
Enabling DFT Simulations of Large

Metallic Systems by Integrating the

PEXSI Method into CP2K

Patrick Seewald

Master Thesis

Conducted in the group of Prof. Dr. Joost VandeVondele

Co-supervised by Mohammad Hossein Bani-Hashemian

ETH Zurich, Department of Materials

September 2014 - March 2015

Abstract

The pole expansion and selected inversion (PEXSI) method, accessible as a soft-

ware library, was made available for use within the general purpose atomistic

simulation package CP2K. The hope was to enable efficient large-scale simula-

tions of metallic systems for which the diagonalisation approach to solve the

Kohn-Sham equations is the limiting factor in an electronic structure calcula-

tion. PEXSI is a finite temperature approach to solve the Kohn-Sham equations

in an orbital-free formalism and can fully replace the diagonalisation step. It

can be efficiently parallelised and has a computational cost that scales at most

quadratically with respect to the system size. The CP2K-PEXSI implementa-

tion was carefully tested in terms of accuracy and efficiency. Benchmarks were

performed to compare PEXSI with the linear scaling implementation of CP2K

for insulating systems, and with standard diagonalisation for metallic systems.

We found that PEXSI is consistently faster than standard diagonalisation for

quasi-2D systems if a large-scale parallelisation is applied (often more than 1000

processors are required). The minimal system size and the required number of

processors at which PEXSI becomes more efficient than diagonalisation depend

on the sparsity and the dimensionality of a system. For condensed 3D bulk

systems we found that in the current implementation, CP2K-PEXSI is not sig-

nificantly more efficient than diagonalisation even for an optimal parallelisation

and large system sizes. On the CP2K side, the performance of PEXSI could

possibly be improved by a more accurate distance screening criterion to more

selectively tune the sparsity of the overlap matrix.

Contents

1 Introduction 1

2 Theory 3

2.1 Kohn-Sham density functional theory 3

2.2 Methods to solve the Kohn-Sham equations 5

2.2.1 Traditional diagonalisation approach 6

2.2.2 Direct evaluation of the density matrix 7

2.2.3 Linear scaling algorithms 8

2.2.4 Pole expansion and selected inversion 8

2.3 Self-consistent solution . 10

2.4 Molecular dynamics . 10

2.5 CP2K / Quickstep . 11

2.5.1 Basis functions . 12

2.5.2 Pseudopotentials . 12

2.5.3 Dual representation of the electronic density 12

2.6 The PEXSI library . 13

2.6.1 Finding the correct chemical potential 14

2.6.2 DFT solver . 14

2.6.3 Parallelisation Scheme . 15

2.6.4 LU factorisation . 16

2.7 Storage layouts for sparse matrices 16

2.7.1 Compressed Sparse Row (CSR) format 17

2.7.2 Block-Compressed Sparse Row (BCSR) format of CP2K . 17

3 Integration of PEXSI into CP2K 20

3.1 Overview . 20

3.2 Matrix format conversion . 20

3.2.1 Row-wise redistribution 21

3.2.2 Local conversion between BCSR and CSR matrix format 23

i

CONTENTS ii

3.2.3 Implementation . 24

3.3 Matrix sparsity and distance screening 26

3.3.1 Sparsity in CP2K . 27

3.3.2 Extending distance screening to CSR matrices 28

3.4 CP2K-PEXSI interface . 29

4 Introduction to CP2K-PEXSI 32

4.1 Input . 32

4.2 Efficiency and accuracy . 34

4.2.1 Distance screening . 34

4.2.2 Parallelisation . 35

4.2.3 Insulating system . 36

4.2.4 Metallic system . 37

4.2.5 Molecular dynamics . 37

5 Comparison of PEXSI with other CP2K SCF methods 40

5.1 Systems and parameters . 41

5.2 Parallel scalability . 44

5.3 Scaling with system size . 46

5.3.1 Bulk liquid water . 46

5.3.2 Quasi-2D systems . 46

5.3.3 Condensed bulk systems 48

6 Discussion and Conclusion 50

Chapter 1

Introduction

A key ingredient for realistic simulations of material properties of interest in

chemistry, physics, material science and biology is an accurate description of the

electronic structure of the system. Due to the inherent quantum nature of elec-

trons, this step involves solving the electronic Schrödinger equation. For larger

systems containing hundreds or more atoms, Kohn-Sham density functional the-

ory (KS DFT) is the only available approximative method that is feasible and

at the same time sufficiently accurate for a wide range of applications.

The computational cost of traditional algorithms for solving KS DFT scales

cubically with respect to the system size. These algorithms are thus not able to

handle larger systems containing thousands of atoms, even on the most powerful

computers. The cubically scaling steps that dominate the computational cost

for large systems are solving the Kohn-Sham equations by diagonalisation and

the orthogonalisation of the wave functions [1].

Efficient algorithms solving KS DFT with a computational cost scaling lin-

early with the system size have been developed and implemented, enabling

simulations of systems containing millions of atoms [2]. One restriction of lin-

ear scaling algorithms is that they rely on the nearsightedness principle, ensuring

a sparse density matrix. Consequently, they can treat insulating systems only,

i.e. systems with a sufficiently large band gap. For metallic systems without a

gap, efficient alternatives to the diagonalisation of the Kohn-Sham matrix are

rare.

Recently, an approach based on a pole expansion of the Fermi-Dirac function

combined with selected inversion (PEXSI) has been proposed as an alternative

to diagonalisation [3]. The advantage of this method over linear scaling is that it

is based on the finite temperature Fermi-Dirac function and does not assume a

sparse density matrix. Consequently, PEXSI is expected to perform equally well

1

CHAPTER 1. INTRODUCTION 2

for insulating as for metallic systems. Compared with standard diagonalisation,

the PEXSI approach has a favourable parallel scalability and scales at most

quadratically with respect to the system size.

This work is concerned with the integration of the PEXSI method, available

as a library, into the atomistic simulation package CP2K. Besides the practical

benefit of making PEXSI available for general-purpose electronic structure cal-

culations with CP2K, such an integration allows for a direct comparison with

the methods already implemented in CP2K. Based on such a comparison, the

potential strengths and limitations of the PEXSI method for applications can

be discussed.

This Master thesis is organized as follows: First, Kohn-Sham density func-

tional theory is introduced, followed by a description of algorithms and their

implementation in software packages, focusing on CP2K and PEXSI (Chapter 2).

The integration of PEXSI into CP2K is described (Chapter 3), discussing con-

ceptual aspects and giving an overview over the current state of implementation.

An introduction to CP2K-PEXSI is given (Chapter 4) with a description of all

relevant input parameters that need to be considered for a CP2K-PEXSI calcu-

lation. Recommendations on how to optimally set up a calculation are backed

up with experiments testing the accuracy and efficiency of CP2K-PEXSI. A

comparison of PEXSI with the other SCF methods (linear scaling and diag-

onalization) implemented in CP2K follows, considering the parallel scalability

and the computation time in dependence of the system size for metallic and

insulating quasi-2D and 3D bulk systems (Chapter 5). Chapter 6 summarises

the obtained results, discusses strengths and limitations of the CP2K-PEXSI

approach for applications and points out possible future development.

Chapter 2

Theory

2.1 Kohn-Sham density functional theory

Kohn-Sham density functional theory (DFT) is the most commonly applied

electronic structure approach for systems of interest in chemistry and mate-

rial science. This method is applicable to large systems while still being able

to deal with the quantum nature of these systems. In the following, the fi-

nite temperature formulation of Kohn-Sham density functional theory is briefly

discussed.

For most applications, the nuclei of atoms can be treated classically and can

be held fixed for the electronic structure problem (known as Born-Oppenheimer

approximation). The goal is then to solve the electronic Schrödinger equation

which is a differential equation in a 3Ne dimensional Hilbert space, where Ne

is the total number of electrons with coordinates {ri}:

Ĥ(r1, r2, . . . , rNe)Ψ(r1, r2, . . . , rNe) = EΨ(r1, r2, . . . , rNe). (2.1)

Here, E is the total energy and Ĥ is the Hamiltonian of the electronic system

which has the form

Ĥ =
Ne∑
i=1

(
−1

2
∇2 + V (ri)

)
+

Ne∑
i<j

1

ri − rj
. (2.2)

The term V (ri) is the Coulomb energy including electron i and all nuclei.

Due to the exponential scaling of the dimension of the Hilbert space with the

number of electrons, direct numerical methods to solve this equation become

very expensive and for realistic systems containing many atoms, approximations

that reduce the degrees of freedom of the electronic system are necessary.

3

CHAPTER 2. THEORY 4

The main idea of DFT is to express all observables as functionals of the

electronic density ρ(r) instead of the wave function Ψ(r1, r2, . . . , rNe). The

theoretical basis for such a reformulation is given by two theorems by Hohenberg

and Kohn [4], leading to the Kohn-Sham formulation of DFT [5].

The first theorem states that the ground state of a system is uniquely specified

by the ground state electronic density ρ(r) and, therefore, the ground state

energy is a functional of the density

E0 = E[ρ] =

∫
d3rV (r)ρ(r) + F [ρ], (2.3)

where the Hohenberg-Kohn functional F is not known analytically. The sec-

ond Hohenberg-Kohn theorem proves that the ground state can be found by

minimising E[ρ] with respect to ρ.

The Hohenberg-Kohn theorems were extended by Mermin to finite electronic

temperatures T > 0 [6]. His treatment implies that for finite temperatures and

fixed number of particles, the proper variational functional is the Helmholtz free

energy [7, 8]

F [ρ] = E[ρ]− TS[ρ]. (2.4)

Despite the strict validity of both Hohenberg-Kohn theorems, DFT is an ap-

proximative method as approximations have to be introduced for the unknown

Hohenberg-Kohn functional F [ρ]. The Hohenberg-Kohn functional can be writ-

ten as a sum of known and unknown contributions F [ρ] = Eh[ρ] + T [ρ] +Exc[ρ]

with the following terms: the known classical expression for the Coulomb in-

teraction Eh[ρ] (Hartree term), the unknown kinetic energy term T [ρ] and

the unknown exchange and correlation term Exc[ρ] which can be considered a

quantum-mechanical correction to the Hartree term.

In Kohn-Sham DFT, the kinetic energy term is approximated by the kinetic

energy of a system of non-interacting electrons with the same ground state

density. From this, the Kohn-Sham equations can be derived as an effective

single-electron Schrödinger equations

H[ρ(r)]Ψi(r)) = εiΨi(r). (2.5)

Here, H is the Kohn-Sham Hamiltonian given by

H[ρ(r)] = −1/2∇2 + V (r) + Vh(r) + Vxc(r), (2.6)

CHAPTER 2. THEORY 5

containing the following potential energy terms: the electron-nuclei Coulomb

interaction V (r), the Coulomb interaction Vh(r) between one electron and the

density ρ(r′), and the exchange-correlation potential Vxc(r) which is derived

from Exc[ρ].

For the exchange-correlation potential Vxc(r) approximations exist such as

generalised gradient approximations (GGA) and meta-GGAs. The former pa-

rameterises Exc[ρ] in dependence of ρ and ∇ρ, while the latter additionally

includes derivatives of higher order and the kinetic energy density.

Within this framework, the electron density ρ(r) can be derived from the

distribution of the (fictitious non-interacting) electrons over Kohn-Sham orbitals

ρ(r) =
∑
i

|Ψi(r)|2fi. (2.7)

The fractional occupation numbers fi are given by the Fermi-Dirac distribution

fi = fβ(εi − µ) =
2

1 + eβ(εi−µ)
(2.8)

with the inverse temperature β = 1/(kBT). The entropy S in the Helmholtz

free energy (2.4) takes the form

S = −2kB

∑
i

(f̃i log f̃i + (1− f̃i) log(1− f̃i)), (2.9)

where we abbreviated f̃i = fi/2.

In the standard approach, the Kohn-Sham equations Eq. (2.5) are solved by

finding for given potential terms the eigenfunctions Ψi(r), i = 1, . . . , Ne with

eigenvalues εi. The solution to the full DFT problem has to consider that

the Kohn-Sham Hamiltonian depends on the same electronic density that is

a solution to the Kohn-Sham equations. This requires the self-consistent field

(SCF) method that, starting from an initial guess for the Kohn-Sham matrix,

iteratively solves the Kohn-Sham equations by updating the Kohn-Sham matrix

with the density from previous iterations until convergence is achieved.

2.2 Methods to solve the Kohn-Sham equations

For solving the Kohn-Sham equations Eq. (2.5) numerically, the problem must

be discretised first, usually done so by expanding the Kohn-Sham orbitals Ψi(r)

CHAPTER 2. THEORY 6

into a linear combination of a finite number of basis functions ϕi(r)

Ψi(r) =
N∑
j=1

cijϕj(r). (2.10)

The truncation of this expansion to a finite, preferably small number of basis

functions is only accurate if the shape of the basis functions can well reproduce

the properties of the wave function. A good approximation is obtained by

choosing basis functions that resemble local atomic orbitals, e.g. Gaussian type

orbitals centered at the atomic positions.

Inserting the expansion Eq. (2.10) into the Kohn-Sham equations Eq. (2.5)

leads to a generalised eigenvalue problem

Hc = Scε. (2.11)

Here, H is the Kohn-Sham matrix with entries Hij = 〈ϕi|Ĥ|ϕj〉, S is the overlap

matrix Sij = 〈ϕi|ϕj〉 and εij = εiδij. The form of H and S depends on the

chosen basis set. For orthogonal basis functions, S is the identity matrix and the

problem reduces to an ordinary eigenvalue problem. Localised basis functions

are not orthogonal. An advantage of localised basis functions is however that

both S and H are sparse for systems containing many atoms. This is because

the contribution of a pair of functions that is separated by a sufficiently large

distance can be neglected.

The sparsity of H and S is exploited by fast algorithms that operate on non-

negligible matrix elements only. These approaches are necessary to enable DFT

calculations on large systems for which traditional diagonalisation algorithms

working on full matrices come to a limit. Two methods making use of matrix

sparsity will be discussed and compared in this work: linear scaling SCF as it is

currently implemented in the program package CP2K and the Pole EXpansion

and Selected Inversion (PEXSI) method.

2.2.1 Traditional diagonalisation approach

The first step of solving the SCF equations by diagonalisation is a transformation

from the generalised eigenvalue problem Eq. (2.11) to an ordinary eigenvalue

problem H ′c′ = c′ε. This can be done by applying a transformation matrix U

with S = UTU (Cholesky decomposition) or, alternatively, U = S
1
2 (symmetric

orthogonalisation). The explicit terms in the ordinary eigenvalue problem are

CHAPTER 2. THEORY 7

then given by H ′ = (UT)−1HU−1 and c′ = Uc.

The eigenvalue problem needs to be solved partially for the lowest eigenvalues

and eigenvectors corresponding to occupied Kohn-Sham orbitals. The solution

of the standard eigenvalue problem is the most expensive step and scales with

O(N3
e). A standard implementation is provided by ScaLAPACK [9].

2.2.2 Direct evaluation of the density matrix

Alternative approaches avoid diagonalisation of the Kohn-Sham matrix by direct

evaluation of the density matrix as a matrix function of the Kohn-Sham matrix

H . The density ρ(r) is the diagonal ρ(r) = P (r, r) of the real space density

matrix given by

P (r, r′) =
∑
i

ψi(r)fβ(εi − µ)ψ∗i (r
′) =

∑
jk

ϕj(r)Pjkϕ
∗
k(r
′). (2.12)

The second equality introduces the density matrix P in basis representation

with entries

Pjk =
∑
i

cjifβ(εi − µ)cik. (2.13)

The matrix function establishing the link between the sought density matrix P

and the given matrices H and S can be derived as

P = fβ(S−1H − µI)S−1. (2.14)

Some methods evaluate the density matrix for zero temperature, in this case

fβ(ε− µ) = 2Θ(ε− µ) and

Pjk = 2
Ne∑
i=1

cjicik, (2.15)

P = 2Θ(S−1H − µI)S−1, (2.16)

where Θ is the Heaviside step function. For fixed number of electrons, the

chemical potential µ is determined by the trace conservation relation

Tr[P (x, x′)] = Tr[PS] = Ne. (2.17)

CHAPTER 2. THEORY 8

2.2.3 Linear scaling algorithms

Instead of performing diagonalisation, the expression (2.16) can be used to

compute the zero temperature density matrix as a matrix function of the Kohn-

Sham matrix. This can be achieved by expanding the density matrix in a

polynomial P of the Kohn-Sham matrix, P = P(H). In this case, the most

important operation is matrix-matrix multiplication which can be efficiently

implemented for sparse matrices.

Many linear scaling algorithms use an iterative approach, in which the density

matrix P is obtained by reiterating a polynomial expansion of the Kohn-Sham

matrix. These algorithms differ in their choice of the polynomial P , McWeeny

purification [10] for example uses P(Xn) = 3X2
n − 2X3

n, starting from X0 =

α(H−µS)+βS (for some scalars α, β), converging to the step function (2.16).

More advanced methods use polynomials with better convergence properties in

combination with a correction to guarantee trace conservation (trace resetting

purification [11]).

Linear scaling algorithms rely on a sparse representation of the matrices S,H

and P such that the number of non-zero elements grows linearly with the system

size. The sparsity of H and S is ensured by localised basis functions. The

sparsity of P additionally requires the validity of the nearsightedness principle.

The nearsightedness principle states that the density matrix P (r, r′) ap-

proaches zero if r and r′ are sufficiently apart [1,12–14]. For insulating systems,

the decay of P (r, r′) is exponential in |r − r′|. This decay property leads to

a sparse P , as long as a localised and well-conditioned set of basis functions

is applied [15]. For metallic systems at zero temperature, the density matrix

decays only algebraically (with 1/|r − r′|k for some k). Linear scaling DFT is

thus only applicable to insulating systems with a sufficiently large band gap.

2.2.4 Pole expansion and selected inversion

The pole expansion and selected inversion (PEXSI [3]) approach combines a

Fermi operator expansion method with a method to calculate selected elements of

a matrix inverse to efficiently evaluate selected elements of the finite temperature

density matrix Eq. (2.14). This approach relies on the observation that not all

entries of the density matrix are required. In fact, in the evaluation of the real

space density

ρ(r) =
∑
ij

ϕi(r)Pijϕj(r), (2.18)

CHAPTER 2. THEORY 9

only terms with indices (i, j) give a contribution for which ϕi(r)ϕj(r) 6= 0. The

advantage of a method imposing such a sparsity pattern on P lies in the fact

that it can also efficiently treat systems where P is not sparse by value, e.g.

metallic systems without a band gap. While linear scaling algorithms rely on

the decay property of the density matrix, this approach does not depend on

any physical properties but only on the locality of the basis functions.

Pole Expansion

The first step of the PEXSI method is to represent the finite temperature

Fermi-Dirac function by a linear combination of functions that can be efficiently

evaluated for matrices. The Pole expansion of the Fermi-Dirac function in the

complex plane has the analytical form [16]

fβ(ε− µ) ≈ Im
P∑
l=1

ωρl
ε− (zl + µ)

. (2.19)

The complex weights ωρl and poles zl are computed from analytical expressions.

The number of required poles is proportional to log(β∆E), where ∆E is the

difference between the largest and the smallest Kohn-Sham eigenvalue εi.

Provided this expansion for the density matrix (2.14), the remaining task is

to evaluate selected elements {(H − (zl + µ)S)−1}ij for which ϕi(r)ϕj(r) 6= 0,

for all poles l.

Selected Inversion

Selected inversion [17–20] is the key to the favorable scaling of PEXSI compared

to traditional O(N3
e) approaches. The algorithm applied to a sparse symmetric

matrix A starts with an LDLT factorisation of A, with L a block lower

diagonal matrix called the Cholesky factor, and D a block diagonal matrix.

Then all elements A−1
ij are calculated for which Lij 6= 0. If A = H − zS, the

non-zero elements of H and S are a subset of the non-zero elements of L. The

selected inversion dominates the computational scaling of the PEXSI method.

Its scaling is proportional to the number of non-zero elements in the Cholesky

factor L and can be shown to be O(N2
e) for bulk 3D systems, O(N

3/2
e) for

quasi-2D system and O(Ne) for quasi-1D systems [17].

CHAPTER 2. THEORY 10

2.3 Self-consistent solution

The solution of the Kohn-Sham equations must be self-consistent in the sense

that the solution ρout(r) must be equal to the input density ρin(r) that was used

to express the Kohn-Sham matrix H [ρ(r)]. Such a solution can be achieved

by reiterating the solution of the Kohn-Sham equations until convergence is

achieved. The convergence towards the fixed point of ρ(r) is however not

guaranteed. A common problem is that oscillations in the density over sub-

sequent SCF steps prevent convergence. Depending on the system, different

mixing schemes have to be applied in order to damp oscillations and accelerate

convergence.

Linear mixing adds a constant fraction of the output density ρout to the input

density ρin

ρin
n+1 = (1− α)ρin

n + αρout
n , 0 < α ≤ 1. (2.20)

Alternatively, the mixing can also be applied on the level of the Kohn-Sham

matrix instead of the density. Linear mixing is the most simple approach

but is not stable for all systems. Metallic systems show a more problematic

convergence behaviour and a more sophisticated method needs to be applied.

Broyden mixing [21–23] is a quasi-Newton-Raphson method to minimise the

residual Rn = ρoutn −ρinn . This is done by approximating the Jacobian J = ∂R/∂ρ

from the residual and the density of previous SCF iterations. The input density

is then set according to Newton’s method to

ρin
n+1 = ρout

n − J−1
n Rn, (2.21)

with Jn the approximation to J in the nth SCF iteration.

2.4 Molecular dynamics

Ab initio molecular dynamics (MD) simulates the motion of the nuclei exploit-

ing the Born-Oppenheimer approximation in which the nuclei are considered

as classical particles in a potential given by the electronic energy. In Born-

Oppenheimer molecular dynamics [24], the equations of motion for an atom A

are simply

MAR̈A(t) = −∇AE({RI}), (2.22)

where MA and RA are the mass and the coordinates of atom A, respectively.

E({RI}) is the electronic energy parametrically dependent on the coordinates

CHAPTER 2. THEORY 11

RI of all atoms I.

These equations allow for a rather convenient separation of the electronic

structure calculation and the propagation of the nuclei. For fixed atomic posi-

tions, the electronic energy is calculated by a sufficiently converged SCF cycle.

This energy is then used to propagate the nuclei by a small time step (using

for instance the Verlet algorithm), followed again by an update of the electronic

energy.

For finite temperatures, the forces are more conveniently calculated by the

gradient with respect to the Mermin free energy F

MAR̈A(t) = −∇AF({RI}). (2.23)

It can be shown that this gives the same forces as Eq. (2.22) but with the

advantage that F({RI}) is stationary with respect to variation in the occupation

numbers [7,8]. From this the following expression for the forces can be derived

[3, 25–27]

−∇AF({RI}) = −Tr [P∇AH] + Tr
[
P E∇AS

]
, (2.24)

where P E is the energy weighted density matrix

PE
jk =

∑
i

cjiεifβ(εi − µ)cik. (2.25)

2.5 CP2K / Quickstep

Quickstep [25, 28], the DFT module of CP2K, implements the Gaussian and

plane waves (GPW) method [29, 30]. This approach combines the advantages

of two representations of the density in terms of Gaussians and plane waves.

The benefits of plane waves are that the calculation of Hartree potential is

simple and Fast Fourier Transform (FFT) can be applied to efficiently convert

between real and reciprocal space representation of the electronic density. On

the other hand, the electronic density has the strongest variations in the vicinity

of the atomic ions. Less basis functions are required to accurately solve the

Kohn-Sham equations if a localised set of functions resembling atomic orbitals

is used instead of plane waves. The other advantage of local atomic functions is

that the overlap matrix and the Kohn-Sham Matrix are represented by sparse

matrices (for sufficiently large systems).

Quickstep provides an up-to-date implementation of linear scaling SCF meth-

ods. These methods particularly benefit from the DBCSR sparse matrix-matrix

CHAPTER 2. THEORY 12

multiplication (see section 2.7.2). The linear scaling implementation is efficient

even for large 3D bulk systems containing up to millions of atoms [2].

2.5.1 Basis functions

The basis functions ϕi(r) employed to express the Kohn-Sham equations in

matrix form are given in Quickstep as spherically contracted Gaussian functions

[31, 32]. A basis function is a product of a spherical harmonic (representing

the angular part of an atomic orbital) with a radial part given by a linear

combination of Gaussians

ϕi(r) = Y li
mi

(θ, φ)rli
∑
j

cij exp(−αjr2). (2.26)

The advantage of Gaussians over more accurate representations of atomic or-

bitals (Slater-type orbitals) is that matrix elements 〈ϕi|Ô|ϕj〉 can be expressed

analytically. All real space integrals needed for the calculation of the total en-

ergy, the Kohn-Sham matrix and the forces on the ions can thus be efficiently

evaluated from analytical expressions.

2.5.2 Pseudopotentials

In the Gaussian and plane wave approach, the DFT problem is only solved

for the valence electrons, assuming that the core electrons are well localised

at the atomic nuclei. Their contribution to the total energy is described by a

pseudopotential that is considered instead of the electron-nuclei Coulomb poten-

tial term of all-electron calculations. Quickstep provides the pseudopotentials

of Goedecker, Teter and Hutter (GTH pseudopotentials [33, 34]) that are sep-

arated in a one-electron term (local part) and a two-electron term (nonlocal

part) V PP(r, r′) = V PP
loc (r) + V PP

nl (r, r′).

2.5.3 Dual representation of the electronic density

The real space representation of the density in terms of atomic orbitals ϕi(r)

is given by equation (2.12) and can be written as

ρ(r) =
∑
ij

Pijϕi(r)ϕj(r). (2.27)

CHAPTER 2. THEORY 13

In the plane wave representation, the density is expressed as

ρ(r) =
1

Ω

∑
G

ρ̃(G) exp(iG · r), (2.28)

where Ω is the volume of the unit cell and G are vectors in reciprocal space.

Conversion between the two representations is achieved by expressing Gaussians

numerically on a real space grid and Fast Fourier Transform.

In Kohn-Sham DFT, the electronic energy is given as a functional of the

electronic density,

E[ρ] = T [ρ] + EV[ρ] + Eh[ρ] + Exc[ρ], (2.29)

and in the GPW approach, these terms take the following form:

• the electronic kinetic energy

T [ρ] =
∑
ij

Pij〈ϕi(r)| − 1

2
∇2|ϕj(r)〉, (2.30)

• the energy of the interaction between ionic cores (including inner-shell

electrons) and valence electrons

EV[ρ] =
∑
ij

Pij
(
〈ϕi(r)|V PP

loc (r)|ϕj(r)〉+ 〈ϕi(r)|V PP
nl (r, r′)|ϕj(r′)〉

)
,

(2.31)

• and the energy of the classical interaction between valence electrons (Hartree

energy)

Eh[ρ] = 2πΩ
∑
G

ρ̃∗(G)ρ̃(G)

G2
. (2.32)

For the exchange-correlation functional Exc[ρ] several approximate functionals

based on generalised gradient approximations (GGA) and meta-GGA are im-

plemented.

2.6 The PEXSI library

A general description of the PEXSI method has been given in section 2.6, here

we mention some algorithmic and implementational details that are of interest

for our application of PEXSI.

CHAPTER 2. THEORY 14

2.6.1 Finding the correct chemical potential

The density matrix calculation employing the pole expansion Eq. (2.19) requires

the correct chemical potential for which Tr(P [µ]S) = Ne is satisfied. As the

chemical potential is not known beforehand, the PEXSI method has to be

initialised with an initial guess µ0 and reiterated according to Newton’s method

until convergence in the number of electrons Ne(µk) is achieved. To overcome

the problem that Newton’s method may not be robust for a bad initial guess

of the chemical potential and in order to minimise the number of expensive

PEXSI iterations, the PEXSI library provides an inertia counting procedure

that calculates an estimate of the chemical potential.

Inertia counting [35] can best be illustrated for the zero temperature ap-

proximation (β → ∞) of the number of occupied Kohn-Sham orbitals Nβ(µ)

which are the orbitals with eigenvalue below µ. The correct chemical potential

satisfies N∞(µ) = Ne/2 and a good estimate can be obtained by root finding,

given an efficient way to evaluate the function N∞(ε). The number N∞(ε) is

equal to the number of negative eigenvalues of H − εS which can be obtained

by performing an LDLT factorisation of H− εS. According to Sylvester’s law

of inertia, the number of negative entries in the diagonal matrix D is equal to

the number of negative eigenvalues of LDLT .

2.6.2 DFT solver

The PEXSI library provides a full Kohn-Sham DFT solver that computes the

selected elements of the density matrix P for a given matrix pencil (H,S) in

one wrapper routine. The solver takes care of the required steps to solution

(inertia counting and PEXSI Newton iterations) internally. This design makes

full use of the separation between the two algorithmic steps in the SCF method:

1. Calculating the density matrix P from (H,S) by solving Eq. (2.14).

2. Mapping the density matrix to the real space density ρ(x) to calculate

the energy by Eq. (2.4) and the new Kohn-Sham matrix Hij = ∂E/∂Pij.

Step (1) is perfomed by PEXSI while step (2) requires a fully featured DFT

code (as e.g. CP2K) that sets up the matrices H and S, given a choice of basis

functions and an exchange-correlation functional for a specific system. Thanks

to this separation, an interface to the PEXSI library does not need to deal

with the internals of the PEXSI code. Setting a few input options, passing the

CHAPTER 2. THEORY 15

PEXSI IN PEXSI OUT

Parallelisation: Number of proces-
sors per pole, dimension of process
grid

Parameters: Electronic tempera-
ture, number of poles, target accu-
racy in number of electrons, initial
guess for chemical potential

Matrix pencil (H ,S)

Exact number of electrons

Density matrix P

Energy weighted density matrix P E

Entropic energy contribution −TS
Chemical potential µ

Converged number of electrons
Tr(PS)

Figure 2.1: Main input and output of PEXSI.

matrix data to PEXSI, calling the DFT driver and retrieving the results are

all required steps to make full use of PEXSI.

The main input and output of PEXSI is listed in Fig. 2.1. The entropic

energy contribution is needed for the free energy F = E − TS and is given by

Eq. (2.9). Due to the orbital-free framework of the PEXSI method, S can not

be evaluated via the occupation numbers. Instead, PEXSI calculates the free

energy F and the total energy E as matrix functions such that −TS = F −E
can be expressed as [19,36]

−TS = Tr[(P F − P E)S] + µNe, (2.33)

where P E is the energy weighted density matrix defined in Eq. (2.25) and P F

is the free energy density matrix

PF
ik =

∑
i

cjiεif
F
β (εi − µ)cik, (2.34)

with

fF
β (ε− µ) = −2β−1 ln(1 + exp(β(µ− ε))). (2.35)

For a complete description of all parameters and arguments to PEXSI, the

reader is referred to the online documentation of PEXSI [37].

2.6.3 Parallelisation Scheme

PEXSI is parallelised on two levels. The total number of available cores is

split into subgroups where each subgroup performs the selected inversion of one

pole at a time. Depending on the size and sparsity of the matrix, the selected

CHAPTER 2. THEORY 16

inversion scales efficiently to a number of processes per pole npp between 256 and

1024 [20, 37]. According to our experience, for accurate calculations, a typical

number of poles npole = 50 or more is required for approximating the Fermi-

Dirac function. A full parallelisation of PEXSI in which all poles are processed

at once requires a total number of processes nproc = npp · npole. In this case,

the total wall time is roughly the time needed to invert one pole (neglecting

the generally cheap inertia counting and symbolic factorisation). Due to this

two-level parallelism, PEXSI can scale almost perfectly to tens of thousands of

processors.

2.6.4 LU factorisation

The PEXSI library depends on an external factorisation routine. In the cur-

rent implementation, LU factorisation for a general matrix into a product of

a block lower triangular matrix L and a block upper triangular matrix U is

done instead of the LDLT factorisation for symmetric matrices [35]. For the

factorisation PEXSI requires the SuperLU DIST library [38]. Furthermore a

matrix reordering method is needed in order to reduce the number of addi-

tional non-zero elements (fill-in) in the Cholesky factor L. For this step either

ParMETIS [39] or PT-Scotch [40] software packages can be linked in.

2.7 Storage layouts for sparse matrices

Algorithms solving the Kohn-Sham equations by direct evaluation of the Fermi-

Dirac function heavily rely on matrix operations that can make efficient use

of the underlying sparsity of the matrices. Sparse matrices are represented in

special formats such that only the non-zero matrix entries need to be explicitly

stored. The down-side is a more complicated way of accessing matrix data

because there is no direct correspondence between the matrix indices of an

entry and its location in memory. Therefore a set of indices needs to be stored

that map matrix positions to memory locations and vice versa. Distributed

matrix formats store the matrix data on many distributed-memory nodes and

an additional mapping is required that maps a given matrix position to the

process where the matrix entry is stored.

A commonly applied format is the Compressed Sparse Row (CSR) format that

is also used by PEXSI and - in a blocked form - by CP2K. The Compressed

Sparse row (CSR) format and the block-compressed sparse row (BCSR) format

CHAPTER 2. THEORY 17

are described below, the representation of an actual example matrix in the two

formats is depicted in Fig. 2.2. For comprehensibility, the same convention

for the CSR index is used for both formats, slightly different from the CP2K

implementation.

2.7.1 Compressed Sparse Row (CSR) format

The CSR format [41] stores the non-zero elements in a contiguous array nzval.

The entries inside nzval are ordered in a row-wise fashion, i.e. sorted in ascend-

ing order with respect to n · i+ j, where n is the total number of rows, i is the

row index and j is the column index. The index data is stored in two arrays

colind and rowptr: the array colind stores the column index of each element

in nzval. The array rowptr contains a compressed representation of the row

index: it stores the position in nzval of all matrix elements that are first in a

row. This storage layout requires only 2 ·nnz+n+ 1 memory locations instead

of n · m, where nnz is the number of non-zero elements, n is the number of

rows and m is the number of columns.

There exists also the column-wise storage layout - the CSC or Compressed

Sparse Column format - that is formally used by PEXSI. But for symmetric

matrices CSC format and CSR format are equivalent and for this work there

is no need to distinguish between the two.

There are different possible choices for the distribution of sparse matrices

over processors on a distributed memory machine. It is common to map the

matrix rows and matrix columns to a two-dimensional process grid where each

combination of grid rows and grid columns is mapped to a process.

2.7.2 Block-Compressed Sparse Row (BCSR) format of

CP2K

CP2K is provided with its own library for sparse matrix-matrix multiplication

[42]. Matrices are stored in a distributed BCSR format which is the CSR format

referring to matrix blocks instead of single matrix entries. This storage layout

is tailored to matrices of the form as they evolve in Kohn-Sham DFT with

localised basis functions: each blocked row and blocked column is associated

with an atom, containing the contributions from all basis functions centered at

that atom.

Whether a block is zero or not is decided by assigning an interaction radius

to each atom based on the spatial extension of the basis functions centered at

CHAPTER 2. THEORY 18

1 2 3 4

1 0.0 0.7 0.0 1

8.7 0.0 1.5 2

6.3 5.3 6.6 3

2 8.7 0.0 6.2 0.0 5.6 4

3 7.8 2.8 9.9 0.6 0.0 0.0 5

0.0 5.8 0.0 0.0 0.2 4.5 6

1 2 3 4 5 6 7 8 9

nzval 0.7 8.7 1.5 6.3 5.3 6.6 8.7 6.2 5.6 7.8 2.8 9.9 0.6 5.8 0.2 4.5

colind 5 1 6 1 5 6 2 4 6 2 3 4 7 3 8 9

rowptr 1 2 4 7 10 14 17

nzval 0.0 8.7 6.3 0.7 0.0 5.3 0.0 1.5 6.6 8.7 0.0 6.2 0.0 5.6 7.8 . . .

blkptr 1 4 10 13 15 21 27

colind 1 3 2 3 2 4

rowptr 1 3 5 7

BCSR format

CSR format

Figure 2.2: Representation of a sparse matrix in CSR and BCSR format. The
upper panel shows the position of the non-zero elements in the uncompressed
matrix. The row and column indices are labelled at the borders of the matrix -
referring to matrix blocks in BCSR format and to matrix entries in CSR format.
The matrix entries highlighted with a line-pattern are non-zero elements in BCSR
format and the blue-shaded entries are non-zero elements in CSR format. The
CSR non-zero elements form a subset of the BCSR non-zero elements. The
two lower panels represent the same matrix in CSR and BCSR format. The
array nzval stores the matrix entries. The arrays colind and rowptr are the
CSR indices referring to matrix entries (CSR format) and matrix blocks (BCSR
format). For the BCSR format, an additional index array blkptr is required
that stores the position in nzval of the first entry in each block.

CHAPTER 2. THEORY 19

this atom. A block is set to zero if it corresponds to a pair of atoms that

are separated by a distance greater than the sum of their interaction radii.

In order to further improve sparsity, filtering is applied at different stages of

matrix operations. Filtering removes all blocks whose Frobenius norm is below

a given threshold.

On the algorithmic side, the representation of the sparsity in terms of blocks

is favourable because matrix-matrix multiplication can be separated into two

steps: multiplication on the level of the CSR indices in the first step, and

multiplication of the block data in the second step. The first step exploits

the sparsity but is not efficient due to the complicated data access involving

a back-translation of the CSR index to actual row- and column-indices. The

block-wise grouping enhances the efficiency of this step because only one look-up

is required per block. In the second step, the actual multiplication of matrix

data contained in full blocks is performed which can be implemented in a most

efficient and cache-oblivious way, this step can also be transferred to GPU’s.

Chapter 3

Integration of PEXSI into CP2K

3.1 Overview

PEXSI provides a minimal set of routines that need to be called in order to

solve the Kohn-Sham equations. An interface to these routines is available in

both C++ and Fortran programming languages. PEXSI already provides a

full DFT solver such that it can be integrated to CP2K in a black-box like

fashion: CP2K initialises PEXSI with some parameters (usually coming from

user input) and calls the PEXSI DFT driver in the main SCF routine to obtain

the density matrix and related quantities from the given matrix pencil (H ,S).

After finishing an SCF cycle, the PEXSI data is released. The main task

that needs to be done on the CP2K-side is the conversion of the block-wise

BCSR matrix format to the standard CSR format. In this conversion, care

must be taken that the sparsity of the density matrix P (and by design of

PEXSI, the sparsity of the matrices H and S) is determined by the criterion

Pij 6= 0 if ϕi(x)ϕj(x) 6= 0.

3.2 Matrix format conversion

The matrix format of the PEXSI interface is CSR format that is distributed

such that each processor holds bN/P c consequentive rows where N is the num-

ber of rows and columns and P is the number of processors. The remaining

N − P bN/P c rows are appended to the data on the N th processor [37]. The

conversion should also offer the possibility to define a sparsity pattern for CSR

matrices such that the non-zero elements in CSR format are a subset of the

non-zero elements in the BCSR format. This is a natural feature to include in

20

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 21

the conversion because the BCSR format imposes a block-wise sparsity pattern.

This is a restriction of the matrix format that is no longer present when a

matrix is converted to the CSR format.

A conversion from the CP2K DBCSR (Distributed BCSR) format to the

PEXSI CSR format must redistribute the matrix data among the processes and

reorder the matrix data from block-wise to element-wise ordering. The most

convenient way to achieve this is to redistribute the matrix data in a first step.

Then the conversion between the two matrix formats can be performed locally

on each process in a second step, without the need for communication. For

the back conversion from CSR to DBCSR, the local reordering is done first,

followed by the redistribution to the initial DBCSR matrix format. These two

steps are depicted in Fig. 3.1 for the case of an artificial matrix distributed on

4 processors p0, p1, p2, p3.

3.2.1 Row-wise redistribution

The upper panel in Fig. 3.1 illustrates the redistribution of an arbitrarily dis-

tributed DBCSR matrix to a row-wise distribution in which each processor holds

subsequent matrix rows. The distribution of DBCSR blocks over processes is

set up by mapping the BCSR rows and columns to the rows and columns of

the process grid. We will refer to this mapping by the terms row distribution

and column distribution. In CP2K, the row and column distribution are set

up randomly in order to achieve optimal load balance among the processes.

The process grid is depicted above the example DBCSR matrix, each color

corresponding to one of the 4 processes. The column distribution and row

distribution are given by numbers on top and on the left side of the example

matrix, respectively. The process grid for a row-wise distribution is always a

grid of dimension P × 1. In the current implementation, the matrix conversion

offers three options for the number of consequentive rows on a processor, where

PCSR is the number of processes over which the CSR matrix shall be distributed,

N is the total number of matrix rows and Nblock is the total number of BCSR

rows:

1. each processor holds dN/PCSRe consequentive rows (see example)

2. each processor holds bN/PCSRc consequentive rows (PEXSI matrix format)

3. each processor holds bNblock/PCSRc BCSR rows.

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 22

0 1

0 p0 p1

1 p2 p3

0

0 p0

1 p1

2 p2

3 p3
1 1 1 0 0 1

0

1

1
0

1

1

0 0 0 0 0 0

0

0
1
1
1
2

2
3
3

1 3 5 7 9 11

2 4 6 8 10 12

13 14 15 16

1 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1

1 2 3 4 5 6

7 8 9 10 11

12 13 14

BCSR→ CSR 1 7 2 -1 3 8 4 9 5 10 6 11 12 13 -1 14

CSR→ BCSR 1 3 5 7 9 11 2 6 8 10 12 13 14 16

Load balanced distribution Row-wise distribution

BCSR format CSR format

BCSR index

CSR sparsity

CSR index

Index mapping

2

1

1

2

1

1

BCSR → CSR conversion

CSR → BCSR conversion

Figure 3.1: Depiction of the two steps of conversion between DBCSR and CSR
format. Upper panel: Redistribution of a DBCSR matrix. Lower panel: Local
conversion between BCSR and CSR format.

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 23

The number of processes PCSR used for CSR matrices must not necessarily be

the same as the total number of processes P (for PEXSI PCSR is the number of

processes per pole). In the case of the first two options, the target distribution

requires a splitting of BCSR rows such that a BCSR row can be distributed

over multiple processes. Conveniently, the DBCSR library of CP2K already

provides a routine to redistribute a matrix according to an arbitrary row and

column distribution and the remaining task is to set up a process grid, a row

distribution and a column distribution that establish the target distribution.

3.2.2 Local conversion between BCSR and CSR matrix

format

Once the matrix is redistributed, the conversion between the two matrix formats

can be performed locally on each process and the task is to find a mapping

between the two formats as they are depicted in Fig. 2.2. The relevant conversion

data for an example matrix is illustrated in the lower panel of Fig. 3.1. The

terms BCSR index and CSR index denote the order of the matrix entries as

they are stored in the data array nzval of the two matrix formats, not to be

mistaken for the terms CSR indices or BCSR indices, referring to the compressed

representation of the row and column indices.

The first step of the local conversion is to create a mapping (called index

mapping) between BCSR and CSR index. In the BCSR format, the matrix

entries are sorted with respect to the number of the block they belong to (row-

wise numbering of blocks) and for a given block, the elements are ordered in a

column-wise fashion. In the CSR format, the ordering is row-wise. Practically,

the index mapping is implemented by two vectors, one for each direction of

conversion. The second step of the local conversion is to create the CSR colind

and rowptr arrays.

Both steps must be aware of the sparsity pattern of the CSR matrix, i.e. that

certain elements explicitly stored in BCSR format should be zeroed (removed)

when going from BCSR to CSR and, conversely, that elements in BCSR blocks

that are not present in CSR must be explicitly added. In practice, the sparsity

pattern of a CSR matrix is represented by a BCSR matrix containing only

0 (for zero elements) and 1 (for non-zero elements). This matrix to which

we refer as CSR sparsity matrix can, for instance, be obtained by applying a

filtering threshold εfilter to set elements to 0 that have an absolute value below

εfilter. Due to the explicit specification of the CSR sparsity matrix at input,

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 24

the matrix conversion can deal with any other definition of sparsity, given an

external routine that sets up the sparsity matrix. The sparsity matrix must

have exactly the same block structure and BCSR indices as the BCSR matrix to

be converted. It is redistributed in the same way as the BCSR matrix such that

the local conversion can directly look up whether a BCSR matrix element is

zero in CSR format or not. This information is then completely integrated into

the index mapping. The CSR→ BCSR mapping vector considers only explicitly

present CSR matrix entries. The BCSR→ CSR mapping vector contains a −1

for all BCSR matrix entries that are not present in CSR format.

The index mapping is created by iterating over the blocks of the BCSR matrix

in a row-wise fashion. The DBCSR library provides an iterator that returns the

block data as well as the indices needed to locate the block in the matrix. From

the position of a matrix entry in a BCSR block, its position in the CSR format

is explicitly calculated. This requires knowledge of the number of the matrix

entries in all blocks stored in BCSR rows above the current block, the total

number of non-zero matrix columns in the current BCSR row and the number

of non-zero matrix columns on the left of the current block. The number of

columns in each BCSR row is not directly accessible from local block data and

must be obtained by a preceding iteration over BCSR blocks. In this approach,

the sparsity pattern of the CSR matrix is first assumed to be the same as

that of the BCSR matrix. In a second step, the index mapping is modified to

correctly take the CSR sparsity into account.

After the index mapping has been established, the conversion from BCSR

to CSR format can be performed. This conversion sends the data from BCSR

nzval to the correct position in CSR nzval and calculates the CSR colind

and rowptr arrays. These arrays are explicitly computed by iterating over

BCSR blocks - in a similar way as for the calculation of the index mapping.

In subsequent conversions for a conserved sparsity pattern, the CSR indices

don’t need to be recalculated and copying the data and the redistribution of

the matrix are the only steps required.

3.2.3 Implementation

The CSR matrix type contains all data that is required to quickly convert

from and to DBCSR format: the index mapping, the row-wise distributed

intermediate DBCSR matrix, the CSR index as well as some convenient global

matrix data (total number of non-zero elements, number of rows and columns

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 25

and the MPI communicator). The supported data types are complex and real,

single and double precision.

The DBCSR matrix format is chosen according to the chemistry of the system

and therefore, the conversion code can not derive a DBCSR matrix from a given

CSR matrix. Thus it always requires a completely allocated DBCSR matrix

format at input and can derive the CSR matrix from it. The creation of the

CSR matrix from a given DBCSR matrix is separated from the actual conversion

of the matrix data. The creation establishes the index mapping and allocates

all fields of the CSR type. The conversion then merely needs to copy and

redistribute the matrix data.

A conversion assumes that the pair of matrices to be converted exactly has

the same sparsity pattern and is distributed in the same way as the matrices

at the time of the creation of the CSR matrix. If the sparsity pattern changes

or the matrix data is redistributed, the CSR matrix must be recreated. The

fact that once created CSR matrices can be reused for subsequent conversions,

assuming a conserved sparsity pattern, makes the conversion vulnerable in an

environment where the matrix sparsity may change. However for PEXSI, this

is the appropriate design because PEXSI relies on a fixed sparsity pattern and

the conversion must guarantee that the CSR format does not change during

an SCF cycle. Several safeguards are built into the matrix conversion that will

detect any change of sparsity such that the program terminates with an error

message if the sparsity changes. For instance, the DBCSR indices of the original

DBCSR matrix are stored inside the CSR type and before each conversion, it is

asserted that the DBCSR matrix to be converted has exactly the same indices.

The conversion can also handle DBCSR matrices in symmetric format (only

the upper diagonal part is stored) by desymmetrising the matrix before con-

version. Similarly it can return a symmetric matrix when converting from CSR

to DBCSR format.

The matrix conversion tool has been tested by creating a set of random

BCSR matrices, converting them to CSR format and back to BCSR format and

checking that the original matrices are exactly restored. To test the sparsity

refinement feature that removes certain matrix entries when going from BCSR to

CSR format, the CSR sparsity has been defined by applying a filtering threshold

εfilter to the elements of the BCSR matrix. It has been verified that the elements

of the back-converted DBCSR matrix do not differ from the original DBCSR

matrix by more than εfilter. The validity of the CSR indices has been tested by

creating a print routine that writes a CSR matrix to a file. The output was

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 26

compared with the output of a DBCSR print routine for a set of matrices.

3.3 Matrix sparsity and distance screening

PEXSI imposes a sparsity pattern to the density matrix P according to the

locality of basis functions. More precisely, the criterion is that we only need

the elements Pij for which an r exists such that ϕi(r)ϕj(r) 6= 0. By design

of PEXSI, the sparsity of all matrices S, H and P is exactly the same and

the matrices differ by value only. The sparsity pattern of an example overlap

matrix is depicted in Fig. 3.2.

Figure 3.2: Sparsity of the overlap matrix for a 3-layer fcc(100) aluminium
surface consisting of 768 atoms, treated with a DZVP basis set. In this case,
the percentage of non-zero elements amounts to 13%. For larger systems the
sparsity can drop down to less than 1%, a limit that is achieved for the case
of this systems for 10000 atoms and more.

The CP2K-PEXSI interface needs to take care that the sparsity of H and S

is in terms with this criterion. In practice, getting sparsity out of this criterion

requires an approximation that effectively localises Gaussian basis functions

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 27

according to some truncation threshold. The sparsity pattern should be held

fixed over an entire SCF cycle because the basis functions stay the same. Fixing

sparsity also has some practical advantages: the matrix conversion needs to be

initialised only once, i.e. only one CSR matrix needs to be created at the

beginning of an SCF cycle and subsequent conversions only need to copy data

as the matrix indices don’t change. Similarly PEXSI can remember the form

of the LU factorisation from previous steps.

The time required for the PEXSI DFT driver is proportional to the number of

non-zero elements in the Cholesky factor which in turn depends on the sparsity

of the overlap matrix and on the dimensionality of the system. Thus an accurate

upper bound criterion for |ϕi(r)ϕj(r)| is important to be able to optimally tune

the sparsity of the matrices.

3.3.1 Sparsity in CP2K

In CP2K, matrix sparsity is obtained by the application of two different criteria:

1. Distance screening : to each primitive Gaussian basis function φi(r) =

rlici exp(−αir2), a radius ri is assigned given some cutoff threshold ε

according to |φi(r)| < ε for all |r| > ri. Elements of a matrix M of the

form Mij = 〈ϕi|Ô|ϕj〉 are set to zero if there is no contribution from two

Gaussians φi and φj that satisfy ri + rj > dij, where dij is the distance

between the atomic centers of the two basis functions.

2. Filtering : an atomic block is removed if its Frobenius norm is below some

threshold εfilter [42].

The first criterion is suitable to determine matrix sparsity for PEXSI because

it is based on the locality of basis functions. Filtering should not be used in

CP2K-PEXSI, because an atomic block being small by value does not necessarily

imply an upper bound for the products of two basis functions.

As CP2K and especially its linear scaling implementation do not rely on a

fixed sparsity pattern for all matrices, they can handle the sparsity of a matrix

more flexibly and use the filtering method to improve the sparsity at any given

point [2]. Consequently, the distance screening criterion is not meant to be

highly selective and the respective cutoff threshold eps pgf orb is applied for

a preselection of non-zero elements only. The main advantage of the CP2K

implementation of distance screening compared to a more accurate criterion is

its efficiency: it only needs to compute the radius of each basis function instead

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 28

of evaluating upper bounds for all pairs of basis functions. For PEXSI, an

additional strict upper bound criterion applied to pairs of basis functions would

be preferable but is not implemented in CP2K up to date. For the time being,

the sparsity of PEXSI matrices is determined by an extension of the standard

distance screening criterion of CP2K to the CSR matrix format.

3.3.2 Extending distance screening to CSR matrices

As mentioned before, the BCSR format of CP2K implies a sparsity pattern in

terms of either full (non-zero) or empty (zero) atomic blocks. More precisely,

an atomic block is set to zero if there is no pair of Gaussians that contributes

to any matrix entry in this block. Thus the existence of an atomic block is

essentially determined by the most extended Gaussian contained in a basis set.

The extension of distance screening to single matrix elements will significantly

improve the sparsity if the contracted basis functions ϕi(r) contained in a

basis set differ in their spatial extension. It does not introduce any additional

approximation and the threshold applied is the same eps pgf orb that is also

used by CP2K. The sparsity gain for an example overlap matrix is illustrated

in Fig. 3.3.

Figure 3.3: Sparsity of the overlap matrix in BCSR format (left handside) and
CSR format (right handside) for a 3-layer fcc(100) aluminium surface consisting
of 192 atoms. In BCSR format, the non-zero elements (black) are defined in
terms of full atomic blocks while the CSR format allows for a refinement of the
non-zero elements to single basis functions. For this example, the percentage of
BCSR non-zero elements is 76% and the percentage of CSR non-zero elements
is 51%.

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 29

3.4 CP2K-PEXSI interface

PEXSI has been integrated into the linear scaling SCF part of the CP2K code.

The main responsibility of the interface to PEXSI is to determine a valid set

of PEXSI options from the user input, to convert the matrices to the PEXSI

CSR format and to print some PEXSI related output.

The input to CP2K-PEXSI is nearly identical to the options that are required

by the PEXSI library. This gives the user flexibility while reasonable default

values should reduce the complexity of setting up a CP2K-PEXSI calculation.

PEXSI options that can be decided internally are not passed to the user (e.g.

symbolic factorisation is only done in the first SCF step).

PEXSI has a two-level parallelism that uses a subgroup of all processes for the

inversion of one pole such that parallelism over poles is achieved. The choice of

the number of processes per pole is up to the user with the restriction that the

number of processes per pole must divide the total number of processes without

remainder. In CP2K-PEXSI the user input is the minimum number of processes

per pole and the actual number of processes per pole is then determined as

the smallest number greater than or equal to the user input such that a valid

parallelisation of PEXSI is achieved.

Listing 3.1 mentions the most important steps in a CP2K-PEXSI calculation.

Most of the steps in the CP2K-part were readily available and could be combined

with PEXSI without profound changes to the CP2K source code. The only

significant modification concerns the density mixing that was implemented in

the standard SCF code of CP2K and not accessible in the linear scaling part of

CP2K. The standard mixing method in the linear scaling environment is a linear

mixing of the Kohn-Sham matrix. This works well for insulating systems but is

not stable for metallic systems, requiring more advance mixing schemes on the

level of the density matrix. The density mixing methods of CP2K (particularly

Broyden mixing, see section 2.3) had to be refactored and integrated into the

linear scaling code in order to make them available for PEXSI.

Inertia counting can be turned on or off by the user. For systems with a

large band gap, the chemical potential µ returned by the previous SCF step is

sufficiently exact and thus the inertia counting can be turned off for subsequent

SCF steps. In the first SCF step, inertia counting is always performed. In

PEXSI, inertia counting is automatically reinvoked if a PEXSI Newton iteration

gives a difference in µ that is larger than some threshold. In our experience,

turning off inertia counting works well also for metallic systems because the

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 30

found chemical potential should be already rather exact after a few SCF steps.

Listing 3.1 CP2K-PEXSI pseudocode for one SCF cycle

Distance screening: define sparsity pattern of all matrices H,S,P, . . . by trun-
cation of ϕi(x).
Initialise CSR conversion with the overlap matrix S.
WHILE |Fnew −Fold| > εSCF

Calculate an upper bound ∆E for the spectral radius of S−1H using Arnoldi
method.
Convert H and S to the PEXSI CSR format.
IF first SCF step

Activate PEXSI inertia counting.
Activate PEXSI symbolic factorisation.

ELSE
Activate PEXSI inertia counting only if requested by the user.
Deactivate PEXSI symbolic factorisation.

ENDIF
CALL PEXSI DFT driver

IN: H ,S,∆E
OUT: P ,P E,−TS, µ

Check convergence of PEXSI (error in the number of electrons).
Convert P and P E to the CP2K BCSR matrix format.
Set µ as initial guess for the next SCF step.
Compute the density P → ρ with Eq. (2.12).
ρ mixing (if requested): ρnew = fmix(ρnew, ρold).
Construct F = E(ρ)− TS and Hij = ∂E/∂Pij.
H mixing (if requested): Hnew = (1− α)Hnew + αHold.

END WHILE
Calculate the forces ∇AF = f(P ,P E,H ,S) according to Eq. (2.22).

PEXSI needs an estimate for the upper bound ∆E for the eigenvalues εi of

the generalised eigenvalue problem (H ,S). This knowledge is required in order

to correctly place the poles in the expansion of the Fermi function. An efficient

way to obtain a good estimate for ∆E is to selectively calculate the maximum

eigenvalue with the Arnoldi method.

Molecular dynamics also works out of the box thanks to the fact that PEXSI

returns the additional quantities P E and −TS required to calculate the forces.

These terms merely need to be passed to the corresponding variables in the

Quickstep environment of CP2K.

The PEXSI interface is designed for the case of spin-restricted calculations

in which each state is occupied with two electrons. The extension to the spin-

unrestricted case (one electron per state) is achieved by scaling quantities with

factors of 2 and 1/2 at the input and output of PEXSI.

CHAPTER 3. INTEGRATION OF PEXSI INTO CP2K 31

As discussed before, the matrix conversion relies on a given sparsity and

distribution of the BCSR matrices that must not change in an SCF cycle. For

usual CP2K calculations this requirement does not strictly hold and the exact

format of a matrix might change. The matrices H and S are therefore first

copied to a template matrix with the correct format before conversion. This

and the general design of the conversion tool reduce the dependency of the

CP2K-PEXSI interface on the given CP2K data format such that only the

format of the overlap matrix at initialization of the conversion tool is relevant.

The installation of CP2K-PEXSI including all dependencies is facilitated by

a script that is shipped with the source code of CP2K that installs CP2K and

PEXSI and automatically takes care of the linkage.

Chapter 4

Introduction to CP2K-PEXSI

4.1 Input

CP2K input that is relevant for the PEXSI part of a calculation is listed in List-

ing 4.1. For a complete documentation of the CP2K input, the reader is referred

to the online documentation [43] and the example input files that come with the

source code of CP2K. The input consists of keywords that are grouped into dif-

ferent sections. A CP2K-PEXSI calculation is requested by setting the keyword

LS SCF in the QS (Quickstep) section to .TRUE. and inside the LS SCF sub-

section, the PURIFICATION METHOD has to be set to PEXSI. The keyword

EPS PGF ORB is the cutoff threshold for the radius of the primitive Gaussians

which defines the matrix sparsity. Two subsections have been added in LS SCF

especially for PEXSI: PEXSI and RHO MIXING. The PEXSI subsection con-

tains all the relevant new input for PEXSI, and the RHO MIXING section is

used to request mixing on the level of the density instead of linear mixing of

the Kohn-Sham matrix (necessary to achieve convergence for metallic systems).

In the following, a few crucial points to consider when requesting a CP2K-

PEXSI calculation are explained. The PEXSI default values have chosen such

that PEXSI is most efficient up to an accuracy of 10−6 a.u. per atom. Usu-

ally the only keywords that need to be set explicitly are EPS PGF ORB and

MIN RANKS PER POLE. In our experience, setting EPS PGF ORB to 1.0E-4

is appropriate for a requested accuracy of 10−6 a.u. per atom. The keyword

MIN RANKS PER POLE controls together with the total number of MPI ranks

the parallelisation of PEXSI. It should be chosen according to the number of

available processes and the minimum number of processes required to perform

the selected inversion. As the parallel scalability over poles is almost perfect,

32

CHAPTER 4. INTRODUCTION TO CP2K-PEXSI 33

Listing 4.1 PEXSI-related CP2K input

&FORCE EVAL
&DFT

&QS
LS SCF .TRUE.
EPS PGF ORB 1.0E-4

&END QS
&LS SCF

PURIFICATION METHOD PEXSI
&PEXSI

MIN RANKS PER POLE 256
NUM POLE 60
TEMPERATURE 300
NUM ELECTRON PEXSI TOLERANCE 0.001
...

&END PEXSI
&RHO MIXING

METHOD BROYDEN MIXING
...

&END RHO MIXING
&END LS SCF

&END DFT
&END FORCE EVAL

the recommendation is to restrict the number of processes for selected inversion

to a rather small value such that the parallelisation over poles can be exploited

to a larger degree.

The most efficient way to run PEXSI in terms of the total wall time is to

completely parallelise over the poles, in this case MIN RANKS PER POLE is

set to nproc/npole where nproc is the total number of MPI ranks and npole is

the total number of poles. An integer fraction of this number can be used

if not enough cores for a full parallelisation are available. Note that it is

beneficial for reaching peak performance of PEXSI to use a square number for

MIN RANKS PER POLE. As mentioned before, if MIN RANKS PER POLE

is not consistent with the total number of MPI ranks (i.e. if it does not divide

the number of MPI ranks without remainder), this number is automatically

increased to the next valid parallelisation.

If a higher accuracy if requested, the number of poles should be increased

(NUM POLE keyword) and especially for metallic systems, the convergence

threshold in the number of electrons (NUM ELECTRON PEXSI TOLERANCE)

should be set to a smaller value. Raising the temperature to a higher value will

CHAPTER 4. INTRODUCTION TO CP2K-PEXSI 34

not affect the accuracy of the calculation for systems with a sufficiently large

band gap but in this case, a smaller number of poles is needed to accurately

represent the Fermi-Dirac function (the pole expansion requires a number of

terms proportional to log(β∆E)).

4.2 Efficiency and accuracy

For making efficient use of PEXSI, its parameters need to be tuned in such a

way that optimal performance is achieved for a desired target accuracy. Here

the following input options relevant for a CP2K-PEXSI calculation are discussed

in terms of accuracy and computational cost:

• the truncation threshold eps pgf orb for distance screening,

• the number of poles to approximate the Fermi-Dirac function,

• the PEXSI tolerance in number of electrons,

• the electronic temperature and

• the parallelisation of PEXSI.

The options for inertia counting are not discussed, but we point out that using

a sufficiently tight threshold for inertia counting can help keeping the number

of expensive PEXSI Newton iterations relatively low. The CP2K default values

for inertia counting should be accurate enough and stable for all systems we

consider here, such that there is usually no need to change the default.

4.2.1 Distance screening

Fig. 4.1 shows the energy error, the time per SCF iteration and the sparsity in

dependence of the truncation threshold for primitive Gaussian basis functions.

In the current implementation, this eps pgf orb criterion fully determines the

sparsity of the matrices H ,S and P when a CP2K-PEXSI calculation is per-

formed. Using a higher truncation threshold leads to a significantly reduced

number of non-zero elements and thus to savings in the computational costs.

However, the eps pgf orb criterion seems to be unstable for thresholds greater

than 10−4 as the error in energy quickly increases and thresholds greater 10−3

even cause a calculation to abort.

CHAPTER 4. INTRODUCTION TO CP2K-PEXSI 35

●

●

●

●

●

●●

●

Truncation threshold eps_pgf_orb

E
ne

rg
y

di
ffe

re
nc

e
pe

r
at

om
 [a

.u
.]

1e−09 1e−07 1e−05 1e−03 1e−01

1e
−

10
1e

−
08

1e
−

06
1e

−
04

30
40

50
60

70
80

1
10

T
im

e
pe

r
S

C
F

 s
te

p
[s

]

S
pa

rs
ity

 [%
]

● Energy
Time
Sparsity

Figure 4.1: Error in energy, time per PEXSI SCF iteration and the sparsity
(percentage of number of non-zero elements) of H ,S and P in dependence of
the truncation threshold eps pgf orb for primitive Gaussian basis functions.
The calculations were performed for the case of liquid water with 768 atoms,
using a TZV2P basis set. The energy reference is for eps pgf orb = 10−10.
Choosing a higher threshold than eps pgf orb = 10−3 causes calculations to
abort.

4.2.2 Parallelisation

PEXSI has two levels of parallelism, the parallelisation over poles and the

parallel selected inversion performed for each pole. As all poles can be processed

independently, the parallelisation over poles is expected to be more efficient than

exploiting the parallelism on the level of selected inversion. This is confirmed

by Fig. 4.2 where we plot the PEXSI time in dependence of the number of

processes per pole, for a fixed total number of processes. If more processes

per pole are used, less poles can be inverted in parallel. Processing all poles

in parallel is most efficient and increasing the number of processes for selected

inversion leads to a significant increase in computation time. Considering that

selected inversion scales well to 256 processes per pole for this specific system,

the regime of almost perfect parallelisation of PEXSI extends to 12’800 processes

(at full parallelisation for 50 poles).

CHAPTER 4. INTRODUCTION TO CP2K-PEXSI 36

●
●

●

●

●

●

●

Number of processes per pole

T
im

e
pe

r
P

E
X

S
I s

te
p

[s
]

500 1000 1500

40
80

12
0

Figure 4.2: Performance of PEXSI in dependence of the number of processes
per pole used for selected inversion. The system is liquid water consisting of
6144 atoms, parallelised over a total number of 6400 processes. We use 50 poles
such that full parallelisation over poles is achieved at 128 processes per pole.

4.2.3 Insulating system

Fig. 4.4 shows the accuracy of the converged energy and the time per SCF

step for an insulating system in dependence of the temperature and the number

of poles. Due to the large band gap, the determination of an exact value

of the chemical potential is not crucial for obtaining an accurate result and

a value of 0.01 for the tolerance in the number of electrons can be safely

used. As expected, a larger number of poles yields more accurate calculations

but increases the total computation time. The electronic temperature is not

considered as a physical parameter because for insulating system, raising the

temperature does not significantly change the occupation of orbitals. However,

raising the temperature leads to a smoother Fermi-Dirac function that is better

approximated by the pole expansion and thus less poles are needed (the number

of required terms is proportional to log(β∆E)). It was found that using a tighter

tolerance threshold for the number of electrons (0.001) will give an even more

accurate result of 10−10 a.u. per atom for the case of 80 poles and a temperature

of 100 K.

CHAPTER 4. INTRODUCTION TO CP2K-PEXSI 37

4.2.4 Metallic system

The accuracy and efficiency of PEXSI for the case of a metallic system is

investigated in Fig. 4.5. In contrast to the insulating system considered before,

changing the electronic temperature affects the energy due to a change in the

occupation of orbitals. Due to the better approximation of the Fermi-Dirac

function at higher temperature, less PEXSI iterations and consequently less

time are required for an SCF step. For these calculations we employed a rather

loose threshold for inertia counting (0.025 a.u. for µ) to illustrate the effect of

the temperature and a tighter threshold may damp the effect of the temperature

on the number of PEXSI iterations.

4.2.5 Molecular dynamics

Fig. 4.3 shows the kinetic energy and the constant of motion (kinetic energy

+ potential energy) over a CP2K-PEXSI MD simulation in the NVE ensemble

of liquid water, DZVP basis, 96 atoms. The drift in the constant of motion

is 5.5× 10−7 a.u. per ps and atom. A standard SCF calculation for the same

system yields a drift of 1.0× 10−7 a.u. per ps and atom. This proves that the

forces are correctly implemented in CP2K-PEXSI and that PEXSI is already

quite accurate for the applied settings (60 poles, 0.001 tolerance in number of

electrons).

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

Time [ps]

E
ne

rg
y

[a
.u

.]

Figure 4.3: The kinetic energy (top) and the constant of motion (bottom) over a
MD NVE simulation of liquid water containing 96 atoms at room temperature.
A DZVP basis is used and the SCF convergence threshold is set to εSCF = 10−10

a.u. per atom. One timestep is 0.5 fs. For PEXSI, 60 poles and a tolerance
threshold of 0.001 in number of electrons are applied, yielding a rather exact
conservation of the constant of motion with a drift of only 5.5× 10−7 a.u. per
ps and atom.

CHAPTER 4. INTRODUCTION TO CP2K-PEXSI 38

Error in converged energy per atom [a.u.]

Tolerance in number of electrons

N
um

be
r

of
 p

ol
es

1e−05 0.001 0.01 0.1

30
40

50
60

70
80

0.001

1e−04

1e−05

1e−06

1e−07

1e−08

Time per SCF step [s]

Tolerance in number of electrons

N
um

be
r

of
 p

ol
es

1e−05 0.001 0.01 0.1
30

40
50

60
70

80

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Error in converged energy per atom [a.u.]

Electronic temperature [K]

N
um

be
r

of
 p

ol
es

100 300 1000 3000 10000

30
40

50
60

70
80

0.001

1e−04

1e−05

1e−06

1e−07

1e−08

1e−09

Time per SCF step [s]

Electronic temperature [K]

N
um

be
r

of
 p

ol
es

100 300 1000 3000 10000

30
40

50
60

70
80

0.2

0.3

0.4

0.5

Figure 4.4: Accuracy and efficiency in dependence of the PEXSI parameters
number of poles, tolerance in number of electrons and electronic temperature
for the case of an insulating system (liquid water with 96 atoms, DZVP basis).
For the upper panels, the temperature was set to 300 K and for the lower
panels, the tolerance in number of electrons was set to 0.01. The results refer
to converged SCF calculations using linear mixing of the Kohn-Sham matrix.
The reference energy is obtained by a linear scaling calculation for the same
system at zero temperature. White spots represent failed calculations due to
an insufficient number of poles.

CHAPTER 4. INTRODUCTION TO CP2K-PEXSI 39

Error in converged energy per atom [a.u.]

Tolerance in number of electrons

N
um

be
r

of
 p

ol
es

1e−06 1e−04 0.01 0.1

30
40

50
60

70
80

1e−04

1e−05

1e−06

1e−07

1e−08

Time per SCF step [s]

Tolerance in number of electrons

N
um

be
r

of
 p

ol
es

1e−06 1e−04 0.01 0.1

30
40

50
60

70
80

6

8

10

12

14

16

18

Error in converged energy per atom [a.u.]

Electronic temperature [K]

N
um

be
r

of
 p

ol
es

30 100 300 1000 3000

30
40

50
60

70
80

0.001

1e−04

1e−05

1e−06

1e−07

1e−08

Time per SCF step [s]

Electronic temperature [K]

N
um

be
r

of
 p

ol
es

30 100 300 1000 3000

30
40

50
60

70
80

10

15

20

Figure 4.5: Accuracy and efficiency in dependence of the PEXSI parameters
number of poles and electronic temperature for the case of a metallic system
(3-layer fcc(100) aluminium surface, 192 atoms, DZVP basis). The results refer
to converged SCF calculations using Broyden density mixing. The reference
energy is obtained by a standard CP2K SCF calculation for the same system
at an electronic temperature of 300 K.

Chapter 5

Comparison of PEXSI with other

CP2K SCF methods

In the following, the three methods PEXSI, linear scaling and standard diago-

nalisation are compared with respect to their parallel scalability and the scaling

of their computational costs with system size. The parallel scalability is inves-

tigated by measuring CPU time vs. the number of processes at fixed system

size. CPU time is defined as the total wall time multiplied with the number

of processes. Perfect parallel scalability implies that CPU time stays the same

when the number of processes is increased. For the scaling with system size, wall

time vs. number of atoms is evaluated at fixed number of processes. We per-

form diagonalisation with ScaLAPACK 2.0.2 [9]. The calculations are performed

on the Cray XC30 machine Piz Daint of the Swiss National Supercomputing

Centre, employing only MPI parallelisation (no GPU’s, no threads).

All comparisons measure the computational time of the first two SCF steps. A

comparison between PEXSI, linear scaling and diagonalisation has to take into

account that PEXSI needs more Newton iterations in the first SCF steps to find

the correct chemical potential. In subsequent iterations, the chemical potential

from previous iterations is already accurate such that less PEXSI iterations are

required. One fully converged SCF cycle was carried out for each system to

derive the mean number of required PEXSI iterations per SCF step (assuming

that this does not depend on the system size). To make a fair comparison,

the measured time for the first two SCF steps was then rescaled to the mean

number of PEXSI iterations per SCF step.

40

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 41

5.1 Systems and parameters

In order to explore the full domain of applicability of PEXSI, insulating and

metallic systems and quasi-2D and 3D systems are considered: liquid water

representing a sparse 3D insulating system, a fcc(100) aluminium surface with

3 atomic layers representing a metallic 2D system, monolayer graphene repre-

senting a thin semi-metallic 2D system, silicon representing a semi-conducting

3D system and diamond at high temperature which behaves as a 3D metallic

system. The properties as well as the results of a full SCF calculation for these

systems are listed in Tab. 5.1. For all systems, the number of poles for PEXSI

is 50 and for the inertia counting procedure, a threshold of ∆µ = 0.005 a.u.

is applied. The distance screening criterion eps pgf orb is set to 10−4. The

full SCF calculations are carried out for a target accuracy of εSCF = 10−7 a.u.

per electron. The calculations for water are performed with different choices

of basis sets: DZVP-GTH, DZVP-MOLOPT-SR-GTH and TZV2P-GTH as

implemented in CP2K. For all other systems the CP2K basis set DZVP-GTH-

PADE-CONFINED is applied which is the preferred CP2K DZVP basis in terms

of sparsity.

Table 5.1: Properties, PEXSI parameters and results from a converged SCF
calculation for all systems considered here. The abbreviations refer to the fol-
lowing quantities: the electronic temperature Tel, the number of basis functions
per atom NBasis (number of valence electrons × number of basis functions per
electron), the number of processes per pole npp, the number of atoms NA, the
PEXSI tolerance in number of electrons ∆Ne, the number of required SCF
steps Nscf to convergence, the average number of PEXSI iterations per SCF
step NPEXSI and the energy error ∆ESCF per atom in a.u. as obtained by a
comparison with a standard CP2K SCF or linear scaling calculation.

System Dim. Tel [K] Basis NBasis npp NA ∆Ne Nscf NPEXSI ∆ESCF

H2O 3D 300 DZVP 6× 13, 1× 5 256 769 0.01 7 1.0 2.5× 10−7

TZV2P 6× 22, 1× 9 7 1.1 1.8× 10−5

DZVP-M 6× 13, 1× 5 8 1.0 1.3× 10−6

Al 2D 300 DZVP 3× 13 256 432 0.001 22 3.1 6.2× 10−6

C 2D 300 DZVP 4× 13 256 648 0.001 17 3.4 3.4× 10−6

Si 3D 300 DZVP 4× 13 256 216 0.01 15 2.2 2.0× 10−6

C 3D 3000 DZVP 4× 13 640 512 0.001 20 2.3 4.3× 10−6

The number of PEXSI iterations over a full SCF cycle is presented in Fig. 5.1

for all systems. Water requires much less PEXSI iterations due to its large band

gap. For the other systems, PEXSI needs considerably more iterations in the

first SCF steps and after the tenth SCF step, never more than 3 PEXSI iterations

are required.

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 42

SCF step

N
um

be
r

of
 P

E
X

S
I i

te
ra

tio
ns

5 10 15 20

1
2

3
4

5
6

7

●

● water DZVP
water TZV2P
water DZVP−M
graphene
aluminium
silicon
diamond

Figure 5.1: Number of PEXSI Newton iteration needed to find the density
matrix at the correct chemical potential over an SCF cycle. The much faster
convergence of water is explained by the application of a different mixing method
(mixing of Kohn-Sham matrix instead of density mixing).

The computational cost of PEXSI is proportional to the number of non-zero

elements in the Cholesky factor (or L + U in LU factorisation). The sparsity

of the Cholesky factor depends on the dimensionality of the system and the

sparsity of the overlap matrix. Its number of non-zero elements increases with

O(N2
e) for 3D bulk systems and O(N

3/2
e) for quasi-2D systems. The number of

non-zero elements vs. the system size for the overlap matrix and the Cholesky

factor is depicted in Fig. 5.2. The matrix sparsity is tabulated in Tab. 5.2.

It can clearly be seen that quasi-2D systems (aluminium and graphene) have

a generally sparser Cholesky factor than 3D systems. Graphene has a sparser

representation than aluminium because it is very thin. Comparing 3D systems,

liquid water has a favourable sparsity because it is separated into weakly-

interacting molecules while condensed systems as diamond and silicon are much

less sparse.

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 43

Number of atoms

N
um

be
r

of
 n

on
ze

ro
es

 in
 H

, S
, P

●
●

●

●

0 2000 4000 6000 8000 10000

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

● water DZVP
water TZV2P
water DZVP−M
graphene DZVP
aluminium DZVP
silicon DZVP
diamond DZVP

0 2000 4000 6000 8000 10000

0.
0e

+
00

1.
0e

+
09

2.
0e

+
09

Number of atoms

N
um

be
r

of
 n

on
ze

ro
es

 in
 L

+
U

●

●

●

●

0 2000 4000 6000 8000 10000

0.
0e

+
00

1.
0e

+
09

2.
0e

+
09

Figure 5.2: Number of matrix non-zero elements in dependence of the system
size. The left panel depicts the number of non-zero elements in the overlap
matrix. In the right panel, the number of non-zero elements in the matrix
L + U of PEXSI’s LU factorisation is plotted.

Table 5.2: Percentage of non-zero elements in the matrices H,S,P and in
L + U for different system sizes (number of atoms) NA.

(a) H2O 3D DZVP

NA S L + U

768 6.3 47.2
2592 1.9 29.7
6144 0.8 20.6

12000 0.4 15.4

(b) H2O 3D TZV2P

NA S L + U

768 6.3 44.2
2592 1.9 29.1
6144 0.8 19.8

(c) H2O 3D DZVP-M

NA S L + U

768 37.1 93.1
2592 11.1 74.2
6144 4.7 59.8

(d) Al 2D DZVP

NA S L + U

192 50.8 93.0
768 12.7 59.5

1728 5.7 37.8
3072 3.2 26.4
4800 2.0 20.2
6912 1.4 15.0
9408 1.0 12.3

(e) C 2D DZVP

NA S L + U

1152 3.9 25.8
4608 1.0 10.1

10368 0.4 5.4
18432 0.2 3.4
28800 0.2 2.5

(f) Si 3D DZVP

NA S L + U

64 90.8 98.6
512 24.0 84.0

1728 7.1 65.7
4096 3.0 49.7

(g) C 3D DZVP

NA S L + U

64 67.4 96.8
512 10.1 71.3

1728 3.0 48.5
4096 1.3 35.0

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 44

5.2 Parallel scalability

The parallel scalability of PEXSI, linear scaling and diagonalisation for liquid

water and aluminium surface is presented in Fig. 5.3. For PEXSI, the number of

processes per pole is held constant such that the parallelisation over poles, not

the parallel scalability of selected inversion is investigated. PEXSI is generally

slower than linear scaling and faster than diagonalisation for more than 1000

cores (water) or more than 7000 cores (aluminium). Due to PEXSI’s favourable

scaling with system size, for larger systems a smaller number of cores will be

sufficient for making efficient use of PEXSI. The parallel scalability of PEXSI is

very good due to the parallelisation over independent poles. At the maximum

number of cores (12800), full parallelisation of PEXSI is achieved such that the

regime of almost perfect parallel scalability comes to an end at this number

(see also Fig. 4.2). The parallel scalability of diagonalisation is not very good

in general but in terms of computational resources, diagonalisation is almost

always more economical than PEXSI because diagonalisation is more efficient

at a smaller number of cores.

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 45

●
●

● ●

●

Number of cores

C
P

U
 ti

m
e

pe
r

S
C

F
 s

te
p

[h
]

1000 10000

10
10

0
● PEXSI

Diagonalization
Linear Scaling

(a) Liquid water, 6144 atoms, DZVP basis.

●
●

● ●
●

Number of cores

C
P

U
 ti

m
e

pe
r

S
C

F
 s

te
p

[h
]

1000 10000

10
0

10
00

● PEXSI
Diagonalization

(b) 2D aluminium with 3 atomic layers, 4800 atoms,
DZVP basis.

Figure 5.3: Parallel scalability comparing PEXSI with diagonalisation and linear
scaling as implemented in CP2K for two systems. Complete parallelisation of
PEXSI is achieved at the largest number of cores (12800). CPU time is defined
as total wall-time times number of cores.

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 46

5.3 Scaling with system size

5.3.1 Bulk liquid water

The benchmarks for variation of the system size for liquid water are presented

in Fig. 5.4 for different choices of basis sets. In order to verify the expected

algorithmic scaling with respect to system size, a power law was fitted to each

benchmark curve. The expected scaling is O(N3
e) for standard diagonalisation,

O(N2
e) for PEXSI and O(Ne) for linear scaling. Due to cache and parallelisation

effects, the observed scaling can significantly differ from the algorithmic scaling.

Standard diagonalisation can effectively use more processors for larger system

size, leading to an effective scaling that is better than the asymptotical O(N3
e)

scaling for a large number of processors.

The basis set has a great influence on the performance of PEXSI and linear

scaling. Employing a larger basis set (TZV2P) leads to more non-zero elements

in the overlap matrix and thus PEXSI and linear scaling have a larger cost (see

also Fig. 5.2). Standard diagonalisation is not affected as much by the basis

even though a larger basis set leads to a larger matrix size. For PEXSI, the

crucial criterion for optimal performance is the localisation of basis functions.

For linear scaling, the condition number of the overlap matrix is important

because this determines the sparsity of S−1 that needs to be calculated. The

molopt basis set of CP2K [44] for instance is optimised with respect to the

condition number of the overlap matrix but has a less sparse overlap matrix

than standard DZVP basis. Consequently, linear scaling performs well with

molopt basis while PEXSI performs worse than with standard DZVP basis.

Note that in the benchmarks considered here, 6400 cores and 256 processes

per pole are applied (see Tab. 5.1). 25 poles can be processed in parallel

and two consecutive steps are required to invert all 50 poles. Consequently, a

speed-up of PEXSI by roughly a factor of 2 can be gained by doubling the

number of cores.

5.3.2 Quasi-2D systems

The scaling with respect to system size for the quasi-2D systems is depicted in

Fig. 5.5, comparing PEXSI with standard diagonalisation. Note that linear scal-

ing is not applicable to these systems because of their metallic or semi-metallic

nature. The expected scaling of PEXSI is O(N1.5
e). Because the monolayer

graphene system has a very sparse representation, PEXSI performs much bet-

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 47

Number of atoms N

T
im

e
t

pe
r

S
C

F
 s

te
p

[s
]

● ●
●

●

0 2000 4000 6000 8000 10000 12000

0
10

0
20

0
30

0
40

0
50

0
60

0

● PEXSI t = 3e−06*N^1.86
DIAG t = 3.8e−06*N^2.06
LS t = 1.6e−03*N^0.93

(a) Water, DZVP-GTH basis

0 2000 4000 6000 8000 10000 12000

0
10

0
20

0
30

0
40

0
50

0
60

0

Number of atoms N

T
im

e
t

pe
r

S
C

F
 s

te
p

[s
]

●

●

●

● PEXSI t = 4.7e−05*N^1.73
DIAG t = 9.8e−05*N^1.71
LS t = 5e−04*N^1.32

0 2000 4000 6000 8000 10000 12000

0
10

0
20

0
30

0
40

0
50

0
60

0

(b) Water, TZV2P-GTH basis

Number of atoms N

T
im

e
t

pe
r

S
C

F
 s

te
p

[s
]

●

●

●

0 2000 4000 6000 8000 10000 12000

0
10

0
20

0
30

0
40

0
50

0
60

0

● PEXSI t = 1.2e−05*N^1.91
DIAG t = 8.2e−06*N^1.97
LS t = 3.4e−03*N^0.89

(c) Water, DZVP-MOLOPT-SR-GTH basis

Figure 5.4: Scaling of the computational costs with respect to system size for
liquid water and different choices of basis sets, comparing PEXSI, diagonalisation
and linear scaling. The benchmarks are performed on 6400 cores.

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 48

ter than standard diagonalisation. The aluminium system is less sparse but

PEXSI becomes more efficient than diagonalisation for 5000 atoms and more.

Again, the poles are processed in two consecutive steps for the applied paral-

lelisation.

Number of atoms N

T
im

e
t

pe
r

S
C

F
 s

te
p

[s
]

● ●
●

●

●

●

●

0 2000 4000 6000 8000 10000

0
20

0
40

0
60

0
80

0
10

00
● PEXSI t = 3.9e−03*N^1.28

DIAG t = 2.4e−06*N^2.16

(a) Aluminium surface with 3 atomic layers, DZVP
basis

Number of atoms N

T
im

e
t

pe
r

S
C

F
 s

te
p

[s
]

●
●

●

●

●

0 5000 10000 15000 20000

0
50

0
10

00
15

00
20

00

● PEXSI t = 3.1e−04*N^1.49
DIAG t = 6.4e−08*N^2.7

(b) Monolayer graphene, DZVP basis

Figure 5.5: Scaling of the computational costs with respect to system size for
quasi-2D systems comparing PEXSI and diagonalisation. The benchmarks are
performed on 6400 cores.

5.3.3 Condensed bulk systems

The last systems considered are condensed 3D systems with metallic character

(diamond at an electronic temperature of 3000 K) or semi-conducting character

CHAPTER 5. COMPARISON OF PEXSI WITH OTHER CP2K SCF METHODS 49

(silicon at room temperature). Compared to the liquid water systems, these

systems are less sparse and consequently, the costs of a PEXSI calculation

are higher. The parallelisation of the diamond system was not chosen in an

optimal way (640 processes per pole) such that 5 consecutive steps for the

inversion of poles are needed. By reducing the number of processes per pole

and increasing the total number of processes such that full parallelisation is

achieved, a maximum speed-up of a factor of 5 can be expected for diamond

with PEXSI. For silicon, a factor of 2 can be gained at full parallelisation. Even

in this limit, PEXSI will not be significantly faster than standard diagonalisation.

Number of atoms N

T
im

e
t

pe
r

S
C

F
 s

te
p

[s
]

●
●

●

0 1000 2000 3000 4000 5000

0
10

0
20

0 ● PEXSI t = 2.6e−05*N^2
DIAG t = 1e−04*N^1.71

(a) Silicon at 300 K, DZVP basis

Number of atoms N

T
im

e
t

pe
r

S
C

F
 s

te
p

[s
]

●
●

●

●

0 1000 2000 3000 4000 5000

0
10

0
20

0
30

0
40

0
50

0

● PEXSI t = 1.9e−03*N^1.5
DIAG t = 8.5e−05*N^1.73

(b) Diamond at 3000 K, DZVP basis

Figure 5.6: Scaling of the computational costs with respect to system size for
3D condensed systems with semi-conducting character (silicon) and metallic
character (diamond). The benchmarks are performed on 6400 cores.

Chapter 6

Discussion and Conclusion

This Master thesis was mainly concerned with making the PEXSI (Pole EX-

pansion and Selected Inversion) method available in the atomistic simulation

package CP2K. In a second step this method was evaluated by comparison

with linear scaling and standard diagonalisation. The calculations performed

for a wide range of different systems prove that the current implementation is

stable and accurate for electronic structure calculations and ab initio molecular

dynamics.

PEXSI is most useful for metallic systems and systems with a small band

gap because for these systems, the linear scaling approach fails. For insulating

systems, linear scaling clearly outperforms the PEXSI method. PEXSI was

proven to be the most efficient method (in terms of total wall time) implemented

in CP2K for large quasi-2D metallic systems containing a few thousand atoms,

if more than 1000 processors are available. Large systems are advantageous

because PEXSI scales at most quadratically with the system size. A massive

parallelisation favours the high parallel scalability of PEXSI over independent

poles up to 10’000 processors or even more. On the other hand, diagonalisation

scales cubically with respect to the system size and can not make efficient use

of a large number of processors. This being said, diagonalisation was shown to

be generally cheaper in terms of CPU time because it is more efficient than

PEXSI for a smaller degree of parallelisation.

PEXSI can be more efficient than diagonalisation also for 3D systems due to

the favourable scaling of O(Ne2) instead of O(N3
e) with respect to the system

size (number of electrons Ne). In practice, a significant speed-up of PEXSI

compared to diagonalisation could be observed only for liquid water but not for

condensed systems due to an insufficiently sparse Cholesky factor. For quasi-2D

system, PEXSI scales with O(N1.5
e). The required system size and degree of

50

CHAPTER 6. DISCUSSION AND CONCLUSION 51

parallelisation where PEXSI becomes faster than diagonalisation depend on the

sparsity of the system. For a 3 atomic layer thick aluminium surface, PEXSI is

significantly faster for 3000 atoms and more if a parallelisation over more than

5000 processors is applied. For monolayer graphene, PEXSI almost immediately

outperforms diagonalisation.

The results obtained in this work can not be directly compared to the SIESTA-

PEXSI approach because SIESTA uses numerical basis functions [45,46] while

CP2K is based on Gaussian-type functions. Numerical orbitals are advanta-

geous with respect to the sparsity of the overlap matrix because they can be

chosen to be strictly local while the localisation of Gaussian-type functions is an

approximation involving the neglect of small matrix elements. This being said,

the sparsity obtained in CP2K is already comparable to the sparsity obtained

with SIESTA. For instance for liquid water with 12000 atoms and DZVP basis,

the sparsity is 0.29% (12% for Cholesky factor) in SIESTA [35] and 0.40% (15%

for Cholesky factor) in CP2K. Some gain for the sparsity of the overlap matrix

in CP2K can be expected by applying a more accurate screening criterion that

sets matrix elements to zero based on an upper bound for the product of two

primitive Gaussians instead of enforcing localised basis functions based on a

truncation threshold. A further gain could be achieved by creating basis sets

optimised with respect to the sparsity of the overlap matrix.

Diagonalisation is a direct and exact method while PEXSI has many parame-

ters that must be tuned with respect to efficiency and accuracy. In the current

implementation of CP2K-PEXSI, the user must decide on the parallelisation

over poles, the number of poles to approximate the Fermi-Dirac function, the

convergence threshold in number of electrons and the truncation threshold for

the basis functions. Additionally the thresholds for the inertia counting proce-

dure must be set sufficiently tight to reduce the number of expensive PEXSI

Newton iterations. The accuracy and efficiency of CP2K-PEXSI was evaluated

in dependence of all relevant parameters, for a metallic and an insulating sys-

tem. The default values were chosen such that for most systems, they should

give good accuracy and reasonable performance.

Some savings in computational costs could possibly be achieved by adapting

the accuracy required for PEXSI to the accuracy that can be achieved within

a certain SCF step instead of keeping the parameters fixed over an entire SCF

cycle. An automatic determination of the PEXSI parameters as a function of

the requested accuracy would be preferable over to the current implementation.

This is however not a trivial task to achieve due to the complex interplay

CHAPTER 6. DISCUSSION AND CONCLUSION 52

between different parameters (for instance temperature and number of poles)

and the system dependent implications (metallic vs. non-metallic, system size)

of many parameters.

Currently, the main limitation for a broad application of the PEXSI approach

to a wide range of systems is its high computational costs in the sense that

PEXSI starts to be beneficial only at large system sizes and requires massive

parallelisation. This limitation may be removed in the future by the availability

of better high-performance computers.

Acknowledgements

I want to thank Prof. Joost VandeVondele for having offered me this most

interesting topic for my Master thesis that gave me valuable insights into recent

algorithmic developments in the field of Kohn-Sham density functional theory.

I want to thank my supervisor Mohammad Hossein Bani-Hashemian for his

support in many respects that contributed a lot to a successfully finished project.

I want to thank Prof. Lin Lin of University of California, Berkeley, for providing

the PEXSI library, in particular I want to point out the cleanly written interface

that saved a lot of work during the integration to CP2K. I’m also grateful for

the support I received from his side as well as his collaboration in the evaluation

of the results received from CP2K-PEXSI.

Further thanks go to all members of the Nanoscale Simulations group for

their help and advice. Last but not least, I want to thank Prof. Nicola Spaldin

for the coffee supply.

Bibliography

[1] S. Goedecker, “Linear scaling electronic structure methods,” Reviews of

Modern Physics, vol. 71, no. 4, p. 1085, 1999.

[2] J. VandeVondele, U. Bortnik, and J. Hutter, “Linear scaling self-consistent

field calculations with millions of atoms in the condensed phase,” Journal

of Chemical Theory and Computation, vol. 8, no. 10, pp. 3565–3573, 2012.

[3] L. Lin, M. Chen, C. Yang, and L. He, “Accelerating atomic orbital-based

electronic structure calculation via pole expansion and selected inversion,”

Journal of Physics: Condensed Matter, vol. 25, no. 29, p. 295501, 2013.

[4] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical review,

vol. 136, no. 3B, p. B864, 1964.

[5] W. Kohn and L. J. Sham, “Self-consistent equations including exchange

and correlation effects,” Physical Review, vol. 140, no. 4A, p. A1133, 1965.

[6] N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,”

Physical Review, vol. 137, no. 5A, p. A1441, 1965.

[7] R. M. Wentzcovitch, J. L. Martins, and P. B. Allen, “Energy versus free-

energy conservation in first-principles molecular dynamics,” Physical Review

B, vol. 45, no. 19, p. 11372, 1992.

[8] M. Weinert and J. Davenport, “Fractional occupations and density-

functional energies and forces,” Physical Review B, vol. 45, no. 23, p. 13709,

1992.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,

and R. C. Whaley, ScaLAPACK Users’ Guide. Philadelphia, PA: Society

for Industrial and Applied Mathematics, 1997.

54

BIBLIOGRAPHY 55

[10] R. McWeeny, “Some recent advances in density matrix theory,” Reviews of

Modern Physics, vol. 32, no. 2, p. 335, 1960.

[11] A. M. Niklasson, C. Tymczak, and M. Challacombe, “Trace resetting den-

sity matrix purification in o (n) self-consistent-field theory,” The Journal

of chemical physics, vol. 118, no. 19, pp. 8611–8620, 2003.

[12] W. Kohn, “Density functional and density matrix method scaling linearly

with the number of atoms,” Physical Review Letters, vol. 76, no. 17, p. 3168,

1996.

[13] S. Goedecker and G. E. Scuseria, “Linear scaling electronic structure meth-

ods in chemistry and physics,” Computing in Science & Engineering, vol. 5,

no. 4, pp. 14–21, 2003.

[14] E. Prodan and W. Kohn, “Nearsightedness of electronic matter,” Proceed-

ings of the National Academy of Sciences of the United States of America,

vol. 102, no. 33, pp. 11635–11638, 2005.

[15] P. E. Maslen, C. Ochsenfeld, C. A. White, M. S. Lee, and M. Head-

Gordon, “Locality and sparsity of ab initio one-particle density matrices

and localized orbitals,” The Journal of Physical Chemistry A, vol. 102,

no. 12, pp. 2215–2222, 1998.

[16] L. Lin, J. Lu, L. Ying, and W. E, “Pole-based approximation of the fermi-

dirac function,” Chinese Annals of Mathematics, Series B, vol. 30, no. 6,

pp. 729–742, 2009.

[17] L. Lin, J. Lu, L. Ying, R. Car, and W. E, “Fast algorithm for extracting the

diagonal of the inverse matrix with application to the electronic structure

analysis of metallic systems,” Communications in Mathematical Sciences,

vol. 7, no. 3, pp. 755–777, 2009.

[18] L. Lin, C. Yang, J. C. Meza, J. Lu, and L. Ying, “Selinv – an algorithm

for selected inversion of a sparse symmetric matrix,” ACM Transactions

on Mathematical Software (TOMS), vol. 37, no. 4, p. 40, 2011.

[19] L. Lin, C. Yang, J. Lu, and L. Ying, “A fast parallel algorithm for selected

inversion of structured sparse matrices with application to 2d electronic

structure calculations,” SIAM Journal on Scientific Computing, vol. 33,

no. 3, pp. 1329–1351, 2011.

BIBLIOGRAPHY 56

[20] M. Jacquelin, L. Lin, and C. Yang, “Pselinv – a distributed memory parallel

algorithm for selected inversion: the symmetric case,” arXiv:1404.0447,

2014.

[21] P. Bendt and A. Zunger, “New approach for solving the density-functional

self-consistent-field problem,” Physical Review B, vol. 26, no. 6, p. 3114,

1982.

[22] J. E. Dennis, Jr and J. J. Moré, “Quasi-newton methods, motivation and

theory,” SIAM review, vol. 19, no. 1, pp. 46–89, 1977.

[23] G. Broyden, “A class of methods for solving simultaneous nonlinear equa-

tions,” Math. Comput, vol. 19, pp. 577–593, 1965.

[24] J. Hutter, “Car–parrinello molecular dynamics,” Wiley Interdisciplinary

Reviews: Computational Molecular Science, vol. 2, no. 4, pp. 604–612,

2012.

[25] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and

J. Hutter, “Quickstep: Fast and accurate density functional calculations

using a mixed gaussian and plane waves approach,” Computer Physics

Communications, vol. 167, no. 2, pp. 103–128, 2005.

[26] O. F. Sankey and D. J. Niklewski, “Ab initio multicenter tight-binding

model for molecular-dynamics simulations and other applications in covalent

systems,” Physical Review B, vol. 40, no. 6, p. 3979, 1989.

[27] P. Pulay, “Ab initio calculation of force constants and equilibrium geome-

tries in polyatomic molecules: I. theory,” Molecular Physics, vol. 17, no. 2,

pp. 197–204, 1969.

[28] M. Krack and M. Parrinello, “Quickstep: make the atoms dance,” High

Performance Computing in Chemistry, vol. 25, p. 29, 2004.

[29] G. Lippert, J. Hutter, and M. Parrinello, “A hybrid gaussian and plane wave

density functional scheme,” Molecular Physics, vol. 92, no. 3, pp. 477–488,

1997.

[30] G. Lippert, J. Hutter, and M. Parrinello, “The gaussian and augmented-

plane-wave density functional method for ab initio molecular dynamics

simulations,” Theoretical Chemistry Accounts, vol. 103, no. 2, pp. 124–140,

1999.

BIBLIOGRAPHY 57

[31] “CP2K basis sets.” http://www.cp2k.org/basis_sets. Accessed: 2015-

23-03.

[32] H. B. Schlegel and M. J. Frisch, “Transformation between cartesian and pure

spherical harmonic gaussians,” International Journal of Quantum Chem-

istry, vol. 54, no. 2, pp. 83–87, 1995.

[33] S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space gaussian

pseudopotentials,” Physical Review B, vol. 54, no. 3, p. 1703, 1996.

[34] C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic separable dual-

space gaussian pseudopotentials from h to rn,” Physical Review B, vol. 58,

no. 7, p. 3641, 1998.

[35] L. Lin, A. Garćıa, G. Huhs, and C. Yang, “SIESTA-PEXSI: massively

parallel method for efficient and accurate ab initio materials simulation

without matrix diagonalization,” Journal of Physics: Condensed Matter,

vol. 26, no. 30, p. 305503, 2014.

[36] A. Alavi, J. Kohanoff, M. Parrinello, and D. Frenkel, “Ab initio molecular

dynamics with excited electrons,” Physical review letters, vol. 73, no. 19,

p. 2599, 1994.

[37] “Documentation of the PEXSI library.” http://www.pexsi.org. Accessed:

2015-23-03.

[38] X. S. Li and J. W. Demmel, “SuperLU DIST: A scalable distributed-

memory sparse direct solver for unsymmetric linear systems,” ACM Trans.

Mathematical Software, vol. 29, pp. 110–140, June 2003.

[39] G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph

partitioning and sparse matrix ordering,” Journal of Parallel and Distributed

Computing, vol. 48, no. 1, pp. 71–95, 1998.

[40] C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient parallel graph

ordering,” Parallel Computing, vol. 34, no. 6, pp. 318–331, 2008.

[41] J. Dongarra, “Compressed Row Storage (CRS).” http://netlib.org/

linalg/html_templates/node91.html. Accessed: 2015-23-03.

[42] U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter, “Sparse matrix

multiplication: The distributed block-compressed sparse row library,” Par-

allel Computing, vol. 40, no. 5, pp. 47–58, 2014.

BIBLIOGRAPHY 58

[43] “CP2K input manual.” http://manual.cp2k.org/trunk/. Accessed: 2015-

23-03.

[44] J. VandeVondele and J. Hutter, “Gaussian basis sets for accurate calcula-

tions on molecular systems in gas and condensed phases,” The Journal of

chemical physics, vol. 127, no. 11, p. 114105, 2007.

[45] J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Junquera, P. Ordejón,

and D. Sánchez-Portal, “The siesta method for ab initio order-n materials

simulation,” Journal of Physics: Condensed Matter, vol. 14, no. 11, p. 2745,

2002.

[46] E. Artacho, E. Anglada, O. Diéguez, J. D. Gale, A. Garćıa, J. Junquera,

R. M. Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal, et al., “The

siesta method; developments and applicability,” Journal of Physics: Con-

densed Matter, vol. 20, no. 6, p. 064208, 2008.

