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Abstract

Density-functional-based methods represent the working horse for condensed mat-
ter calculations. Despite of their efficiency and acceptable accuracy, they describe
weakly interacting systems only unsatisfactorily and a systematic improvement
of the underlying models is not in sight. Wave function methods, in contrast, are
very accurate, systematically improvable methods. Because of their poor scala-
bility, their application is restricted to molecular systems. Furthermore, the lower
levels of wave function theory tend to perform worse than many density func-
tionals due to the missing short-ranged correlation effects. Double-hybrid density
functionals (DHDFs) mediate between both approaches by combining them. The
advantage of this methodology is the significant improvement upon both, density
functional theory and wave function theory. However, DHDFs are restricted to
mostly molecular systems which is related to the high computational costs of the
underlying wave function correlation method.
In the present thesis, we consider different possibilities to broaden the applica-
bility of DHDFs to periodic systems. After a review of the fundamental theo-
retical aspects, we discuss the implementation of DHDFs with range-separated
exchange and correlation functionals in CP2K to improve the bad basis set con-
vergence. Afterwards, we test different DHDFs in condensed phase and analyze
the different kinds of errors of these functionals. Finally, we describe an imple-
mentation of analytical gradients for DHDFs in condensed phase. The application
of the auxiliary density matrix method reduces the computational costs of the
required Hartree-Fock exchange contribution. Therewith, we provide the tools
for advanced studies like the calculation of training data set for machine-learning
models or simulations on the accuracy level of DHDFs.
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Zusammenfassung

Dichtefunktionalbasierte Methoden (DFM) stellen aufgrund ihrer Effizienz und
akzeptablen Genauigkeit das Arbeitspferd für Rechnungen an kondensierten Sys-
temen dar. Allerdings beschreiben sie schwach wechselwirkende Systeme aber
oft nur mit unbefriedigender Genauigkeit und eine systematische Verbesserung
der zugrundeliegenden Modelle ist nicht in Sicht. Dagegen stehen mit Wellen-
funktionsmethoden (WFM) sehr genaue, systematisch verbesserbare Methoden
zur Verfügung, deren Anwendung allerdings aufgrund der schlechten Skalier-
barkeit auf molekulare Systeme beschränkt bleibt. Ausserdem beschreiben die
niedrigeren Theorielevel kurzreichweitige Korrelationseffekte nur unzureichend,
welche in ungenaueren Ergebnissen als bei typischen DFM resultiert. Einen Kom-
promiss zwischen beiden Ansätzen stellen Doppelhybridfunktionale (DHF) dar,
welche DFM mit korrelierten WFM verbinden und dabei die Genauigkeit gegen-
über beiden Methodenklassen signifikant verbessern können. Allerdings bleibt
deren Anwendbarkeit wegen der hohen Kosten der zugrundeliegenden WFM im
Wesentlichen auf molekulare Systeme beschränkt.
In der vorliegenden Dissertationsschrift werden verschiedene Möglichkeiten be-
trachtet, um die Anwendbarkeit von DHF bei periodischen Systemen zu erhöhen.
Nach einer Wiederholung der wesentlichen theoretischen Aspekte wird die Im-
plementierung von DHF mit reichweitenseparierten Austausch- und Korrelations-
funktional in CP2K diskutiert, um die schlechte Konvergenz bezüglich der Ba-
sissatzgrösse zu verbessern. Im Anschluss testen wir unterschiedliche DHF in
kondensierter Phase und analysieren verschiedene auftretende Fehler. Zuletzt
beschreiben wir eine Implementierung von Gradienten für DHF für kondensierte
Systeme und reduzieren die Rechenkosten des notwendigen Hartree-Fock-Aus-
tauschterms mit der Auxiliardichtemethode. Wir stellen damit Werkzeuge für
weiterführende Studien wie die Berechnung von Trainingsdatensätzen für Mod-
elle maschinellen Lernens oder Simulationen auf dem Genauigkeitsniveau von
DHF zur Verfügung.
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Chapter 1

Introduction

Although the concept of the classical chemical bond enables the description of
bond formation, it is the intermolecular interactions that are required to describe
enzyme-substrate complexes, molecular crystals, liquids or adsorption processes
on surfaces.[1–4]
The working horse of calculations in condensed phase is density functional the-
ory (DFT) within the Kohn-Sham approach with a large number of linear-scaling
implementations available.[5–23] Common density functionals (DFs) provide a
reasonable accuracy for a variety of chemically bonded systems and can be ap-
plied to systems containing several thousands as even up to millions of atoms.[11,
24, 25] Despite of its success, a systematic approach for improved DFs is miss-
ing. Furthermore, its drawback to describe weakly bounded systems has to be
overcome by special van-der-Waals DFs or different empirical or theoretical cor-
rection schemes.[26–33]
Wave function methods provide a different approach by solving the Schrödinger
equation, the fundamental equation of quantum mechanics, approximately.[34–
36] They can be systematically improved and treat dispersion interactions with
ease.[37–40] Their significantly higher computational costs and unfavourable scal-
ing of at least fourth order with respect to the system size decreases the number
of potential applications compared to cubically scaling canonical DFT implemen-
tations. Low-scaling approaches are capable of reducing the tremendous scaling
down to linear scaling, however they are often developed with molecular systems
in mind. As a consequence, these implementations are not suitable for periodic
systems due to less sparse tensors or missing consideration of high parallelizabil-
ity required for large super-computing devices.[41–52] In addition, the simplest
wave function approaches like the second-order Møller-Plesset perturbation the-
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ory (MP2) perform even worse than many conventional DFs leading to the devel-
opment of reparametrized methods like SCS-MP2, simplified schemes like SOS-
MP2 or corrected versions like RPA+AXK or RPA+SOSEX.[38, 53–57] The slow
convergence of the obtained quantities with respect to the basis set size has to be
dealt with extrapolation schemes, explicitly-correlated methods or special range-
separated methods.[58–65]
Double-hybrid DFs (DHDFs) are modern quantum chemical approaches com-
bining conventional DFs with simple wave function correlation methods and can
supposedly perform better than the underlying methods.[66, 67] Their excellent
accuracy for molecular systems encourages the application of these methods to
condensed phase systems.[24, 25] Due to the high computational costs of cor-
related methods in condensed phase, actual applications of DHFs in condensed
phase are limited, benchmark studies scarce and dynamics simulations usually
unfeasible.[68–70]
The thesis presented here will tackle the high computational costs and provide
more studies of DHFs for condensed matter. We will start with a discussion of
the most important theoretical aspects and the GPW approach as implemented in
the CP2K simulation package. We will use CP2K for all DHF implementations
and benchmarks. Subsequently, we will discuss the implementation of DHFs with
a long-range Coulomb operator which are supposed to remove the slow basis set
convergence of the total energies.[64] Next, we will present a benchmark study of
different classes of DHFs discussing further sources of errors related to this class
of approaches.[71] Finally, we will present a gradient implementation of MP2-
based DHFs for large systems and discuss a method to reduce the overhead of the
Hartree-Fock calculations in the context of DHFs and present large benchmark
systems which can be treated with the given methodology.[72]
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Chapter 2

Theoretical Background

The following chapter aims to provide a general understanding of the method-
ologies discussed in the subsequent chapters. Most information can be found in
standard textbooks about quantum chemistry. If nothing else is stated, the infor-
mation was taken from references [73–75]. Integrals over spatial coordinates are
carried out over the whole three-dimensional space, summations over all possible
values of an index, summations with lower index i < j run over all unique pairs
i, j.

2.1 Fundamentals
The basis of non-relativistic quantum mechanics is the Schrödinger equation (SE).
The time-independent SE is the eigenvalue equation

Ĥ |Ψ⟩= E |Ψ⟩ (2.1)

with the constant energy of the system E, the corresponding eigenstate |Ψ⟩ and
the time-independent Hamilton operator (Hamiltonian) or total energy operator Ĥ.
|Ψ⟩ represents the many-particle quantum state and underlies the normalization
constraint

⟨Ψ|Ψ⟩= 1. (2.2)

To perform actual calculations and apply the SE, we have to work in a given
representation. Here, we will consider the real space representation only in which
the state |Ψ⟩ is represented as a wave function (WF) depending on the coordinates
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of all particles in the system. The square of its modulus is interpreted as the
probability of finding the particles in space.
Chemically relevant systems contain K nuclei, described as point charges with
charge ZA at position R⃗A and mass MA, A = 1...K and N electrons, at positions r⃗n,
n = 1...N, respectively. The Hamilton operator in real space is given in atomic
coordinates as

Ĥ =−1
2 ∑

A

∆A

MA
− 1

2 ∑
n

∆n + ∑
A<B

ZAZB∣∣∣R⃗A − R⃗B

∣∣∣ −∑
A

∑
n

ZA∣∣∣R⃗A − r⃗n

∣∣∣ + ∑
n<m

1
|⃗rn − r⃗m|

(2.3)

with ∆A and ∆n denoting the Laplace operators defined with respect to the coor-
dinates of nucleus A and the electronic coordinates of electron n, respectively. In
the given order, the different terms represent the kinetic energy operator of the
nuclei, the kinetic energy of the electrons, the nuclei-nuclei repulsion energy, the
nuclear-electron attraction energy and the electron-electron interaction energy.
The SE can in general not be solved analytically such that we have to rely on
approximations. We assume that the many-particle WF is separable according to

Ψ

(
R⃗1, . . . , R⃗K ,⃗r1, . . . ,⃗rN

)
= χ

(
R⃗1, . . . , R⃗K

)
ψ (⃗r1, . . . ,⃗rN) , (2.4)

with the nuclear WF χ

(
R⃗1, . . . , R⃗K

)
and the electronic WF ψ (⃗r1, . . . ,⃗rN). The

Born-Oppenheimer approximation further assumes that the movement of the nu-
clei is static for the electrons. This approximation is justified by the large ratio of
the masses of nuclei and electrons. Then, the nuclear and the electronic WFs obey
their respective SEs

Ĥnuc
χ

(
R⃗1, . . . , R⃗K

)
= Enuc

χ

(
R⃗1, . . . , R⃗K

)
, (2.5)

Ĥnuc =−1
2 ∑

A

∆A

MA
+Eel

(
R⃗1, . . . , R⃗K

)
(2.6)

Ĥel
ψ (⃗r1, . . . ,⃗rN) = Eel

(
R⃗1, . . . , R⃗K

)
ψ (⃗r1, . . . ,⃗rN) (2.7)

Ĥel =−1
2 ∑

n
∆n −∑

A
∑
n

ZA∣∣∣R⃗A − r⃗n

∣∣∣ + ∑
n<m

1
|⃗rn − r⃗m|

. (2.8)
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We note that the electronic WF depends parametrically on the positions of the
nuclei and the nuclear movement depends on the electronic energy Eel. The total
energy of the system Etot with fixed nuclei is then given as

E tot = Eel + ∑
A<B

ZAZB∣∣∣R⃗A − R⃗B

∣∣∣ . (2.9)

We will refer to the quantum state with the smallest energy Eel as the ground state
|Ψ0⟩, the corresponding WF as ground state WF, its corresponding energy as the
ground state energy E0. If there is more than one WF to any given energy, the
energy level is called degenerate.
Most (electronic) SEs cannot be solved analytically implying the necessity of fur-
ther approximations, but we can establish a variational principle. Let |Ψ0⟩ be the
only ground state of a SE with energy E0 and be

∣∣Ψ̃0
〉
= |Ψ0⟩+ |δ ⟩ an approxi-

mate ground state. Its energy expectation value Ẽ is given by

Ẽ0 =

〈
Ψ̃0
∣∣Ĥ∣∣Ψ̃0

〉〈
Ψ̃0|Ψ̃0

〉 . (2.10)

The variational principle states that Ẽ0 ≥ E0 with equality if and only if |δ ⟩ =
0 and provides us with an approximate approach, the variational method. Let∣∣Ψ̃0(C)

〉
with free parameter(s) C be a test quantum state. Then, we obtain the

best approximation with respect to the energy by optimizing its energy expectation
value with respect to C. Due to the variational principle, the obtained energy is
then an upper bound to the correct energy.
In the following, we will consider only many-electron systems and thus ignore
the index el. As such, we will also not explicitly add the nuclei-nuclei interaction
term. In addition, we will work in real space only and represent quantum states
by their WF.

2.2 The Hartree-Fock approximation
Electrons are identical indistinguishable fermions with total spin s= 1

2 . This prop-
erty implies the Pauli principle stating that the electronic WF has to be antisym-
metric with respect to the exchange of two electronic coordinates. Here, we will
write the N-electron WF Ψ(x1, ...,xN) with the variable xi = (⃗ri,σi) which com-
bines the spatial coordinate r⃗i and the spin variable σi. The antisymmetry con-
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straint can be fulfilled by representing the WF as a Slater determinant

Φ(x1, . . . ,xN) =
1√
N!

∣∣∣∣∣∣∣
ψ1(x1) . . . ψN(x1)

... . . . ...
ψ1(xN) . . . ψN(xN)

∣∣∣∣∣∣∣ (2.11)

where the spin orbitals ψI(x) = φI (⃗r)χI(σ) form an orthonormal basis. The spin
variable of an electron has one of two values ±1

2 often denoted α,β . The spin
functions χi(σ) can be only one of the two functions A(σ) or B(σ) defined by
their function values A(α) = 1,A(β ) = 0,B(α) = 0,B(β ) = 1.
Due to the properties of the spin orbitals, the real-space parts of the spin orbitals
are divided into two groups of functions depending on the spin state of the corre-
sponding orbital. We will write for the index I = iσ with σ being the spin state of
orbital I and i being an index enumerating the real-space functions to each spin-
channel such that for spin channel σ we have i = 1...Nσ and N = Nα +Nβ with
the number of electrons Nσ in spin channel σ . Each set of functions φiσ (⃗r) by
themselves form an orthonormal basis in real space implying that the integral of
two different spin orbitals are zero because of different spin states or else because
of different real-space functions. Furthermore, we will consider Γ-point calcula-
tions only such that the real-space functions can be chosen real.
The simplest approximation to solve the SE is given by the Hartree-Fock (HF)
approximation which applies the variational principle to a single Slater determi-
nant by optimizing the energy expectation value with respect to the spin orbitals.
The slater determinant automatically fulfills the antisymmetry property of the WF
due to the antisymmetry of the determinant with respect to the interchange of two
rows equivalent to the interchange of two coordinates.
With the HF approximation, one obtains an equation to determine the spin orbitals

12



of each spin channel σ (HF eigenvalue equation)

ĥHF
ψiσ (⃗r) = εiσ ψiσ (⃗r) (2.12)

=−∆

2
ψiσ (⃗r)−∑

A

ZA∣∣∣R⃗A − r⃗
∣∣∣ψiσ (⃗r)

+∑
σ ′

∑
j
σ ′

∫
d3r′

∣∣ψ j
σ ′ (⃗r ′)

∣∣2
|⃗r− r⃗′|

ψiσ (⃗r)

−∑
jσ

∫
d3r′

ψ∗
jσ (⃗r

′)ψiσ (⃗r
′)

|⃗r− r⃗′|
ψ jσ (⃗r) (2.13)

with the orbital energy εiσ of orbital iσ . The first two terms of equation (2.13)
describe the kinetic energy and the electric potential of the nuclei. The third term
is called Hartree term and describes the classical electrostatic potential of the elec-
trons caused by the electronic density

n(⃗r) = ∑
σ

∑
iσ

|φiσ (⃗r)|
2 . (2.14)

The last term in equation (2.13) is the Fock exchange term and is related to the
anti-symmetry property of the electrons. In contrast to the Hartree potential, it is
a non-local potential. All terms of the HF Hamiltonian except from the kinetic
energy term describe an effective potential in which a single electron is moving.
Because the one-particle HF Hamiltonian ĥHF depends on all orbitals, an analyt-
ical solution is in general not possible but starting from an initial guess for the
orbitals, one solves the HF equations, obtains a new set of orbitals, reconstructs
the Hamiltonian and repeats this procedure until self-consistency (self-consistent
field method, SCF method).
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The electronic HF energy is then given by

EHF = ∑
σ

∑
iσ

∫
d3r φ

∗
iσ (⃗r)

−∆

2
−∑

A

ZA∣∣∣R⃗A − r⃗
∣∣∣
φiσ (⃗r)

+
1
2 ∑

σσ ′
∑

iσ j
σ ′

((iσ iσ | jσ ′ jσ ′)−δσσ ′(iσ jσ | jσ iσ )) (2.15)

= ∑
σ

∑
iσ

εiσ −
1
2 ∑

σσ ′
∑

iσ j
σ ′

((iσ iσ | jσ ′ jσ ′)−δσσ ′(iσ jσ | jσ iσ )) (2.16)

with the electron repulsion integral (ERI)

(iσ jσ |kσ ′lσ ′) =
∫

d3r d3r′
φ∗

iσ (⃗r)φ jσ (⃗r)φ
∗
k

σ ′ (⃗r
′)φl

σ ′ (⃗r ′)

|⃗r− r⃗ ′|
. (2.17)

An important special case is the one-electron system. Here, we have only a single
orbital with real-space part φ (⃗r) and the expressions of the electronic energy and
the HF equation simplify to

EHF =−
∫

d3r φ
∗(⃗r)ĥHF

φ (⃗r), (2.18)

ĥHF
φ (⃗r) =−∆

2
φ (⃗r)−

N

∑
A=1

ZA∣∣∣R⃗A − r⃗
∣∣∣φ (⃗r). (2.19)

We note that the HF Hamiltonian and the Hamiltonian of the SE 2.8 coincide im-
plying that the HF theory is exact for one-electron systems.
Most quantum chemistry codes solve the HF equations by expanding the real-
space parts of the spin orbitals into a finite basis of functions fµ (⃗r), µ = 1...S,
the so-called basis set (of size S). The expansion coefficients of the real-space
functions of each spin channel σ are denoted by Ciσ µ . Considering the orthonor-
mality constraint on the orbitals, the expansion coefficients of each spin-channel
are solutions of the Roothaan-Hall equations

∑
ν

FHF
µνσCiσν = εiσ ∑

ν

SµνCiσν (2.20)
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with the elements of the HF matrix of spin channel σ

FHF
µνσ =

∫
d3r f ∗µ (⃗r)ĥ

HF fν (⃗r) (2.21)

and the elements of the overlap matrix

Sµν =
∫

d3r f ∗µ (⃗r) fν (⃗r). (2.22)

Although the Roothaan-Hall equations appear like a general eigenvalue problem,
these equations have to be solved iteratively because the HF matrix depends on
the orbitals themselves.

2.3 The MP2 approximation
A single Slater determinant is in general not a good approximation of the correct
many-electron ground state. Due to the variational principle, the correct ground
state energy must be lower than the energy obtained from the HF approximation.
The error between the HF ground state energy and the correct energy of the ground
state is called correlation energy.
A systematic way to improve upon the HF approximation is to employ a super-
position of Slater determinants obtained by replacing the spin orbitals of the HF
ground state Slater determinant (so-called occupied orbitals) with further solu-
tions of the HF equations orthogonal to the occupied orbitals (so-called unoccu-
pied orbitals) and optimize the expectation value of the energy with respect to
the expansion coefficients, an approach called Configuration Interaction (CI). The
minimization condition results in an eigenvalue problem. Because its size scales
exponentially with respect to the number of electrons, its solution becomes unfea-
sible for systems with more than a few electrons.
In order to circumvent the exponential growth of the method, we can truncate
the expansion to a subset of the possible Slater determinants. Although the scal-
ing of these methods is more favorable than the original CI scheme, we lose the
size extensivity of the method. Size extensivity reflects that the energy of a system
containing two non-interacting subsystems is the sum of the energy of the two sub-
systems. It turns out that the truncated CI expansion is not size-extensive which
gives rise to alternative WF correlation schemes like the Quadratic Configuration
Interaction (QCI) methods, the Coupled Cluster (CC) Methods, the Møller-Plesset
perturbation theory (MPn) or the different Multi-Reference Methods and the Den-
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sity Matrix Renormalization Group (DMRG).[38–40, 76–79]
In the following, we will focus on Møller-Plesset perturbation theory which is
based on the following exact decomposition of the Hamiltonian

ĤΨ = ĤHF
Ψ+

(
Ĥ − ĤHF)

Ψ = EΨ (2.23)

with the HF operator ĤHF = ∑
N
i=1 ĥHF

i with ĥHF
i being the HF operator from equa-

tion (2.13) operating on particle i. The assumption is that the operator Ĥ − ĤHF

is small enough permitting the application of perturbation theory. We introduce a
formal perturbation parameter λ before the perturbation term which is afterwards
set to one according to

ĤHF
Ψ+λ

(
Ĥ − ĤHF)

Ψ = EΨ. (2.24)

Using Rayleigh-Schrödinger perturbation theory, we write the energy and the WF
as a series of the perturbation parameter according to[80]

E = E0 +λE1 +λ
2E2 + . . . , (2.25)

ψ = ψ0 +λψ1 +λ
2
ψ2 + . . . . (2.26)

Plugging this expression into the above decomposition and comparing the coeffi-
cients of the different powers of λ and we obtain up to the second order in λ

ĤHF
Ψ0 = E0Ψ0, (2.27)

ĤHF
Ψ1 +

(
Ĥ − ĤHF)

Ψ0 = E0Ψ1 +E1Ψ0, (2.28)

ĤHF
Ψ2 +

(
Ĥ − ĤHF)

Ψ1 = E0Ψ2 +E1Ψ1 +E2Ψ0. (2.29)

The solution to the zeroth-order equation (2.27) is the HF WF, the zeroth-order
energy is however only the sum of the HF orbital energies of the occupied orbitals

E0 =
N

∑
I=1

εI, (2.30)

not the HF energy. To obtain the HF energy, we have to consider the first-order
correction, too, which is given by

E1 =−∑
IJ
((II|JJ)− (IJ|JI)) . (2.31)
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If we compare the zeroth- and first-order energy corrections with the HF energy,
we obtain

EHF = E0 +E1. (2.32)

Thus, we preserve the HF theory with the perturbation ansatz.
The determining equation for the first-order WF correction is the solution to(

ĤHF −E0
)

Ψ1 =
(
EHF − Ĥ

)
Ψ0. (2.33)

We try to obtain an expansion of the first-order expansion in terms of all possible
Slater determinants. Let k be the number of the occupied orbitals replaced by
the same amount of different unoccupied orbitals. Then, we call the resulting
Slater determinant to be a k-times excited Slater determinant. Because the HF
Hamiltonian and the the exact Hamiltonian are one- and two-electron operators,
respectively, the contributions from more than doubly excited Slater determinants
to the first-order WF correction are zero.
Due to the Brillouin theorem, the coupling between the HF WF and the singly
excited determinants is zero, and we are left with contributions from the doubly
excited states. We denote the doubly excited states with ΨAB

IJ being the Slater
determinant obtained by replacing the occupied orbitals I,J with the unoccupied
orbitals A,B in the HF WF. Imposing the orthogonality of the first-order correction
and the HF WF, the first-order WF correction is simply

Ψ1 = ∑
I<J

∑
A<B

tAB
IJ Ψ

AB
IJ . (2.34)

The first-order amplitudes tAB
IJ are obtained after multiplication of equation (2.33)

with ΨAB
IJ and integration

tAB
IJ =−(AI|BJ)− (AJ|BI)

εA + εB − εI − εJ
. (2.35)

With the first-order WF correction, we determine the second order energy correc-
tion by multiplying equation (2.29) with Ψ0, subtracting the product of equation
(2.27) and Ψ2 and integrating. We obtain the second-order energy

E2 = ∑
I<J

∑
A<B

tAB
IJ ((IA|JB)− (JA|IB)) . (2.36)
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The sum of the HF energy and the second-order energy defines the second-order
Møller-Plesset perturbation energy (MP2).
The indices I,J,A,B refer to states with any spin state. Because of the properties of
the spin orbitals, an ERI (2.17) can only be non-zero if both spin orbitals with the
same electronic coordinate have the same spin state. To account for this behavior
in the equations, we will write a spin state I (and analogously for the unoccupied
orbitals) as iσ with σ = α,β . Then, the second order energy is

E2 =−∑
σ

∑
iσ< jσ

∑
aσ<bσ

((iσ aσ | jσ bσ )− ( jσ aσ |iσ bσ ))
2

εaσ
+ εbσ

− εiσ − ε jσ

− ∑
iα jβ

∑
aα bβ

(iαaα | jβ bβ )
2

εaα
+ εbβ

− εiα − ε jβ
. (2.37)

The first term in equation (2.37) is called same-spin or triplet component, the
second term is the opposite-spin or singulet component. To increase the accuracy
of MP2, both components can be rescaled (SCS-MP2, SNS-MP2) or the same-
spin term is omitted enabling a lower-scaling approach (SOS-MP2).[54, 55, 81]
An important special case represent closed-shell systems with iα = iβ = i such
that

E2 =−2 ∑
i< j

∑
a<b

((ia| jb)− ( ja|ib))2

εa + εb − εi − ε j
−∑

i j
∑
ab

(ia| jb)2

εa + εb − εi − ε j
. (2.38)

After lifting the restrictions i < j and a < b, we obtain the more common form

E2 =−∑
i j

∑
ab

(ia| jb)2 − (ia| jb)( ja|ib)
εa + εb − εi − ε j

−∑
i j

∑
ab

(ia| jb)2

εa + εb − εi − ε j
(2.39)

=−1
2 ∑

i j
∑
ab

2(ia| jb)2 − (ia| jb)( ja|ib)
εa + εb − εi − ε j

. (2.40)

We note that the quality of the MP2 energy will depend on the number of em-
ployed unoccupied orbitals. In practice, the convergence with respect to the num-
ber of unoccupied orbitals is slow but smooth and the slow convergence is tackled
with extrapolation schemes or improved with a different representation of the first-
order WF correction within explicitly correlated MP2.[58–60]
Finally, Møller-Plesset perturbation theory provides self-correlation free meth-
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ods meaning that the correlation energy of a one-electron system is correctly de-
scribed as zero because in this case, the HF WF provides the correct solution of
the Schrödinger equation.

2.4 Resolution-of-the-Identity Approximation
A bottleneck for calculations within WFT is the evaluation of the ERIs. An im-
portant approach to reduce the computational efforts of their calculation is the
Resolution-of-the-Identity (RI) approximation.[82–84] The RI approximation is
related to the problem of density fitting, i.e. approximating a density ρ by a suit-
able linear combination of auxiliary basis functions fi according to

ρ ≈ ρ̃ = ∑
i

ai fi. (2.41)

We will minimize the interaction energy due to a potential operator g(r)≥ 0 in a
least square sense which means, find the components ai of the vector a such that∫

d3r1d3r2 (ρ (⃗r1)− ρ̃ (⃗r1))g(|⃗r1 − r⃗2|)(ρ (⃗r2)− ρ̃ (⃗r2)) (2.42)

is minimized. The coefficients are then given by

a = S−1t, (2.43)

Si j =
∫

d3r1d3r2 fi(⃗r1)g(|⃗r1 − r⃗2|) f j (⃗r2), (2.44)

ti =
∫

d3r1d3r2ρ (⃗r1)g(|⃗r1 − r⃗2|) fi(⃗r2). (2.45)

Please note that the matrix S defined here is different from the one used in the HF
section.
Calculating the interaction energy due to a second operator v(r), we obtain the
expression∫

d3r1d3r2ρ (⃗r1)v(|⃗r1 − r⃗2|)ρ (⃗r2) = tT S−1VS−1t (2.46)

Vi j =
∫

d3r1d3r2 fi(⃗r1)v(|⃗r1 − r⃗2|) f j (⃗r2). (2.47)

19



In the context of approximating Coulomb integrals, g(r) is usually referred to as
metric. With the trivial choice g(r) = v(r), the interaction energy simplifies to∫

d3r1d3r2ρ (⃗r1)v(|⃗r1 − r⃗2|)ρ (⃗r2) = tT V−1t. (2.48)

Despite this choice being seemly convenient, because there is the need to calculate
only one set of integrals, it inhibits the development of low-scaling methods in
case of the Coulomb operator or might cause numerical instabilities if the matrix
V is ill-conditioned like in the case of a long-range Coulomb operator.[41, 85]

2.5 Density Functional Theory
The high computational costs of WF correlation methods are related to the calcu-
lation of ERIs and the effort to parametrise the WF in an affordable manner. A
drawback of the WF is its non-measurability whereas the electron density,

n(⃗r) = N ∑
σ

∫
dx2 . . .dxN |Ψ((⃗r,σ),x2, . . . ,xN)|2 , (2.49)

is measurable. Furthermore, the electron density is a function of three spatial
coordinates only whereas the many-particle WF is a function of 3N spatial co-
ordinates. But both functions depend only on the local external potential vext (⃗r)
which is a function of three spatial coordinates only. Thus, why do we actually
have to employ a complex object of much more spatial variables like the WF if the
electron density has the same complexity like the determining external potential
and both actually carry information about the molecule?
This question lead to the development of density functional theory (DFT) with the
electron density as its central quantity. Hohenberg and Kohn proved the one-to-
one correspondence between the electronic ground-state density and the external
potential.[6] Because of the SE, there is a mapping of the external potentials to the
ground-state WFs. Due to equation (2.49), there is a mapping of the ground-state
WFs to the ground state densities and as such a mapping of external potentials to
the ground state densities. The Hohenberg-Kohn theorem now states the mapping
of the external with the important result that there is a map of the ground state
densities to the ground-state WF. Because we obtain all relevant physical quanti-
ties by applying the corresponding operator to the ground state WF, all relevant
physical quantities of the ground state of a system are functionals of the ground
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state density. This has to be especially true for the ground state energy. Hohen-
berg and Kohn further established the variational principle of the energy DF with
respect to the space of trial densities.
Albeit its framework provides an exact theory, approximations are required for
actual calculations with DFT, most commonly based on the Kohn-Sham (KS) ap-
proach.[5] Within this approach, we consider a reference system of non-interacting
electrons with the same energy and the same density. Due to the Hohenberg-Kohn
theorem, there is a corresponding external potential, the Kohn-Sham potential
vKS(⃗r). The DFT energy is then written as

E[n] = T 0[n]+U [n]+EH[n]+EXC[n] (2.50)

with the kinetic energy of non-interacting electrons

T 0[n] =−1
2 ∑

i

∫
d3r ψ

∗
i (⃗r)∆ψi(⃗r), (2.51)

the energy interaction energy of the electrons U [n] with the external potential
from above, the Hartree energy EH[n] = 1

2
∫

d3rd3r′ n(⃗r)n(⃗r′)
|⃗r−⃗r′| describing the classi-

cal self-interaction energy of the electron density and the yet unknown eXchange-
Correlation (XC) energy DF EXC[n]. The XC energy DF includes the quantum
mechanical contributions to the electron-electron interaction energy and a cor-
rection to the non-interacting kinetic energy. Because of the picture of non-
interacting electrons, the density is given in terms of single-electron WFs (or-
bitals) ψi(⃗r) employed as auxiliary quantities to assemble the electronic ground
state density n(⃗r) = ∑i |ψi(⃗r)|. The KS potential is the functional derivative of
U [n]+EH[n]+EXC[n] with respect to the density

vKS(⃗r) = vext(⃗r)+ vH(⃗r)+ vXC(⃗r), (2.52)

vH(⃗r) =
∫

d3r′
n(⃗r′)
|⃗r− r⃗′|

, (2.53)

vXC(⃗r) =
δEXC

δn(⃗r)
. (2.54)

The still unknown XC DF is the starting point for approximations within DFT,
providing DF Approximations (DFAs). In the literature, the distinction between
DFAs and density functionals (DFs) is often ignored and DFAs are just referred to
as DFs implicitly considering the approximate character of the actually employed
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DF. In the following, we will use the same terminology and refer to DFAs as DFs.
Most DFs are local XC DFs

EXC[n] =
∫

d3r eXC[n](⃗r)n(⃗r) (2.55)

with the XC energy per electron eXC[n](⃗r), a function of different directly avail-
able quantities in terms of the electron density.
Depending on the employed quantities, there is a hierarchy of DFAs with sup-
posedly increasing accuracy but also higher computational costs to the "heaven
of chemical accuracy" (Jacob’s ladder analogy).[86] On the first rung, the Lo-
cal Density Approximation (LDA), eXC is a function of the local value of the
electron density only.[87–89] On the second rung (Generalized Gradient Approx-
imation, GGA), there is an additional dependence on the local density gradi-
ent.[90, 91] meta-GGA DFs augment with the kinetic energy density τ (⃗r) =
−1

2 ∑i ψi(⃗r)∆ψi(⃗r) and/or the Laplacian of the density.[92, 93] Fourth-rung DFs
add an explicit dependence with respect to the occupied orbitals by mixing DFT
exchange with HF exchange, fifth-rung DFs even add a dependence with respect
to the unoccupied orbitals.[66, 94–97]
In analogy to the WFT theory, the XC DF is commonly split into an exchange
DF and a correlation DF. Most DFAs are local DFs in the sense that they are ex-
pressed as an integral of a given function depending on several auxiliary quantities
of the electron density. The terminology of the Jacob’s ladder analogy is applied
accordingly.

2.6 Random-Phase Approximation
In the last years, the Random-Phase approximation (RPA) became popular among
quantum chemists.[98–100] It is based on the adiabatic connection fluctuation-
dissipation theorem stating that the correlation energy EC of a system is given
by

EC =−1
2

Im
∫ 1

0
dα

∫
∞

0

dω

π

∫
dx1dx2

χα (ω,x1,x2)−χ0 (ω,x1,x2)

|⃗r1 − r⃗2|
(2.56)

with the coupling constant of the electron-electron interaction α and the frequency-
dependent density-density response function χα (ω,x1,x2). α = 0 is equivalent to
the KS ground state, α = 1 to the fully interacting system. Both density-density
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response functions are related to each other via a Dyson-like equation

χα (ω,x1,x2) = χ0 (ω,x1,x2)

+
∫

dx′1dx′2χα

(
ω,x1,x′1

)
f HXC
α (ω,x′1,x

′
2)χ0

(
ω,x′2,x2

)
(2.57)

with the unknown Hartree, exchange, correlation kernel f HXC
α (ω,x1,x2).[101]

RPA neglects exchange and correlation effects and sets f HXC
α (ω,x1,x2) =

α

|⃗r1−⃗r2| .
Furche proved that the RPA correlation energy is given by the expression[102]

EC,RPA =
1
2

Tr(Ω−A) (2.58)

with Ω2 being the eigenvalues of the generalized Eigenvalue problem(
A B
−B −A

)(
X Y
Y X

)
=

(
X Y
Y X

)(
1 0
0 −1

)
Ω

2, (2.59)

XXT −YYT = 1, (2.60)
Aia, jb = (εa − εi)δi jδab +(ia| jb)− (ib| ja), (2.61)
Bia, jb = (ia| jb)− (ib| ja). (2.62)

This method has a theoretical scaling of O
(
N6)with N being a measure of system

size.
If we neglect the integral (i j|ab), the eigenvalue problem simplifies to a smaller
sized Hermitian eigenvalue problem

EC,RPA =
1
2

Tr
(

M1/2 −A
)
, (2.63)

MZ = ZΩ
2, (2.64)

ZZT = 1, (2.65)

M = (A−B)1/2 (A+B)(A−B)1/2 (2.66)

reducing the prefactor significantly, iterative approaches reduce the scaling to
O
(
N5).[102] This simplified RPA method is called direct RPA (dRPA). In the

following, we will ignore this distinction and will refer to direct RPA simply as
RPA whereas RPA including the exchange-like integrals is referred to as RPA with
exchange.
Rewriting the matrix root as an integral and introducing the RI approximation

23



employing a Coulomb metric (see chapter 2.4), the final result is[103]

EC,RPA =
∫

∞

0

dω

2π
Tr(ln(1+Q(ω))−Q(ω)) , (2.67)

Q(ω) = 2ST G(ω)S, (2.68)

SiaP = ∑
Q
(ia|Q)(Q|P)−1/2, (2.69)

Gia, jb = δi jδab
εa − εi

(εa − εi)2 +ω2 (2.70)

Despite of the efficiency of RPA compared to RPA with exchange, RPA suf-
fers from self-correlation effects implying non-zero correlation energies for one-
electron systems in contrast to common WF methods.

2.7 Double-Hybrid Density Functionals
Double-hybrid DFs (DHDFs) are given by the XC DF[67]

EXC[n] = aX,DFTEX,DFT[n]+aX,HFEX,HF[n]

+aC,DFTEC,DFT[n]+aC,WFTEC,WFT[n] (2.71)

with the DFT-like exchange DF EX,DFT[n], the HF exchange DF EX,HF[n], the
DFT-like correlation DF EC,DFT[n] and the WFT-based correlation DF EC,WFT[n]
with the corresponding scaling factors aX,DFT, aX,HF, aC,DFT and aX,WFT. Note
that the HF exchange DF and the WFT correlation DF depend explicitly on the
orbitals which are both implicitly given as DFs via their dependence on the exter-
nal potential.
Before the first occurrence of the terms double-hybrid DF and doubly-hybrid
DF in literature by Zhao et al. and more prominently by Grimme, there had
already been similar approaches mixing DFT and WFT based on the Coupled
Cluster or the Configuration Interaction method, sometimes referred to as "Multi-
Configurational DFT".[65, 66, 104–106]
Although the HF exchange functional and the WFT-based correlation methods
are commonly given in terms of orbitals, they are implicit DFs due to their depen-
dence on the external potential. Nevertheless, the KS potential being the deriva-
tive with respect to the density is usually taken as the derivative with respect to
the orbitals implying that the HF exchange potential in DFT is a non-local DF in
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analogy to HF theory. Within the method of Optimized Effective Potentials, the
derivatives of the HF and the WFT energies is obtained as a local potential.[107–
109] Due to the higher computational costs, this approach is rarely applied in ap-
plications.
Because the evaluation of the WFT correlation functional is commonly the highest
scaling step of DHDF calculations, it is considered to be a post-SCF correction,
thus the Kohn-Sham potential is the derivative of the first three terms in equation
(2.71) only. Depending on the underlying hybrid DF, there is a large variety of
flavours of DHDFs. DHDFs are classified according to

• the rung of the underlying DF (LDA, GGA, meta-GGA),

• the underlying WFT correlation method (MP2, SCS-MP2, SOS-MP2, RPA
etc.),

• the operator of the HF kernel (Coulomb, range-separated),

• the operator of the WFT functional (Coulomb, long-range Coulomb),

• the way the parameters of the DF are determined (fitted to experimental data
or object to theoretical constraints),

• the inclusion of dispersion correction (kind of dispersion correction, param-
eters are optimized together with other DHDF parameters),

• DF for orbitals, DF for energy (different or the same).
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Examples for some groups are provided in table 2.1. In principle, one could em-
ploy other WFT correlation methods than RPA or MP2 like Quadratic Configura-
tion Interaction or Coupled Cluster but the higher computational costs of these
approaches reduce their usability without actually improving the results. The
high accuracy of DHDFs is related to several drawbacks of WFT and common
DFAs. Most DFAs are neither self-interaction free nor self-correlation free which
results in an incorrect description of charged species, charge transfer processes
and weakly interacting systems.[88, 125–127] Inclusion of HF exchange reduces
the self-interaction error, WFT correlation reduces the self-correlation error. The
usually larger amount of HF exchange compared to most hybrid DFs reduces the
self-interaction error significantly. The improvement over the underlying WFT
method is related to the missing higher excitations required for a reasonable de-
scription of short-range interactions. These interactions are again well-described
in DFAs.
A further improvement is given for the description of long-range interactions.
With perturbation theory, one obtains a R−6-dependence for the long-range in-
teraction energy of two uncharged atoms of distance R whereas common DFAs
predict an exponential decay. This behavior is crucial for the description of inter-
actions of uncharged molecules like in molecular crystals, molecular liquids but
also for molecule-surface interactions and the interaction of biomolecules. For
common DFAs, there are several empirical and non-empirical corrections avail-
able.[26–29, 31–33] DHDFs (partially) describe these interactions with MP2 or
RPA, thus they represent a non-empirical correction to common DFAs. Most
DHDFs do not employ full MP2 or RPA such that they still require a partial cor-
rection for dispersion corrections.
MP2 and RPA were derived assuming HF orbitals. These are not employed for
DH calculations. Thus, the derivation for these methods is invalid and actually re-
quires different equations. We will discuss this issue for the common MP2-based
DHDFs.
Görling and Levy derived the leading term of the correlation energy DF[128, 129]

EC[n]≈ ∑
k

∣∣〈Ψ0
∣∣V̂ee −∑

N
i=1
(
vH[n](⃗ri)+ vX[n](⃗ri)

)∣∣Ψk
〉∣∣2

E0 −Ek
. (2.72)

If we compare this expression with the energy expression from MP2 in equation
(2.36), there is a difference in the exchange potential. In MP2, the exchange po-
tential is non-local whereas in DFT, the exchange potential is local. Furthermore,
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the excited reference states need not to be the same. Thus, Görling-Levy pertur-
bation theory and MP2 theory do not provide the same results but MP2 is rather
considered to be an approximation to Görling-Levy perturbation theory.[66]

2.8 CP2K and the GPW approach
CP2K is an electronic-structure code tackling condensed matters on large super
computers.[130] Its efficiency relies on the Quickstep algorithm and sparse matrix
multiplications employing the DBCSR library.[131–133] The basis of the Quick-
step algorithm is the GPW method, a dual-basis approach for orbitals and densi-
ties.[134] While orbitals are expanded in Gaussian basis sets enabling an efficient
linear-scaling integration of integrals, densities are represented on a regular grid
equivalent to a plane wave basis set. The plane wave basis allows a linear-scaling
determination of the Hartree potential in reciprocal space being backtransformed
to real space by a Fast Fourier Transform (FFT). The plane wave basis requires
the use of pseudopotentials of which CP2K employs the Goedecker-Teter-Hutter
type.[135] All-electron calculations are not possible within the GPW approach but
are enabled with the GAPW method.[136]
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Chapter 3

Implementation of Double-Hybrid
Functionals with Range-Separated
Correlation Functional

3.1 Introduction
Double-hybrid density functionals (DHDFs) belong to the fifth rung of the Jacob’s
ladder of density functional theory (DFT).[86] They augment common local den-
sity functionals with Hartree-Fock (HF) exchange and wave function correlation
(WFC) providing the highest accuracy possible within the framework of density
functional theory (DFT).[25]
Albeit their excellent performance across a large variety of systems, the underly-
ing WFC method does not only increase the computational costs but also increases
the errors with respect to the basis set incompleteness and basis set superposi-
tion error.[64, 70, 71] The required computing resources limit the application of
DHDFs to molecular systems or require super computing hardware for calcula-
tions in condensed phase, a possibility to treat the large basis set dependence is
given by explicitly correlated methods.[60–63]
It was proved that the introduction of range-separated correlation functionals turns
the slow cubically scaling convergence with respect to the size of the basis set
of conventional DHDFs into the exponential decay of standard non-DHDFs.[64]
Exchange and correlation functional are separately divided into short-range and
long-range contributions. Then, the short-range contributions are described by
a local density functional and the respective long-range contributions by a wave
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function method. Therefore, different correlated methods were studied in the lit-
erature.[65, 105, 119, 137–139]
The whole methodology correctly predicts a 1

R6 -decay for dispersion interactions.
Their application to very weakly interacting systems like rare gas dimers and
rare-gas-alkaline-metal dimers and molecular crystals proves the accuracy of this
scheme.[65, 105, 106] The required short-range correlation energy functionals
or long-range electron repulsion integrals for correlated methods are missing in
many electronic structure codes limiting a wide availability of these functionals.
In the following, we describe the implementation of long-range Coulomb integrals
into the GPW approach for RI-MP2 and RI-RPA and long-range HF exchange for
pseudopotential (PP) calculations into the CP2K package. Benchmarking both in-
gredients allows to discuss benefits and drawbacks of the implementation of DH
functionals with range-separated DH functionals within CP2K.

3.2 Theoretical Background
In order to understand the basis set convergence of correlated methods, we will
examine a class of simple toy systems, the Helium-like atoms. These are the most
simple two-electron systems and in our discussion, we follow the derivation of
Schwartz.[58]
The Schrödinger equation for a Helium-like atom with nuclear charge Z is

−∆1ψ (⃗r1 ,⃗r2)

2
− ∆2ψ (⃗r1,⃗r2)

2
−
(

Z
r1

+
Z
r2

− 1
r12

)
ψ (⃗r1 ,⃗r2) = Eψ (⃗r1,⃗r2) (3.1)

with r⃗i being the coordinate of electron i, ∆i the corresponding Laplace operator,
and ri = |⃗ri| and r12 = |⃗r1 − r⃗2| denote the distance vectors.
Dividing by Z2 and scaling the vectors according to r⃗i =

1
Z r⃗i

′ and the energy
according to E = Z2Ẽ, we obtain

− ∆̃1ψ̃ (⃗r1
′ ,⃗r2

′)

2
− ∆̃2ψ̃ (⃗r1

′ ,⃗r2
′)

2
−
(

1
r′1

+
1
r′2

− 1
Z

1
r′12

)
ψ̃ (⃗r1

′ ,⃗r2
′) = Ẽψ̃ (⃗r1

′ ,⃗r2
′)

(3.2)
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To simplify the notation, we will ignore the tildes and primes and introduce the
one-electron hamiltonian operators

hi =−∆i

2
− 1

ri
(3.3)

and the interaction hamiltonian operator

h12 =
1

r12
. (3.4)

We observe that both operators are hermitian.
Then, we apply the perturbation ansatz E = E0+

1
Z E1+

1
Z2 E2+ ... and ψ (⃗r1 ,⃗r2) =

ψ0 +
1
Z ψ1 + ... with h1 +h2 being the unperturbed hamiltonian and h12 as pertur-

bation with perturbation parameter 1
Z . Applying theory, we obtain the equation of

the unperturbed system (system of noninteracting electrons)

(h1 +h2)ψ0 = E0ψ0 (3.5)

and the first-order equation

(h1 +h2)ψ1 +h12ψ0 = E0ψ1 +E1ψ0. (3.6)

The zeroth-order equation has the known solution

ψ0(⃗r1,⃗r2) = φ1s(⃗r1)φ1s(⃗r2), (3.7)
E0 =−1, (3.8)

with the 1s-orbital φ1s(⃗r).
Multiplicating the first-order equation with ψ0 from the left and integrating, we
remove the terms with ψ1 and we obtain the first-order energy correction E1 =

5
8 .

Then, the equation for the first-order correction of the wave function (WF) reads

(h1 +h2 +1)ψ1 =

(
5
8
−h12

)
ψ0. (3.9)

For small interelectronic distances, the equation is approximately solved by

ψ1 =
r12

2
ψ0. (3.10)
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From the known partial wave expansion (PWE) of the Coulomb potential, we
derive the PWE of the solution

ψ1 =
ψ0

2 ∑
l

Pl(cosθ)
rl
<

rl+1
>

(
r2
<

2l +3
− r2

>

2l −1

)
, (3.11)

which becomes in the limit of small differences δ in the radii and large l

ψ1 =−rψ0

2 ∑
l

Pl(cosθ)
1
l2 e−δ l(1+δ l), (3.12)

With the variational principle for the second order energy correction, we obtain an
upper bound for the second order correction for each angular momentum quan-
tum number − 45

256
1
l4 . Summing all terms from a given l to infinity, we obtain

an upper bound for the error in the second order energy to be − 15
256

1
l3 . To illus-

trate the decay, a decrease of the error by one order of magnitude requires at least
twice the number of considered angular momentum quantum numbers. The size
of the usually employed correlation basis sets increases cubically with the highest
considered angular momentum quantum number. For a given system, the com-
putational cost of MP2 increases quartically with respect to the basis set size. In
total, the error decays with the fourth root of the computational timing implying
that an improvement of one order of magnitude for the error in the total energy
requires 10,000 times higher computational costs. Fortunately, the decay of the
error is very smooth which allows the application of an extrapolation scheme to
improve upon already available results. The general behavior was mathematically
rigorously proved.[140, 141]
For the long-range potential erf(ωr12)

r12
, Gori-Giorgi et al. derived an expression in

the limit of small inter-electronic distances given by[142]

ψ1 = r12 p1(ωr12)ψ0 (3.13)

p1(y) =
exp(−y2)−2

2
√

πy
+

(
1
2
+

1
4y2

)
erf(y). (3.14)

With a fixed value of ω and sufficiently small r12, we find

ψ1 =
ω

3
√

π
r2

12ψ0 (3.15)
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whereas the condition by Schwarz (3.10) is recovered in the limit of infinitely large
ω . In spite of analytical expressions of the PWE of p1(ωr12) are not available,
Franck et al. gave numerical proof for the fast decay of the PWE and consequently
also a fast decay of the error with respect to the basis set size.[64]
In order to exploit the improved convergence, Savin et al. constructed a range-
separated DH functional (rsDH functional) given the energy functional

ErsDH = T 0 +U +EH +EX,srDFT +EX,lrHF +EC,srDFT +EC,lrWFT (3.16)

with the kinetic energy of non-interacting electrons T 0, the electron-nucleus inter-
action energy U , the Hartree-energy EH, the short-range exchange DFT functional
EX,srDFT, the long-range HF functional EX,lrHF, the short-range correlation DFT
functional EC,srDFT and the long-range WF correlation (WFC) energy EC,lrWFT.
Ignoring the correlation energy terms, the theory describes a range-separated hy-
brid functional without correlation. Most range-separated hybrid functionals like
HSE06 or ωB97M-V describe the correlation energy with a non-range-separated
density functional whereas range-separated DHDFs employ a mixture of density
functional correlation and WFC with the Coulomb operator.[94, 143] In the theory
discussed here, the correlation energy term is split into long-range and short-range
contributions. The long-range correlation energy term is described by a WFC
method whereas the short-range correlation energy is described by a density func-
tional. It exploits the fact that common density functionals accurately describe
short-range interactions due to their local character whereas WFC methods easily
describe long-range interactions providing the correct R−6-decay of interaction
energies of uncharged systems thus describing each part of the interaction with
the most suitable method.
Because the exchange-energy depends linearly on the interaction potential, the
exchange-energy expression for the given potential is uniquely defined given a
separation of the Coulomb potential into long-range and short-range contributions.
This is not true for the correlation energy because of its non-linear dependence of
the interaction potential. Thus, one defines a long-range correlation energy func-
tional first and defines the short-range correlation functional as the compliment
of the long-range correlation functional. Alternatively, one may provide a short-
range correlation functional first and defines the long-range correlation functionals
as its compliment.
Range-separated exchange energy functionals are widely available and are based
on different Coulomb-based exchange functionals and a variety of operators and
employed by several functionals.[94, 143–147] The same availability does not
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hold for range-separated correlation energy functionals. Until today, most of these
functionals were developed by the groups of Savin and Gori-Giorgi. Until now,
only one of them is available in the LibXC library interfaced by several quantum
chemistry codes like CP2K.[130, 148–151]

3.3 Implementation of Integrals within the GPW ap-
proach

3.3.1 Motivation and Theoretical Background
The GPW approach within the CP2K software package is a scheme to efficiently
calculate matrix elements of Gaussians.[130, 134] A common problem of quantum-
chemistry codes is the calculation of the Hartree potential related to a given den-
sity. In the GPW approach, densities are represented in two different manners:
as a sum of products of two Gaussian basis functions or in a plane-wave basis
set. This approach allows to calculate the potential in reciprocal space efficiently
from the density in reciprocal space, back-transform the potential into real space,
and calculate the required matrix-elements. The transition between both spaces is
given by Fast Fourier Transforms (FFTs) for which efficient libraries exist.[152–
158]
In order to implement the long-range Coulomb operator erf(ωr)

r into the GPW ap-
proach, we will rely on the Fourier transform of the potential given by

∫
d3r

erf(ωr)
r

e−⃗k·⃗r =
1

(2π)3
4π

r2 exp

(
−
(

k
2ω

)2
)

(3.17)

which differs just by the exponential factor from the Fourier transform of the
Coulomb potential ∫

d3r
1
r

e−⃗k·⃗r =
1

(2π)3
4π

r2 (3.18)

providing an easy way to calculate the matrix elements of the long-range Coulomb
operator using the machinery for the Coulomb potential.
Let A be the real hermitian matrix of size n representing the Coulomb operator
in the RI basis set. Then, the required matrix inversion and matrix root of A is
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usually determined by a Cholesky decomposition[159]

A = LLT (3.19)

with a lower triangular matrix L and its final inversion, both efficiently imple-
mented in the libraries Lapack and ScaLapack.[160, 161] Although A ought to be
positive definite with the long-range Coulomb operator because of erf(x)≥ 0, it is
numerically only positive semi-definite and the Cholesky decomposition becomes
numerically unstable. Instead, we employ its eigenvalue decomposition

A = CΛCT (3.20)

with an orthogonal matrix C containing the eigenvectors and a diagonal matrix
Λ = diag(λ1, ...λn) and the eigenvalues λi.[162, pp.3-10, 24–30, 265] Because A
is positive semi-definite, we have λi ≥ 0. Further, we assume the sequence λ1, ...λn
to be decreasing. Eigenvalue decompositions can be calculated efficiently with
libraries like ELPA.[163, 164] With these ingredients, we define an alternative
symmetric decomposition

A = BBT (3.21)

B = CD1/2 (3.22)

D1/2 = diag(λ 1/2
1 , ...,λ

1/2
n ) (3.23)

and its Moore-Penrose-pseudoinverse

A+ = B+B+T (3.24)

B+ = CD−1/2 (3.25)

where D−1/2 is the diagonal matrix with its i-th diagonal element being zero if
the λi is non-positive and λ

−1/2
i else. Note that the two matrices L and B are

equivalent to each other, i.e. there is an orthogonal matrix O such that L = BO.
Because r = rank(A) ≤ n, we can save memory and floating point operations
in subsequent steps with the low-rank decomposition by removing the last n− r
eigenpairs.
With the eigenvalue-decomposition, we have to calculate a decomposition of the
inverse of a numerically singular matrix. We can increase the numerical stability
by employing a different metric (see chapter 2.4) as suggested by Mezei et al.[85]
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3.3.2 Performance and Accuracy
We implemented the low-rank decomposition into CP2K. For all calculations, we
considered 64 water molecules in a box at ambient density, correlation-consistent
primary basis sets (PBSs) and suitable RI auxiliary basis sets (ABSs).[68] In
any case, we employed PBE orbitals and considered two values of the range-
separation parameter ω = 0.3,0.5. PBSs and ABSs were optimized for the use
with the Coulomb operator. MP2 and RPA denote the MP2 and RPA methods
using the Coulomb operator, lrMP2 and lrRPA denote the MP2 and RPA methods
using the long-range Coulomb operator.
First, we compared our GPW implementation against the MME implementation
by Patrick Seewald employing a Coulomb metric.[165–167] Our implementation
shows an excellent agreement with the MME integral approach with errors of the
order of 0.1 µEh per water molecule. This error is comparable to the RI error
with the Coulomb operator. But we found that the long-range Coulomb metric is
numerically unstable with the MME method such that the MME method had to
be used with the Coulomb metric. Furthermore, the GPW implementation is one
order of magnitude faster than the MME implementation. Consequently, we rec-
ommend the GPW method for long-range Coulomb integrals because of its better
stability and performance.
We investigated the convergence of the lrMP2 and the lrRPA energy with respect
to the size of the primary basis set. In figure 3.1, we report the errors relative to
the energies extrapolated to the complete basis set limit of the total energies per
molecule and the total energies per molecule relative to the single water molecule
at the MP2-, RPA-, lrMP2- and lrRPA-levels of theory. The MP2 and RPA en-
ergies were extrapolated with a cubic function from the results of the triple- and
quadruple zeta energies, the lrMP2 and lrRPA energies with an exponential fit
using all three points as suggested by Franck et al.[64] Obviously, the general be-
havior and the magnitude of the errors is independent of the correlation method.
Please note that the obvious exponential decay of the energy errors is a result
of the exponential three-point extrapolation function. Nevertheless, the errors of
the range-separated functionals decay fast with respect to the basis set size. We
observe a basis set incompleteness error of 0.14 mEh per water molecule with a
quadruple zeta-quality basis set for lrMP2 whereas the error of MP2 is two or-
ders of magnitude larger with an error of 24 mEh. For the energy differences,
the remaining errors with a quadruple zeta basis set are 0.26 mEh (lrMP2) and
0.53 mEh (MP2) and comparable errors for RPA and lrRPA. Because of the ex-
pected methodological error, a basis set of triple zeta quality provides already a
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Figure 3.1: Convergence of total energies per molecule and the difference to the
energy of a single molecule for MP2/lrMP2 (left panel) and RPA/lrRPA (right
panel). The RI basis sets were optimized for the given primary basis set employing
a Coulomb potential.

sufficient accuracy whereas the original MP2 and RPA methods should be em-
ployed with a quadruple zeta basis set.
In figure 3.2, we report the numerical ranks of matrix A for the RI basis sets cor-
responding to correlation-consistent basis sets of double to quadruple zeta quality
for MP2 and lrMP2 and two different values of the range-separation parameter
ω . An obvious result is the absence of a rank reduction for MP2 and lrMP2 with
ω = 0.5 whereas we observe a rank reduction of up to 20 % with lrMP2 depend-
ing on the employed value of ω . We can justify this observation by considering
that the short-range contributions of the Coulomb potential allow a distinction of
the different basis functions whereas the long-range field has the same behavior
for all RI basis functions of the same angular quantum number. This effect is
more pronounced for larger basis sets. With lower values of ω , we remove more
short-range contributions reducing the numerical ranks of the two-center matrix
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Figure 3.2: Numerical ranks of the two-center matrices of MP2 and lrMP2 for
two different values of the range-separation parameter ω (left axis: absolute ranks
(black lines), right axis: relative ranks (red lines)).

A further.
Because of the reduction in the RI basis set size, we examined the related reduc-
tion in the computational costs of the different available WFC methods in CP2K
using the same setting as above. The Laplace-RI-SOS-MP2 method is expected to
show a similar behavior as the RI-RPA method due to the same rate-determining
step and is discarded. The cubically scaling RI-RPA implementation will not ben-
efit from the rank reduction for the given test system because its performance is
mostly determined by the low-scaling tensor contraction steps of the three-center
integrals employing the unreduced RI basis set for systems with up to 1,000 atoms
and is discarded, too.[41, 167]
In figure 3.3, we report the computational timings for the MP2, lrMP2, RPA and
lrRPA calculations with different primary basis sets and suitable RI basis sets.
Exploitation of long-range Coulomb integrals increases the costs of the integral
calculation step in all cases because of the in general higher computational costs
of the eigenvalue decomposition compared to the Cholesky decomposition. Fur-
thermore, we observe a decrease in the computational timing of the higher-scaling
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Figure 3.3: Computational costs RPA, MP2 and lrRPA and lrMP2 with two
different values of the range-separation parameter ω . "integrals" and "en-
ergy" refers to the timing of the routines "mp2_ri_gpw_compute_in" and
"mp2_ri_gpw_compute_en"/"rpa_ri_compute_en" (for MP2/RPA respectively).
Calculations with PBSs of DZ and TZ quality were run on 16 nodes with 12
ranks per node, calculations with PBSs of QZ quality on 36 nodes with 4 ranks
per node.
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Table 3.1: Errors of total energies per molecule of the different metrics with lrMP2
and lrRPA, each with two different values of ω with respect to the long-range
Coulomb metric in mEh. The calculations were carried out with a primary basis set
of triple zeta quality, suitable RI basis sets. The numerical integration of the RPA
method employed a 8-point minimax grid.[168] For the short-range (sr.) Coulomb
metric, we chose ω = 0.5, for the truncated (trunc.) Coulomb metric Rcut = 6Å
which is roughly half of the cell size.

Method Coulomb Sr. Coulomb Overlap Trunc. Coulomb
lrMP2(ω = 0.3) 0.008 0.019 0.024 0.003
lrMP2(ω = 0.5) 0.011 0.061 0.018 -0.085
lrRPA(ω = 0.3) 0.007 0.016 0.015 0.003
lrRPA(ω = 0.5) 0.015 0.050 0.002 0.067

energy calculation if we reduce ω . The total costs decrease by 10-15 % in the case
ω = 0.3. For larger systems, the quintically-scaling energy calculation step will
dominate the costs whereas for smaller systems, the quartically-scaling determi-
nation and contraction of the three-center integrals dominate the costs. Thus, we
will not only expect a reduction of the computational costs for larger systems in
the case of MP2 but also in the case of RPA. The reduction of the computational
costs of RPA is not too pronounced because of the in general smaller computa-
tional costs of the quartically-scaling RPA method compared with the quintically-
scaling MP2 method.
As an alternative to the long-range Coulomb metric, we tested the different avail-
able RI metrics (see table 3.1). We find an excellent accuracy with all metrics of
the order of 10 µEh per molecule. Consequently, all metrics are recommended to
use with long-range integrals.

3.4 Pseudopotentials
The pseudopotentials (PPs) are another important ingredient for the GPW ap-
proach in CP2K. Because the functionals described here contain 100 % of a local
density functional and 100 % of non-local long-range HF, we expect that the re-
quired PPs are a mixture of the underlying full-range density functional and HF.
Especially for transition-metals, a proper PP is crucial for the accuracy of the re-
sults. Thus, for a given value of the range-separation parameter ω , we have to
optimize suitable PPs using the atom code of CP2K. Because the integral calcu-
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lation routines within the atom code of CP2K are independent of those employed
for the molecules and condensed-phase systems, we have to implement the long-
range integrals into the HF atom code.
The task is to determine the integral

In2l2m2,n′2l′2m′
2

n1l1m1,n′1l′1m′
1
=
∫

d3rχ
∗
n1l1m1

(⃗r1)χn′1l′1m′
1
(⃗r1)g(r12)χ

∗
n2l2m2

(⃗r2)χn′2l′2m′
2
(⃗r2) (3.26)

for a given interaction operator g(r12) and basis functions χnlm(⃗r) = Rnl(r)Ylm(r̂)
with given real-valued radial basis functions Rnl(r) and the unit-vector r̂ in direc-
tion of r⃗. In the case of potentials representable as

g(r12) = ∑
NL

fNL(r1,r2)
L

∑
M=−L

Y ∗
LM(r̂1)YLM(r̂2), (3.27)

the above integral factorizes according to

In2l2m2,n′2l′2m′
2

n1l1m1,n′1l′1m′
1
= ∑

NLM
IR,NL
n1l1,n′1l′1,n2l2,n′2l′2

IΩ,LM
l1m1,l′1m′

1,l2m2,l′2m′
2
, (3.28)

IR,NL
n1l1,n′1l′1,n2l2,n′2l′2

=
∫

dr1dr2r2
1r2

2R∗
n1l1(r1)Rn′1l′1

(r1) fNL(r1,r2)R∗
n2l2(r2)Rn2l2(r2),

(3.29)

IΩ,LM
l1m1,l′1m′

1,l2m2,l′2m′
2
=
(

ĨΩ,LM
l1m1,l′1m′

1

)∗
ĨΩ,LM
l2m2,l′2m′

2
, (3.30)

ĨΩ,LM
lm,l′m′ =

∫
dθdφYlm(r̂)Yl′m′(r̂)Y ∗

LM(r̂) (3.31)

considering that the unit vectors can be expressed by the spherical angles θi and
φi. The angular integrals ĨΩ,LM

lm,l′m′ are related to the Clebsch-Gordan coefficients

whereas the radial integrals IR,NL
n1l1,n′1l′1,n2l2,n′2l′2

depend on the involved potential.
For the Coulomb operator, we have the well known identity

1
r12

= 4π ∑
l

rl
<

rl+1
>

l

∑
m=−l

Y ∗
lm(r̂1)Ylm(r̂2) (3.32)

with r< = min(r1,r2),r> = max(r1,r2) and the spherical harmonics Ylm. The
derivation of an analogous relation for the long-range Coulomb operator is more
involving. Limpanuparb et al. suggested the application of a Gauss-Hermite
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quadrature to the integral

erf(ωr12)

r12
=

2ω

π

∫
∞

−∞

dβ j0(2βωr12)exp
(
−β

2) (3.33)

= 8ω

∞

∑
l=0

l

∑
m=−l

∫
∞

−∞

dβ jl(2βωr1) jl(2βωr2)Y ∗
lm(⃗r1)Ylm(⃗r2)exp

(
−β

2)
(3.34)

with the spherical Bessel functions jl(x).[169] Application of a 2N + 1-point
Gauss-Hermite quadrature results in

erf(ωr12)

r12
= 16ω

N

∑
n=0

∞

∑
l=0

l

∑
m=−l

bn jl(2βnωr1) jl(2βnωr2)Y ∗
lm(⃗r1)Ylm(⃗r2). (3.35)

As noticed by Limpanuparb et al., the number N′ of significant quadrature points
from an N-point quadrature rule grows like O

(√
N
)

because of the exponential
decay of the quadrature weights bn.[169]
For the long-range Coulomb potential and real-valued basis functions, the radial
integral factorizes according to

IR,NL
n1l1,n′1l′1,n2l2,n′2l′2

= ĨNL
n1l1,n′1l′1

ĨNL
n2l2,n′2l′2

(3.36)

ĨNL
nl,n′l′ = 4

√
ωbN

∫
∞

0
dr r2 jL(2βNωr)Rnl(r)Rn′l′(r). (3.37)

If the radial basis functions are given on a grid with weights ak and abscissa αk,
the integrals can be recasted as a matrix-vector product Ĩ = Mρ with the product
density vector with elements ρk

nl,n′l′ = Rnl(αk)Rn′l′(αk) and the integration matrix
with elements MNk

Lω
= 2r

√
ωbNak jL(2βNωαk). The long-range potential on the

grid is then I = MT Mρ . This matrix-vector multiplication is cheaper to imple-
ment as a two-step process because of the in practice much smaller number of
Hermite-grid points than primary grid points.
In figure 3.4, we report the total energies and numerical errors of the Helium atom
with different numbers of integration points and range-separation parameters ω .
The larger ω , the more we approach the Coulomb limit. Because we increase the
interaction potential, the exchange energy has to decrease (increase in terms of
magnitude) until the Coulomb limit is reached. The too high exchange energies
of the larger values of ω show that the numerical integration scheme has not con-
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Figure 3.4: Convergence of the exchange energy (in Eh) of a Helium atom for dif-
ferent range-separation parameters ω and different numbers of grid points (upper
panel: energies, lower panel: absolute errors with respect to the last grid point).
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verged yet and a larger number of grid points is required. Using the actual errors,
the energies of the smaller values of ω are converged with 10 grid points whereas
we require at most 50 grid points when ω = 1. When ω = 10, we require at most
1,000 grid points for reasonable results. The bad convergence in case of high
values of ω implies that our integration scheme is not suitable in these cases as
pointed out by Limpanuparb et al.[169] Because we approach the Coulomb poten-
tial in the limit of large ω , we suggest to employ PPs optimized for the Coulomb
potential instead.

3.5 Application to Rare Gas Dimers
In table 3.2, we report the dissociation energies, binding energies, vibrational fre-
quencies and the basis set superposition errors of some rare gas dimers calculated
with an LDA-based and MP2-based range-separated double-hybrid functional and
with MP2 in comparison to the literature.[65, 105] All calculations were carried
out with the RI-MP2 implementation in CP2K 8.1, large cutoffs (1,200 Ry for
the DFT grids, 300 Ry for the MP2 grids) and low thresholds (EPS_DEFAULT
of 1.0E-15 and EPS_SCHWARZ of 1.0E-15). PPs were optimized in accordance
to reference [170] and are compiled in the appendix of this chapter. RI basis
sets were automatically generated within CP2K (large basis sets). We employed
the implementation of the short-range LDA-based functional by Gori-Giorgi et
al.[148, 171] We extrapolated the results to the complete basis set limit according
to Franck et al. in the case of the range-separated functional and according to
Halkier et al. with the results from the triple- and quadruple-zeta basis sets in the
case of MP2.[59, 64]
If we increase the basis set size, we observe a systematic reduction of the bond
lengths and a systematic increase in the binding energies and the vibrational fre-
quencies for both methods. This proves that our basis sets for each element sys-
tematically improve the results. If we compare our results with the quadruple-zeta
basis sets and extrapolated values with the results obtained with a pentuple-zeta
basis sets by Angyan et al. and our results with a triple-zeta basis sets with the
comparable results by Goll et al., we find an excellent agreement between our re-
sults and the literature which proves the accuracy of our implementation and our
basis sets in general.

44



Ta
bl

e
3.

2:
E

rr
or

s
in

th
e

bi
nd

in
g

en
er

gi
es

of
ra

re
ga

s
di

m
er

s
ob

ta
in

ed
fr

om
ca

lc
ul

at
io

ns
w

ith
di

ff
er

en
ta

ug
m

en
te

d
co

rr
el

at
io

n-
co

ns
is

te
nt

ba
si

s
se

ts
w

ith
M

P2
an

d
an

M
P2

-b
as

ed
ra

ng
e-

se
pa

ra
te

d
D

H
D

F
(R

SH
-M

P2
).

aX
Z

re
fe

rs
to

an
au

gm
en

te
d

co
rr

el
at

io
n-

co
ns

is
te

nt
ba

si
s

se
t

of
X

-z
et

a
qu

al
ity

,d
-a

5Z
re

fe
rs

to
a

do
ub

ly
au

gm
en

te
d

pe
nt

up
le

-z
et

a
ba

si
s

se
t.

D
is

ta
nc

es
ar

e
gi

ve
n

in
Å

,e
ne

rg
ie

s
in

µ
E

h,
w

av
e-

nu
m

be
rs

in
cm

−
1 .a

T
hi

s
w

or
k.

b
R

ef
er

en
ce

G
ol

le
ta

l.[
10

6]
c

R
ef

er
en

ce
A

ng
ya

n
et

al
.[6

5]
d

E
xp

er
im

en
ta

lv
al

ue
s.

[1
72

]
r(

M
P2

)
E

(M
P2

)
ν

(M
P2

)
B

SS
E

(M
P2

)
r(

R
SH

-M
P2

)
E

(R
SH

-M
P2

)
ν

(R
SH

-M
P2

)
B

SS
E

(R
SH

-M
P2

)

H
e2

aD
Z

a
3.

23
9

12
.7

19
.6

13
2.

0
3.

26
9

16
.1

21
.1

6.
4

aT
Z

a
3.

14
0

17
.6

24
.0

23
.8

3.
23

3
18

.7
22

.6
10

.8
aT

Z
b

-
-

-
-

3.
21

8
15

.4
18

.7
-

aQ
Z

a
3.

10
4

19
.5

24
.7

6.
0

3.
21

7
19

.8
23

.2
10

.5
d-

a5
Z

c
3.

06
9

21
.9

-
5.

6
3.

20
3

21
.4

-
1.

1
C

B
Sa

3.
07

3
21

.0
26

.6
-

3.
21

2
20

.2
23

.4
-

ex
p.

d
2.

97
0

34
.7

33
.2

-
2.

97
0

34
.7

33
.2

-

N
e2

aD
Z

a
3.

89
0

3.
93

19
.6

5.
4

3.
83

7
16

.1
4.

1
5.

7
aT

Z
a

3.
30

6
60

.5
23

.8
19

.1
3.

22
6

85
.7

23
.2

10
.8

aT
Z

b
-

-
-

-
3.

07
4

84
.1

23
.3

-
aQ

Z
a

3.
26

5
70

.9
24

.7
21

.1
3.

22
8

92
.4

23
.0

10
.5

a5
Z

c
3.

22
3

78
.9

-
20

.1
3.

20
2

10
0.

8
-

3.
4

C
B

Sa
3.

24
1

79
.0

22
.0

-
3.

23
2

92
.5

22
.7

-
ex

p.
d

3.
09

1
13

3.
8

28
.5

-
3.

09
1

13
3.

8
28

.5
-

A
r2

aD
Z

a
3.

96
9

25
7.

4
22

.9
22

1.
3

3.
87

4
31

8.
4

26
.3

48
.8

aT
Z

a
3.

82
9

39
7.

2
28

.7
41

2.
0

3.
81

4
42

7.
3

29
.3

30
.3

aT
Z

b
-

-
-

-
3.

76
2

40
0.

6
29

.1
-

aQ
Z

a
3.

75
4

47
4.

1
31

.7
42

.7
3.

78
0

46
4.

3
30

.9
7.

4
a5

Z
c

3.
75

0
48

2.
7

-
62

.7
3.

78
3

47
2.

7
-

10
.0

C
B

Sa
3.

70
1

53
9.

1
33

.5
-

3.
77

2
47

4.
6

31
.4

-
ex

p.
d

3.
75

6
45

3.
6

30
.9

-
3.

75
6

45
3.

6
30

.9
-

45



The observed differences arise from the different implementations. Whereas
the literature values were obtained from all-electron calculations, we used valence-
only calculations with PPs and suitable basis sets such that we miss the core-core
and core-valence correlation contributions. Furthermore, we exploited the RI ap-
proximation whereas the literature values did not.[173, 174] The excellent agree-
ment suggests that our approximations are valid even for systems with very low
binding energies.

3.6 Conclusions
We achieved the implementation of DH functionals with long-range separated cor-
relation functionals. With the GPW approach, there is an efficient machinery for
the calculation of long-range Coulomb integrals for RI-MP2 and RI-RPA calcu-
lations available. We are able to confirm the convergence with respect to the PBS
size. We can employ the already used RI BSs optimized for the Coulomb potential
for calculations with long-range Coulomb operator. The eigenvalue decomposi-
tion allows to slightly reduce the computational costs of the WFC method via
a low-rank decomposition of the two-center integral matrix. Furthermore, other
metrics are available for improved numerical accuracy. With the implementation
of long-range HF integrals, we enabled the optimization of PPs for these DH func-
tionals within the GPW approach.
The drawback of the implementation in CP2K is the lack of short-range DFT
correlation functionals of which there is, starting with LibXC, version 5.0, only
a LDA-based functional available.[70, 106, 142, 149, 151] Further benchmarks
with respect to energies and gradients are required to test the performance of these
functionals in condensed phase.

3.7 Appendix: Pseudopotential Parameters and Ba-
sis Sets

The HF-based PPs were taken from reference [170]. The PPs for range-separated
and LDA-based calculations (rsLDA) were optimized starting from their corre-
sponding HF PPs and a range separation parameter ω = 0.5. The augmented
double-zeta and triple-zeta primary basis sets of Ar and Ne were published by
Stein et al.[175]. The basis sets of H and O were taken from Del Ben et al.[68].
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Table 3.3: HF PP parameters.
H 1 1

0.20049539759096 -4.17780338804233 0.72403926676805
He 2 2

0.20014385954257 -9.12199233589607 1.70294694788987
C 6 4

0.34816792458406 -8.54312820557867 1.33276540541946
0.30230247000627 9.59710582360109

N 7 5
0.28300476743411 -12.39840200798251 1.86939057420079
0.25539202567537 13.64483766978610

O 8 6
0.24676969870316 -16.66528269564613 2.52030687064467
0.22121058101998 18.39425181647437

Ne 10 8
0.19050265092574 -27.39590696172339 4.41958869715540 0.01834396326683
0.17637388496062 28.18533818441574 0.83365996989179 -1.04842942962620
0.19585379054851 -0.27609661906079

Ar 18 8
0.39771927261258 -7.21348927487361 0.01323122557817
0.31872450490949 17.20921819285275 -5.58549109340678 7.19978913165534
0.35357441343299 4.98951929408379

Table 3.4: rsLDA (ω = 0.5) PP parameters.
He 2 2

0.20015287180513 -9.12150476631057 1.70260640996690
Ne 10 8

0.19050348250454 -27.14656173242935 4.43610130368390 0.00369847342065
0.17613915425891 28.18518742516878 0.83365363804867 -1.06358276339357
0.21738121484921 -0.23703124847681

Ar 18 8
0.40001306693831 -7.12841297015224 -0.04210995291428
0.31892117677935 17.24158292202911 -5.58548506017518 7.24052949085434
0.35338638000839 4.97390476308691
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Table 3.5: Parameters of the cc-DZVP basis set of Hydrogen.
Shell type Exponents Contraction Coefficients

s 8.3744350009 -0.0283380461
1.8058681460 -0.1333810052
0.4852528328 -0.3995676063

s 0.1658236932 1.0
p 0.7270000000 1.0

Table 3.6: Parameters of the cc-TZVP basis set of Hydrogen.
Shell type Exponents Contraction Coefficients

s 10.8827241585 -0.0167058885
3.0968750876 -0.0627538300
0.9874518162 -0.1917521975

s 0.3450687533 1.0
s 0.1492693554 1.0
p 1.4070000000 1.0
p 0.3880000000 1.0
d 1.0570000000 1.0

Table 3.7: Parameters of the cc-QZVP basis set of Hydrogen.
Shell type Exponents Contraction Coefficients

s 12.5350945530 0.0114321687
4.5491539489 0.0344048283
1.6685193606 0.1007746979

s 0.6523849556 1.0
s 0.2733011244 1.0
s 0.1390608890 1.0
p 2.2920000000 1.0
p 0.8380000000 1.0
p 0.2920000000 1.0
d 2.0620000000 1.0
d 0.6620000000 1.0
f 1.3970000000 1.0
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Table 3.8: Parameters of the aug-cc-DZVP basis set of Helium.
Shell type Exponents Contraction Coefficients

s 13.1305278312 -0.0500802904
4.1977275150 -0.1474339352
1.3647725570 -0.3245281495
0.4549715461 -0.4365284986

s 0.1513197845 1.0
p 1.27500000 1.0
s 0.07255000 1.0
p 0.24730000 1.0

Table 3.9: Parameters of the aug-cc-TZVP basis set of Helium.
Shell type Exponents Contraction Coefficients

s 14.9231368362 0.0343142688
5.9479610723 0.0933152472
2.1932485067 0.2143451850
0.8304881034 0.3500759421

s 0.3182586587 1.0
s 0.1197839846 1.0
p 3.04400000 1.0
p 0.75800000 1.0
d 1.96500000 1.0
s 0.05138000 1.0
p 0.19930000 1.0
d 0.45920000 1.0
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Table 3.10: Parameters of the aug-cc-QZVP basis set of Helium.
Shell type Exponents Contraction Coefficients

s 16.7962354569 -0.0217345796
8.0784265748 -0.0637981790
3.2397448253 -0.1438730374
1.3463173459 -0.2567923947

s 0.5669193043 1.0
s 0.2404041556 1.0
s 0.0990547078 1.0
p 5.99400000 1.0
p 1.74500000 1.0
p 0.56000000 1.0
d 4.29900000 1.0
d 1.22300000 1.0
f 2.68000000 1.0
s 0.04819000 1.0
p 0.16260000 1.0
d 0.35100000 1.0
f 0.69060000 1.0

Table 3.11: Parameters of the cc-DZVP basis set of Oxygen.
Shell type Exponents Contraction Coefficients

sp 8.3043855492 0.1510165999 -0.0995679273
2.4579484191 -0.0393195364 -0.3011422449
0.7597373434 -0.6971724029 -0.4750857083

sp 0.2136388632 1.0 1.0
d 1.1850000000 1.0

Table 3.12: Parameters of the cc-TZVP basis set of Oxygen.
Shell type Exponents Contraction Coefficients

sp 10.2674419938 0.0989598460 -0.0595856940
3.7480495696 0.1041178339 -0.1875649045
1.3308337704 -0.3808255700 -0.3700707718

sp 0.4556802254 1.0 1.0
sp 0.1462920596 1.0 1.0
d 2.3140000000 1.0
d 0.6450000000 1.0
f 1.4280000000 1.0
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Table 3.13: Parameters of the cc-QZVP basis set of Oxygen.
Shell type Exponents Contraction Coefficients

sp 11.8298677444 -0.0658681959 0.0389990698
4.9326307395 -0.1327117781 0.1329824319
1.9312997298 0.1529660213 0.2737974007

sp 0.7724003899 1.0 1.0
sp 0.2976334392 1.0 1.0
sp 0.1070061063 1.0 1.0
d 3.7750000000 1.0
d 1.3000000000 1.0
d 0.4440000000 1.0
f 2.6660000000 1.0
f 0.8590000000 1.0
g 1.8460000000 1.0

Table 3.14: Parameters of the aug-cc-DZVP basis set of Neon.
Shell type Exponents Contraction Coefficients

sp 13.8523672900 0.1501498200 0.10214300
4.0685498000 -0.0314908700 0.3058092400
1.2730584300 -0.7070497300 0.4766050400

sp 0.3565013600 1.0 1.0
d 2.2020000000 1.0
s 0.1230000 1.0
p 0.1064000 1.0
d 0.6310000 1.0
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Table 3.15: Parameters of the aug-cc-TZVP basis set of Neon.
Shell type Exponents Contraction Coefficients

sp 17.4276488400 0.073686700 0.0702714400
6.3439264100 0.0969132500 0.2167849700
2.2823205800 -0.3010470300 0.4317763300

sp 0.7945993700 1.0 1.0
sp 0.2560537300 1.0 1.0
d 4.0140000000 1.0
d 1.0960000000 1.0
f 2.5440000000 1.0
s 0.1133000 1.0
p 0.0917500 1.0
d 0.3860000 1.0
f 1.0840000 1.0

Table 3.16: Parameters of the aug-cc-QZVP basis set of Neon.
Shell type Exponents Contraction Coefficients

sp 19.5499411153 -0.0632766758 0.0422167837
8.0769601838 -0.1370919085 0.1383304483
3.1678758504 0.1578325934 0.2813677061

sp 1.2535625634 1.0 1.0
sp 0.4749693396 1.0 1.0
sp 0.1666682167 1.0 1.0
d 6.47100000 1.0
d 2.21300000 1.0
d 0.74700000 1.0
f 4.65700000 1.0
f 1.52400000 1.0
g 2.98300000 1.0
s 0.10540000 1.0
p 0.08178000 1.0
d 0.27300000 1.0
f 0.68900000 1.0
g 1.22400000 1.0
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Table 3.17: Parameters of the aug-cc-DZVP basis set of Argon.
Shell type Exponents Contraction Coefficients

sp 2.6724631600 0.1547491900 0.2663267700
1.5750569800 -0.1300613000 -1.0821938600
0.5528926600 -0.1247859600 0.1177549000

sp 0.1720724500 1.0 1.0
d 0.7380000000 1.0
s 0.0709000 1.0
p 0.0533000 1.0
d 0.2400000 1.0

Table 3.18: Parameters of the aug-cc-TZVP basis set of Argon.
Shell type Exponents Contraction Coefficients

sp 3.5650652500 -0.03560400 -0.0341601300
2.8711385000 0.107453000 0.0274003200
0.928908200 -0.070935800 0.1084604500

sp 0.3762992800 1.0 1.0
sp 0.1388133000 1.0 1.0
d 1.2540000000 1.0
d 0.4100000000 1.0
f 0.8900000000 1.0
s 0.0685000 1.0
p 0.0487000 1.0
d 0.1690000 1.0
f 0.4060000 1.0
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Table 3.19: Parameters of the aug-cc-QZVP basis set of Argon.
Shell type Exponents Contraction Coefficients

sp 5.2342384840 0.0594091942 -0.0218235164
3.0293732626 -0.3808584814 -0.0397609427
1.3121914980 0.0527214554 0.2096390562

sp 0.5914580696 1.0 1.0
sp 0.2478147218 1.0 1.0
sp 0.0969644987 1.0 1.0
d 0.31100000 1.0
d 0.76300000 1.0
d 1.87300000 1.0
f 0.54300000 1.0
f 1.32500000 1.0
g 1.00700000 1.0
s 0.06100000 1.0
p 0.04350000 1.0
d 0.11600000 1.0
f 0.29400000 1.0
g 0.45900000 1.0

54



Chapter 4

Double-Hybrid DFT Functionals for
the Condensed Phase: Gaussian and
Plane Waves Implementation and
Evaluation

This chapter is a reprint of reference [71]. The introduction was originally written
by Vladimir Rybkin but is kept for completeness. We benchmark cohesive ener-
gies of molecular crystals obtained from different flavours of hybrid and double-
hybrid density-functionals and analyze convergence with respect to the super cell
size, basis set superposition errors, convergence with respect to basis set size and
the general quality of the results.

4.1 Introduction
Electronic structure calculations for realistic condensed-phase systems are gener-
ally more involved than those for molecules. The former include more atoms and
are performed under periodic boundary conditions (PBC), implying interactions
between periodic images. Therefore, condensed-phase electronic structure mod-
elling often relies on simple approximations. Tight-binding approaches - semiem-
pirical methods, density functional based tight-binding (DFTB) - used to be the
work horse in the field. With increased computational power Kohn-Sham den-
sity functional theory (KS DFT) [5] became a standard approach. Recently, im-
plementations of wave function theories (WFT) became available, although their
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application is far from routine.
In DFT, the energy is given as unique functional of electron density alone

(Hohenberg-Kohn theorem) [6]. Although the exact functional is unknown, sev-
eral approximation levels are available, often classified as rungs of the Jacob’s
ladder of accuracy [86]. The most simple approximation includes only local in-
formation on the density (local density approximation, LDA) [87, 89, 176–178].
More eleborate theories take more properties of the density into account. Includ-
ing the density gradient yields generalized-gradient (GGA) approximations (LYP
[179], PBE functionals [91]), whereas including the kinetic energy density gives
meta-GGA functionals [92, 180, 181] (e.g. TPSS functional [93]).

Incorporating a portion of exact exchange (non-local) leads to hybrid func-
tionals (e.g. PBE0 [96], B3LYP [95]). Exact exchange energy is not density-
dependent, but is rather a non-local quantity (dependent on the density matrix)
borrowed from WFT, viz. from Hartree-Fock (HF) theory [37, 182]. Hence, the
term "hybrid" functional means including quantities from WFT, i.e. the Hartree-
Fock exchange energy, into DFT functionals. Further examples of this approach
are range-separated methods (HSE [94], ωB97X [183]) and double-hybrid func-
tionals, the latter can also involve range separation. Whereas hybrid functionals
depend on the occupied KS orbitals, double-hybrid functionals include addition-
ally virtual orbitals. They account for electron correlation in both DFT fashion via
exchange-correlation functional and WFT fashion via excited determinants. We
will refer to WFT methods which include correlation energy as Wave-function
correlation (WFC) method.

Double-hybrid functionals [66, 67, 114, 129, 184, 185] can potentially take
"the best of the two worlds". GGA-, meta-GGA- and hybrid DFT functionals are
relatively fast and accurate for covalently and ionically bound systems. However,
they intrinsically fail to describe long-range dispersion interactions (which is of-
ten coped with by explicit dispersion corrections [26–29, 186, 187] and non-local
functionals [33, 188]) and strong correlations. WFC methods, on the other hand,
inherently include the correct asymptotic R−6 behaviour. Their significant disad-
vantage is the high computational cost: N4 scaling and higher in the canonical
formulations. Reduced-cost methods allow decreasing the scaling, although with
high prefactors. Consequently, the cost of a double-hybrid DFT calculation is de-
fined by the cost of its WFT part. The question may then arise: why not use pure
WFT instead of double-hybrid functionals? The answer is that the N4−N5 scaling
of WFT methods used for double-hybrid functionals (second-order Møller-Plesset
perturbation theory, MP2 [38]; random phase approximation, RPA [189]) are rel-
atively crude approximations, and despite capturing long-range interactions they
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can be outperformed by DFT functionals. Thus, inclusion of electron correlation
in WFT and DFT fashion may lead to the improved accuracy of both at moder-
ate price as compared to highly precise WFT approaches, such as coupled-cluster
methods [39] scaling as N6 and higher.

Most condensed-phase implementations of electronic structure methods are
based either on the use of plane waves (PW) or Gaussian basis sets. Plane waves
constitute a basis in a strict mathematical sense: they are orthogonal and complete.
In PW basis DFT and correlation energies converge systematically with basis size
[190]. However, due to the fact that PW do not reflect the character of chemical
bonding, a larger number of basis functions is needed for accurate calculations,
which is detrimental for calculations with WFC methods as virtual space becomes
huge. Since atom-centered Gaussian functions reasonably approximate atomic
orbitals, good accuracy can be achieved with compact basis sets, i.e. at a lower
computational price, especially for DFT. WFC energies are more sensitive to basis
set size and exhibit slow convergence with basis set size [58], especially for long-
range dispersion interactions [64]. WFC methods and DHDFs are available for
PW basis sets in VASP[190, 191], for Gaussian basis sets in CP2K[130], CRYS-
TAL[192] and GAMESS (US)[193] and for Slater type basis sets in ADF[194].

4.2 Theoretical Background
In the following, a,b, ... are virtual orbital indices, i, j, ... occupied orbital indices,
p,q, ... general orbital indices, and P,Q, ... auxiliary function indices. In DFT, the
total energy is given as a functional of the total ground-state density n(⃗r):

EDFT [n] = T0[n]+Ene[n]+EH [n]+EXC[n], (4.1)

where EDFT [n] is the total energy functional, T0[n] is the kinetic energy of a refer-
ence system of non-interacting electrons, Ene[n] is the nuclei-electron interaction
energy, EH [n] is the Hartree energy describing the classical electron-electron inter-
action energy, and EXC[n] is the exchange-correlation energy describing the quan-
tum mechanical contributions of the electron-electron interaction. The ground-
state density is expressed in terms of orbital functions ψi(⃗r)

n(⃗r) = ∑
i
|ψi(⃗r)|2 (4.2)
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where i runs over all occupied orbitals. The orbital functions fulfill the orthonor-
mality constraint: ∫

d3rψ
∗
i (⃗r)ψ j (⃗r) = δi j (4.3)

with the Kronecker delta δi j. The orbitals are solutions of the Kohn-Sham (KS)
equation: (

−∆

2
+ vne(⃗r)+ vH [n](⃗r)+ vXC[n](⃗r)

)
ψi(⃗r) = εiψi(⃗r) (4.4)

with the potential arising from the nuclei vne(⃗r), the Hartree potential vH [n](⃗r), the
exchange-correlation (XC) potential vXC[n](⃗r), and the orbital energy εi of orbital
i. In this article, we will consider Gaussian functions centered at the atoms only.
Because the total energy functional is not known explicitly in terms of the ground-
state density, we rely on approximations of the XC functional. These approximate
energy functionals are given as integrals of a function explicitly depending on
the ground-state density, its gradient and its Laplacian. For convenience, the XC
functional is split into an exchange functional EX [n] and a correlation functional
EC[n].
The more complex hybrid density functionals (HDFs)[95] include explicit infor-
mation of the occupied orbitals. They modify the exchange functional by includ-
ing a certain amount αX ,HF of Hartree-Fock (HF) exchange EX ,HF [n] providing
the exchange functional

EX ,hybrid = αX ,HFEX ,HF [n]+αX ,DFT EX ,DFT [n]. (4.5)

We introduce the amount αX ,DFT of DFT exchange EX ,DFT [n] to reflect that the
DFT exchange functional is an already known GGA or meta-GGA functional
(compare [95, 96]). Using the Mulliken notation (chemists’ notation) for elec-
tron repulsion integrals

(pq|rs) =
∫

d3r
∫

d3r′
φ∗

p (⃗r)φq(⃗r)φ∗
r (⃗r ‘)φs(⃗r ‘)

|⃗r− r⃗ ‘|
(4.6)

the HF exchange energy can be written as

EX ,HF =−1
2 ∑

i j
(i j| ji). (4.7)
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Non-HDFs suffer from self-interaction errors[88]. These are reduced in HDFs but
usually not fully cancelled since αX ,HF ̸= 1 in general case. This self-interaction
error results in erroneous description of charge-separation processes and transition
states. But even hybrid methods and HF lack a reasonable description of disper-
sion interactions decaying like R−6 with R being a measure of charge separation.
For increased flexibility, we can further split the exchange functional in a long-
range and a short-range functional and describe both with a given mixture of HF
theory and DFT resulting in range-separated HDFs[94].
The highest flexibility is achieved by including virtual orbitals ψa(⃗r). Double-
hybrid density functionals (DHDFs) are HDFs in which the correlation functional
is composed of a mixture of a DFT correlation functional EC,DFT [n] with ratio
αC,DFT and correlation energy EC,WFT [n] of a WFC method with ratio αC,WFT
providing a functional

EC,double−hybrid = αC,WFT EC,WFT [n]+αC,DFT EC,DFT [n]. (4.8)

Because WFC methods are computationally more demanding than HDFs or stan-
dard DFT functionals, most DHDFs exploit the MP2 theory, the SOS-MP2 theory,
or the RPA method.
The correlation energy within the MP2 theory for closed-shell systems is

EC,MP2 = ∑
i jab

(ia| jb) [2(ia| jb)− (ib| ja)]
εi + ε j − εa − εb

. (4.9)

The computationally most expensive step of the MP2 method is given by the trans-
formation of the electron interaction integrals from atom orbital basis to molecular
orbital basis leading to a O(N5) scaling with N being a measure of system size.
The prefactor can be reduced by the resolution-of-the-identity (RI) approach in-
troducing an auxiliary basis in which densities are expanded giving the equation

(pq|rs) = ∑
P

Bpq
P Brs

P (4.10)

with

Bia
P = ∑Q(pq|Q)(Q|P)−1/2 (4.11)

(pq|P) =
∫

d3r
∫

d3r′
φ∗

p (⃗r)φq(⃗r)φP(⃗r ‘)
|⃗r−⃗r ‘| (4.12)

(P|Q) =
∫

d3r
∫

d3r′ φP(⃗r)φQ(⃗r ‘)
|⃗r−⃗r ‘| . (4.13)
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This method is called RI-MP2[195, 196].
A simplified version of the RI-MP2 method is the Scaled-Opposite-Spin(SOS)-
MP2 method[55] given by

EC,SOS−MP2 =−
∫

∞

0
dτTr

(
QSOS−MP2(τ)QT

SOS−MP2(τ)
)

(4.14)

with
(QSOS−MP2(τ))PQ = ∑

ia
Bia

P eτ(εi−εa)Bia
Q . (4.15)

The integration is carried out numerically using a Minimax quadrature. The RI-
SOS-MP2 method scales like O(N4).
Another correlation method with increasing popularity is the Random Phase Ap-
proximation (RPA) method[102, 103] within the RI approximation

EC,RPA =
1
2

∫
∞

0

dω

2π
Tr(ln(1+QRPA(ω))−QRPA(ω)) (4.16)

with
QRPA(ω) = 2∑

ia
Bia

P
εa − εi

ω2 +(εa − εi)2 Bia
Q . (4.17)

RI-RPA scales like O(N4). As with the RI-SOS-MP2 method, the integration is
carried out numerically using a Clenshaw-Curtis grid[197] or a Minimax grid[165,
198].
All WFC methods and all DHDFs correctly reproduce the R−6 energy behaviour
of long-range interactions. Comparable to range-separated HDFs, there are DHDFs
with range-separated exchange functionals like the ωB97X-2 functional[123].
Further, there are DHDFs with range-separated correlation functionals[65]. In this
article, we will not focus on DHDFs with range-separated correlation functionals
and refer to the literature[64, 85, 120, 121, 199] for more details.

4.3 Computational Details

4.3.1 Gaussian and plane waves method (GPW) and integral
evaluation

The Gaussian and plane waves method (GPW) [134] allows for efficient periodic
calculations with Gaussian basis sets using a dual representation of the electronic
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Table 4.1: Structural information about the bulk structures used in this study.
n f u is the number of formula units per unit cell. References for the geometrical
information of the respective system are provided in the last column. Please note
that there was a mistake in the cell parameters of CO2 provided in reference [70].

System a;b;c (Å) n f u References
NH3 5.048 4 [201]
HCN 4.13; 4.85; 4.34 2 [202]
Ne 4.464 4 [203–205]
Ar 5.300 4 [206, 207]

density and molecular orbitals. It assumes the use of a primary Gaussian basis for
the expansion of matrix quantities (density matrix, KS matrix) and an auxiliary
plane waves (PW) basis for the evaluation of the Hartree potential and the numer-
ical integration of density functionals. To converge GPW calculations, one has to
pay attention to both the size and quality of the Gaussian basis and the energy cut-
off for the PWs. In the current implementation, GPW is used for the calculation
of the Hartree potential, XC functionals, and two and three center integrals nec-
essary for the RI-MP2 and RI-RPA methods. Exchange integrals are computed
analytically using a truncated Coulomb potential [200].

4.3.2 Test systems
Because we are interested in the description of intermolecular interactions, we are
testing the functionals on molecular crystals (NH3, HCN) and rare-gase crystals
(Ar, Ne) which have been studied by Sansone et al[70]. Structural information of
the unit cells are summarized in table 4.1. In case of molecular solids, we were
using structures reoptimized at the B3LYP-D* level[208].
Molecular crystals represent systems with a mixture of covalent bonding and dis-
persion interactions. NH3 and HCN crystals additionally contain hydrogen bonds
which are crucial for the discription of proteins. In contrast to that, there are only
dispersion interactions within the rare-gas crystals. This results in low cohesive
energies and the need for well-balanced functionals.

4.3.3 Parameters of the calculations
All calculations have been carried using a development version 8.0 of CP2K[130].
To ensure convergence with respect to the density cutoff, we were using high
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cutoffs of 1,500 Ry for all RPA and MP2 calculations, 4,000 Ry for remain-
ing calculations of the molecular crystals NH3 and HCN, and 10000 Ry for the
rare-gas crystals Ar and Ne (see chapter 4.4.1 for more details) and a relative cut-
off of 50 Ry. For the rare-gas crystals, we set the parameters EPS_DEFAULT ,
EPS_PGF_ORB, EPS_SCF , and EPS_SCHWARZ in the HF section to 10−30,
10−50, 10−5, and 10−10, respectively, for the molecular crystals, we were using
for the same parameters 10−20, 10−40, 10−5, and 10−9, respectively (see the CP2K
manual for the meaning of these parameters). HF calculations for the bulk systems
were using a truncated Coulomb potential with a cutoff radius of roughly half the
super cell size. All densities have been smoothed using the NN10 method.
RI-MP2, RI-SOS-MP2 and RI-RPA calculations have been carried out using the
GPW method to determine all integrals with a primary cutoff of 300 Ry and a rel-
ative cutoff of 50 Ry. We have exploited an 8-point minimax grid for all RI-RPA
and RI-SOS-MP2 calculations.

4.3.4 Choice of functionals and implementation
We carried out calculations at the PBE[91], ωB97M-V[143], ωB97X-2[123],
PW6B95[209], PWRB95[118], SOS-PBE0-2[115], RI-MP2[38, 195] and RI-RPA[103]
levels of theory. PBE and RI-MP2 are used to compare differences between
valence-only calculations of our valence-only calculations and the all-electron
calculations of Sansone et al[70]. PW6B95 is a meta-hybrid functional which
performed best for weakly interacting systems with more pronounced disper-
sion interactions. PWRB95 is its RPA-based DHDF. ωB97M-V is a dispersion-
corrected range-separated meta-hybrid functional. ωB97X-2 is an MP2-based
DHDF with range-separated exchange functional. SOS-PBE0-2 is a RI-SOS-
MP2-based DHDF. With this choice, we cover a large variety of different flavours
of meta-hybrid and DHDF theories. Due to very high computational cost, we
have restricted ourselves to this small, but representative set of functionals: one
for each flavour of DHDFs and a corresponding HDF.
PBE calculations have been carried out using the CP2K implementation of PBE.
For the ωB97M-V, and the PW6B95 functionals, we exploited the implemen-
tations of the LibXC library[151], version 4.3.4. Since the VV10 dispersion
correction is not available in CP2K, we relied on the rVV10 correction and the
parametrization suggested by Mardirossian et al[210]. For the ωB97X-2 and
PWRB95 functionals, we implemented the required parameter sets into the LibXC
library.
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4.3.5 Basis sets and pseudopotentials
The MP2 and RPA implementations within CP2K rely on a pseudopotential (PP)
approach with Goedecker-Teter-Hutter PPs[135]. For the PBE functional, we used
PPs optimized for PBE, for RPA and MP2 calculations, we were using PPs opti-
mized for HF whereas for both HDFs and all DHDFs, we utilized PPs optimized
for the PBE0 functional. All PPs have been taken from the Github repository of
Jürg Hutter[170].
Correlation-consistent primary basis sets and suitable auxiliary basis sets of dou-
ble zeta (DZ) and triple zeta (TZ) quality for the elements C, H, N and O have
been taken from Del Ben et al.[68] We have optimized appropriate correlation-
consistent primary and auxiliary basis sets of the same qualities for Ne and Ar
using the polarization functions of the respective Dunning basis sets[196, 211,
212]. All PPs and primary and auxiliary basis sets are compiled in the Supporting
Information.

4.3.6 Cohesive energies and basis set superposition error
To determine total energies per formula unit, we carried out calculations of 2x2x2,
3x3x3 and 4x4x4 supercells of all given unit cells and used a linear fit of the total
energy per formula unit against the inverse of the cell volume.
Because calculations of cohesive energies usually suffer from basis set superpo-
sition errors (BSSE), we perform a counterpoise correction[213]. The BSSE-free
cohesive energies Ecoh are calculated according to

Ecoh = Ebulk −Emol+ghost,bulk +Emol,bulk −Emol,gas (4.18)

with the total bulk energy per formula unit extrapolated to infinite cell volume
Ebulk, the energy of the molecule with ghost atoms Emol+ghost,bulk, the energy
of the molecule using the bulk geometry Emol,bulk, and the total energy of the
molecule using an optimized gas phase structure Emol,gas. For Ar and Ne, we triv-
ially have Emol,bulk = Emol,gas.
The corresponding BSSE is given by

∆EBSSE = Emol+ghost,bulk −Emol,bulk. (4.19)

For the BSSE calculations, we took the crystalline structures, chose one molecule
(or atom for Ar and Ne) surrounded by all ghost atoms within a 3x3x3 supercell.
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4.4 Results

4.4.1 General Remarks
We found the convergence of total energies of meta-HDFs PW6B95 and PWRB95
requires very tight energy cutoffs for the auxiliary PW basis of at least 4000 Ry.
In contrast to that, calculations with the other meta-HDFs in our benchmark study,
ωB97M-V, provided reasonable results with a cutoff of only 1200 Ry. Because
the basis functions for the elements argon and neon are more localized than those
for hydrogen, carbon and nitrogen, higher cutoffs for the noble gases were needed
for an adequate representation of the basis functions of these elements on the grid.
It is well-known that GGA functionals and especially meta-GGA functionals re-
quire very tight integration grids for convergence and thus accurate results. Such
cutoffs reflect numerical issues and the need for very fine integration grids when
using the PW6B95 and PWRB95 functionals. Such grids are not necessary for the
ωB97M-V functional which has been optimized with coarser integration grids in
mind[143]. Thus, energy differences converged faster with ωB97M-V and PBE.
Nevertheless, the total energies were not converged. To remove any possible prob-
lems due to incomplete convergence with respect to cutoffs, we utilized unusually
high cutoffs for all density functionals.
Furthermore, we have found convergence problems with the PW6B95 and PWRB95
functionals, which can be resolved with density smoothing. Unfortunately, in
some cases an increase of the energy cutoff for the density resulted in SCF con-
vergence issues which could not be resolved with tighter filter thresholds. Nev-
ertheless, we were able to achieve convergence by restarting the calculations
with a higher cutoff starting from the converged SCF results with a lower cut-
off. This was not possible for argon, where we exploited a cutoff of 4000 Ry for
the PW6B95 and PWRB95 functional. Thus, some numbers for the PW6B95 and
PWRB95 functionals are not fully converged with respect to the density cutoff.
Due to the higher computational costs, we have not carried out calculations of the
4x4x4 supercells on the TZ level.
All cohesive energies are compiled in tables 4.2 and 4.3.
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4.4.2 Convergence with respect to super cell size
In figure 4.1, we compiled the differences in total energies per formula unit rela-
tive to the extrapolated total energies. In general, we expect the total energies to
decrease with increasing supercell size and the extrapolated value is a lower bound
for the total energies of the super cells. Our results show exactly this behaviour.
An important question is for which supercell size the error becomes negligible. A
useful magnitude is given by the chemical accuracy of 4kJ ·mol−1. For weakly-
interacting systems such as rare-gas crystals with cohesive energy of less than
chemical accuracy, the order of magnitude is set by the cohesive energy itself. As
the error of a method should be not larger than chemical accuracy, the allowed
error of the supercell method must be at least one order of magnitude smaller then
the methodological error, i. e. not larger than 0.4kJ ·mol−1. We find that a 3x3x3
super cell provides sufficient accuracy for all functionals and test systems. This
behaviour is in agreement with the literature[68]. Sometimes, the total energy per
formula unit of the 4x4x4 super cell has a higher magnitude than this of the 3x3x3
supercell, which may be due to numerical issues. For PBE, a cubic fit does not
seem to be appropriate, and an exponential fit should be used instead.

4.4.3 Convergence of the BSSE
The BSSEs for the different test systems are compiled in figure 4.2. First, we
would like to point out that the BSSE is significantly larger for the molecular
crystals than for the rare-gas crystals. This might be related to the larger number
of atoms per molecule and to the spread of the basis functions. Since the effec-
tive core charge of rare-gas atoms is larger than for carbon or nitrogen, the basis
functions are more localized which results in weaker overlap with neighbouring
atoms. This is supported by the smaller reduction in BSSE for Ar and Ne when
we exploit larger basis sets. Thus, augmentation of basis sets must significantly
reduce BSSEs of Ar and Ne. Indeed, diffuse basis functions actually improve co-
hesive energies as shown by Sansone et al.[70]
Molecular crystals are thus more suitable objects to study BSSE than rare-gas
crystals. For both molecular crystals in the test set, the non-DHDFs PBE, PW6B95
and ωB97M-V, provide the smallest BSSEs whereas the two WFC methods MP2
and RPA have the largest BSSEs, as expected. The DHDFs have a BSSE between
both classes of methods because they employ a mixture of DFT and WFC meth-
ods.
Furthermore, we note that the WFC methods in CP2K are implemented within
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Figure 4.1: Total energies per formula unit relative to extrapolated total energy in
kJ ·mol−1 against inverse number of unit cells in supercell with basis sets of DZ
and TZ quality for the systems a) Ne, b) Ar, c) NH3, d) HCN.
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Figure 4.3: Errors in cohesive energies in kJ ·mol−1 with respect to the experi-
mental values with basis sets of DZ and TZ quality for the systems a) Ne, b) Ar,
c) NH3, d) HCN.

the RI approximation employing an auxiliary basis set. This leads to an additional
source of BSSE for RPA, MP2 and all the DHDFs because the addition of the
auxiliary functions of the ghost atoms increases the overall accuracy.

4.4.4 Convergence with respect to basis set size
In numerous studies, it was shown that total energies from DFT calculations con-
verge exponentially with respect to basis set size. In contrast to that, total energies
from WFC methods converge cubically with respect to basis set size when em-
ploying correlation-consistent basis sets. Thus, most DHDFs are expected to have
a cubic convergence with respect to basis set size but with a smaller prefactor.
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DHDFs employing a long-ranged Coulomb operator only and describing short-
ranged interactions with a density functional, converge exponentially[64]. This
behaviour is confirmed with our data compiled in figure 4.3.
Since larger basis sets systematically reduce total energies, cohesive energies in-
crease. We observe this behaviour for the WFC methods and almost all DHDFs.
The slight difference for PWRB95 in case of Ar may be due to not full conver-
gence with respect to super cell size. For the other functionals - PBE, ωB97M-V
and PW6B95 - the cohesive energy from the TZ basis set is sometimes higher, i.e.
the system is weaker bound. One problem might be that the 2x2x2 super cells are
not yet fully converged or the extrapolation scheme using a linear fit of the total
energies versus the inverse of the volume is not appropriate and an exponential fit
might be more suitable.
Next, we would like to discuss the results obtained for the molecular crystals NH3
and HCN. They are bound together by covalent bonds, dipole-dipole interactions,
and dispersion interactions. For both systems, the results with the RPA and MP2
methods significantly improve the results over GGA DFT functionals, MP2 even
achieving chemical accuracy. The ωB97M-V functional also provides very accu-
rate numbers. The PW6B95 functional, as PBE, systematically underestimates the
cohesive energies with errors compatible to PBE. The PWRB95 functional signif-
icantly improves upon the results of its relative PW6B95, bringing them within
1 kJ ·mol−1 from the experiment. The same holds for the ωB97X-2 functional
compared with the ωB97M-V functional, although the DHDF is based on the
non-meta-GGA HDF ωB97X[216]. One of the worst performing functionals is
SOS-PBE0-2.
For the rare-gas crystals, the picture is more complicated because the absolute
values of the cohesive energies are of the order of the chemical accuracy. As
pointed out by Sansone et al.[70], augmented basis sets are required for these
systems. Our cohesive energies from MP2 with a TZ basis set are only slightly
lower than their result with a DZ basis set but still much worse than those with an
augmented basis set for both Ne and Ar. Consequently, our results for Ne do not
allow for an evaluation of the performance of these functionals and further studies
employing either quadruple or augmented basis sets (which are to be constructed)
are needed. Nevertheless, our results for Ar show that the ωB97X-2 functional
provides a good description. The same holds for MP2, PW6B95 and PWRB95,
although one needs further investigations with augmented basis sets.
This issue does not apply to the molecular crystals. Indeed, our cohesive ener-
gies with a TZ basis set are even lower than those with an augmented basis set.
Thus, the use of augmented basis sets is not necessary for the molecular crystals.
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This result is important for reducing computational costs of HF calculations and
low-scaling WFC methods.

4.5 Discussion
Because DHDFs can be considered to be a mixture of DFT and WFC methods, the
flexibility of DHDF parametrizations can yield approaches more accurate than the
parent DFT and WFC functionals. At the same time, they inherit the shortcom-
ings of both classes. Due to the dependence on the grid parameters, the functionals
PW6B95 and PWRB95 are more difficult to use than others: care must be taken
to check whether the results are converged with respect to the grid parameters, in
CP2K, the density cutoff.
As expected, PBE can only provide the order of magnitude for weakly interacting
systems, although it converges fast with respect to basis set size and has a low
BSSE. MP2 and RPA are more sensitive to the basis set size and exhibit large
BSSEs. These methods provide a moderate accuracy for different systems with
small basis sets.
Non-DHDFs benefit from lower BSSEs. The PW6B95 functional has high de-
mands on integration grids. Both considered functionals also provide a moderate
accuracy and should be favourable over MP2 and RPA with their higher compu-
tational costs.
The double-hybrid functionals PWRB95 and ωB97X-2 show excellent perfor-
mance with moderate BSSEs and lower basis set incompleteness errors. Both
have computational costs compatible to full MP2 or RPA calculations and inherit
the need of fine integration grids for accurate results, especially for PWRB95.
The non-empirical SOS-MP2 based DHDF, SOS-PBE0-2, does not provide any
advantage as compared to the original methods. It was pointed out by different
authors[25, 217] that non-empirical DHDFs usually perform worse than empirical
DHDFs.

4.6 Conclusions
In this study, we examined a selection of different HDFs and DHDFs by com-
puting cohesive energies in four different crystal structures. Our results show
that DHDFs inherit the shortcomings of the underlying DFT functional (integra-
tion grids) and the underlying WFC method (computational costs, BSSE, basis
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set dependence). We were able to show that the PWRB95 and the ωB97X-2
functionals provide excellent accuracy for molecular and rare-gas crystals. The
HDFs ωB97M-V and PW6B95 also provide reasonable accuracy for these sys-
tems, whereas the SOS-PBE0-2 functional underperforms and can not be recom-
mended.
The exploited basis sets allow a good description of molecular crystals. For the
rare-gas crystals, we showed that non-augmented basis sets are not sufficient to
achieve energy convergence with respect to the basis set size. Due to the high com-
putational costs, we leave studies with augmented basis sets (and the construction
of those basis sets) as well as benchmarking more range-separated DHDFs for
future prospect.
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Chapter 5

Double-Hybrid Density Functionals
for the Condensed Phase: Gradients,
Stress Tensor, and Auxiliary-Density
Matrix Method Acceleration

This chapter is a reprint of a still unpublished but accepted article.72 We present
an efficient implementation of gradients of MP2-based double-hybrid function-
als. We accelerate Hartree-Fock calculations with the Auxiliary-Density Matrix
Method and analyse the performance and accuracy and discuss suitable large-scale
applications. We show that our implementation performs efficiently for systems
containing a few hundred atoms on 1,000 GPUs.

5.1 Introduction
Most applications of electronic structure methods are currently based on Den-
sity Functional Theory (DFT).[5, 6] DFT methods are widely available in stan-
dard quantum chemical software, are computationally efficient and a range of
low scaling approaches was developed.[7–23] The different density functionals
are often classified within a hierarchical scheme (Jacob’s ladder analogy) with
respect to their explicit dependence on information of the electronic density.[86]
On the first rung, we find functionals based on the Local Density Approximation
(LDA) employing the local density only, on the second rung are functionals taking
additionally the density gradient into account (Generalized Gradient Approxima-

74



tion, GGA) while meta-GGA functionals augment them with an additional depen-
dence on the kinetic energy density and/or the Laplacian of the density.[89, 91–
93, 178, 179, 181] Up to the third rung, density functionals usually suffer from
self-interaction errors which are, at least partially, removed on the fourth rung by
the (partial) inclusion of exact (Hartree-Fock, HF) exchange in hybrid function-
als.[37, 88, 94–96, 182, 183] Dispersion interactions, crucial for the description
of biomolecules, molecular crystals, liquids or interactions on surfaces, are still
absent on the hybrid functional level. Its inclusion is achieved with either empiri-
cal correction schemes or explicitly non-local functionals.[26, 27, 29, 33, 55, 187,
188]

Especially for weakly interacting systems, common functionals have severe
shortcomings and a systematic approach which allows an easy construction of
DFT functionals is missing. In contrast to that, correlated methods derived from
Wave Function Theory (WFT) provide systematic approaches with increasing ac-
curacy, e.g. methods based on HF theory, Moller-Plesset perturbation theory,
Coupled-Cluster theory or the Random-Phase Approximation (RPA).[38, 39, 102,
103, 189, 196] The advanced WFT methods, having formally at least quartic scal-
ing behavior, are usually more accurate but also more expensive than hybrid den-
sity functionals. Though, recent low-scaling variants of these methods allow the
treatment of larger systems.[41–52] As a drawback, correlated methods require
much larger basis sets than DFT methods. This basis set dependence can be tack-
led with range-separated approaches or explicitly correlated methods.[58, 64] Dis-
persion interactions are, unlike in local density functionals, mostly well described,
however, some systems require higher levels of theory for improved accuracy.

Double-Hybrid (DH) functionals try to combine the best of both worlds: DFT
is augmented with the description of long-ranged interactions from a correlated
method like MP2 or RPA.[66, 115, 118] DH functionals can be routinely applied
to molecular systems, but large computational resources are necessary for con-
densed phase calculations. Therefore the number of applications to condensed
phase systems is rather limited. Nevertheless, in these applications the increased
accuracy of DH functionals over (meta)-GGA functionals and hybrid functionals
for the description of condensed phase systems has been established.[68, 71, 218,
219] A variety of DH functionals, relying on various underlying hybrid density
functionals and the correlated methods is described in the literature.[65, 69, 70,
85, 118, 121, 123] For practical applications the availability of analytical gradients
for these methods is important, enabling geometry optimizations and molecular
dynamics simulations.

Even for smaller condensed phase systems the calculation of HF exchange
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still requires large computational resources. The total number of electron repul-
sion integrals of atom centered basis functions increases at most quartically with
respect to system size. This scaling can be reduced by different techniques up
to linear scaling.[220–227] Despite of linear scaling approaches, HF calculations
may suffer from large prefactors due to the high operation count of the integral
calculation step, load-balancing problems in parallel applications or their large
memory footprint. Modern approaches make use of specialized libraries with op-
timized hardware-specific kernels, the Resolution-of-the-Identity (RI) approach
or the Auxiliary Density Matrix Method (ADMM), and a few target modern GPU
hardware.[228–235] HF implementations for periodic systems need special care
due to the singularity at the Gamma point and the slow decay of the Coulomb
operator. These problems are addressed by the use of short-ranged operators or
by direct summation approaches.[236–242] Especially HF and hybrid functional
calculations with augmented basis sets for weakly interacting systems are com-
putationally demanding because of the large extent of the additional diffuse basis
functions and the resulting larger number of significant integrals.[130, 243–246]
In the following sections, we will present an implementation of DH function-
als based on MP2 with nuclear gradients and stress tensors suitable for periodic
calculations at the Γ-point. We will further show the extension to the ADMM
approximation for HF exchange. Extensive tests for accuracy and efficiency are
included.

5.2 Theoretical Background
In the following discussion, a,b,c represent an unoccupied (virtual) molecular or-
bital (MO), i, j,k occupied MOs, p,q denote any MO, Greek letters µ,ν , ... denote
primary basis set (PBS) indices, capital Latin letters P,Q,R, ... denote RI basis
function indices. A hat indicates quantities and indices of the Auxiliary Density
Matrix Method (ADMM). We will consider Γ-point calculations only such that
all quantities can be chosen real. All basis functions and orbitals are periodically
repeated, integrals are over the computational cell, and Coulomb integrals are cal-
culated using Ewald techniques.
The total energy E tot of a density functional can be written as

E tot[ρ] = ∑
µν

hµνPµν +
∫

d3r
∫

d3r′
ρ (⃗r)ρ (⃗r ′)

|⃗r− r⃗ ′| +EXC[ρ] (5.1)
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with the one-particle hamiltonian hµν , the one-particle density matrix for closed-
shell systems Pµν = 2∑i ciµciν , coefficients of the canonical MOs cpµ , the one-
particle density ρ (⃗r) = ∑µν Pµνφµ (⃗r)φν (⃗r) and the eXchange-Correlation (XC)
functional EXC[ρ]. The MO coefficients are eigenvectors of the generalized eigen-
value problem (Kohn-Sham equation)[5](

hµν +V H
µν [ρ]+V XC

µν [ρ]
)

ciµ = εiSµνciµ (5.2)

with the matrix elements of the Hartree potential

V H
µν [ρ] =

∫
d3rφµ (⃗r)φν (⃗r)

∫
d3r′

ρ (⃗r ′)

|⃗r− r⃗ ′| (5.3)

and the XC potential V XC
µν [ρ] =

∫
d3rφµ (⃗r)φν (⃗r)

δEXC[n]
δn(⃗r) , the elements of the over-

lap matrix Sµν =
∫

d3rφµ (⃗r)φν (⃗r) and the MO energy εi of MO i. For DH func-
tionals, the XC functional has the form

EXC[ρ] = αDFT,XEDFT,X[ρ]+αHF,XEHF,X[ρ]

+αDFT,CEDFT,C[ρ]+αWFT,CEWFT,C[ρ] (5.4)

with the DFT exchange functional EDFT,X, the Hartree-Fock exchange functional
EHF,X, the DFT correlation functional EDFT,C, the WFT correlation functional
EWFT,C and the corresponding scaling factors αDFT,X,αHF,X,αDFT,C and αWFT,C,
respectively. DFT XC functionals are usually local functionals written as integrals
of a given function of the density, its gradient etc. depending on the complexity
of the DFT part. The HF exchange functional is given by

EHF,X[ρ] =−1
4 ∑

µνκλ

PµνPκλ (µκ|νλ ) (5.5)

with the electron repulsion integral (ERI) in Mulliken notation

(µκ|νλ ) =
∫

d3r
∫

d3r′φµ (⃗r)φκ (⃗r)v(
∣∣⃗r− r⃗ ′∣∣)φν (⃗r ′)φλ (⃗r

′) (5.6)

with the interaction potential v(r). Usually, the Coulomb potential v(r) = 1
r is

employed, but for range-separated functionals or certain implementations of HF
for periodic systems, it might be of a different kind.[94, 123, 144, 183, 216, 236,
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241, 242]
Because the potentials in the Kohn-Sham equation depend on the unknown den-
sity, the Kohn-Sham equation has to be solved iteratively starting from an ap-
propriate initial guess while recalculating densities and potentials subsequently
until self-consistency (SCF approach). Under these conditions, the total energy
functional is variational with respect to the density. Due to the high computa-
tional costs of WFT correlation methods, most DH functionals consider the wave-
function correlation (WFC) functional to be only a post-SCF correction such that
the total energy functional is not variational.
The WFC functional is the energy expression of MP2, RPA or any other correlated
method. Here, we will focus on the MP2 method given by

EMP2[ρ] = ∑
i jab

(ia| jb)tab
i j (5.7)

with the ERI in MO basis (ia| jb) = ∑µνκλ ciµcaνc jκcbλ (µν |κλ ) and the MP2

transition amplitude tab
i j = 2(ia| jb)−(ib| ja)

εi+ε j−εa−εb
.

The Auxiliary Density Matrix Method (ADMM) for the acceleration of HF calcu-
lations relies on the relationship

EHF,X[ρ] = EHF,X[ρ̂]+
(
EHF,X[ρ]−EHF,X[ρ̂]

)
(5.8)

≈ EHF,X[ρ̂]+
(

EADMM[ρ]−EADMM[ρ̂]
)
. (5.9)

with the auxiliary density ρ̂ (⃗r) = ∑µ̂ ν̂ P̂µ̂ ν̂ φ̂µ̂ (⃗r)φ̂ν̂ (⃗r), the auxiliary density matrix
P̂µ̂ ν̂ = 2∑i ĉiµ̂ ĉiν̂ , the MO coefficients in the auxiliary basis set (ABS) ĉiµ̂ and the
auxiliary basis functions φ̂µ̂ (⃗r). The ABS contains a smaller number of primitive
basis functions and more localized basis functions to reduce the computational
costs. The error in the density is accounted for by the ADMM exchange correction
functional EADMM. Common choices are the PBE, the OPTX or the B88 exchange
functionals.[90, 91, 247]
There are several constraints for the auxiliary density matrix and the auxiliary MO
coefficients possible. For an overview about the different flavours of ADMM, we
refer to the literature.[231, 248] In the following, we will consider the ADMM2
method only. The ADMM2 model requires the similarity of the MOs represented
in both basis sets in a least-square sense such that the auxiliary MO coefficients
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ĉiµ̂ are given by the expression

ĉiµ̂ = arg minc̃iµ̂

∫
d3r

(
∑
µ̂

c̃iµ̂ φ̂iµ̂ (⃗r)−∑
µ

ciµφµ (⃗r)

)2

. (5.10)

Let C and Ĉ be the matrix of MO coefficients in the PBS and the ABS, respec-
tively. Both are related by Ĉ = AC with the projector matrix A = Ŝ−1Q, the
overlap matrix in the auxiliary basis Ŝ and the overlap matrix between ABS and
PBS Q. The analogous relation for the density matrices is given by P̂ = APAT .
A very successful approach to accelerate the calculation of ERIs is the Resolution-
of-the-Identity (RI) approximation.[82, 83] It is based on the idea of fitting densi-
ties given by a product basis with a suitable ABS. In the following, we will focus
on approximating ERIs with the Coulomb potential using a Coulomb metric, i.e.
by fitting the Coulomb potential obtaining

(µν |κλ ) = ∑
PQ

(µν |P)(P|Q)−1(Q|κλ ) (5.11)

with (P|Q)−1 being the matrix element of the inverse of the matrix with elements
(P|Q). We will apply the RI approximation to the MP2 method resulting in a
significant speed-up and reduction of memory requirements.[196, 249] The four-
fold transformation of the ERIs in atomic orbital basis to MO basis is simplified
because of

(ia| jb) = ∑
P

BPiaBP jb (5.12)

with the intermediate

BPia = ∑
Q
(ia|Q)(Q|P)−1/2. (5.13)

Because the total energy functional of DH functionals is not variational with re-
spect to the density, we have to explicitly include the convergence constraints into
the gradient calculation

cpµSµνcqν = δpq (5.14)
cpµFµνcqν = εpδpq. (5.15)
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With the method of Lagrangian multipliers, we derive similarly to the RI-MP2
method the following expression for the gradients

E tot,x = ESCF,x + ∑
Qµν

ΓQµν(µν |Q)x +∑
PQ

ΓPQ(P|Q)x +∑
µν

(
DµνFx

µν −WµνSx
µν

)
,

(5.16)

with the MP2-relevant intermediates

ΓQµν = ∑
ia

ciµcaνΓQia (5.17)

ΓPQ = ∑
iaR

BPiaΓRia(R|Q)−1/2 (5.18)

ΓQia = ∑
P jb

(Q|P)−1/2tab
i j BP jb, (5.19)

the density matrix

Dµν = Pµν +PMP2
µν (5.20)

PMP2
µν = ∑

pq
cpµcqνPMO,MP2

pq (5.21)

PMO,MP2
i j =−∑

kab
tab
ik

( ja|kb)
ε j + εk − εa − εb

(5.22)

PMO,MP2
ab = ∑

i jc
tac
i j

(ib| jc)
εi + ε j − εb − εc

(5.23)

PMO,MP2
ia = 0 (5.24)

PMO,MP2
ai = Zia, (5.25)

the energy-weighted density matrix

Wµν = ∑
i j

ciµεiciν +∑
pq

cpµcqνW MO,MP2
pq (5.26)

W MO,MP2
i j = ∑

aQ
( ja|Q)ΓQia +

1
2
(εi + ε j)P

MO,MP2
i j +

1
2 ∑

pq
PMO,MP2

pq E(2)
pqi j (5.27)

W MO,MP2
ab = ∑

iQ
(ib|Q)ΓQia +

1
2
(εa + εb)P

MO,MP2
ab (5.28)
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W MO,MP2
ai = ∑

jQ
( ji|Q)ΓQ ja + εiP

MO,MP2
ai (5.29)

W MO,MP2
ia = 0, (5.30)

the derivative of the Fock matrix

Fx
µν = hx

µν +
1
2

Pκλ (µν |κλ )x −
αHF,X

4
P̂

κ̂ λ̂
(µ̂λ̂ |κ̂ ν̂)x +V XC,DFT,x

µν [ρ]

+V ADMM,x
µν [ρ]−V ADMM,x

µ̂ ν̂
[ρ̂]+

(
V HF,X

µ̂ ν̂
−V ADMM

µ̂ ν̂

)
Aµ̂µAx

ν̂ν
Pµν (5.31)

and the derivative of the overlap matrix Sx
µν . Note that the second line of the

derivative of the Fock matrix vanishes without ADMM. The matrix Zia is the
solution of the Z-vector equation

∑
ia

(
δi jδab(εa − εi)+E(2)

aib j)
)

Zia =−2∑
aQ
(ba|Q)ΓQ ja +2∑

iQ
(i j|Q)ΓQib

−∑
ac

PMO,MP2
ac E(2)

acb j −∑
ik

PMO,MP2
ik E(2)

ikb j (5.32)

with the second order energy kernel

E(2)
qprs = 2 ∑

µνκλ

cpµcqνcrκcsλ

(
∂ 2ESCF

∂Pµν∂Pκλ

+
∂ 2ESCF

∂Pνµ∂Pκλ

)
(5.33)

∂ 2ESCF

∂Pµν∂Pκλ

= 2(µν |κλ )+
∂ 2 (EDFT,XC +EADMM)

∂Pµν∂Pκλ

−

(
∂ 2EADMM

∂ P̂µ̂ ν̂∂P
κ̂ λ̂

+
1
2
(µ̂κ̂|ν̂ λ̂ )

)
Aµµ̂Aνν̂Aκκ̂A

λλ̂
. (5.34)

The Z-vector equations form a system of linear equations allowing a direct solu-
tion, however, these equations are commonly solved iteratively because the com-
putational efforts of the exact solution scales as O

(
N6) with N being a measure

of system size.
We briefly describe the implementation in CP2K, where the integral calculation
is performed separately before the contraction steps. First, the integrals are calcu-
lated batch-wise in the atomic orbital basis in small subgroups, each responsible
for all integrals with a given subset of auxiliary functions. Contraction of two-
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center and three-center integrals with the MO coefficients provides quantity BPia
distributed among all processes with the RI index distributed among the subgroups
and the virtual index distributed among the processes of a subgroup. In the fol-
lowing contraction step, all unique pairs of occupied orbitals are assigned to one
of the aforementioned subgroups, each determining subsequently all four-center
ERIs with the different orbital pairs according to equation (5.12). From the ERIs,
the MP2 amplitudes and the energy contributions, and for a gradient calculation
additionally the intermediate ΓPia and the diagonal elements of the density ma-
trices can be calculated by exchanging the required data between the subgroups.
In that fashion, only a subset of the MP2 amplitudes has to be available at the
same time lowering the memory requirements. Communication costs are reduced
by replicating parts of the integrals BPia within subsets of the subgroups. The
non-diagonal elements of the density matrix are determined within a canonical
reformulation. For further details, we refer the reader to the respective publica-
tions.[249–251]
Without ADMM, the projectors become the unity matrix, the ABS is equal to the
PBS and the exchange correction functional is zero. In this case, we obtain the
already known equations for DH gradients.[252] Without a DFT functional, we
are left with HF MOs and the equations reduce to their MP2 equivalents.[253,
254] Thus, the implemented methodology is a generalization of the common DH
gradient theory. Due to the consideration of the ADMM approximation, the equa-
tions are related to those by Kuman et al. for linear response theory.[255]
The open-source CP2K software package is based on the Quickstep algorithm.[130,
131] Its GPW approach employs a dual representation of orbitals and densities in
a mixed Gaussian and plane-wave basis. The local nature of the Gaussian ba-
sis allows a linear-scaling implementation of the integral evaluation whereas the
plane-wave basis enables a linear scaling evaluation of the Hartree potential with
respect to system size. The plane-wave basis requires the use of pseudo potentials
for which CP2K employs the Goedecker-Teter-Hutter form.[135]
In contrast to other implementations of correlated methods with localized basis
sets like the periodic CRYSCOR project which extends CRYSTAL to correlated
methods, CP2K does not exploit any symmetry within the system, does not lo-
calize the orbitals and the gradient implementation does not allow for all-electron
calculations making it more suitable for dynamics simulations which inhibit sym-
metry at all.[192, 256]
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5.3 Computational Details
The DFT and ADMM kernels were implemented into CP2K and are available with
version 9.1.[130] We employed Libint 2.6 for the calculation of ERIs.[228] Calls
to the routines of the BLAS/LAPACK/PBLAS/ScaLAPACK libraries were accel-
erated with cray-libsci_acc, version 20.10.1. Calls to PDGEMM exploited the
COSMA library, version 2.5.1.[257] All calculations were run on the Piz Daint
supercomputer with 12 MPI processes per node. Each node is equipped with a
NVIDIA Tesla P100 GPU.
All periodic HF calculations were carried out with a truncated Coulomb operator.
The cutoff radius is chosen half of the least distance between two equivalent atoms
of neighboring cells (minimum image convention).[144]
For the present study, we will consider the DSD-PBEP86 functional which is a
GGA-based DH functional with separately scaled same-spin and opposite-spin
MP2 contributions and directly optimized dispersion correction.[258] In the GMTKN55
study, it was one of the best performing functionals with an excellent performance
for all different use cases.[25] Because its HF part requires only the Coulomb po-
tential and the required PBE exchange and P86 correlation functional are widely
available, it is easily implemented in most electronic structure software.
We employed the following test systems: three molecular crystals NH3, HCN and
Ar, three systems with 64 water molecules of different density, the benzene crystal
and the anatase crystal. The molecular crystals are the same as the ones used in
previous studies.[70, 71] The three water-containing systems were taken from a
training set of 1593 structures for a machine learning set of water.[259] We pro-
pose the benzene and the anatase crystals as benchmark systems for double hybrid
and MP2 gradients and potentially also for other wave function based methods to
be run on large scale parallel computers with thousands of compute nodes.[260]
The PBSs are correlation-consistent valence-only basis sets of double-zeta (DZ)
and triple-zeta (TZ) quality.[71, 249] For Ar, we added the diffuse basis functions
of the Dunning basis sets.[211] These are not required for the other systems as
discussed in a preceding study.[71] The basis sets of Ti were taken from a previ-
ous study.[261] For the ADMM calculations, we used ABSs of DZ quality for all
elements. Suitable RI basis sets of the elements H, C, N and O for the MP2 cal-
culations were taken from Del Ben et al., those for Ar were optimized according
to Weigend et al. and the non-augmented basis sets published in Stein et al.[71,
196, 249] The pseudopotentials were optimized for the PBE0 method. All DH
calculations used PBE orbitals as initial guess. The Schwarz screening parameter
was set to values of 10−7 without ADMM and 10−10 with ADMM, and derivative
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integrals use a corresponding 10−7 screening parameter for all calculations.

5.4 Accuracy
In the left panel of figure 5.1, we present the errors introduced by the ADMM
approximation for specific energy differences of the test systems. For the three
water systems, we use the differences in total energies. For the molecular crystals,
we determined the cohesive energies corrected by the basis set superposition error
(BSSE).[213] With a TZ quality PBS, we find an error of at most 1.5 mEh ≈
1 kcal/mol (grey lines in the diagram). Thus, the general accuracy of the double-
hybrid functional is preserved with ADMM.
On the right panel of figure 5.1, the corresponding absolute relative errors are
shown. We find that the energy differences of the water systems have errors of 20-
100 % whereas the cohesive energies of the molecular crystals have a much lower
relative error. The rather small energy differences between the medium- and low-
density structures cause high relative errors but the absolute error is still small.
The cohesive energies of the molecular crystals are much larger with Ar having
the smallest cohesive energy of 3.8 mEh with DSD-PBEP86-D3 (experimental
value: 2.9 mEh).[207]
In figure 5.2, we report the mean absolute ADMM errors of the forces and stress
tensor components. For the forces, we find an error of at most 0.1 mEh/a0. The
average force component of the water system at medium density is 29.3 mEh/a0
providing an average relative error of 0.3 %. For the stress tensor, we found an
error of usually not more than 0.1 GPa corresponding to a relative error of at most
10 % for the diagonal elements. Due to symmetry reasons, the forces on the argon
atoms are zero in all cases.

5.5 Performance
Figure 5.3 reports the computational timing of all methods and test systems. Ex-
cept for Ar, we find for the given setting no reduction in the computational costs
with PBSs of DZ quality, whereas ADMM is able to reduce the timings by 20-70
% for TZ PBS. For Ar, we observe an improvement of about 50 % and 80 % with
PBSs of DZ and TZ quality, respectively. These findings suggest for all systems
except from Ar with a DZ basis set that the similar quality of the ABSs and the
PBSs and the tighter threshold of the Schwarz criterion of the ADMM method
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Figure 5.1: ADMM errors for energy differences. For the water systems, we em-
ploy the difference in total energies of medium and low density structure (H2O(m-
l)) and high and low density structure (H2O(h-l)) per water molecule. For the
molecular crystals, we report the cohesive energies corrected by the basis set su-
perposition error (BSSE). Upper panel: signed errors. Lower panel: absolute
relative errors.
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Figure 5.2: Mean absolute ADMM errors for forces and stress tensor components.
"H2O(l)", "H2O(m)" and "H2O(h)" refer to the water-containing systems of low,
medium and high density, respectively.
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Figure 5.3: Computational time in node hours for different systems, PBSs and
methods. For better comparison, we report also relative timings of ADMM calcu-
lations. (Augmented) basis sets of double-zeta (DZ) and triple-zeta (TZ) quality
were employed. "+ADMM" refers to the additional application of the ADMM
approximation.
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result in an increase in the computational timings because of an increased number
of significant integrals. In contrast to that, we employed augmented PBSs for Ar
which result in a significantly larger number of electron repulsion integrals than
for the non-augmented ABS.
In the left panel of figure 5.4, we present a breakdown of the computational tim-
ings of the different methods. We find that the computational costs of MP2 are in-
dependent of the presence of the ADMM approximation. This has to be expected
because the actual MP2 energy calculation and the assembly of the quantities of
the MP2 force calculation are not directly affected by the ADMM approximation.
Thus, the reduction or increase in the computational costs is caused by the solution
of the Kohn-Sham equation and the Z-vector equations. Excluding the Ar system
and concentrating on the not directly to MP2 related costs, we find the following
behavior. For DZ PBS the relative costs are 20-44 % without ADMM and 31-63
% with ADMM. However, for the TZ PBS the relative costs are getting smaller
when using ADMM, namely, dropping from 19-75 % to 4-12 %. The computa-
tional costs of the MP2 energy calculation are at most as high as the computational
costs of the integral calculation. We conclude that the quintical scaling limit of
the MP2 method was not yet achieved in the examples and further optimizations
of the integral calculation step should be targeted.
If we consider the different contributions to the computational costs not directly
related to MP2, as presented in the right panel of figure 5.4, we observe that the
non-MP2 part is dominated by the calculation of the four center integrals and their
derivatives. Thus, the costs of that part is reduced due to ADMM as anticipated.
The overhead of the ADMM projector matrix and the calculation of the exchange
correction is negligible in all calculations.
In figure 5.5, we report the total number of calculated integrals. Apart from the
DZ basis sets, ADMM reduces the number of significant integrals by at least one
order of magnitude, in the case of Ar and the TZ basis set by two orders of mag-
nitude.
In figure 5.6, the GPU usage according to the Slurm reference is shown. Slurm is
the job scheduling system employed by the CSCS supercomputing centre hosting
the supercomputer on which all calculations were run (see its manual for further
information).[262] According to the Slurm manual, it provides the percentage of
computational time which is spent on GPU. We observe an increase in GPU usage
in accordance with a decrease in computational time. For the ADMM calculations
with a DZ basis set, the GPU usage drops from 40-50 % to 25-45 %. For the TZ
PBS the GPU usage increase from 20-60 % to 60-75 % when employing ADMM.
Finally, for Ar with a TZ PBS we even find an increase from 14 % to 86 %. These
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Figure 5.4: Subdivision of the total computation time (left panel) and of the
SCF+forces part only (right panel). "MP2 energy" refers to the quintically scal-
ing computation steps ("mp2_ri_gpw_compute_en" of the CP2K timing report).
"MP2 integrals" refers to the computation of the integrals and their derivatives
(sum of "mp2_ri_gpw_compute_in" and "calc_ri_mp2_nonsep" of the CP2K tim-
ing report). "SCF+forces" refers to the difference of the total CP2K run time and
the aforementioned parts. "4c" and "4c forces" refer to the timings of the routines
"integrate_four_center" and "derivatives_four_center", respectively, of the CP2K
timing report. "rest" is the difference of "SCF+forces" and the compute time of
the HF integrals. Each group of bars represents in the given order the timing in-
formation of DZ without ADMM, DZ with ADMM, TZ without ADMM and TZ
with ADMM.
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number of integrals calculated with the ADMM is independent of the PBS.
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Figure 5.7: Strong scaling plot for the ADMM-DSD-PBEP86-D3 functional on
Piz Daint with 12 MPI processes per node.

numbers are in agreement with the fact that the exchange Fock matrix calculation
is not GPU accelerated.
Finally, we show in figure 5.7 the strong scaling behaviour of the ADMM-accel-
erated DH calculations. We used 64 water molecules at ambient density and 12
ranks per node. The smallest possible number of nodes is determined by the mem-
ory requirements of MP2 being 115 GB. Due to the parallel memory overhead of
the Quickstep implementation, we observe a peak memory per process of 3878
MB resulting in total memory costs of about 727 GB, which corresponds to at
least 12 nodes of the Piz Daint supercomputer. With 256 nodes, we observe a
parallel efficiency of 55 % which provides a reasonable scaling of approximately
one order of magnitude with respect to the amount of computational resources.

5.6 Large Benchmark systems
The exponential increase in computational power of modern computers make cal-
culations with DH functionals for large systems more and more feasible.[263] We
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Table 5.1: Geometrical parameters of the benchmark systems. See the input files
in the Materialscloud for further information.[175]

System super cell size a;b;c (Å) α;β ;γ (◦) References
benzene 2x2x2 7.398; 9.435; 6.778 90; 90; 90 [260]
anatase 1x1x1 9.674; 9.826; 15.125 74.9; 75.9; 78.3

Table 5.2: Information about the performance of the benchmark systems on the
Piz Daint supercomputer. N, o, n, v, nADMM, nRI refer to the number of occupied
orbitals, unoccupied orbitals, basis functions, ADMM auxiliary basis functions,
RI basis functions, respectively. mem provides the minimal required memory for
the MP2 gradient calculation according to [250]. FLOPs refers to the number of
floating point operations of the quintical scaling steps. t provides the computa-
tional time in node hours.

System N o n v nADMM nRI mem FLOPs t
benzene 384 480 8256 7776 3456 20352 1703 GB 1.7 ·1018 515
anatase 144 576 5424 4848 2928 15360 961 GB 7.2 ·1017 354

will demonstrate the current state with calculations carried out for large bench-
mark systems performed efficiently on compute nodes with 1024 GPUs. We
present two different benchmark systems for which we calculated energies and
forces: the benzene crystal and the anatase crystal. The geometrical parameters,
the number of basis functions and the number of floating point operations of the
quintically scaling steps for each test system are summarized in table 5.1. The
computational timings and some performance related parameters are summarized
in table 5.2.
Anatase is a highly investigated material in the context of photocatalysis.[264–
268] Due to its large band gap, it can be tackled with perturbation theory. From
a computational point of view, the inclusion of semicore states and high-angular
quantum number polarization functions and the large RI basis set (in our case up
to l = 6) provide a computationally demanding system.

Table 5.3: Relative timings and GPU usage of the benchmark systems on 1024
nodes of the Piz Daint supercomputer. See figure 5.4 for definitions.

System HF MP2 integrals MP2 energy GPU usage
benzene 9.3 % 19 % 59 % 38 %
anatase 10 % 17 % 62 % 29 %
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Finally, we discuss the importance of the different calculation parts with respect
to the total computational time. In table 5.3, we report the relative computational
costs of the two calculations. The quintical scaling steps dominate the computa-
tional cost with a relative contribution of roughly 60 %. The HF calculation still
contributes to 10 % of the costs which is mostly related to the limited scaling of
the underlying communication algorithm.[144]

5.7 Discussion
Because the calculation of the HF kernel still consumes a significant amount of
computation time of the DH gradient calculation, a reduction of its costs is of
general interest. The ADMM approximation was developed to accelerate HF cal-
culations while conserving the accuracy. We find that ADMM provides a signif-
icant reduction of the total computational time of DH gradient calculations with
TZ PBSs. Besides the size of the ADMM basis, the most important parameter
determining the performance of HF calculations is the Schwarz screening thresh-
old. We increased this threshold for standard calculations as much as possible
without significant loss of accuracy whereas we kept a tighter value for ADMM.
This means that the performance benefit of ADMM is actually the lowest possi-
ble value because of the unoptimized Schwarz threshold. For water systems, we
found that a threshold of order 10−7 can be used for ADMM. In practice, how-
ever, an optimized Schwarz screening threshold could be used to push ADMM
accuracy without increasing the overall costs of the DH calculations.
The accuracy of ADMM determined here is sufficient for Machine Learning (ML)
approaches. The ML fitting procedure removes potential numerical noise from the
training data making it more robust. The applicability to other kinds of applica-
tions depends on the magnitude of the expected energy differences. For a higher
accuracy, we recommend a slightly larger ABS, the actual size has to be adjusted
to the available resources and the required accuracy. For molecular crystals with
sufficiently large cohesive energies, the accuracy is considered sufficient because
the employed functional introduces a larger uncertainty. Thus, for molecular dy-
namic simulations with the same kinds of systems, the presented methodology
will provide suitable accuracy.
ADMM could be combined with RI-HF exchange or other methods like the COS
approach to accelerate HF exchange calculations further.[230, 269, 270] This
combination of approaches has the potential to further reduce the time for HF
and response calculations. However, as the HF part of the DH gradient calcula-
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tions has already been reduced significantly by ADMM, no major further relative
improvements can be expected. The main advantage of such a combination might
be in two other areas: RI-HFX shifts the computational most demanding part from
the calculation of ERIs to matrix multiplications and tensor contractions. This al-
lows efficient algorithms with a much smaller memory footprint and makes GPU
acceleration accessible. We will investigate this approach and will report results
in the future.

5.8 Conclusions
We presented three achievements: an efficient implementation of forces and stress
tensors of DH functionals in the CP2K software package, application of ADMM
HF and response calculations to reduce the computational costs of HF exchange
in the context of DH functionals energy and gradients and establishment of bench-
mark systems for MP2-based functionals in condensed phase. Our approach ex-
ploits modern GPUs efficiently and reduces the prefactors of the lower scaling
steps significantly. The methods allow to efficiently use large and diffuse basis
functions in the condensed phase.
With the provided methodology, we open the way to perform geometry optimiza-
tions, molecular dynamics simulations and to calculate training data for machine
learning approaches on the double hybrid functional level of systems with a finite
band gap. The main advantage of ADMM is its universal applicability and its
scaling behavior for condensed systems. Further, it allows an efficient treatment
of diffuse basis functions which would otherwise increase the computational costs
of HF significantly. For the calculation of DH gradients, ADMM allows to reduce
the computational costs of the HF kernel to at most 10 % while conserving chem-
ical accuracy.
The main drawback of the current implementation is the still quintical scaling of
the underlying MP2 method. To overcome this issue, we will have to employ ei-
ther low-scaling variants of MP2 or a computationally lower scaling method like
RPA or OS-MP2.
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Chapter 6

Conclusions and Outlook

This thesis dealt with efficient DHF calculations in condensed phase. The un-
derlying correlation method poses a challenge because of its high computational
costs and its slow convergence of properties with respect to the basis set size.
We started with the implementation of DHFs with range-separated correlation
DFs. The removal of the singularity at the origin of the Coulomb potential sig-
nificantly improves the basis set convergence of the DHFs. We implemented the
necessary integrals into the GPW approach of RI-MP2 and RI-RPA to enable ef-
ficient integral calculations. The possibility to optimize pseudopotentials allows
accurate calculations with range-separated functionals including any element of
the periodic table. Albeit our methodology proves to be efficient with the abil-
ity to reduce the computational overhead of the correlated calculations, there is
only one LDA-based short-range correlation DF available. This functional might
provide a reasonable performance, there is still significant room for improvement
with a GGA-correction. The implementation of the GGA-based DF is tedious and
we will wait for their availability in the LibXC library.
The second part was concerned with benchmarking DHFs in condensed phase.
Because most DHFs are fitted to empirical data from molecular systems, it raised
the question whether these DFs are actually suitable for condensed phase systems.
Furthermore, the amount of studies employing DHFs in periodic systems is rather
scarce compared to molecular systems such that we provided a study discussing
these questions in more detail. Our study suggests that the excellent performance
of DHFs for molecular systems is indeed transferable to periodic systems. Bench-
mark studies with a larger variety of DFs and systems or geometries optimized by
the employed DF are possible next steps.
In the third part, we discussed an efficient implementation of gradients with MP2-
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based DHFs. The ADMM approximation allows a significant reduction of the
HF-related computational costs and shows an excellent performance on super-
computing devices with 1,000 GPUs. It enables the computationally efficient
calculation of training data for machine-learning approaches or dynamics sim-
ulations on the DHF level.
We suggest further improvements to the collocation and integration routine of
the GPW approach. Moreover, the recently implemented gradients of the RI-HF
approach as an alternative to the in this context newly established ADMM approx-
imation should be investigated with respect to performance and accuracy.
The given methodology can be extended easily to the already available quarti-
cally scaling RI-RPA and Laplace-RI-SOS-MP2 methods which allow more cost-
efficient DHF calculations and reduce the costs by one order of magnitude. Es-
pecially RPA-based DHDFs are of interest due to their inclusion of higher order
excitations required for more accurate results in condensed matter.
Furthermore, an implementation of a low-scaling RI-MP2 method to increase the
feasible system size of MP2 and MP2-based DHF calculations within CP2K com-
parable to the cubically-scaling RPA approach. An extension of the machinery
to meta-GGA-based DHFs enables more accurate DHFs. Testing of the already
available RPA-AXK method and implementation of the RPA-SOSEX method into
CP2K is another possible next step.
A common drawback of MP2-based DHFs are metallic and strongly correlated
systems because of their (nearly) vanishing band gap. Due to its foundation in
perturbation theory, MP2 is not capable of describing these systems and the avail-
able implementation of RPA in CP2K is also restricted to systems with a non-zero
band gap. Further developments can tackle these issues with Coupled Cluster (and
corresponding DHFs), transcorrelated methods, an advanced RPA implementation
or multi-reference methods.
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