command for
the next escape attempt.

Each optimization scheme implements its own steer routine. However, they both utilize
a common history implementation. The history provides the functionality for storing and
recognizing visited minima. It calculates descriptors of the minima and compares them with
respect to a configurable threshold. The clean separation of the history from the actual
optimization algorithm allows for easy code changes. For example, in the future an improved
descriptor might allow to loosen the convergence criteria on the local optimization, because
minima are recognized more reliably.

The remaining code for the implementation of the actual optimization algorithms is very
compact. For example, the Minima Hopping scheme requires less than 300 lines of Fortran
code. This shows, that with the swarm framework in place it is now very easy to add new
optimization schemes to CP2K.

Besides implementing the main functionality for the global optimization schemes, also some
other small changes were made: CP2K is highly optimized for performing quantum chemical
calculations. However, using the cheap Lennard-Jones potential drives the code into a regime
where it’s not well optimized. For example, a two-fold speedup could be achieved by improving
the way CP2K does its log-handling. This little anecdote should serve as an example for
the many small technical difficulties that were encountered with CP2K’s internal facilities.
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They include program start-up, log-handling, error-handling, profiling, message passing, input
parsing, random number generation, and regression testing. For most of these aspects there
exists no documentation and one has to revert to the code itself for information.
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7 Benchmarks

In this chapter the performance of the implemented global optimization schemes is bench-
marked and compared. For all benchmarks the Lennard-Jones 38 cluster is used. As ex-
plained in Chapter 2, it is a widely recognized benchmarking system for global optimization
algorithms. It has the advantage of having an energy function that is very cheap to evaluate,
which allows to run an extensive number of tests. The global minimum of the LJ38 cluster
is well known, but it is considered hard to find, because it’s located in a narrow side funnel,
which is entropically unfavored.

The optimization runs are always started from the same configuration. In order to have an
unbiased starting point the particles are laid out on a regular grid with a spacing of 1.5 Å
(see Figure 7.1), where 1 Å = 0.1 nm denotes the ångström length unit.

Figure 7.1: Starting configuration of the LJ38 cluster used for benchmarks.

In order to obtain energy values with a magnitude that is typical for chemistry simulations the
Lennard-Jones potential is parametrized with σ = 1.0 Å and ε = 0.001EH, where EH ≈ 27 eV
denotes the Hartree energy unit. Internally, the LJ potential is approximated with a spline
using 2038 supporting points, which provides an accuracy below 10−10EH. For particles which
are more than 25 Å apart the LJ potential is cutoff and considered to be zero. The particles
are assigned the mass of one atomic mass unit.
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In the Minima Hopping scheme the initial temperature is T0 = 10 K. It is increased or
decreased by the factor β = 1.1 . The initial acceptance energy is E0

accept = 0.005EH. It is
increased or decreased by the factor α = 1.02 .

In the Minima Crawling scheme the initial temperature distribution uses a step-function
centered around T0 = 10 K with a slope-parameter of τ = 5.0 . The distribution is updated
by adding or subtracting Gaussians with a width of σ = 2.0 and a height of ε = 0.2 . For
each minimum a list of escape energies records the last three successful escapes. The number
of active workers per minimum is limited to three.

The initial velocities of the MD are softened by performing 20 softening iterations. The initial
test point for the softening is chosen at a distance of d = 0.01 a0, where a0 ≈ 0.5 Å denotes
the Bohr radius. In each softening iteration the test-point is updated using a mixing-factor
of α = 0.5 .

Two minima are considered equal if their energies are closer than 5.0 · 10−5EH and their
descriptors are closer than 0.01 . When a run discovers a configuration, which has a potential
energy lower than −0.1739EH, it is considered as the global minimum of the LJ38 cluster and
the run is terminated.

For the local optimization the conjugate gradient algorithm is used. Any other settings, e.g.
regarding the MD or the local optimization, remained at the default values of CP2K.

7.1 Serial Minima Hopping

At the beginning of each escape attempt the initial velocities are drawn from a normal distri-
bution using a random number generator. This makes the Minima Hopping algorithm very
stochastic in nature. In fact, depending on the seed of the random number generator a run
might finish within a few steps or it might require several thousand steps to finish. Therefore,
only a statistical assessment of the performance is possible. For this the algorithm has to be
run several times with different seeds of the random number generator.

Figure 7.2 shows the performance of the serial Minima Hopping algorithm based on 1000
independent runs. For each run the number of required force evaluations and the wall time are
recorded. Then the Cumulative Distribution Function (CDF) for each quantity is calculated.
It shows the probability of a single run to find the global minimum after a certain time
or number of force evaluations. For example, after 3.2 M force evaluations there is a 90%
probability that a run has already found the global minimum. The two distributions look
very similar, because in the serial case the number of force evaluations is proportional to the
runtime. The CDFs allows to quickly estimate the computer time required to find the global
minimum.
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Figure 7.2: CDFs of the wall time and the number of force evaluations re-
quired by the serial Minima Hopping algorithm to find the global minimum.
The plots are based on 1000 independent runs.

7.2 Velocity Softening

The velocity softening method adjusts the initial velocities of an escape attempt to make them
more favorable to encounter a low barrier. The method was described in detail in Section 4.2.
Velocity softening is an iterative method with a fixed number of steps. The number of steps
is a delicate parameter to choose: If too few softening steps are performed the initial random
velocities remain basically unchanged. If too many softening steps are performed the initial
velocities converge onto the lowest eigenmode and become deterministic. Since the Minima
Hopping method relies on a certain amount of randomness, a good balance has to be found.
Furthermore, each softening step comes at the cost of an additional force evaluation.
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Figure 7.3: Comparison of the effect of different number of softening steps
on the optimization speed. Each plot is based on 1000 independent runs.
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Schönborn et al. [40] reported that 20 softening steps yield a good result for the Lennard-
Jones 38 cluster. In order to verify this, simulations are run with 0, 20, and 40 softening
steps. Figure 7.3 compares the CDF obtained, and it confirms that 20 softening steps yield
good results.

7.3 Embarrassingly Parallel Minima Hopping

The number of force evaluations required by the Minima Hopping method depends strongly
on the chosen seed for the random number generator. An obvious way to parallelize the
method is therefore the launch of multiple independent workers with different seeds. All
workers are terminated as soon as one of them finds the global minimum. A scheme like this,
in which no communication between the parallel tasks is required, is called embarrassingly
parallel.

When tasks are independent, the performance of the parallel run can be derived from the per-
formance of the serial run: Let F (k) denote the CDF used to describe the serial performance
in terms of force evaluations as shown on the left side of Figure 7.2. It gives the probability
of a serial run to finish after a given number of force evaluations k. The probability of a serial
run to not finish after k force evaluations is therefore given by 1 − F (k). The parallel run
will continue to run until one of its n workers has found the global minimum. Hence, the
probability for the parallel run to not finish after a total of k force evaluations is given by
[1− F (k/n)]n. Finally, the probability of a parallel run with n workers to finish after a total
of k force evaluations is given by:

Fn(k) = 1−
[
1− F

(
k

n

)]n
. (7.1)

When the number of workers n is increased, two opposing effects occur: On one hand, the
term

[
1− F

(
k
n

)]n
will quickly decay to zero when F (k/n) becomes larger than zero. This

reflects that with more workers there is a higher chance that one of them will finish quickly.
On the other hand, the CDF of the serial runs enters in a stretched form as the term F (k/n).
This reflects that until one worker finishes all the other workers perform force evaluations as
well. As a result the shape of Fn is determined by the shape of F (k) for very small values
of k.

In order to obtain a thorough sampling of the onset of F (k) a set of 10.000 serial runs
is performed. Runs that have not finished after 1000 escape attempts are aborted. This is
roughly equivalent to 0.6 M force evaluations. From this the CDF for k ≤ 5.5·105 is calculated
as shown on the left side of Figure 7.4. This CDF is then fitted with a polynomial function of
degree 10. Based on this fit the CDFs for parallel runs are calculated using (7.1) and shown
on the right side of Figure 7.4. The calculated CDFs for the parallel runs show clearly that
the number of required force evaluations increases with an increasing number of workers.

The same analysis is performed for the wall time and shown in Figure 7.5. The CDF of the
wall time for the parallel case is calculated using the following formula:

Fn(t) = 1− [1− F (t)]n . (7.2)
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Figure 7.4: left: Thorough sampling of the onset of the CDF of the num-
ber of force evaluations for the serial Minima Hopping using 10.000 inde-
pendent runs. right: Comparison of calculated CDFs for embarrassingly
parallel runs with different number of workers.
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Comparison of calculated CDFs for embarrassingly parallel runs with dif-
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In comparison to (7.1), the CDF of the serial run F (t) enters into Fn(t) unstreched. As a
result Fn(t) converges for an increasing number of workers n towards a step-function around
t = 0.2 min. This is the time the fastest of the 10.000 serial runs took to finish. In order
to accommodate for the large range of different wall times, log-scaling is used for these axes.
Some of the curves in Figure 7.4 and 7.5 do not reach 100%, because the sampling of F (k)
and F (t) was limited to only 1000 escape attempts.

7.4 Shared History Minima Hopping

Schönborn et al. suggest to parallelize the Minima Hopping scheme by letting the workers
share their histories of visited minima. The idea is that due to the feedback mechanism and
the common history an overlap of search area will be penalized [40].

The possibility to let the Minima Hopping workers share a common history is also imple-
mented in CP2K. In order to investigate the performance of this scheme its CDFs for different
number of workers are measured. Each CDF is based on a set of 500 runs. The number of
workers is chosen as 2m−1. Together with the master process this results in powers of two for
the number of processors, which is favorable for batch processing. The CDFs obtained from
the runs with history sharing are shown in Figure 7.6. The distributions show that the per-
formance of the history sharing scheme is very similar to the performance of the embarrassing
parallelization. For example, both schemes require between 2 and 3 M force evalutations to
reach 80% finnished runs with 7-31 workers. With 127 workers both schemes require slightly
more than 4 M force evalutations to reach 80%.

7.5 Minima Crawling

The Minima Crawling method is a novel scheme, which was developed as part of this thesis.
Its aim is to achieve a better parallel performance than the Minima Hopping scheme, while
retaining its successful key ideas. The performance of the Minima Crawling scheme is mea-
sured in the same way as the Minima Hopping scheme. Again, sets of 500 runs using 7, 15,
31, 63, and 127 workers are used.

The obtained CDFs are shown in Figure 7.7. Compared to the Minima Hopping scheme, the
distributions of the Minima Crawling scheme show better performance. Especially, the tails
of the CDFs are shorter, which can also be seen from the fact that basically all runs finish
after 6 M force evaluations.

For smaller numbers of workers the Minima Crawling scheme makes slower progress in the
beginning of the optimization than the Minima Hopping scheme. A reason for this might be
that the parameters used for the benchmarks were tuned for a large number of workers. For
example, using a maximum of three active worker per minimum might be too much if the
optimization is run with only seven workers.
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Figure 7.6: CDF of the force evaluations and wall time required to find the
global minimum using the Minima Hopping scheme with history sharing
and different numbers of workers. Each curve is based on 500 independent
runs.
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global minimum using the Minima Crawling scheme and different numbers
of workers. Each curve is based on 500 independent runs.
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7 Benchmarks

7.6 Comparison of Parallel Performance

In order to obtain a quantitative comparison of the three parallelization schemes the 90%
quartiles of their CDFs are calculated and shown in Figure 7.8. For the embarrassing paral-
lelization the analytic model allows to create smooth curves, while for the other two schemes
the data points for 7, 15, 31, 63, and 127 workers are shown.
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Figure 7.8: Comparison of performance, costs and wall time for the different
parallelization methods based on the 90% quartiles of the CDFs.

The left plot of Figure 7.8 shows the number of force evaluations needed to reach the 90%
quartile. The serial Minima Hopping run requires 3.2 M force evaluations to reach this quar-
tile. For the embarrassing parallelization of Minima Hopping the curve quickly climbs to
3.8 M evaluations for 7 worker and 4.1 M evaluations for 13 workers. Afterward, it drops back
down to 3.6 M evaluations for 40 workers. This local minimum of the curve originates from
the slightly steeper increase in the CDF of the serial run below 5%, as shown in Figure 7.4.
As the number of workers increases this early onset of the CDF becomes predominant and the
optimization progresses quicker. For more than 40 workers the performance improvements are
diminishing. The curve increases linearly with a slop of 0.02 M force evaluations per worker.
This means that the fastest worker finds the global minimum after 0.02 M force evaluations
and the additional workers waste force evaluations while they ”wait” for this.

The performance of the Minima Hopping scheme with shared history is very similar to its
embarrassing parallelization. For most data points the history sharing has slightly better
performance than the independent workers, but for 63 workers it requires 0.6 M evaluations
more. Therefore, the history sharing scheme seems to give no significant advantage over the
embarrassing parallelization.

The Minima Crawling scheme shows a consistently better performance than the Minima
Hopping scheme. It requires only 2.8 M force evaluations with 7 workers to reach the 90%
quartile. This is one million less than the Minima Hopping scheme requires. As the number of
workers increases the Minima Crawling also requires more force evaluations. For 127 workers
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7.6 Comparison of Parallel Performance

the scheme needs 4.1 M evaluations, while the embarrassing parallelization of Minima Hopping
requires 5.2 M. The curve’s increase for Minima Crawling is not as steep as for the Minima
Hopping scheme, which suggests that its performance will remain superior even for higher
numbers of workers.

The right plot of Figure 7.8 shows the wall time required to reach the 90% quartile. It shows
that the parallelization with only 7 workers already leads to a significant reduction of the
wall time from 41.6 minutes for the serial run down to 5.3 minutes for the Minima Crawling
scheme. The embarrassingly parallel Minima Hopping with 7 workers requires 7 minutes to
reach the quartile. As the number of workers increases the wall time decreases further, but
the differences between the schemes become negligible. With 127 workers the wall times of all
schemes has basically converged onto 30 seconds, which is again the time the quickest worker
needs to finish.

The middle plot of Figure 7.8 shows the CPU time required to reach the 90% quartile. CPU
time is the product of the wall time and the number of utilized processors. It is a realistic
measure for the actual cost of the calculation. The serial run requires 41.6 minutes of CPU
time to reach the quartile using one processor. The Minima Crawling scheme with 7 worker
uses 8 processors and reaches the quartile after 42.3 CPU minutes. Hence, the Minima
Crawling with 7 workers offers an almost eight-fold speedup in time to solution, at basically
no additional cost.

It should be stressed that all the previous observations were made in the context of the
Lennard-Jones 38 cluster. For a more complex system it might take considerably more steps to
finish a run, even for the quick workers. The performance of the embarrassing parallelization
is very sensitive to the onset of the serial CDF. It can therefore be anticipated that different
molecular systems might favor different strategies. An in-depth study of this is beyond the
scope of this thesis.
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8 Summary

In this thesis the CP2K software package was extended with the functionality for performing
global geometry optimization. Most of this functionality is provided by the novel swarm-
framework. The framework follows a master/worker software architecture, which is very
suitable for global optimization algorithms.

Based on the swarm-framework the Minima Hopping method, which was introduced by Stefan
Goedecker, was implemented [6]. Two parallelization schemes for Minima Hopping were
implemented: An embarrassing parallelization using multiple independent workers and a
scheme based on a shared history as proposed by Schönborn et al. [40].

Furthermore, a new optimization scheme, called Minima Crawling, was developed and imple-
mented as part of this thesis. The aim was to to make better use of the collective information
that the central master process obtains from all its workers, while retaining the successful
key ideas of Minima Hopping.

Afterward, the different methods were compared using the established benchmark system of a
Lennard-Jones cluster with 38 particles. The benchmarks showed that already a small number
of workers leads to a significant reduction of the run time for all schemes. Furthermore, the
Minima Crawling indeed delivers better performance than the parallelized Minima Hopping
scheme. With 7 workers the Minima Crawling offers an almost eight-fold speedup in time to
solution at virtually no additional cost, compared to the serial Minima Hopping algorithm.

The swarm-framework greatly simplifies the implementation of global optimization algorithms
in CP2K. For example, the implementation of the Minima Hopping scheme consists of less
than 300 lines of Fortran code. The hope is that the swarm-framework lays the foundation
for the development and implementation of more and improved optimization algorithms in
the future.

A major part of the work for this thesis was devoted to programming. While a simple stand-
alone implementation would presumably have taken only a few weeks to finish, the integration
into CP2K has proven to be far more challenging. Nevertheless, the code was accepted into
the official CP2K svn-repository on the 26th of November 2013 as revision 13355. It is now
publicly available at sourceforge.net. Soon the new features will also become available in
popular Linux distributions such as Debian and Fedora, when the next release version of
CP2K is packaged.
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möglich gewesen neben der Physik auch die faszinierende Welt der Informatik zu ergründen.





Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
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