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Abstract

Many-body perturbation theory in the form of the GW approximation has become the most widely
used quantum mechanical tool to predict bandgaps of molecules and materials. Theoretical knowl-
edge of the bandgap is essential to support the design of novel electric devices and photovoltaic
materials. A drawback of GW is its high computational cost which increases with the fourth order
of the system size N, O(N*). In this thesis, a novel efficient GW algorithm based on Gaussian
basis functions is presented where the computational cost scales as O(N?) with the system size.
The algorithm is based on a new cubic-scaling method for the Random Phase Approximation
(RPA) for the correlation energy. The scaling of RPA can be reduced from O(N*) to O(N?) if
it is reformulated in the Gaussian basis together with the resolution of the identity (RI) with the
overlap metric. Moreover, imaginary time and imaginary frequency integration techniques as well
as sparse linear algebra are necessary for cubic-scaling RPA. Cubic-scaling RPA has been applied
to two thousand water molecules using a correlation-consistent triple-zeta quality basis which is
the largest RPA calculation that has been reported in the literature so far. All algorithms presented
in this thesis have been designed in a way that they could be implemented for massively parallel
use on modern supercomputer infrastructures which is the key for the application to large systems.
As application of the cubic-scaling GW algorithm, graphene nanoribbons have been treated. The
largest graphene nanoribbon that could be adressed with the cubic-scaling GW algorithm contains
1734 atoms which is the largest GW calculation that has been reported in the literature so far. The
cubic-scaling GW algorithm can also be applied to periodic systems in a I'-point-only approach
where a correction scheme is needed. This correction scheme has been specifically derived for the
use with Gaussian basis functions.



Deutsche Zusammenfassung

Vielteichenstorungsrechnung in Form der GW-Niherung ist ein weit verbreitetes Verfahren, um
Bandliicken von Molekiilen und Festkorpern quantenmechanisch zu berechnen. Diese Rechnun-
gen konnen dazu beitragen, neue elektronische Bauteile oder neue Photovoltaik-Materialien zu
entwickeln. Ein Nachteil der GW-Methode ist der hohe Rechenaufwand, der mit der vierten
Potenz der Systemgrosse N wichst, O(N*). In dieser Arbeit wird ein neuer, effizienter GW-
Algorithmus basierend auf Gauss-Funktionen vorgestellt, dessen Rechenaufwand mit O(N 3) mit
der Systemgrosse skaliert. Der Algorithmus basiert auf einer kubisch skalierenden Methode fiir
die "Random Phase Approximation” (RPA) fiir die Korrelationsenergie. Die Skalierung von RPA
kann von O(N*) auf O(N?) reduziert werden, wenn RPA in der Gauss-Basis umformuliert wird
und die “Resolution of the Identity” (RI) mit der Uberlapp-Metrik verwendet wird. Ausserdem
sind Integrationstechniken in imaginérer Zeit und imaginirer Frequenz sowie die Ausnutzung
diinn besetzter Matrizen notig, um kubisch skalierendes RPA zu erhalten. Kubisch skalierendes
RPA wurde auf zweitausend Wassermolekiile in einer korrelationskonsistenten tripel-zeta Basis
angewendet, was die grosste RPA-Rechnung in der Literatur bisher ist. Alle Algorithmen, die
in dieser Arbeit vorgestellt werden, wurden fiir die Verwendung auf massiv-parallelen modernen
Grossrechnern implementiert, was eine Schliisselrolle fiir die Anwendung der Algorithmen auf
grosse Systeme spielt. Als Anwendung der kubisch skalierenden GW-Methode wurden Graphen-
Nanoribbon untersucht. Das grosste Graphen-Nanoribbon, das mit der GW-Methode behandelt
wurde, enthélt 1734 Atome, was die grosste G W-Rechnung darstellt, die bisher publiziert wurde.
Der kubisch-skalierende GW-Algorithmus kann auch auf periodische Systeme mit einer I'-Punkt-
Implementierung angewendet werden, wobei eine periodische Korrektur nétig ist, die speziell auf
die Implementierung von GW mit Gauss-Funktionen angepasst wurde.
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Chapter 1

Introduction

Theoretical knowledge about the electronic structure of molecules and materials is of major inter-
est for science and technology. The calculated total energy of the many-electron system can be
employed to determine barrier heights of chemical reactions or the stability of materials. Such
theoretical studies can help to improve catalysists [1] or to suggest new materials for photo-
voltaics [2]. Another important electronic property is the fundamental gap, namely the difference
between the first ionization energy and the lowest electron affinity of a material or a molecule.
The fundamental gap determines whether a material is an insulator, a semiconductor or exhibits
metallic conductance. As an example, computing the fundamental gap of materials can support
the design of novel electric devices at the nanoscale, e.g. formed of graphene nanoribbons which
are strips of graphene with < 50 nm width [3,4].

In practice, computing the electronic structure of larger atoms, complex molecules or solids
can be a challenging task. The reason is that an exact analytical solution for a system of many
interacting electrons has not been achieved yet. Usually, the many-body nature of the problem is
tackled with approximate methods and the use of numerical techniques on computers.

For computing the total energy of many-electron systems, density functional theory (DFT) [5]
is the by far most established method at present. DFT at one hand offers reasonable accuracy
for the total energy at relatively low computational cost which scales as O(N?) with the number
of electrons N in a canonical implementation. Nowadays, DFT in its canonical formulation is
routinely applied to systems containing up to ten thousand atoms [6]. DFT can be reformulated in
linear-scaling algorithms [7] which are efficient for non-metallic systems with large spatial extend.
Exploiting this fact, it was possible to apply linear-scaling DFT to a million hydrogen atoms [8].

For computing the fundamental gap of a material with high accuracy, GW [9] is one of the most
established methods at present involving O(N*) computational cost in a canonical implementation
which is significantly higher than the computational cost of DFT. GW is a method originating from
many-body perturbation theory [9] and was first applied to real materials in 1985 by Hybertsen
and Louie [10]. Recently, GW has been applied to molecules [11-13] for studying the ionization
potential, electron affinity and the fundamental gap where good agreement to experimental values
has been obtained. The largest application of GW to a silicon nanocluster with 1000 atoms was
carried out using an optimized O(N*)-scaling algorithm [14]. Compared to other materials, GW
calculations are computationally less challenging for silicon since low plane-wave cutoffs are
already sufficient to reach convergence. In contrast, GW studies of more challenging systems
as low-dimensional materials like graphene nanoribbons or transistion metal compounds [15] are
restricted to by far less atoms at presence.

Many interesting systems can only be modelled if well above thousand atoms are used in the
GW calculation. As an example, a heterojunction can be build from a graphene nanoribbon when
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one half of the nanoribbon is doped with Boron atoms (p-doping) and the other half with nitrogen
atoms (n-doping) what already has been demonstrated experimentally [4, 16]. Due to additional
charge carriers, the Fermi level of the p-doped side is decreasing while the Fermi level of the n-
doped side increases. For a meaningful GW study of this effect, a large extend of the n-doped and
the p-doped region is needed in the calculation. Nanoelectrical devices are attached to a surface
resulting in a renormalization of the fundamental gap [17] due to screening. This effect can be
taken into account by image charge models [17-19] in case of a metallic surface and absence of
a chemical bond between device and surface. In all other cases, a large number of surface atoms
are required in the GW calculation. In summary, it is highly desirable to develop efficient GW
algorithms for the treatment of large systems containing more than thousand atoms. One way to
achieve this is to reduce the scaling of the computational cost from O(N*) to lower order.

Already three low-scaling GW algorithms have been reported in the literature [20-22]: The
cubic-scaling algorithm by Foerster et al. from 2011 [20] employs a Gaussian basis and locality
of electronic interactions. The method has been applied to molecules with a few tens of atoms.
Larger applications seem to lie out of reach at presence since a parallel implementation has not
been reported which is crucial for applying low-scaling algorithms to large systems as they are
intended. The second low-scaling GW algorithm has been reported by Neuhauser et al. [21] in
2014 which even scales linearly with the system size and relies on stochastic evaluation of the
involved quantities. This algorithm can be easily parallelized and has been applied to a silicon
nanocluster with one thousand atoms. However, it remains to be explored whether stochastic GW
can be a useful tool for more complex systems than silicon nanoclusters [23]. The recent cubic-
scaling GW algorithm by Liu et al. [22] is a variant of the GW space-time method by Rojas et
al. [24] and has been implemented in the VASP package [25]. In this algorithm, a plane-wave
basis, real-space grids and sophisticated minimax quadratures for the time and frequency domain
are employed. The linear-scaling behaviour in the number of k-points seems to be promising
when applying the method to large and numerically challenging periodic systems. For molecular
applications of GW as graphene nanoribbons [26], the plane-waves basis is a major bottleneck
compared to an atom-centered basis. In practice, all three low-scaling GW algorithms [20-22]
could not yet prove their capability for new GW applications to larger systems.

The central objective of this work is to develop a low-scaling GW method which can be ap-
plied to systems containing more than thousand atoms. Several steps are necessary for this pur-
pose which are each presented in an individual chapter: In Chapter 2, the theoretical framework
of GW is presented. As a first step towards low-scaling GW, canonical O(N*)-scaling GW has
been adapted to the Gaussian and plane waves scheme (GPW) [27] which enables efficient calcu-
lations for molecules containing hundrets of atoms, see Chapter 3. Periodic boundary conditions
require a special treatment for GW calculations in GPW, where details on this special treatment
are given in Chapter 4. The focus of Chapter 5 is on the O(N?)-scaling random phase approxi-
mation (RPA). RPA is a method for computing the correlation energy of a many-electron system
and it is the computationally most expensive step in GW calculations. Cubic-scaling RPA has
been implemented for massively parallel use which is the key for the application to large sys-
tems. It was possible to apply cubic-scaling RPA to two thousand water molecules. Based on the
O(N?)-scaling RPA algorithm, the O(N?)-scaling GW algorithm is presented in Chapter 6. As ap-
plication of the cubic-scaling GW algorithm, an alternative route to compute the fundamental gap
of periodic, one-dimensional armchair graphene nanoribbons from GW is presented: The length
of non-periodic ribbons is increased until convergence of the electronic levels is reached. The
largest graphene nanoribbon that could be adressed with the cubic-scaling GW algorithm contains
1734 atoms which is the GW calculation with the largest number of atoms in the literature so far.
Chapter 7 summarizes the main achievements and gives an overview for further developments.



Chapter 2

Quasiparticle energies in the framework of
many-body perturbation theory

In this chapter, the theoretical basics of quasiparticles are introduced, see Sec. 2.1. For computing
the energy of a quasiparticle, Hedin’s equations or the GW approximation can be used, as shown
in Sec. 2.2. For applications, the quasiparticles energies are commonly computed by the GyW,
method which employs a start from density functional theory (DFT) as explained in Sec. 2.3. This
chapter builds on the work of Hiiser et al. [28,29]

2.1 Definition and properties of quasiparticles

One of the central goals in quantum chemistry, theoretical condensed matter physics and mate-
rials science is to find approximate solutions ‘{’f\’ (ry,ra,...,ry) to the Schrodinger equation of
N electrons in an external potential Ve (r), [28]

If]NlPﬁv(rl, ry,...,Iy) = EZN‘PfV(I'l, r,....ry), (2.1)

where H is the Hamiltonian describing the N-electron system

N V2 N 1 N

AN _ Vn

AY = §1 D it §1 Vext(T) - 2.2)
n= n<m n=

The index i in Eq. (2.1) refers to the i-th eigenstate, where i = 0 denotes the groundstate.
Occupied and virtual quasiparticle (QP) orbitals :,l/?_P(r) and w?f(r) are defined as [28]

y ) = (¥ P | ey

(2.3)
p ) = (¥ | V) | w))
where W(r) and W'(r) are the field operators annihilating and creating an electron at point r,
respectively. According to their definition in Eq. (2.3), the QP orbitals can be interpreted as
single-particle wavefunctions in a many-particle system as an atom, a molecule or a solid. In
quantum chemistry, the QP orbitals are also referred to as Dyson orbitals.

The corresponding QP energies are defined by

e =E) —-E! (2.4)

e = EN*L_EN (2.5)

i+
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They represent the excitation energies of the (N+1)-particle system relative to Ef)\' and thus cor-
respond to electron addition and removal energies. According to the definition of the chemical
potential y, it holds that S?_P > u and sgp <u. Having noted this we can drop the + subscripts on
the QP states and energies.

Then, the fundamental gap is defined as

Egp = e — & . (2.6)

The fundamental gap is an important property of materials since it strongly affects their electric
properties: A very small or vanishing fundamental gap is leading to metallic behaviour while an
insulator is charaterized by a high fundamental gap.

Now, we introduce the formulas for computing the QP energies in practice. We assume a
weakly correlated system where a single Slater determinant is a good approximation to the full
many-body wavefunction. In this case, it can be shown by many-body perturbation theory that
w?P and sl.QP can be computed as solutions of the QP equation

2
(‘ V? + g (r) + vm<r>) w (o) + f dr’ 2(r,x, &)y () = &7y () 2.7)

where vy denotes the Hartree potential and X the exchange-correlation self-energy which contains
the whole electron-electron interaction beyond the Hartree interaction. Note that the Hartree-
Fock or a density functional approximation to the self-energy leads to an energy-independent
function HPF(r r’). As a consequence, using */PF(r,r’) in Eq. (2.7) does not guarantee to
yield correct QP wavefunctions w?P and, more importantly, correct QP energies E?P .

2.2 Many-body perturbation theory: Hedin’s equations and
GW approximation

An exact way of calculating the self-energy from Eq. (2.7) is given by a set of five coupled equa-
tions, known as Hedin’s equations [9]:

self-energy: 2(1,2) = ifd(34)G(1, 33,2, 4HWH4, 1Y), (2.8)
Green'’s function: G(1,2) = Go(1,2) + fd(34)G0(1, 3)X3,4)G4,2), (2.9)
screened interaction: wW(,2)=V(,2) + f d3B34)V(1,3)P(3,4)W4,2), (2.10)
polarization: P(1,2) = —ifd(34)G(1, 3)G(4,1I(3,4,2), (2.11)
vertex function: I'1,2,3) =6(1,2)6(1,3)

02(1,2)
d(4567 G4,6)G(7,5I(6,7,3), 2.12
+f( )50(4,5)()()( ), (2.12)
where the argument has been combined to (j) = (r}, ¢;) and the bare Coulomb interaction is given
by V(1,2)=1/|r; — r3|6(t; — t,). The non-interacting Green’s function

w — & + insgn(e; — )

i
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can be computed using the single-particle wavefunctions ¢,;(r) from the non-interacting problem
[Eq. (2.7) with X = 0], a positive infinitesimal number 7 and the chemical potential . In principle,
the equations (2.8) - (2.13) can be solved self-consistently which has not yet been done in practice
due to their complicated structure.

A simple ansatz can be made by neglecting the second term in the vertex function, which yields

P(1,2) = -iG(1,2)G(2,17) and 2W(1,2) = iG(1,2)W(1,2). (2.14)

Due to the form of the self-energy, this approximation is called GW approximation. We interpret
this choice when comparing to Hartree-Fock theory, in which the self-energy is given as a product
of the Green’s function and the bare Coulomb interaction:

sHR(1,2) = iG(1,2)v(1,2). (2.15)

Here, electron-electron interaction only occurs through the Hartree- and the exchange potential,
that means that there is no correlation — the electrons are moving independently of their Coulomb
repulsion beyond the Hartree mean-field interaction. On the other hand, correlation is to a large ex-
tent determined by screening. Thus, by replacing the bare Coulomb interaction V by the screened
interaction W in the self-energy, dynamical correlation is introduced in the GW approximation by
means of screening.

In real space and time domain, the GW self-energy is simply given as a product, see Eq. (2.14),
which turns into a convolution in frequency domain,

Wy, w) = 2L f dw' ' G(r,v',w — W )W(r, v, o), (2.16)
JT

where the inifinitesimal ¢ ensures the correct time-ordering in case of a static potential, W(w = 0).

2.3 GyW,; method for computing quasiparticle energies

In practice, Kohn-Sham (KS) orbitals y°*" and eigenvalues " from a DFT calculation

2
(— V? + 0H(I) + Vext(1) + Vee(1) | Y771 (1) = &7 Ty TT(r) (2.17)
are often used as input for a GW calculation. In the widely used Gy W, scheme, the quasiparticle
wavefunctions are approximated by the DFT wavefunctions, zﬁ?P ~ P, This approximation is
justified in the sense that the exchange-correlation potential vy (r) is small and has few spatial
structure compared to the kinetic energy, the Hartree potential and the external potential. There-
fore, the KS orbitals can be expected to be close to the QP orbitals from Eq. (2.7). The GyW,
self-energy "0 is computed from Eq. (2.14) using the non-interacting DFT Green’s function G,
from Eq. (2.13),

DFT 4oy, DFT v/
Go(r,r’;w) = Z Vi W (l];F)T _

— w — &’ + insgn(e; u

(2.18)

to approximate the interacting Green’s function G.
For the quasiparticle energies, we start from Eq. (2.7) inserting the GoW, self-energy "
with ¢yPFT ~ 2 on both sides and integrating over r,

(9T = T [P+ (9P O ) = 7 2.19)
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Using Eq. (2.17) and first order Taylor expansion of (¢®") around P, we obtain from Eq. (2.19)

i

8?FT _ <¢IPFT Vi w?FT> + <¢?FT| 3GoWo ( SPFT) + (s?P . SPFT) . §xGoWo /0w, orr | w?FT> — ‘SIQP-
(2.20)
After rearranging Eq. (2.20), we arrive at
-1
e = &P+ Z (Y| ZOM @ PT) — o P . Zi= (14 0Z9M 0wl ) . (221)

From Eq. (2.21), we see that the exchange-correlation part from DFT is subtracted from the DFT-
eigenvalue £P'", while the self-energy from G, W, is added to account for exchange and correlation
effects. In this way, correlation from dynamic screening is included in the GoW, quasiparticle
energies. A more detailed introduction to the GoW, method is given in Sec. 3.2 with a focus on
the implementation in a Gaussian basis.



Chapter 3

GW in the Gaussian and plane waves
scheme with application to linear acenes

The following chapter is a reprint of Ref. [30]. We present an implementation of GoW, and
eigenvalue-self-consistent GW (evGW) in the Gaussian and plane waves scheme for molecules.
We calculate the correlation self-energy for imaginary frequencies employing the resolution of the
identity. The correlation self-energy for real frequencies is then evaluated by analytic continuation.
This technique allows an efficient parallel implementation and application to systems with several
hundreds of atoms. Various benchmark calculations are presented. In particular, the convergence
with respect to the most important numerical parameters is assessed for the benzene molecule.
Comparisons with respect to other GoW, implementations are reported for a set of molecules,
while the performance of the method has been measured for water clusters containing up to 480
atoms in a cc-TZVP basis. Additionally, GoW, has been applied for studying the influence of
the ligands on the gap of small CdSe nanoparticles. evGW has been employed to calculate the
HOMO-LUMO gaps of linear acenes, linear chains formed of connected benzene rings. Distinct
differences between the closed and the open-shell (broken-symmetry) evGW HOMO-LUMO gaps
for long acenes are found. In future experiments, a comparison of measured HOMO-LUMO gaps
and our calculated evGW values may be helpful to determine the electronic ground state of long
acenes.

3.1 Introduction

In recent years, GW with localized basis sets has emerged as an accurate method for the calcula-
tion of quasiparticle energies of molecules [11-13,20,21,31-44]. Additionally, in combination
with the Bethe-Salpeter equation, GW is a promising method for computing molecular electronic
excitations with high accuracy [34,45-50]. Most of the traditional GW implementations employ
a plane-wave (PW) or augmented plane-wave (APW) basis [10,51-68]. While the main field of
application of PW and APW GW is still the condensed phase, they have also been employed re-
cently to calculate quasiparticle levels of molecules [14,28,69,70]. When treating molecules, the
main advantage of a localized basis compared to PWs is the reduced number of basis functions
required to represent the Hamiltonian and thus the wavefunctions. The number of PWs can be a
factor 100-1000 larger compared to that of a localized basis, [71] mainly due to the need of a large
supercell in the former method in order to decouple the periodic images. On the other hand, the
generation of a localized basis that provides systematic convergence is much harder to be obtained
and the convergence of the GW quasiparticle energies with respect to the basis parameters is still
under investigation. [31,36,38,40]

11
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The computational effort of GyWj is quickly growing for increasing system size N with a scal-
ing O(N*) for state-of-the-art implementations [13]. As a consequence, an efficient implemen-
tation for high-performance computing is needed to study large systems with GoW, [14,52]. As
basis of our Gy W, implementation in the Gaussian and plane waves scheme [27] in CP2K [72,73],
we employ the previous efficient implementation of wavefunction correlation methods [74-77]
which enabled large-scale molecular-dynamics and Monte Carlo simulations based on second or-
der Mgller-Plesset (MP2) and random phase approximation (RPA) total energies [78—80]. We use
the GoW, framework in the resolution-of-the-identity approach as elaborated by Ren et al. [13]
Our GyW, methodology can be applied to systems containing hundreds of atoms. As starting
point for GoW,, a wide range of local, semilocal, hybrid and range-separated hybrid functionals
can be employed [81]. In agreement with the literature [13, 14, 31, 40, 46, 47, 82—84], we find
that the PBEO [85] and the tuned CAM-B3LYP [86] starting points perform remarkably well for
molecules with an average deviation of 0.1 -0.2 eV between the computed GoWy,-HOMO energy
and the experimental vertical ionization potential [87]. Moreover, our GoW, and evGW imple-
mentation can treat systems with unpaired electrons.

We apply our GW implementation to compute the HOMO-LUMO gap of linear acenes, molecules
consisting of repeating units of benzene rings. This application is motivated by a recent study by
Korytar et al. [88] indicating that the HOMO-LUMO gaps of acenes may not decay monotonously
with increasing number of benzene rings, but can oscillate. The reason is the presence of a level
crossing in the one-dimensional band structure of polyacene [89] which is shifted from the I'-
point. Such HOMO-LUMO gap oscillations are well-known in carbon nanotubes [90, 91] and
armchair graphene nanoribbons [3,92-94] due to the presence of the Dirac cone in the band struc-
ture of graphene [95]. Remarkably, the HOMO-LUMO gap oscillations in acenes on the level of
closed-shell PBE [96] have not been reported before Ref. [88] despite of the intensive research
on the electronic ground state properties of acenes [97-104], which is driven by organic electron-
ics [105-109] and photovoltaics [110-113]. In Ref. [88], GoW, HOMO-LUMO gaps have been
presented up to tetracene. We report GoW, and eigenvalue-selfconsistent GW [11,34] calculations
of the HOMO-LUMO gap up to 11-acene.

This chapter is organized as follows: First, we introduce the GW methodology of the imple-
mentation (Sec. 3.2). In Sec. 3.3, we perform extensive benchmark calculations with our imple-
mentation: the convergence of a wide range of numerical parameters is illustratively tested for
benzene. We report execution times, system size scaling and the parallel speedup measured for
water clusters containing up to 160 molecules. Also, GoW,-HOMO energies of molecules and
GoW, gaps of CdSe nanoclusters are reported. In Sec. 3.4, we apply eigenvalue-self-consistent
GW to predict the HOMO-LUMO gap of linear acenes.

3.2 Theory and implementation

In this section, the theoretical and computational framework of the GoW,, implementation is briefly
presented. In Sec. 3.2, we describe the evaluation of the quasiparticle energies starting from the
precomputed frequency-dependent correlation-self-energy X°(w). [13, 31] The resolution-of-the-
identity (RI) approximation for four-center two electron repulsion integrals (ERIs) is introduced in
Sec. 4.2. [75] In Sec. 3.2, we apply RI to GoW,, and we give the working expressions as employed
in the implementation. [13,75]

The following index notation has been adopted: u,v, A refer to Gaussian functions ¢ of the
primary basis, n, m, k, [ refer to general molecular orbitals (MOs) ¢, i to an occupied MO, a to a
virtual one and P, Q to auxiliary RI Gaussian basis functions ¢.
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Starting point and quasiparticle energies

For GyW,, we start from a self-consistent generalized Kohn-Sham (GKS) DFT [5] calculation,
including hybrid functionals and Hartree-Fock (HF) [114]. The total energy of a many-electron
system in GKS-DFT is obtained by solving the eigenvalue problem

WO (r) + f dr’ v (e, X ) (') = &, (1) (3.1)

h° contains the external and the Hartree potential as well as the kinetic energy. v**(r, r’) denotes
the exchange-correlation potential which is local for most non-hybrid density functional approxi-
mations, v*°(r, r’) = 6(r, r')vi(r). In HF, exact exchange [115-117]

occ

2 (r,r') = - Z (0 (ryo(r, r') (3.2)

is the only term included in v*“(r, r’), where v(r,r’) = 1/|r — r’| denotes the bare Coulomb inter-
action. In this case the potential is fully non-local and no correlation effects are accounted. Note
that the spin variable has been dropped for convenience.

In the following, we briefly introduce the GoW, method giving the equation to compute the
quasiparticle energies £5°"°. For a concise introduction into quasiparticles and the GW method
in the Green’s function framework, we refer to the work of Hiiser ef al. [28] By construction, the
GKS-DFT MOs ¢,(r) and their corresponding eigenvalues &, are auxiliary quantities for com-
puting the total energy of the many-body problem. In contrast, the poles of the Green’s function
correspond to vertical electron addition or removal energies and consequently, these poles are in-
terpreted as quasiparticle energies. [28] In GoW,, the MOs from GKS-DFT serve as quasiparticle
wavefunctions and only their quasiparticle energies (poles of the Green’s function) are computed
by means of GoWj:

g5 = g, + Z,(n|=* + Re Z°(g,) — v*°In), (3.3)

where X°(¢) stands for the Gy W, correlation self-energy which is calculated according to the algo-
rithm described in the following sections. The renormalization factor Z,,

Z, = (1 - AR = (@)n)/0l,ms,) (3.4)

accounts for the linearized energy-dependence of X°(w). [31]

RI approximation

The four-center electron repulsion integrals (ERIs) are of central importance for calculating the
correlation self-energy X°(¢) in the GoW, approximation. These integrals, in Mulliken notation,
are defined as

(nmlkl) := f drdr’ Y, (0 ) ()i (0 (0)o(r, 1) (3.5)

where v(r,r’) = 1/|r—r’| is the Coulomb interaction. Within the RI approximation [118,119] based
on the Coulomb metric [120], these integrals are factorized to

(nmlklyes = ) (nmlP)Vpg(QIk) (3.6)
PQ
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Here, V;IQ is the inverse of the Coulomb matrix Vpy:

Vpo = (PIQ) = fdrdr’gop(r’)gog(r)v(r, r). (3.7)

The matrix elements (nm|P) are given by
(nm|P) = Z CnCom(uvlP),  (uv|P) = f drdr’ ¢,(x")¢,(r")pp(r)u(r, ') (3.8)
uv

where the C; are the MO coefficients obtained as solution of the KS equations.

The RlI-basis functions P, Q are Gaussian functions, which are local for gas phase systems and
periodically repeated for the condensed phase. The two- and three-center ERIs are computed by
direct integration between the Gaussian basis functions [bra in Eq. (3.7) and (3.8)] and the elec-
trostatic potential associated to auxiliary RI Gaussian basis functions [ket in Eq. (3.7) and (3.8)].
The electrostatic potential is obtained in a plane wave basis set after solving the Poisson equation
in Fourier space. The advantage of this method is that, for each electrostatic potential, the eval-
uation of the matrix elements of Eq. (3.8) is obtained in linear scaling time, since only integrals
over overlapping basis function product ¢,(r")¢,(r’) need to be evaluated. Additionally, due to
the introduction of an auxiliary PW basis for the expansion of the electrostatic densities, periodic
boundary conditions can be included straightforwardly. On the other hand, pseudopotentials have
to be employed in order to remove core states and to provide smooth densities. For more details,
we refer to Ref. [75].

The main advantage of the RI approximation [Eq. (5.4)] is that four center electron repulsion
integrals of the type (nmlkl) are computed from three and two center ERIs. This allows to re-
duce the storage requirement as well as the computational effort for the integral evaluation and
subsequent matrix operations without significant loss of accuracy. [119, 121]

Since the Coulomb matrix Vp is positive definite, the calculation of V;é can be efficiently per-
formed by a Cholesky followed by the efficient inversion of the triangular matrix L, decomposition
of VPQ,

Veo= ) Lexlky.  Vih= ) LpkLzh- (3.9)
R R
In this way, the factorization of the (nm|kl) ERIs can be expressed in a compact form as

(nmlkDry = »" By"BY, B = > (nmIR)Lpp. (3.10)
P R

GoW, self-energy
In the GW approximation [9], the Gy W, self-energy X =2* + X° for an imaginary frequency iw is
given by [13]
VA 1 * ’ VA LN VAN
2(r,r,iw) = —z—f dw' Go(r, 1, iw — i YWo(r,x', iw’) (3.11)
T J-w

where G(r, 1’, iw) is the Green’s function of the KS reference system [Eq. (3.1)],

Y (@) (r)

GO(r’ r,, l(L)) = . »
- W+ & — &y

(3.12)
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and Wy(r,r’, iw) the screened Coulomb interaction,
Wo(r,r',iw) = f dr’e ' (r,x”, iwp@”,r'). (3.13)
The dielectric function (r,r’, iw) is defined as
e(r,r',iw) = 6(r,r’) — f dr”’v(r, Y (@, r',iw). (3.14)

where the density response y(r, r’, iw) is given by

occ virt

E — &
'iw) =2 (0 (1) ———— 3.15
X(r,r, i) Z;wr W W W) —— (3.15)

CR
In order to employ Eq. (3.3), we calculate the (n, n)-diagonal matrix element of X(iw),
Y, (iw) = (nZ(iw)|n) = f drdr’ Y, (' W,(0)Z(r, 1, iw) (3.16)
for considered quasiparticle state n and for a given set of iw grid points. By considering N

RI-auxiliary Gaussian functions P and Q, inserting the Eqs. (3.11)—(3.13), (3.14), (3.15) and then
Eq. (5.4) and (5.10) into Eq. (3.16), we obtain [13]

. 1 © , 1 nm VAN b mn
Zn(lw):—§2f dw ZBP [1 - T(iw)]pp BY" (3.17)

(w—w)+ep— &y 70

where Ilpp(iw) is the Ny, X Ny« matrix representation of the density response function,

Ei— &

Mpo(iw) =2 ) B — BY. (3.18)

2
- + (& — &)

For numerical stability and to avoid the RI-approximation for X}, we calculate the exact exchange
self-energy by means of Eq. (3.2):

occ

Sy 1= (nlZNn) = = ) (nilin). (3.19)

1

The exchange self-energy [Eq. (3.19)] is subtracted from the total self-energy to obtain the corre-
lation part. Similarly to Eq. (3.17), we get [39]

Cy/z _ 1 * ’ 1 nm . 11 mn
T (iw) = - ; Lo P s— PZQ By |[1 - T(iw)]pp — 6ro| BY' - (3.20)

The integration over ' is computed employing a Clenshaw-Curtis grid [122] as proposed by
Eshuis et al. [123] We employ the same grid to evaluate X7 (iw).

To evaluate Eq. (3.3), we obtain the real-frequency self-energy by means of analytic continu-
ation [24, 124] which has been shown to be accurate [13, 38,39, 59, 125, 126]. In this approach,
2 (iw) from Eq. (4.22) is fit to a two-pole model P, for every quasiparticle state n (Npores = 2):

N, poles

S5(iw) = Pyliw) = ).

=1

n,j

iw + bn,j

+ g - (3.21)
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Figure 3.1: Clenshaw-Curtis grid points iwy
(blue dots), fit of the self-energy [Eq. (4.22)]
on imaginary frequencies (red and magenta
lines) and evaluation of the fitting func-
tion at the GKS eigenvalues g, (green dots).

Imaginary part of energy (eV)

_20_....|...|....|....

~15 _ 16 _5 0 5 We set the Fermi level ¢r in Eq. (4.22)
as egomo + 0.3 eV for occupied orbitals and
Real part of energy (eV) as e ymo — 0.3 eV for virtual orbitals.

The complex coefficients a, ; and b, ; are determined by a nonlinear least-square fit, solved with a
Levenberg-Marquardt algorithm. During the fitting procedure, we apply the constraint P,(0) = X (i0)
to fix the fit at w =0 to the computed self-energy X (i0). To avoid branch cuts, the self-energy of
an occupied orbital 7 is fitted for negative imaginary frequencies while the self-energy of a vir-
tual orbital is fitted for positive imaginary frequencies, see Fig. 3.1. [24, 124] As also sketched in
Fig. 3.1, we set the Fermi level ¢ in Eq. (4.22) for occupied orbitals n as er = egomo + 0.3 eV and
for virtual orbitals n as er = e ymo — 0.3 €V. The advantage of this procedure is that the fit has an
anchor point X (i0) close to the eigenvalues &, of the SCF, see Fig. 3.1.

By replacing iw with w in P, in Eq. (3.21), the self-energy can be evaluated on the real-
frequency axis. Then, Eq. (3.3) to determine the quasiparticle energies turns into the working
expression

g0 = g, + 7, [EX + Re Py(e, — &r) — U] (3.22)

with Z, =1/[1 — Re P} (g, — er)] and the diagonal element v of the exchange-correlation matrix.

3.3 GyW, benchmark calculations

In this section, we report GoW, benchmark results to validate the implementation. The section is
organized as follows: In Sec. 3.3, we give the computational parameters which have been used for
all calculations. Then, we investigate the convergence of the benzene-G,W,-HOMO energy and
the GoW,-HOMO-LUMO gap with respect to the most important numerical parameters (Sec. 3.3).
Execution times, parallel speedup and the system size scaling of the implementation are reported
in Sec. 3.3. As an application of the implementation, we study the influence of different ligands
on the gap of CdSe nanoclusters and we compare G,W,-HOMO energies of small molecules to
experimental values and other GoW,, implementations (Sec. 3.3).

Computational details

For all calculations reported here, we employ the Gaussian and plane waves scheme (GPW) [27]
for the underlying generalized Kohn-Sham (KS) equations as implemented in CP2K [72,73,127—-
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129]. The GPW scheme makes use of a Gaussian basis to expand molecular orbitals and an
auxiliary plane-wave basis for the expansion of the electronic density. This dual representation
allows for evaluating the Hartree contribution to the KS matrix in linear scaling time at full ac-
curacy. [127] In order to have an efficient expansion of the density in plane waves, core electrons
are replaced by pseudopotentials. We use dual-space pseudopotentials of the Goedecker-Teter-
Hutter (GTH) type [130, 131] specifically parameterized for LDA [132], PBE [96], PBEO [85] and
B3LYP [86].

Regarding the Gaussian basis, we employ valence-only correlation-consistent basis sets [133,
134], generated specifically for the use with GTH pseudopotentials [135]. The basis sets have
been labeled as cc-DZVP, cc-TZVP, cc-QZVP and cc-5ZVP, denoting double, triple, quadruple
and quintuple-zeta quality, respectively. For each primary basis set, the corresponding auxiliary
RI basis has been generated [75] according to the procedure proposed by Weigend et al. [136]

The plane-wave cutoff for the DFT part of the calculations is E, = 1200 Ry to guarantee con-
vergence of the SCF, at small cost compared to the GW calculations. For the calculations of two-
and three-center ERIs for GW, we employed a high quality plane-wave cutoff of E., =300 Ry for
the expansion of the RI fitting densities. Gas phase systems have been computed using cluster
boundary conditions for solving the Poisson equation [137].

As input geometries for the SCF and the subsequent GoW, calculations, we take B3LYP-
relaxed molecular geometries from the nistgov database [87]. As general computational GoW,
setup, we use 100 grid points for the frequency integration in Eq. (4.22) and a Fermi level which
is 0.3 eV above egomo for occupied MOs and 0.3 eV below & ynmo for virtual MOs. The range for
fitting the correlation self-energy [Eq. (3.21)] is chosen as [0, £10 eV]i on the imaginary-frequency
axis, where ‘-’ refers to quasiparticles and ‘+’ to quasiholes.

Convergence of numerical parameters: the benzene molecule

In this section, we present convergence tests of the HOMO level and the HOMO-LUMO gap of
benzene for the PBEQ starting point with respect to the main computational parameters. Sim-
ilar convergence has been obtained for other systems and different starting wavefunctions. We
are also testing auxiliary density matrix methods (ADMM) [138, 139] for the approximate, but
faster computation of exact exchange at the SCF level. The reference value for benzene is

IG{%VK}I’(C;) PBEO — _9.29¢V, which has been obtained employing the cc-5ZVP basis and numerical
parameters as described in the previous section. Our reference is in good agreement with the ex-
perimental vertical ionization potential of 9.24 eV [140] and GoW,@PBEO HOMO energies from

other implementations (—9.20eV from Ref. [13] and —9.32 eV from Ref. [14]).

Primary basis set

In Figure 3.2, the convergence and the extrapolation of the GoW,@PBEO-HOMO energy with
the size of the basis set is sketched. As previously reported in the literature [31, 36, 38, 40], the
convergence of single GoW, quasiparticle levels in a Gaussian basis is very slow. An accuracy of
0.1 eV compared to the complete-basis limit is only reached at the level of a cc-5ZVP basis set,
which means as many as 816 basis functions for the benzene molecule.

Figure 3.3 displays the convergence of the GoW,@PBEO-HOMO-LUMO gap with the size
of the basis set. As previously reported in the literature [11, 35, 40, 45, 46], the convergence of
the GoWy,-HOMO-LUMO gap in an augmented Gaussian basis is very fast and already reached
using an aug-DZVP basis with an accuracy of better than 0.02eV for benzene. In contrast, the
HOMO-LUMO gap converges much slower employing a correlation-consistent basis without aug-
mentation functions.
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RI-basis set

Figure 3.4 shows the convergence of the GoW,@PBEO-HOMO energy with the size of the RI-
basis set for benzene. As primary basis, we use the cc-5ZVP basis. The RI basis sets have been
generated specifically for GTH pseudopotentials [75] employing the procedure of Weigend and
co-workers [136]. The maximum angular momentum of the RI basis is identical to the RI basis
sets of Weigend et al. [136] and the size of the RI basis is similar to Ref. [136]. As it can be
seen in Fig. 3.4, an RI-QZVP basis already reaches convergence for a cc-5ZVP primary basis
when computing the GoW,@PBEO-HOMO energy: The difference between the GoW,@PBEO-
HOMO energy with the RI-QZVP and the RI-5ZVP basis is less than 0.001 eV. Since the overall
execution time of our GoW, scheme scales quadratically with the number of RI basis functions for
large systems, the computational cost for a cc-5ZVP basis set may be reduced by a factor of two
for large systems when using the RI-QZVP basis instead of the RI-5ZVP basis without significant
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NRI basis functions with a precision of 0.001 eV.
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loss of accuracy. We conclude that the computational cost can be reduce by employing a smaller
RI basis but the angular momentum components have to be chosen carefully in order to properly
fit the primary basis. Clever RI basis sets are minimum in size and tuned properly with angular
momentum.

Auxiliary density matrix method (ADMM)

In ADMM [138, 139], an approximate auxiliary density matrix is employed to compute the exact
Hartree-Fock exchange at the SCF level. For the auxiliary density matrix, a smaller Gaussian basis
is used compared to the Gaussian basis in the SCF. When employing the ADMM methodology,
the cost and memory for computing the exact exchange in the SCF can be reduced significantly.

The auxiliary density matrix can be derived from several schemes named ADMMI1 [138],
ADMM?2 [138], ADMMQ [139], ADMMP [139] and ADMMS [139]. In ADMM1, the MOs in
the auxiliary basis remain orthogonal, while in ADMM2 this is not the case in order to allow a
higher flexibility for the auxiliary fitting basis. As a consequence, the ADMM?2 auxiliary density
matrix is purified to restore the idempotency of density matrices. In ADMMAQ, the particle number
in the auxiliary density matrix is constrained to the particle number of the full density matrix. In
ADMMS and ADMMP, the particle number in the auxiliary basis is also constrained and scaling
laws of exchange are respected in two ways which are different for ADMMS and ADMMP.

Here, the influence of ADMM on the GyW, quasiparticle energies is tested when using the
ADMM approximation in computing the reference PBEO wavefunctions. The reason for testing
ADMM is that for a high-quality basis as needed for G, W,, the computation of the exact exchange
at the SCF level can by far dominate in the total execution time.'

Figure 3.5 displays the Gy W, @PBEO-HOMO energy in case ADMM has been employed in the
SCF while exact exchange with the full primary basis has been used for the exchange self-energy
in Eq. (3.22). We observe that regardless of the ADMM scheme, the Gy W, @PBEO-HOMO energy
of benzene differs by 0.03 eV between exact Fock exchange in the SCF and an ADMM-treated
Fock exchange in the SCF. Since the systems considered in this work are not prohibitively large
for exact exchange calculations, we treat the Fock exchange exactly [115, 116] throughout this
work.

Figure 3.5: GyW,@PBEO HOMO of benzene for

1 an approximative treatment of the exact exchange in
the SCF for five auxiliary density matrix methods
(ADMM) [138, 139]. The exchange self-energy in
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I'The reason for the high computational cost for computing the exact exchange in the SCF is, that during the
SCF procedure, the ERIs are needed in each cycle while at the GoW, level, the computation of the ERIs for the
exact-exchange Fock matrix elements has to be performed only once. For a high quality basis, the screening in the
computations of the ERIs is not efficient and the available memory can thus not be enough for their complete storage,
meaning that part of them have to be recomputed at each SCF cycle making the SCF computationally more demanding
than the Gy W, quasiparticle energy evaluation.
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Grid for frequency integration, fitting range and number of poles

The correlation self-energy X°(iw) on the imaginary-frequency axis, with a fixed value of w, is
obtained by numerical integration of Eq. (4.22). Consistently to the way the RPA correlation
energy is computed [75], a Clenshaw-Curtis grid [122, 123] {wy} 1s employed with a fixed scaling
parameter [123] a =0.2 Hartree. The same grid {w;} is employed for «’ and w in Eq. (4.22),
meaning that the self-energy X°(iw) is evaluated at the same frequencies w as those employed
for the numerical integration over w’. Subsequently, X°(iwy) is fitted with the two-pole model of
Eq. (3.21). According to the target accuracy, an w-interval is defined and only the w; points that
are contained in this range are employed for the fitting procedure.

Figure 3.6 displays the convergence of the GoW,@PBEO HOMO energy of benzene with re-
spect to the number of grid points for different fitting intervals of X°(iw). The drawback of using
a large fitting interval is that for an w; with large absolute value, X°(iw;) is calculated with lower
accuracy compared to X°(iw;) with smaller absolute value |w;|. The reason is that the integrand
in Eq. (4.22) is large for w; = a);. but the resolution of the {w;} grid around w; with large |w,| is
coarse, see €. g. Fig. 3.1. The consequence of this issue is seen in Fig. 3.6 for the large fitting inter-
val [-20eV, 0eV]i: The HOMO energy converges more slowly and non-monotonously compared
to the smaller fitting intervals. On the other hand, a too small fitting interval may miss the struc-
ture of X° on the imaginary-frequency axis. Consequently, we take a medium fitting interval of
[-10eV, 0eV]i for all calculations presented in this work. Moreover, we observe in Fig. 3.6 that
with 50 grid points and a fitting interval of [- 10eV, 0eV]i, the HOMO energy is converged with
an accuracy of 0.01 eV. To ensure high-quality results, we use 100 grid points for all following
calculations.

The fit of the correlation self-energy on the imaginary-frequency axis is performed by using a
multi-pole model employing a given number of poles Npyoes, see Eq. (3.21). Figure 3.7 displays
the GoW,@PBEO HOMO energy of benzene for various numbers of poles used. In agreement
with previous works [13,39], we find that two poles for the fitting procedure are already sufficient:
the result changes by less than 0.005eV for three or more poles compared to two poles. As a
consequence, we take two poles for all following calculations.
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Fermi level

The Fermi level eg is needed in order to compute the Green’s function for imaginary frequencies,
see Eq. (4.22). As sketched in Fig. 3.1, we set the Fermi level e in Eq. (4.22) for occupied
orbitals n as er = egomo + 0.3 eV and for virtual orbitals n as ep =& ymo —0.3eV. In principle,
the Fermi level may be chosen arbitrarily between the HOMO and the LUMO energy of the
underlying GKS calculation. Indeed, we observe in Fig. 3.8, that as long as the Fermi level is
located more than 0.1 eV above the HOMO energy of the SCF, we get identical results for the
benzene GoW,@PBEO HOMO energy. Due to the numerical issues seen for § < 0.1 eV in Fig. 3.8,
GoWjy calculations for a system with a GKS gap smaller than 0.2eV need a careful treatment
within our methodology.

Geometry optimization

Prior to a GyW, calculation, it is a common practice to relax the ground state geometry employing
the same KS method as used to generate the input orbitals for the GyW, calculation. For hybrid
functionals, the computation of the exact HF exchange can be significantly more expensive such
that the geometry optimization would be more costly than the subsequent G, W, calculation. Here,
we examine the influence of the input geometry on the Go W, @PBEO HOMO energy, see Fig. 3.9.
The geometries have been obtained by a structure optimization with the PBE and the PBEO func-
tional, respectively and various basis sets, while the GoW,@PBEO HOMO is obtained using the
cc-5ZVP basis. As shown in Fig. 3.9 (a), the structure relaxation with a cc-TZVP is sufficiently
close to the complete-basis limit. Moreover, we find that the GoW, @PBEO HOMO level differs
by 0.04 eV between structures relaxed at the PBE and PBEO level (or other hybrids). We conclude
that using a non-hybrid functional for the geometry optimization may introduce a non-negligible
error in GoW,@PBEQ quasiparticle energies. To reduce the cost to generate the initial geometry, a
small primary basis at the triple-zeta level can be used to obtain converged quasiparticle energies.
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Execution time, system size scaling and parallel speedup

For an exemplary benchmark of the computational cost, we show the execution time for computing
20 GyW, quasiparticle energies (HOMO-9, HOMO-38, ..., LUMO+9) for various water clusters
in Fig. 3.10 (a) (without the time spent for the GKS calculation) employing N, =60 grid points
for the frequency integration in a cc-TZVP basis.

According to Eq. (4.26), computing I1py(iw) for all grid points wy requires NfuxNochvaw
operations, where N,y is the number of auxiliary RI-basis functions, Ny (Nyi) the number of oc-
cupied (virtual) molecular orbitals and N, the number of Clenshaw-Curtis grid points. Assuming
N,, to be independent on the system size N, this step scales as O(N*). The measured exponent is
3.93, see Fig. 3.10 (a) and therefore matching the expected value. Note that once I1pp(iw) is made
available for all wy, the computation of X¢(iw) in Eq. (4.22) requires only O(N?) operations, more
specifically N;fuxNGOW0 (Noce+Nyirt)N,,, where Ng,w, 1s the number of computed G, W, quasiparticle
energies. We observe an exponent of 3.34 in Fig. 3.10 (a) which is slightly exceeding the expected
exponent of 3. According to this analysis, we expect a numerical effort for the overall computation
of the Gy W, quasiparticle energies which asymptotically scales as O(N*). This is what we observe
as total execution time for our GoW, algorithm, see Fig. 3.10 (a): The computational effort for
the integral evaluation part has an asymptotic scaling that grows quadratically with system size:
For each auxiliary RI density, only matrix elements between overlapping Gaussian functions need
to be calculated. For this reason, the effort for the integral evaluation strongly depends on the
structure of the system, since this affects the overlap between the atom-centered Gaussian basis
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Figure 3.10: (a) Execution time for the calculation of 20 GyW, quasiparticle levels of water
clusters containing up to 480 atoms in a cc-TZVP basis with 60 grid points for the numerical
integration of Eq. (4.22) on a Cray XC30 machine. The blue dots belong to the time spent for the
whole G(W, calculation (without the time spent for the SCF), the green circles belong to the time
for computing the matrix Ilpp(iw) [Eq. (4.26)] and the magenta circles belong to the computation
time of the self-energy [Eq. (4.22)] and the analytic continuation. The magenta and green lines
represent a linear two-parameter fit of the form y =ax” with an exponent b as reported in the
legend. (b) Measured speedup (blue dots, left ordinate) and efficiency (green dots, right ordinate)
with respect to 512 processes for the calculation of 20 GyW, quasiparticle energies of a 64 water-
molecule cluster. We used a cc-TZVP basis and 60 grid points for the numerical integration of
Eq. (4.22). The gray lines represent the ideal speedup and the ideal efficiency, respectively.
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functions and thus is directly related to the effectiveness of the screening on the matrix elements.
For small and compact systems, the integral evaluation is in general dominating the overall time of
a GoW, calculation [75]. On the other hand, in the evaluation of Ilpy(iw), that scales O(N*) with
system size, no screening is considered and thus this part is independent on the actual structure of
the system. This part is by far the most time consuming in a large G, W, calculation [76].

We assess the parallel speedup of the implementation with a cluster containing 64 water
molecules (256 occupied orbitals, 3392 virtual orbitals and 8704 auxiliary basis functions), see
Fig. 3.10 (b). The algorithm shows a good parallel scalability with an efficiency around 70 % for
4096 processes compared to 512 processes. The total execution time of the G, W, calculation with
512 processes is 606 seconds, while the GyWj calculation is completed in 70 seconds employing
8192 processes.

Comparison to experiments and other GyW, implementations

In this section, we compare GoW,-HOMO energies of small molecules to experimental values and
other GW implementations, see Table 3.1. Additionally, we apply GoW, to study the influence of
different ligands on the gap of CdSe nanoclusters.

HOMO levels of molecules

As generalized Kohn-Sham (GKS) starting points for the GoWj calculation of molecules, we con-
sider PBE [96], PBEO [85], which contains 25 % exact exchange, and tuned CAM-B3LYP [86,
141], a range-separeted hybrid functional as implemented in the exchange-correlation library

Table 3.1: GoW, HOMO energy efl(g)vll\/}fo of small molecules containing atoms from the first period.
We present results for the PBE [96], PBEO [85] and the tuned CAM-B3LYP [81, 86, 141] (tCB)
starting point. The experimental vertical ionization potentials (VIPs) are taken from Ref. [87]
besides the one of methane [142]. The mean absolute deviation (MAD) measures the deviation
with respect to the experimental VIPs and the GoW,, HOMO energies reported by Ren et al. [13],
Bruneval and Marques [31], Govoni and Galli [14], Turbomole without RI and full-frequency (ff)

BerkeleyGW from the GW100 benchmark by van Setten et al. [71] The unit of all numbers is eV.

Molecule GoWy@PBE GoWy@PBEO GoW,@tCB Exp. VIP
cc-QZVP  cc-5ZVP cc-QZVP  cc-5ZVP cc-TZVP  cc-QZVP

CeHg -9.00 -9.07 -9.21 -9.29 -9.33 -9.51 -9.24

CHy —14.00 —14.05 -14.28 -14.33 -14.47 -14.59 -14.40

C>H, -11.01 -11.11 -11.25 -11.33 -11.35 -11.52 —11.49

C,HsOH -10.26 -10.35 -10.63 -10.73 -10.77 -10.99 -10.64

CO, -13.20 -13.33 —13.58 -13.72 —13.64 -13.85 —13.78

No —14.87 -15.03 -15.37 -15.52 -15.44 —15.66 —15.58

NH3 -10.29 -10.42 -10.64 -10.75 -10.80 -11.00 -10.82

H,0 -11.97 -12.13 -12.33 -12.46 -12.46 -12.72 -12.62

0, —11.65 -11.83 -12.24 -12.40 -12.43 -12.70 -12.30

MAD to exp. VIPs 0.51 0.39 0.15 0.09 0.12 0.21

MAD to FHI-aims [13] (tier+a5Z-d basis) 0.02 0.10 0.05 0.07 - -

MAD to molgw [31] (QZVP basis) 0.06 0.04 0.04 0.04 0.18 0.08

MAD to WEST [14] (PW basis) 0.09 0.11 0.11 0.03 - -

MAD to Turbomole [71] (QZVP basis) 0.03 0.11 - - - -

MAD to ff BerkeleyGW [71] (PW basis) 0.14 0.26 - - - -
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LIBXC, version 2.2.2 [81] with 100 % exact long-range exchange. It has been reported in the
literature that GoW, HOMO energies are in excellent agreement with experimental vertical ioniza-
tion potentials (VIPs) and CCSD(T) values if the GKS calculation was performed with the tuned
CAM-B3LYP functional [31,46,143] or the PBEO hybrid functional [13,14,31,40,47,82-85,96]
while local functionals as PBE or pure Hartree-Fock perform worse [13,31].

For PBE, PBEO and tuned CAM-B3LYP, the GoW; HOMO energies of small molecules are
listed in Table 3.1. The results indicate that for the Go W, @PBEO HOMO energies, the large basis
cc-5ZVP provides the best agreement with experimental values: The observed mean absolute
error is below 0.1 eV compared to the experimental vertical ionization potential (VIP). In contrast,
the best agreement with experimental VIPs for GoW,@tuned CAM-B3LYP HOMO energies are
obtained within the cc-TZVP basis. The larger cc-QZVP basis deteriorates the mean absolute
error compared to experimental VIPs. The accuracy of inner orbitals (higher IPs) in GoW, is of
similar accuracy as reported here for the HOMO [82].

Overall, our results agree well with the results reported by Ren ef al. [13], Bruneval and Mar-
ques [31], Govoni and Galli [14] and from GW100 [71, 144], see Table 3.1. Possible differences
are due to the use of pseudopotentials and the differing basis.

GyWy HOMO-LUMO gaps of Cd33Ses; nanoclusters in the presence of ligands

In this section, we apply GoW,@LDA and G, W, @PBE to compute the HOMO-LUMO gap of the
Cds3Sess nanocluster with different surrounding ligands, see Fig. 3.11 for the molecular geometry
of the bare Cds3Sess cluster. At best of our knowledge, no GW calculations have been reported in
the literature on the Cd;3Ses; nanocluster.

We are motivated by the fact that CdSe has been one of the most studied II-VI quantum dots
due to the ease of synthesis and, according to the dimension of the QDs, its optical gap can
cover the visible spectrum. [146, 147] We chose the Cd;3Se;; quantum dot since it is one of the
“magic-size” clusters that have been characterized by high stability and large optical gaps. For
quantum dots, surface ligands are fundamental for enhancing the solubility and for stabilizing the
core structure. The ligands can strongly affect the electronic properties of the quantum dots, in
particular the optical gap. [148—153] We investigate the influence of these surface ligands on the
HOMO-LUMO gap of Cds3Ses; quantum dots on the level of GoWy@LDA and GoW,@PBE. As
model ligands, we employ formic and acetic acid, ammonia and methyl amine. [145]

As molecular geometries of the bare Cds;Ses; cluster and Cds3Sess with ligands, we employ the
structures from Ref. [145]: The bare cluster has been obtained by carving out an almost spherical
portion of the wurtzite lattice with bulk CdSe bond lengths and subsequent relaxation on the level
of LDA [132]. Similar constructions of CdSe clusters from the bulk semiconductor have been
used in previous theoretical studies. [148, 149,154, 155] The cages in presence of the ligands have
been fully relaxed on the LDA level. We employ GTH [130, 131] pseudopotentials. In the SCF,
we optimize twelve electrons for Cd and six electrons for Se.

We employ GoWy@LDA and GyW,@PBE to compute the HOMO-LUMO gap of the Cd33Ses;

Figure 3.11: Molecular structure of the bare
Cd;3Ses; nanocluster: side view (left) and
top view (right). [145] The Cd is light yel-
low and the Se is bronze in the ball-and-stick
models.
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Table 3.2: LDA, GyWy,@LDA, PBE and GoW,@PBE HOMO-LUMO gaps in eV of Cdj;Ses;
nanoclusters with surrounding ligands in an aug-DZVP basis set. For the Cds;Ses; nanocluster,
594 non-core electrons (12 electrons per Cd atom, 6 electrons per Se atom), 2574 primary basis
functions and 8316 RI basis functions have been employed. This calculation took 15 minutes on
1536 Cray XC40 cores.

System LDA GoWy@LDA PBE GyW,@PBE Exp. optical gap
bare Cdz3Sess 1.51 3.64 1.60 3.62 3.0 [156]
Cds3Sess3 + 9 NH3 1.57 3.59 1.70 3.56

Cd33Se33 + 12 NH3 1.61 3.60 1.73 3.60

Cds3Sess + 21 NH;3 1.75 3.69 1.87 3.69

Cdi3Sess + 9 H3CNH, 1.56 3.56 1.68 3.56

Cds3Sess; + 9 HCOOH 2.03 4.10 2.19 4.14

Cdiz3Ses3 + 9 HCOOH + 12 NH;  2.03 4.06 2.20 4.10

Cds3Sess + 9 H;CCOOH 2.00 4.05 2.16 4.09

nanocluster. We follow the authors of Refs. [21] and [14] who employed GoWy@LDA and
GoWy@PBE for computing the HOMO-LUMO gap of silicon nanoclusters. We employ an aug-
DZVP basis set and we expect GoWy, HOMO-LUMO gaps which are close to the complete-basis-
set limit [11,35,40,45,46].

We have computed the HOMO-LUMO gap of the Cdj3Ses; nanocluster in the bare form and
with ligands on different levels of theory, see results in Table 3.2. For the bare cluster, we find an
LDA and a PBE HOMO-LUMO gap of 1.51eV and 1.60 eV, respectively. Both values strongly
underestimate experiments with a measured optical gap of 3.0eV of Cds3Ses; [156] probably
due to the spurious self-interaction of the HOMO. In contrast, after one-shot GoWy@LDA and
GoWy@PBE, the HOMO-LUMO gap opens up to 3.64eV and 3.62 eV, respectively. The GoW,
HOMO-LUMO gaps are compatible with the experimental optical gap in the sense that the ex-
perimental optical gap ist smaller than the GoWy, HOMO-LUMO gap due to the exciton binding
energy. For a computation of the optical gap, the Bethe-Salpeter equation on top of GoW; would
be necessary.

For the Cds3;Sess cluster with ligands, electron-donating ligands as amines hardly affect the
HOMO-LUMO gap of the Cdis;Sess nanocluster. This effect is seen on both levels of theory,
LDA/PBE and GyW,. In contrast, the HOMO-LUMO gap of Cdi;Ses; is strongly affected by
electron-attracting ligands as formic acid. Again, this effect is seen on both levels of theory,
LDA/PBE and GoW,. The influence of the ligands on the HOMO-LUMO gap of Cds;Ses; was
already found in Ref. [145] by LDA and PBE calculations and we validated this finding by GoW,.

3.4 Application of eigenvalue-selfconsistent GW to linear acenes

In this section, we apply eigenvalue-selfconsistent GW (evGW) to compute the HOMO-LUMO
gap of linear acenes, see Fig. 3.12 for the molecular geometry. This application is motivated by a
recent DFT-based study by Korytar et al. [88] indicating that the HOMO-LUMO gaps of acenes
may not decay monotonously with increasing number of benzene rings, but can oscillate. The
key ingredient to obtain a reasonable evGW HOMO-LUMO gap is to employ a proper electronic
ground state. Concerning the ground state of acenes, contradictory findings have been reported,
see Sec. 3.4. The main point of debate is whether the ground state of acenes is a radical or not.
For our evGW HOMO-LUMO-gap calculations, we employ closed-shell and open-shell broken-
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rlngs =1 rlngs =2 rmgs rlngs
Benzene Naphtalene Anthracene Tetracene

Figure 3.12: Molecular structure of the first four acenes.

symmetry DFT ground states as described in the computational details in Sec. 3.4. Then, we
compare evGW HOMO-LUMO gaps of anthracene, tetracene and pentacene to experimental val-
ues (Sec. 3.4). In Sec. 3.4, we predict the HOMO-LUMO gap of long acenes employing evGW
based on closed-shell and open-shell broken-symmetry DFT ground states. We find distinct dif-
ferences between the closed- and the open-shell evGW HOMO-LUMO gaps for long acenes. In
future experiments, a comparison of measured HOMO-LUMO gaps and our calculated evGW
values may be helpful to identify whether the ground state of the acene exhibits a closed-shell or
polyradical configuration.

Electronic ground state of acenes

In DFT studies employing hybrid functionals, singlet broken-symmetry, spin-polarized ground
states have been reported for acenes with Nyes > 6. [99] This finding can be rationalized by Clar’s
theory. For details, we refer to Ref. [157]. Since a polyradical singlet ground state is not described
by a single Slater determinant, it is difficult to interpret whether DFT or Hartree-Fock based studies
predict the correct spin configuration of the ground state.

Two findings from density matrix renormalization group (DMRG) calculations, which incor-
porate multiple Slater determinants, have been reported: In the recent study by Korytar et al. [88],
the DMRG with on-site and nearest-neighbor interactions indicates that the ground state of acenes
does not exhibit a (simple) broken-symmetry phase. Hachmann ez al. [98] concluded in their
DMRG study based on the full Coulomb interaction that longer acenes exhibit singlet polyradi-
cal character in their ground state. The latter finding was supported by multiconfiguration SCF
calculations by Plasser et al. [97] Experimental evidence for the ground state of longer acenes is
missing since the synthesis of gas-phase acenes with more than six rings (hexacene) remains a
challenge [158, 159].

Computational details

We perform closed-shell and open-shell DFT calculations on the acenes as basis for geometry
optimizations and the evGW calculations. For open-shell calculations, we initialize the wavefunc-
tions with a singlet broken-symmetry guess and keep zero total spin during the SCF cycle. We
obtain the oligoacene structures by a geometry optimization employing the PBEO [85] functional
in a cc-TZVP basis.?

Eigenvalue-selfconsistent GW (evGW) calculations are performed as suggest by X. Blase et
al. [11] In this methodology, the eigenvalues £5°"° from Eq. (3.22) are employed to recompute the
correlation self-energy and finally every eigenvalue. This procedure is repeated up to convergence
and has been shown to give HOMO-LUMO gaps which are in good agreement with experimental
values, especially for organic semiconductors with extended m-systems. [34] As starting points
for the evGW calculations, we employ wavefunctions and eigenvalues from DFT calculations

2Geometry optimizations are performed with a closed-shell restriction for closed-shell evGW HOMO-LUMO
gap calculations and with a singlet broken symmetry for open-shell evGW HOMO-LUMO gap calculations.
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with the PBEO and the tuned CAM-B3LYP functional. It has been pointed out by Bruneval and
Marques [31] that both functionals are two of the most reliable starting points for GW calculations
for molecules.

For the evGW HOMO-LUMO gap calculations, augmented basis sets are used. In augmented
basis sets as the aug-DZVP and aug-TZVP, evGW HOMO-LUMO gaps are close to the complete-
basis-set limit, see Fig. 3.3 for benzene and the literature [11,35,40,45,46]. All other parameters
are chosen as specified in Sec. 3.3 to ensure excellent convergence of the evGW results.

GoWy and evGW HOMO-LUMO gaps of acenes compared to experiments

In Fig. 3.13, we compare open-shell GoW, and evGW HOMO-LUMO gaps of anthracene, tetracene
and pentacene to experimental data [87]. It is important to note that the experimental assign-
ment of the vertical IP in acenes is controversial and displays large error bars, see Ref. [160]
and references therein. As an example, for the molecular crystal of tetracene, the error of the
HOMO-LUMO gap is estimated to be 0.5eV. We find that the GoW,@tuned CAM-B3LYP
HOMO-LUMO gaps are close to experiment with a maximum deviation of 0.21 eV, while the
GoWy@PBEO HOMO-LUMO gaps exhibit an average error of 0.4 eV compared to experiments.
After applying the self-consistency scheme on the eigenvalues as suggested by Blase ef al. [11,34,
45,161] (evGW), we find that HOMO-LUMO gaps of both starting points are on average in agree-
ment by 0.03 eV to each other which has already been reported by previous authors [11,160, 162].
The mean absolute deviation of the evGW HOMO-LUMO gaps to the experimental HOMO-
LUMO gaps remains below 0.1 eV for anthracene, tetracene and pentacene.

The difference of our values to previously reported evGW calculations on acenes in Refs. [11]
and [143] can be attributed to their use of LDA wavefunctions [11] and PBE wavefunctions [143]
as DFT input of evGW.

evGW HOMO-LUMO gaps of long acenes

We present HOMO-LUMO gaps of linear acenes computed with evGW for the PBEO and the
tuned CAM-B3LYP starting point, see Fig. 3.14. First, we observe, that for all acenes, the evGW
HOMO-LUMO gaps based on PBEO and tuned CAM-B3LYP starting points deviate by less than
0.10eV (besides 10-acene and 11-acene in the closed-shell case). Second, we observe that the gaps
of anthracene and tetracene (Niings = 3, 4) are identical for closed-shell and open-shell calculations.
The deviation between the closed-shell and open-shell evGW HOMO-LUMO gap of pentacene is
below 0.1eV. This finding can be rationalized by Clar’s theory [157]: For small acenes, Clar’s
theory predicts a closed shell configuration, while for longer acenes, an open-shell configuration is
expected to be favoured. In agreement with this expectation, our (singlet) open-shell calculations
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on anthracene to pentacene converge to a closed-shell-like ground state. As a consequence, the
evGW HOMO-LUMO gaps for anthracene to pentacene are (nearly) identical for the closed-shell
and the open-shell calculation.

For longer acenes, the difference between the closed-shell and the open-shell evGW gaps is
strongly increasing with a maximum of 2.0eV for 10- and 11-acene: While the open-shell evGW
gaps are quickly saturating between 4.4 and 4.6 eV for 7-acene to 11-acene, the closed-shell evGW
gaps are rapidly decreasing from 4.0eV (7-acene) to 2.3eV or 2.4eV (11-acene, evGW @PBEQ
and evGW @tuned CAM-B3LYP). We conclude that a measurement of the HOMO-LUMO gap of
longer acenes (Nipes > 6) may be able to identify whether the ground state of the acene exhibits a
closed-shell or polyradical configuration.

3.5 Conclusions

We have presented a GoW, and eigenvalue-selfconsistent GW (evGW) implementation within
the Gaussian and plane waves scheme. Technically, we calculate the correlation self-energy for
imaginary frequencies employing a resolution-of-the-identity approach based on the Coulomb
metric. The correlation self-energy for real frequencies is evaluated by analytic continuation. Our
implementation is highly efficient and displays good parallel scalability enabling large-scale Gy W,
and evGW calculations for systems containing hundreds of atoms.

We benchmarked the implementation for molecules and clusters. For molecules, we found an
average error of 0.1 eV between the GoW, @PBEO-HOMO energy in a SZVP basis and the vertical
ionization potential which is in agreement with previously published G, W, data.

We applied evGW to compute the HOMO-LUMO gaps of closed-shell and open-shell broken-
symmetry linear acenes as function of the oligoacene length up to 11-acene. We find that the
closed-shell and broken-symmetry open-shell evGW HOMO-LUMO gaps of acenes differ by up
to 2.0eV (for 11-acene). In future experiments, a comparison of measured HOMO-LUMO gaps
and our calculated evGW values may be helpful to determine whether the electronic ground state
exhibits a closed-shell or polyradical configuration.



Chapter 4

Periodic GW calculations in the Gaussian
and plane waves scheme

The following chapter is a reprint of Ref. [163]. We present a correction scheme for periodic
["-point-only GW calculations in a Gaussian basis. For four benchmark systems, the dependence
of the corrected GW quasiparticle levels on the cell size is reduced by a factor of three to ten com-
pared to GW calculations without correction. The correction scheme comes along with negligible
computational cost and enables GW calculations for supercells containing hundreds of atoms with
Gaussian basis functions.

4.1 Introduction

The accurate prediction of photoelectron spectroscopy is still a major computational challenge in
many fields of physics, chemistry, and materials science. [68] For medium and large systems, the
most used method is Kohn-Sham (KS) density functional theory. [5] As it is well-known, using
KS-DFT eigenvalues for computational spectroscopy has a serious fundamental and practical lim-
itation: Depending on the parametrization of the exchange-correlation functional, the KS-DFT
eigenvalues can shift substantially.

The GW approximation [9] promises better accuracy for the calculation of quasiparticle energy
levels. Besides the search for more accurate GW flavours [33, 164—166], the main challenges of
GW is related to the high computational cost and numerical issues. Therefore, it is not surprising
that it took more than twenty years between proposing the GW method by Hedin [9] and the first
application to real materials by Hybertsen and Louie [10].

Significant progress has been made in reducing the computational cost of GW in recent years:
Plane-wave GW implementations commonly suffer from requiring many virtual states and the in-
version of large dielectric matrices. Here, the comination of without-virtual-states techniques [14,
70, 167] with a low-rank approximation of the dielectric matrix [14, 168—171] can improve the
computational efficiency enabling large-scale applications [172—174]. Another approach is to
reformulate GW in a Gaussian basis which can significantly reduce the dimensionality of the in-
volved matrices [11-13,20, 30, 37,42, 161, 175-177]. GW in a Gaussian basis can be applied
to molecules without difficulty [31,34,43,47,48,71, 178-182] in contrast to plane-waves imple-
mentations where several technical issues have to be addressed [14, 52, 183]. Large-scale GW
calculations also have been reported using stochastic orbitals [21,23].

Another issue of periodic GW is the necessity for a correction due to the spurious self-interaction
between periodic images of quasiparticle wavefunctions. This self-interaction results in a slow 1/L
convergence of the GW quasiparticle levels with the cell length L. In case of Brillouin zone sam-

29
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pling, the 1/L convergence translates to a N, 153 convergence with the number of k-points. [184] A
similar slow convergence as in GW has been found for coupled cluster [ 185,186] and Hartree-Fock
exchange in the condensed phase. For the latter, various corrections exist that aim to accelerate
the Brillouin zone convergence, including auxiliary function techniques [187] and real-space trun-
cation of the Coulomb interaction [116, 188, 189].

For plane-waves implementations of GW, several correction schemes have been proposed to
correct for this slow convergence: Analytic integration of the divergence at the I'-point [10,28,59]
which is suitable in case of dense k-point sampling, the I"-offset method [63,190,191], or Brillouin
zone integration using analytical limits at the I'-point [14, 52, 54, 184, 192]. In the pioneering
implementation of periodic GW with Gaussians by Rohlfing et al. [176,177], which is so far the
only implementation of periodic GW in a Gaussian basis to the best of our knowledge, dense
k-point sampling is used while the periodic correction has been computed in a plane-waves basis.

In this work, we propose a correction scheme for periodic I'-point-only GW calculations in
a Gaussian basis. In Sec. 4.2, we derive our correction scheme in detail. We show benchmark
calculations on four materials in Sec. 4.3.

4.2 Derivation of the correction to the periodic GW self-energy
in a Gaussian basis

In this section, we derive a correction for periodic GW calculations that accelerates the slow 1/L
convergence of GW quasiparticle energies with the cell length L. In Sec. 4.2, we start with a brief
review of periodic GW calculations in a plane-waves basis. Then, the derivation is tailored to the
use of Gaussian basis functions and the resolution of the identity with the overlap metric (Sec. 4.2).
To apply the correction schemes from plane-waves GW, we express the screened Coulomb interac-
tion, the dielectric matrix and the polarizability as square matrices in the resolution-of-the-identity
(RI) basis, which corresponds to a plane-waves basis in plane-waves GW (Sec. 4.2). For the cor-
rection scheme, we add the G =0 function to the RI basis, see Sec. 4.2. The k-dependence of
the polarizability, the dielectric function and the screened Coulomb interaction is needed for the
correction and given in Sec. 4.2. Using the k-dependence of the screened Coulomb interaction
and Brillouin zone sampling, we integrate the singularity in the self-energy, see Sec. 4.2. Finally,
we give the algorithm for periodic GW calculations in a Gaussian basis in Sec. 4.2.

Periodic GW calculations in a plane-waves basis

In this section, we summarize periodic GW calculations in a plane-waves basis with a focus on
the divergence of the screened Coulomb interaction at the I'-point. The equations are taken from
Refs. [28], [54] and [193].

The equation for computing the GoW, bandstructure sflfw" reads [28,54]

g0 = DI 1 7« Re (nk[X¢(eDFT) + = — Vi |nk) (4.1)

where we focus on the correlation part X° of the self-energy in this work. On the imaginary
frequency axis and using a plane-waves basis, it can be computed as

1.BZ all
1

, 1 ” 1 K mk— : K mk—q*
¢ - —__ ’ nk,mK—qyysc ’ nk,mk—q
2 (iw) = o Eq mE Iw dw P P Aga Weeliv',q) (AG,’q )
4.2)
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where Q = Q..;1/Ni and A"Glilmk_q is given by

Aga™ = (nKle" |k - q) . (4.3)

The correlation part of the screened Coulomb interaction reads

Var Ne

¢ _ -1 S
Wee 0.9) = = (e (i, @) = S ) rewert (4.4)
and the symmetric dielectric function is given by
Var Var
(iw, q) = Sgg’ , , 4.5
€ce (Iw, q) = dge T gt GIXGG( q>|‘l+ G (4.5)
where )(OGG,(iw, q) is the independent particle polarizability,
1 occ,virt ' ~ 2(81( — g ) ) .
0 . ik,ak—q l aKk—q ik,ak—q
’ ) = = A A , . 4.6
XGe (iw, q) 9 kzia: Ga 24 (e — Sak—q)z ( G'q ) (4.6)

Now, we focus on the divergent terms for G =0 at the I'-point of the Brillouin zone, k — 0.

We start by analyzing the head of the polarizability, Xgo(q, iw). Note that Agf(’l”k_q q—>—)O iq (iK|r|ak)
for ¢ — 0 which can be seen by Taylor expansion of ¢4 for small q and the orthogonality of
molecular orbitals, (iklak)=0. [184, 194] Therefore, xj,(q, iw) =O(q|*) holds for small q and
€0(q, iw) remains finite for ¢ — 0. For q — 0, the head, Wj,(q) and the wings Wéo@s Wi (@)

nk,nk—q 97

diverge as 1/g° and 1/q, respectively, see Eq. (4.4). At the same time A 1 and therefore

the entire expression for the Brillouin zone sampling in Eq. (4.2) dlverges as 1/q* for small q.

In the limit of very fine k-point sampling, we have ., f(g) — €/ (2n)? f dq4ng® f(g) such
that the divergent terms f(q)=1/g*> and f(g)=1/q can be integrated. Thus, the Brilluoin zone
sampling of the head and wings of W* in Eq. (4.2) converge to a finite value when increasing the
k-point mesh. The I'-point has to be excluded from the k-point sampling of the head and the wings
of W¢ due to the division by 0 in Eq. (4.4). In the case of a finite k-point mesh with a distance
1/L = +v/1/Q of the I'-point to other k-points, the integration of the head Wio(@) in Eq. (4.2) for the

I"-point, scales as
1 /L 4
f d3q—:47rf dg="2, 4.7)
2
Bi1/(0) q 0 L

where we used the notation B,(0) for the sphere in the Brillouin zone with radius r around the
I'-point. We miss the 1/L-scaling G =0 terms of W*¢ in our I'-point implementation with Gaussian
basis functions. This results in a slow convergence of 1/L for GW quasiparticles with the cell
length L. To achieve a fast convergence of GW quasiparticle levels with the cell size, we derive a
correction term for our Gaussian I'-point GW implementation in this work.

Resolution of the identity with overlap metric

As in the GW implementation [30] in the CP2K package [72,73], canonical GW implementations
in a localized basis [11, 13, 175] employ the resolution of the identity (RI) to reduce the compu-
tational scaling of GW from O(N°®) to O(N*). In this section, we give the equations that are used
for the RI. The following index notation has been adopted: i, j (a, b) refer to occupied (virtual)
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molecular orbitals (MOs) ¢; n, m to either occupied or virtual ones; u, v, A, o to primary Gaussian
basis functions ¢ and P, Q to auxiliary Gaussian RI basis functions ¢. The primary basis func-
tions ¢, are employed to expand the KS orbitals while the RI basis {¢p} is used to expand GW
quantities as the polarizability, dielectric function and the screened Coulomb interaction, as we
show in Sec. 4.2.

In I'-point-only GW, four-center Coulomb integrals

(ialjb) = f dr f dr' ()Y () (e ) (r)u(r, ') (4.8)

cc]]

are appearing where v(r,r’) = 1/|r — r’| denotes the Coulomb potential. All KS orbitals ¢,(r) in
Eq. (4.8) are periodically repeated Bloch states at the I'-point where we drop the k =0 index.
Within the RI approximation based on the overlap metric, these integrals are factorized to [120]

(ial jb)r1 = Z (iaP)S ppVorS zs (S jb) . (4.9)

PQORS

The resolution of the identity can be seen as inserting Id= ’p |P) S ;IQ (Q| twice into Eq. (4.8)
which is exact in the limit of a complete RI basis {P}. Here, the overlap matrix S in the RI
basis, [195]

Spo = f dr P (r)po(r) (4.10)
R3

is appearing since the Gaussian RI basis is non-orthogonal. The superscript P indicates that the
functions are periodically repeated for condensed phase systems,

Fhr) = > gor—Ry), @.11)

where R; are the lattice vectors and ¢ is a Gaussian basis function being localized on a single
atom. Further, V denotes the Coulomb matrix in the RI basis,

Vip = f dr f dr’ op(r)gp(ru(r, r'). (4.12)
chll R3
In practice, we compute the RI-Coulomb matrix by Ewald summation [75, 196]
G G
o= 3 OO, 41
G>0

We refer to the computation of Coulomb matrix elements in Eq. (4.13) as Gaussian and Plane
Waves method which is commonly used for the Hartree energy [127] and for wavefunction corre-
lation methods [76, 77, 80, 197-200]. The G =0 component is excluded from Eq. (4.13) due to a
divergence for s-type basis functions P, Q with ¢p(G=0) # 0. The three-center overlap integrals
(uvP) are given by [195]

P = [ dr gm0, @.14)
R
The three-center overlap integrals (iaP) in Eq. (5.4) can be computed from Eq. (5.8) by

(iaP) = )" CuiCya(uvP) (4.15)
Ny
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where the MO coefficients Cy, are obtained from the expansion of MOs in the primary Gaussian
basis from KS DFT

(1) = > Cudl(r). (4.16)
u
The RI factorization from Eq. (5.4) can be expressed in a compact form as
(ialjb)r = ) BEBY (.17)
P
where the vector b is given by
Bf = > (iaQ)S grLe (4.18)
OR

where L is the Cholesky decomposition of V from Eq. (4.13),
V=LL". (4.19)

For later use, we define a™® by

Al = (iaQ)S gp. (4.20)
Q

Screened Coulomb interaction, dielectric matrix and polarizability within RI

In this section, we rewrite the self-energy in a Gaussian basis to match the formulas in a plane-
waves basis. For expanding GW quantities as the polarizability, the dielectric function and the
screened Coulomb interaction, we employ the Gaussian RI basis from Sec. 4.2. This is the key to
adopt the periodic correction from plane-waves GW to GW in a Gaussian basis.
As in Eq. (4.1), we compute the Gy W, quasiparticle energies in a Gaussian basis by

g9 = DT 4 7 Re (n|=S (X)) + X — Vi |n) (4.21)
where we have dropped the k-point index for a I'-point-only implementation. The correlation
part of the self-energyis is calculated for imaginary frequencies and analytically continued to real
energies. [13,24,38,39,59,71,124-126] In a Gaussian basis, the correlation self-energy can be
computed as [13,30,39]

cy: _ 1 * ’ 1 nm VA ! mn
i) == 5.3 [ o D B[l =1 g - o B 422
where
. & — & .
Ipp(iw) =2 BY L BY . 4.23
rolie) ; P+ (si—e) © (429

Inserting Eq. (5.11) into Eq. (4.22) and using the definition in Eq. (4.20) yields

Crzs 1 * ’ 1 nm C LN mn
Zy(iw) = on Zm: foo de (w—w)+&ep—&p ,ZQ:AP Wroliw)Ag" (4.24)



34 Chapter 4: Periodic GW calculations in the Gaussian and plane waves scheme

where the correlation part of the screened Coulomb potential WC(iw) is expanded in the Gaussian
RI basis,

Wig(iw) = > Ler |€g(iw) = 6kr| L, (4.25)
RT

and the symmetric dielectric matrix €(iw) in the RI basis is given by €(iw) =1 — II(iw) with ele-
ments

. i 2(81‘ - 8a) i
epo(iw) = 6po — LI Ale "1 "¢ plap o (4.26)

where we have used Eq. (5.11), (4.20) and (4.23). In matrix notation, we have
€(iw) = 1 - L'y (iw)L (4.27)

and the polarizability xy°(iw) in the RI basis with elements )(%Q(icu) reads

XOPQ(lw) — ZAiu 2(8i - Sa)

M e o

As it can be seen by comparing Eq. (4.24) and (4.2), as well as Eq. (4.28) and (4.6), the
RI basis {¢p} corresponds to a plane-waves basis in plane-waves GW. We neglect the G=0
component when computing the bare Coulomb interaction in the RI basis in Eq. (4.13) and thus
our RI basis only spans the subspace of plane waves with |G|> 0. For a correction that removes
the slow 1/L convergence of GW with the cell size L from Sec. 4.2, we add the G =0 function as
additional function to the RI basis, as we show in the following section.

Setting the G = 0 component of Gaussian RI basis functions to zero and adding
a single G =0 function to the RI basis

Following the discussion at the end of the last section, we describe in this section how to add the
G =0 function to the Gaussian RI basis.

Consider N,,x Gaussian RI basis functions ¢y, .. ., ¢y, Where all Gaussian RI functions exhibit
a vanishing G =0 component. This redefinition does not affect the GW results since the G =0
component is not used, see Eq. (4.13). Now, we add the G =0 function to the RI basis and the
new RI basis consists of Nyx+1 functions ¢, ¢1, ..., ¢n,, , Where ¢g is the G =0 function which

is a normalized constant in real space,
-2
@o(r) =Q_ " Oreayy - (4.29)

Then, the I'-point-only overlap matrix S reads

_ S head Swings _ 1 0
5= ( S' Sbody )_( 0 Sbody ) (430)

wings

where Spoqy is the overlap matrix of the Gaussian RI basis. The wings of S are zero since, according
to the redefinition from above, all RI Gaussian basis functions P € [1, N,] do not exhibita G=0
component:

Sor=Sm =) @o(Gep(G) =0. (4.31)
G
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k-dependent polarizability, dielectric function and screened interaction

In this section, we expand the polarizability, the dielectric function and the screened Coulomb
interaction in the Gaussian RI basis with additional G = 0 function from Sec. 4.2. Moreover, we
adopt k-points for head and wing elements from plane-waves GW, see Sec. 4.2.

We start with the polarizability using I'-point-only for the body [59]

Xﬁead(iw’ k) megs(lw k)
x'(iw,k) = . (4.32)
( w1ngs(lw k)) Xgody(iw)

Omitting the integration over the first Brillouin zone for the polarizability, its head is given by
Eq. (4.6)

1 e, — &4 ,.r
Xoolie, k) ==— " e —8;)2 [wiole™ Wa)|” - (4.33)

chll ia w2 + (81'

The prefactor 1/€) results from the normalization of ¢y(r) from Eq. (4.29). The wings are given
by

1 2(ei — &4)
0 /- _ ia
Xooliw,K) = — 0 W2+ (5 -5,
cell ia €a
using the I'-point for the RI basis function Q, cf. Eq. (4.6) and (4.28).
The dielectric matrix from Eq. (4.27) for k-points is given by

(Wiole™ W a-i) (4.34)

e(iw, k) 21 - L'(k)x°(iw, k)L(K), (4.35)

where L(K) is the Cholesky decomposition of the Coulomb matrix

Vik) = ( Vhewth 0 ) - LOOL (1. (4.36)
0 Vbody
The elements of V(k) are given by [184, 195]
or(G)po(G)
Voo(k) = |k|2 : Z Gr (4.37)

which are well-defined for k # 0. The wings of V(k) vanish since ¢y(G) =6 and ¢p(G=0)=0
for the remaining Gaussian RI functions. For Vy.qy, only the I' point is used. Then, the Cholesky
decomposition L(K) of V(K) reads

Var/k| 0 )
Lk) = , 4.38
(k) ( 0 Lo, (4.38)
where Ly, 18 the Cholesky decomposition of the body Coulomb matrix Viqy.
The head, wings and the body of the dielectric matrix from Eq. (4.35) are defined as

ehead(iwa k) ewings(iw, k)

e(iw,Kk) = (4.39)
ngq(lw k) fbody(iw)
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and read when using Eq. (5.29) and (4.38)

eread(iw, K) = 1 — dmyp g (i, K) /K, (4.40)
Evings (i, K) = = VAT Y300 (i0, K) Lipoay /K (4.41)
€b0dy(la)) =1- Lbody/\/body(lw)LbOdy . (442)

Its inverse €™ (iw, K) is given by (for k # 0)

e (iw, k) € (iw, k)

. head wings
e (iw, k) = =€ (i, k), (4.43)
i) €05, (100,K)

where its elements are given by inverting Eq. (4.39)

":;d(lw k) - 1/[Ehead(lw k) ewings(iwa k)eg(:dy(iw)f\:,ings(iw’ k)] . (444)
g,‘lvngs(zw K) = — ", (i, K) €yings (iw, k)ebody(za)) (4.45)
eg‘g’dy(lw, k) = ebody(zw) + g™ (iw, k)ebody(lw)ewmgs(zw, K)€yings (iw, k)eg(}dy(ia)) . (4.46)

Analogously to Eq. (4.4) and Eq. (4.25), we obtain W¢(iw, k) for k # 0 as

We(iw, k) = L(K)(e™(iw, k) — 1)L (k) (4.47)

An(e (iw, k) — /K Vare ‘v‘v‘fngg(zw K)Lpody /K|

(4.48)
VAL g €m0, k) /K| Ly, (epny (i, k) = 1)Lioay

body win gs body body

k-point sampling for the self-energy in the limit of k—0

In order to identify, which contributions have to be taken into account for the correction in periodic
GW in a Gaussian basis, we examine the behaviour of the k-point sum in the self-energy at the
I'-point, k — 0.

Comparing Eq. (4.2) and Eq. (4.24) and assuming flat bands (g,,q = &,,), we obtain:

Z,(iw) = — — Z f l(w a)’) + &p — &y Z Z AW oliw. K) (Ag:;m_k)* - (4.49)

Ne k=0 PQ

The summation over the RI indices P, Q include the summation over the G =0 RI function. Due
to the divergence of the head W, (iw, k) and the wings, Wy (iw,K) and WSQ(ia), k), for k — 0, the
I' point is excluded from the summation. The three-center overlap integrals in the limit of small k
for the G =0 RI function are given by [184, 194]

AR — g ole™ i) 201 + K (ol (4.50)

Agg’m_k = <¢n0|eikr|wm—k> l;fn(j ik <'7[’n0|r|’7[’m0> P (451)
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Then, the sum over RI basis functions in Eq. (4.49) for n = m using the matrix-vector notation
with the row vector (a”(k))p, = A"""¥ in the limit k — 0 turns into

2" (K)We(iw, k) (a™(k))' =

ngs

@.50) An(e™ (iw, k) — /K  Vame™ (iw, k)Lyosy/IK]
= (1 + K Wnolrlyno)  alny, )

Var L €™ (iw,k)/lkl L (€™ (iw,k) — 1)Ly
y

body wings body * ~“body
(4.52)
1 — iKYnolrifno)
X
( body)T
an . ‘\/4_71- inv
_ |k|2( resa(i0, k) = 1) = 75 Re (26 (i, K)Logy (A, ) )+O(Ik|°) (4.53)
1

= |k|2( Enma(io, k) = 1) +O(|k|0) (4.54)

The 1/|k|! term in Eq. (4.54) vanishes due to Re(eivrv‘ivngs(iw, k)) =0 for k— 0 [see Egs. (4.45),
(4.42), and (4.34)] and Im(Lpoqy(ap, dy)T) = 0. Therefore, a correction due to wing contributions of
W€ seems to be of minor importance compared to the head when using a Gaussian basis.

For the contraction with n #m in Eq. (4.49), we have

a" (KW (iw, k) (@™ k)" “2” o1 /). (4.55)

Therefore, we do not include Agﬁ’m_k matrix elements with n #m from Eq. (4.49) in the periodic
correction scheme.

Then, the k-point sum for the periodic correction from Eq. (4.49) only includes the head of W*¢
and matrix elements Agﬁ’”_k with n=m:

Z Z AR (i, K) ( A,S)];m_k)* _ Z Iélli_lz (eﬁé;d(lw, k) - )|<lﬂno|etkr|¢,,_k>| +O(|k|o)

mPQ k0 k#0

(4.56)
The divergence 1/|k|* in Eq. (4.56) is integrable, as discussed in Sec. 4.2.
Algorithm of the correction scheme for periodic GW with Gaussians
1. Setup a k-point mesh excluding the I'-point.
2. Compute )(gea 4(iw, K) according to Eq. (4.33):
1 2(g; —
0 . _ 1 a ikr
Kpeaali0. ) = 57— > —— — (Wole™ - (4.57)

chll ia

According to what has been discussed in the previous section, we assume the wings to have a
small contribution and we exclude their computation.

3. Compute the head of the dielectric matrix from Eq. (4.42):

€ncad (i, k) = 1 — 4y} (iw, K)/|K]* . (4.58)
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inv

4. Compute the head of the inverse dielectric matrix €
wing contributions:

according to Eq. (4.44) with neglecting

6 (i, k) =1/ peaa (i, K) - (4.59)

5. Compute the correction term A, (iw) for the head of W€ in 1/Q ), a"(K)W*(iw, k) (a"(k))"
in Eq. (4.49) according to Eq. (4.56) as:

L o €V (i, k) — 1
Apnlio) = — ) Hed 2
Q k+0 |k|

[ole™ )] (4.60)

Then, the I'-point-only correlation self-energy from Eq. (4.22) including the correction term
Apn(iw) reads

1 0 1
20 . - _ d ’
(i) 2r zm: Im @ (w— W)+ &er— &y

x [PZQ: By [[1 = T | p — Spo| By + Aun(i Yo,

4.61)

4.3 Benchmark calculations

Computational details

For all calculations reported here, we employ the Gaussian and plane waves scheme (GPW) [27]
together with Goedecker-Teter-Hutter (GTH) type pseudopotentials [130, 131] for the underly-
ing generalized Kohn-Sham (KS) equations with the PBE functional [96] as implemented in
CP2K [72,73,127-129]. For the exchange self-energy from Eq. (4.21), we employ a real-space
truncation of the Coulomb interaction [116, 188, 189] with a truncation radius equal to half of the
cell size.

For expanding the KS orbitals, we use correlation-consistent (cc) Gaussian basis sets [133,134]
which are specifically designed for the use with GTH pseudopotentials. The basis set extrapolated
GW results are obtained from the cc double-, triple- and quadrupole zeta split-valence quality basis
sets by a linear regression against the inverse of the total number of basis functions. [12, 30, 71]
The extrapolation in the basis set for KS orbitals typically results in statistical errors below 0.1 eV
for GW quasiparticle levels. [71]

The Gaussian RI basis set is used for expanding the screened Coulomb interaction and is
designed for the use with a specific basis set for the KS orbitals, as described in Ref. [136].
Typically, the convergence of GW quasiparticle energies with respect to the RI basis is fast such
that an extrapolation is not necessary for the RI basis.

The Berry phase <¢ﬂ|eikr|¢v> in the Gaussian basis is available in standard quantum chemistry
codes for calculating dipole moments in periodic systems [201-206]. To ensure numerical stability
when computing the Berry phase in the Gaussian basis, we employ a non-diffuse auxiliary basis
and project the MO coeflicients into this subspace. [138,139] We employ 6 X6 x 6 and 12X 12x 12
k-point meshes and extrapolate the results to the infinitely dense k-point mesh.

As benchmark systems, we employ solid Lithium hydride, diamond, and the molecular crystals
build of ammonia and carbon dioxide molecules. For LiH and diamond, we employ the exper-
imental lattice constants of 4.084 A and 3.567 A, respectively. For both molecular crystals, we
employ the geometry from Ref. [207].
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Reference Diamond Lithium hydride
This work 548 +0.06eV 4.66+0.04eV
Ref. [208] 5.54eV -

Ref. [209] 5.55eV -

Ref. [22] 5.50eV —

Ref. [210] - 475eV
Experiment [22,211] 5.48 eV 4.99eV

Table 4.1: GyW,@PBE HOMO-LUMO gap of diamond and solid Lithium hydride and measured
fundamental gaps from the literature.

Results

The basis-set extrapolated GoW,@PBE fundamental gaps as function of the cell size are shown
in Fig. 4.1. We compare the results without correction [Eq. (4.21) together with Eq. (4.22), blue]
with the results employing the correction [Eq. (4.21) together with Eq. (4.61), green].

For the uncorrected GoW, @PBE fundamental gaps (blue), we observe a slow 1/L convergence
with the cell length L. The extrapolation with the inverse cell length yields the GoW,@PBE gaps
of 4.66 £0.04eV for LiH, 5.48 £+0.06eV for diamond, 7.49 +0.11 eV for the NH; crystal and
10.51 £ 0.07 eV for the CO,; crystal. The statistical error includes both errors from basis set and
the supercell extrapolation. These values are in good agreement with (indirect) fundamental gaps
from the literature, see Table 4.1. For both molecular crystals, we are not aware of fundamental
gaps from the literature. We conclude that using basis set and supercell extrapolation, a I'-point-
only GoW, implementation can give accurate fundamental gaps.

In practice, the extrapolation of the supercell can be impossible since the unit cell is already
large if disordered systems are considered, e.g. in molecular dynamics simulations [14,172,173].
For GW calculations of these systems, a periodic correction is necessary. In Fig. 4.1, we show the
fundamental GoW,@PBE gaps when using our correction from Sec. 4.2. We observe that the gaps
computed with the correction are a factor three to ten closer to the extrapolated gap than the non-
correct ones. For the largest supercells which correspond to typical cells in molecular dynamics
simulations, the corrected GoW,@PBE gaps are all within 0.5eV compared to the extrapolated
values. This improves substantially compared to the uncorrected gaps and turns the I'-point-only
GW method in a Gaussian basis into a useful tool for computing quasiparticle levels in periodic,
disordered systems where large unit cells are necessary.

4.4 Conclusions

We have presented a correction scheme for periodic I'-point-only GW calculations in a Gaussian
basis. The correction is derived by adding the G = 0 function to the resolution-of-the-identity (RI)
basis. As a second step, we apply k-point sampling for the correction mimicking an infinitely large
cell for the head matrix elements, i.e. the diagonal elements corresponding to the G = 0 function in
the RI basis. For the benchmark systems solid Lithium hydride, diamond and two molecular crys-
tals, the dependence of the corrected GW quasiparticle levels on the cell size is reduced by a factor
of three to ten compared to GW calculations without correction. The correction scheme comes
along with negligible computational cost and enables GW calculations for supercells containing
hundreds of atoms with Gaussian basis functions.
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Figure 4.1: Basis-set extrapolated GoW, @PBE fundamental gaps of solid Lithium hydride, dia-
mond and the molecular crystals NH3 and CO, as function of the supercell size. The blue circles
are the gaps computed without correction, see Eq. (4.21) together with Eq. (4.22), where the blue
line represents the linear regression. The intersept of the regression line with the ordinate deter-
mines the supercell extrapolated gap which is indicated by the dashed gray line. By the green
dots, we show the gaps being computed with the periodic correction from Eq. (4.21) together with
Eq. (4.61) where the dashed green lines are simple connections of the data points to guide the eye.
It is observed that the corrected gaps are much closer to the supercell extrapolated gap compared

to the non-corrected gaps.
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Chapter 5

Cubic-scaling RPA correlation energy
calculations using a Gaussian basis

The following chapter is a reprint of Ref. [195]. We present an algorithm for computing the cor-
relation energy in the random phase approximation (RPA) in a Gaussian basis requiring O(N?)
operations and O(N?) memory. The method is based on the resolution of the identity (RI) with
the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time and imag-
inary frequency integration techniques and the use of sparse linear algebra. Additional memory
reduction without extra computations can be achieved by an iterative scheme which overcomes
the memory bottleneck of canonical RPA implementations. We report a massively parallel im-
plementation which is the key for the application to large systems. Finally, cubic-scaling RPA is
applied to two thousand water molecules using a correlation-consistent triple-zeta quality basis.

5.1 Introduction

The random phase approximation (RPA) for computing electron correlation energies [212, 213]
has emerged as an accurate tool for predicting properties of isolated molecules [214-222] and
condensed phase systems [80, 198-200,223-238]. In its simplest form, the RPA total energy is
the sum of the Hartree-Fock (HF) energy E'F and the RPA correlation energy ERA, [123]

E = EHF[{wn}] + E(FPA[{wn, 811}] . (51)

The RPA total energy is typically evaluated after a self-consistent field (SCF) procedure, i.e.,
the converged molecular orbitals i, from the SCF and their corresponding eigenvalues ¢, are
employed to evaluate the HF energy and the RPA correlation energy. RPA combines a number
of attractive features, most importantly that long-range dispersion is included — in contrast to
semilocal density functionals. [78,123,219,239-243]

The drawback connected with RPA is the computational cost: For canonical implementations
of RPA in a plane-waves basis [244-246] or in a localized basis within the resolution of the identity
(RI) [13,75,76,123], the computational cost of RPA scales as O(N*) with respect to the system
size N. Recently, low-scaling RPA algorithms have been explored: Moussa [247] employed the
connection of RPA to coupled-cluster theory for constructing an O(N?) scaling RPA+SOSEX
algorithm. In this case, the cubic scaling has been demonstrated employing chains of hydrogen
atoms. Kaltak er al. [248] use a plane-wave basis, minimax grids in imaginary frequency and
imaginary time to arrive at a cubic-scaling algorithm. They applied their implementation for
studying supercells of silicon [249] containing up to 256 atoms. Linear-scaling RPA algorithms
have also been reported [250-253] which either rely on localization techniques [250], stochastic
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sampling [251, 252] or sparsity of density matrices [253]. Large-scale applications of linear-
scaling RPA have only been reported so far in Ref. [251] and [252] using stochastic sampling.

In this work, we employ localized Gaussian basis functions. We combine the O(N*) RI-RPA
method by Eshuis et al. [123] and the minimax grids in imaginary frequency and imaginary time
from Kaltak et al. [248] To achieve the cubic scaling algorithm, we rely on the sparsity intro-
duced by the RI approximation with the overlap metric [120, 254, 255] combined with the back
transformation from occupied and virtual orbitals to Gaussian atomic orbitals [253]. Practically,
the sparsity is efficiently handled by the DBCSR (Distributed Block Compressed Sparse Row)
library [129,256]. Stochastic sampling, sparsity of density matrices and localization techniques
are not necessary for the O(N?) scaling behavior in our algorithm.

This chapter is organized as follows: In Sec. 5.2, we review the resolution of the identity with
the overlap metric. As we explain in Sec. 5.3, cubic-scaling RPA is well-known in a formulation
in imaginary time and in real space. We use this formulation of cubic-scaling RPA to construct a
cubic-scaling algorithm using Gaussian basis functions (Sec. 5.4), while we focus on the parallel
implementation in Sec. 5.5. Benchmark calculations on the accuracy and the scaling of the O(N?)
RPA method are reported in Secs. 6.3 and 5.7.

5.2 Resolution-of-the-identity approximation (RI)

The following index notation has been adopted: i, j (a, b) refer to occupied (virtual) molecular
orbitals (MOs) ; u, v, 4,0 to primary Gaussian basis functions ¢ and P, Q to auxiliary Gaussian
RI basis functions ¢. The number of primary Gaussian basis functions is referenced as Ny, the
number of RI basis functions as Ng; and the system size as abstract symbol N, where Ny, and
Ngy are both proportional to N. The spin index has been dropped for convenience.

Four-center electron repulsion integrals (4c-ERIs) are of central importance for computing the
RPA correlation energy. These integrals, in Mulliken notation, are defined as

(uvlo) = fg dr f dr’ ¢ (")) (X ) (1)l ()u(r, 1) (5.2)
R3

where v(r,r’) = 1/|r —r’| is the bare Coulomb interaction, {2 the simulation cell and the superscript
P indicates that the basis functions are periodically repeated for condensed phase systems,

ohr) = > gur—Ry), (5.3)

where R; are the lattice vectors and ¢, is a Gaussian basis function being localized on a sin-
gle atom. Within the RI approximation based on the overlap metric, the 4c-ERIs are factorized
to [120]

AR = Y (vP)S 5o VorS 7 (S AT (5.4)

PORS

Here, S denotes the overlap matrix in the RI basis,

Spo = fR ar Pp(T)po(r), (5.5)

and V the Coulomb matrix in the RI basis,

Vg = f dr f dr’ op(r)gp(ru(r, r') . (5.6)
Q R3
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In practice, the Coulomb integrals Vp( are calculated by Ewald summation [196],

_ 4 0 ¢p(G) 9o(-G)
. 5.7
GZ o (5.7)
#0
The three-center overlap integrals (uvP) are given by
(uvP) = f dr ¢, ()¢} (r)gp(r) (5.8)
R3

We compute the two- and three-center overlap integrals from Egs. (5.5) and (5.8) employing
the Obara-Saika recurrence scheme [257]. In the periodic case, neighboring cells have to be
considered for the Obara-Saika scheme as long as the overlap of Gaussians from the unit cell and
the replica are non-vanishing.

Since the Coulomb matrix V is positive definite, its Cholesky decomposition can be computed
as

VPQ = Z LPRL£Q . (59)
R

In this way, the RI factorization from Eq. (5.4) can be expressed in a compact form as

(uvldom = > BYBY (5.10)
P
where B is given by
B = Z(,qu)SQ‘,%LRP. (5.11)
OR
We define the Ng; X Ng; matrix K,
K=S"'L, (5.12)
and Eq. (5.11) simplifies to
B = Z(,qu)KQp. (5.13)
(¢

If required, we transform Bj” from pairs uv of Gaussian basis functions to occupied-virtual pairs
ia employing the MO coefficients C,,:

Bf =" CuCuBy . (5.14)

ng

5.3 Cubic-scaling RPA with real-space density response

The correlation energy in the random phase approximation can be computed as [123,213,248,258]

ERPA = % f‘x’ dw Tr[In(1 — y(iw)v) + x(iw)v] (5.15)
0
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where v(r,r’) = 1/|r — r’| is the bare Coulomb interaction and y(r,r’, iw) the density response in
imaginary frequency:
occ virt

(¥ iw) =2 Z Z Ul WA WX () —

—‘ga
( i_ga)

The drawback of employing Eq. (5.16) to compute the density response function is the O(N*)
computational cost (N: system size) since the number of occupied and virtual orbitals and the
space coordinates r and r’ are each growing linearly with N. In contrast, the computation of the
density response in imaginary time, [24,248]

(5.16)

virt

X(r,r,ir) = Z Ui(E () oo Z WX W) o0, (5.17)

only requires O(N?) operations since the summation over occupied and virtual orbitals are decou-
pled and can be executed separately. er in Eq. (5.17) refers to the Fermi energy.

The density response is symmetric in time and frequency, y(r,r’,iw)=x(r,r’,—iw) and
x(r, v, it)=x(r,r’,—it). As a consequence, the Fourier transforms from imaginary frequency
to imaginary time and vice versa simplify to a cosine transformation [248]:

(o) l (o)
x(r,riw) =2 f dtx(r,r',it)cos(tw),  x(r,r',it) = p f dw x(r,r’,iw) cos(tw) .
0 0
(5.18)

Despite the simplicity of this formulation, the size of the real space coordinate r is of the same
order as the size of a plane-wave basis [248] and thus can easily exceed millions of elements even
for a relatively small cell. One of the reasons of reformulating these equations in a Gaussian basis
is to reduce the size of the density response matrix without significant loss of accuracy.

5.4 Cubic-scaling RPA in a Gaussian basis

Quartic-scaling RPA in a Gaussian basis

Eshuis et al. [123] applied the RI [Eq. (5.10)] to Eq. (5.15) and obtained

1 (o)
ERPA = > f dw Tr[In(1 + Q(w)) — Q(w)] (5.19)
T Jo
where Q(w) is a matrix of size Ngy X Ngy and is given by
occ virt
o) =2 )] 3 B . 520

where B;f is defined in Eq. (5.14). In the O(N?) implementation, we do not compute Q(w) by
means of Eq. (5.20) due to the O(N*) computational cost. Instead, we compute Q(7) as presented
in the following and we obtain Q(w) by the cosine transform adapted from Eq. (5.18):

Qpo(w) = 2f dt Qpo(T) cos(tw) . (5.21)
0
We obtain a representation for Q(7) by comparing Eqgs. (5.16), (5.17) and (5.20):

occ virt

Opo(T) = Z Z Bid g7 eevrlg-liea-sey pia (5.22)

i

The computation of Q(7) according to Eq. (5.22) still scales as O(N*).
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Cubic-scaling reformulation of RPA in the Gaussian basis

To arrive at a O(N?) scaling algorithm, we transform B in Eq. (5.22) from occupied-virtual pairs
ia to pairs uv of primary basis functions:

Bf = > By CuiCua (5.23)
uv
where we used the MO coefficients C,,, being defined as ¢,(r)= 3, C,,$,(r). By inserting

Eq. (5.23) into Eq. (5.22), we separate the summation over occupied and virtual states which
is the key for the O(N?) implementation:

virt

Opo(7) = Z B, By Z CuiC e e Z CyaC e (5.24)

uvio i

We introduce the pseudo-density matrices [259-261] chf(r) and Dzjf(r) which are computed in
O(N?) operations as

occ virt

DY) = Y CuCue 7 D) = ) CuCge 70, (5.25)

Inserting the definitions of szf and ngﬂ [Eq. (5.25)] and the definition of Bﬁv from Eq. (5.13)
into Eq. (5.24), we obtain

Opo(7) = Z Krp Z Kro Z
R T i

We introduce the three-index tensors Ml‘jffR(T) and M;L‘_‘T(T):

M) = Y (AORDS(x),  Miy(2) = ) (wT)D)(x). (5.27)
A v

Z(xla’R)Dﬁjc(T)] [ZWT)D;?(T)] . (5.26)
A v

Both tensors ME?R and M}‘ZfT are computed from Eq. (5.27) in O(N?) operations and in O(N)
operations once the scaled density matrices from Eq. (5.25) are getting sparse [261] for non-
metallic systems being very large in at least one dimension. The reason for the low-scaling be-
havior O(N?)/O(N) is that the three-center overlap (uvT) of localized basis functions y, v and T is
sparse in u/v, u/T and v/T. [254,255] Inserting the definitions of M3, and MZ?T in Eq. (5.26)
yields

Oro(7) = ) Krp ) Kro Y MES(t)Mym (7). (5.28)
R T uo

We introduce the Ng; X Nr; matrix P(7) with elements

Prr(7) = ) MES(DM(T). (5.29)
uo

According to the definition of M5 and MZ:;‘T in Eq. (5.27), M7, is sparse in o°/R and MZ:;‘T is
sparse in /T and we conclude that the computation of P(7) in Eq. (5.29) only requires O(N?)
operations and, once the scaled density matrices from Eq. (5.25) are getting sparse, only O(N)

operations . By inserting Eq. (5.29) into Eq. (5.28), we finally obtain the working expression
Q(r) =K'P(r)K. (5.30)

The computational complexity of Eq. (5.30) is growing cubically, O(N?). Moreover, all previous
steps, Eq. (5.25), (5.27) and (5.29), are at most of O(N?) computational cost or in case sparse
matrix-matrix multiplication is employed [Eq. (5.27) and (5.29)], of O(N?) computational cost.
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Minimax time and frequency grid

For the cosine transform of Q from 7 to w in Eq. (5.21) and for the subsequent frequency inte-
gration to obtain the RPA correlation energy according to Eq. (5.19), we rely on a time and a
frequency grid: In a first step, we compute Qpo(7;) for a time grid {Tj}j"’i , according to Eq. (5.30),
where M is the number of grid points which is independent of the system size. Then, Qpo(wy) 1s
obtained for a frequency set {w}?” | by the cosine transform according to Eq. (5.21):

M
Opo(wy) =2 Z /lkaPQ(Tj) COS(Tjwk) > (5.31)
j=1

where A;; are the integration weights. The RPA correlation energy is computed by numerically
integrating Eq. (5.19):

M
ER® = Zi > o linfdet( + Q)] - TrQ(w)] , (5.32)
T
where the identity Tr[In(A)] = In[det(A)] has been used which holds for any positive-definite ma-
trix A. [76] We follow the work of Kaltak et al. [248] and employ minimax quadratures [262,263]
to reduce the number of integration nodes M to 10—20. Practically, we employ the pretabulated
minimax parameters {w}, {0} and {7;} from Ref. [76] which have been created for imaginary-
frequency RPA calculations and for Laplace scaled-opposite-spin second-order Mgller-Plesset
perturbation theory. The integration weights A;; are computed by a least-square optimization
using singular value decomposition [248].
The outline of the cubic-scaling RPA correlation energy algorithm is summarized in Fig. 5.1.

5.5 Parallel implementation

The pseudocode for the parallel implementation of the cubic-scaling RPA algorithm is presented
in Fig. 5.2. In the following section, we discuss this figure in detail.

General strategy for the parallel implementation

For the parallelization, we are guided by three strategies: First, the three-index tensors (uvP),
MZ;CR(T) and M;g‘T(T) (as defined Fig. 5.1) are not replicated due to the huge amount of memory
needed for these tensors. Second, all two-index matrices as DY (1), D)"(1) and Pgr(7) (as defined
Fig. 5.1) are replicated into small subgroups. Third, all sparse matrix-matrix multiplications are
carried out in these small subgroups in order to reduce the communication needed for the sparse

matrix-matrix multiplications.

Parallel matrix-tensor operations

We define two different MPI subgroups p and ¢. Every p group hosts a range [P, P’ ] of RI

basis functions. After computing the scaled density matrices D% (t) and D"(7) employing all
processes and the dense linear algebra library ScaLAPACK, DZ;C(T) and DY'(t) are replicated to

vo

every p group. Then, the multiplication of D}¥(r) and DI"(1) with the three-center overlap inte-
grals (uvP) [Eq. (5.27)] is carried out by DBCSR [129] locally in the p group for P€[PL,, P! ]

start?
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Compute Spg = [dr p(r)pp(r) O(NY)
Compute Vpp = fdr dr’ op(r)po(r)r — '[! O(N?)
Factorize Vpg by Cholesky decomposition: Vpg = LPRL£Q O(N?)
Invert Spp with use of Cholesky decomposition ' O(N?)
Obtain Kpp by matrix-matrix multiplication: Kpp = % S >xLor O(N?)
Compute (uvP) = [dr ¢,(r)¢,(r)¢p(r) O(NY)

Set up the minimax grids {a)k},[(”:p {T]}J 1> {/lkj} k=1 and {O'k}k :

Get input: MO coefficients Cy, and eigenvalues &, of MOs from SCF

Set Qpo(wy) =0 for all wy=w;, wy,...,wy

Doti=7,72,...,Tu
D (1) = ‘i“ CiC e emewl O(MN?)
D)= 3 CouCoge O(MN)
MR (T) = Z(/WR)D"“(T,) O(MN?)
M5 ()= SunTIDI (D) O(MN?)
Prr(7) = Z My (M (7)) O(MN?)
QPQ(Tj) = % Krp ; KTQPRT(T]') O(MN3)
Dowi=wi,ws,...,wy

Fourier transform from 7 to w:

Opo(wy) = Opo(wy) + 24;jQpo(T)) cos(Tjwy) O(M*N?)
End do wy
End do 7;
Set E?PA =0
Do wy=wq,wa,...,wy
Update EEPA = EEPA + o [In[det(1 + Q(wy))] — Tr(Q(wy))] O(MN?)
End do wy

Figure 5.1: Pseudocode and associated computational cost (N: system size, M: number of time
and frequency points, respectively) of the algorithm to compute the RPA correlation energy in
O(N?) operations. u, v, A, o refer to primary Gaussian basis functions, P, Q, R, T to auxiliary Gaus-
sians, a to virtual molecular orbitals (MOs), i to occupied and n to general ones.
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Compute S~ and Cholesky decomposition L of V (ScaLAPACK)
Compute and store K = S~'L (ScaLAPACK)

Assign each process a group p

Create ranges [Psfan, P? 1 for RI basis functions

end

Allocate single DBCSR matrix S” in the p group (elements S /Z(T p)» TOW index u, combined column

index 0P for P € [Py, PP ] and all 1, o7; blocks as overlap matrix S, column block sizes scaled by

P P
Pend - Pstart +1)
Compute and store S ;ﬁo‘P) = (uoP) for all u, 0 and P€ [Py, P! ]

Allocate M°°“? and M"''? as copy of SP

Assign each process a second group g

q

Create ranges [t '“Zn 4)and [oyd O'erq1 4 for primary basis functions

Allocate DBCSR matrices M4 in the ¢ group (elements M((Zf;/)VQirt’q
column index Q for all Q and u € [ﬂgtan’ ,uzn 4l o€ [O’S?an, O'Cz 4l single block for (uo) index, atom

blocks for Q)

, combined row index (uo),

Do7j=71,72,...,Tu
CZfC(T )= Cpie 1 E=e0Tl2 - j: occupied orbital
szn(T 1) = Cpqe™Em0Tl/2 1 g: virtual orbital

D(1;) = [Co°)(1)]TC (1)) (ScaLAPACK)
DVirt(z;) = [CVIM)(7))] TCYir(;) (ScaLAPACK)

Replicate D°“(7;) and DVi“(Tj) to every group p and store them in a
DBCSR matrix (atom blocks for rows and columns, respectively)

MOc“P (1) = DO (1;)SP (DBCSR, locally in p group)
MYittP (1) = DVir(7;)SP (DBCSR, locally in p group)

Reorder data from p groups to g groups: MO¢VirtP(;) to MOc/Virtd(q))
Pi(7)) = [Mocc’q(Tj)]TMVirt’q(Tj) (DBCSR, locally in g group)

Sum up P4(7;) from every g group, fill it into P(7j) = >, P%(7;)
and spread P(7;) to all processes

Q1) =K"P(1)K (ScaLAPACK)

Do wi = w1, wy,...,wy: Fourier 7 — w: Q(wi) = Q(wy) + 24;,;Q(7;) cos(tjwy)
End do 7;

Set EPPA =0
Do wy = w1, wy,...,wy:  EFPA = EPPA 4 o [In[det(1 + Q(wi))] — Tr(Q(wy))] (ScaLAPACK)

Figure 5.2: Parallel implementation of the algorithm to compute the RPA correlation energy in
O(N?) operations. Some matrices and their indices have already been defined in Fig. 5.1. As dense
linear algebra library, we employ ScaLAPACK. All calls to ScaLAPACK are executed employing
all processes.
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and p, o€ [1, Nyeim:

Nprim Nprjm
M@ = Y (AoPDR(D), Myl = ) (CAP)D(), (5.33)
A=1 A=1

where Npim is the number of primary basis functions.
After completing the computation from Eq. (5.33), we redistribute M noe(T) and M virt +(7) from
p groups to g groups: The subgroup q is deﬁned by cutting the 1ndex palr uo of M O_R(T) and

M (7) into ranges [uf

o T ] and [o?

] covering all primary basis functions:

start? end start® end

U [/’lstart’ Cl’ld] X [O-Ztart’ O-an] = [ prlm] X [1 prlm] (5'34)

where N, is the number of ¢ groups. A g group hosts M;7%(7) and MZ:fT(T) for pr€ [pd e 1l 1,

oelo? . Zn 4) and all RI basis functions R,T. Each of MOC (1) and MVlrt +(7) 1s stored in the
q group in a single DBCSR matrix with a single row block cons1st1ng of a comblned (,uO') index
and atom blocks for the Rl index Rand 7', respectlvely The ranges [pd,, u 1and [0, of are
chosen such that all u € [,uqart, pl 1and all o €0l o? 1 belong to neighboring atoms, respec-
tively. Then, M (7)) and M Ver(T) in the g group are sparse in the combined row index (uo-) and
the column 1ndex R/T. The DBCSR matrix Pgr(7) is replicated in the ¢ group and the operation
from Eq. (5.29) is carried out locally in the ¢ group for the given ranges [, #! 1 and [0, 0 ]
and all R, T

H end g

Pl = > M ()M (7). (5.35)

end

) — 4
H=Hstart T=0 sart

Then, all g-local DBCSR matrices P,qu(T) are summed up to obtain the full Pgr(7) matrix:

N‘I
Prr(t) = ) Piy(2). (5.36)
g=1

The p and g groups are chosen such that they are as small as possible to minimize the commu-
nication for the sparse matrix-matrix multiplication. On the other hand, p and g groups have to be
as large as necessary not to run out of memory since the replicated matrices DY (1), D'"(1) and
Pr7(7) can require a large amount of memory.

The matrix operation Q(7) = K'P(7)K is carried out using full matrices, all processes and
ScaLAPACK. We compute the determinant and the trace of Q(w) to arrive at the RPA correlation
energy as in Ref. [76], see Fig. 5.2.

Memory reduction by an iterative scheme

The memory needed for M ooee(T) and M vi (1) can be reduced by an additional loop over uo blocks
(not sketched in Fig. 5. 2) We break the ranges [l T and [o8, 0 ] of every ¢ group again
in Ny batches [p,, 2" ] and [0%;, o2 ] with

Neut
a5 9,5 9,5 — q
U St'drt"uend] X [ O start> end] stdﬂ’ end] X [O-stdrt’ O-end] : (537)

s=1
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Then, M;(7) and MVIrt (1) are computed from Eq. (5.33) for p € [u&, . u®" 1 and o e[o?),, ol ]

which reduces the memory of M° (1) and MVer(T) by a factor N. Subsequently, MOC (1) and
MVI .(t) are contracted [Egs. (5. 29) and (5.35)],

o

star start?

end end
Prr(T) = Z Z Mo (M, 5 () (5.38)

0'0'

_I“lslan slan

and the memory of M°CC 4%(1) and Mmq *(1) is freed. We obtain P;.(7) for a batch s by summing
up from the g groups, and Prr(7) i computed by the loop over the s batches:

]ch

N‘i
Pir(0) = Y Pia@,  Prr(t) = ) Pir(). (539)

s=1

As already mentioned, we obtain a memory reduction for M"C »(7) and MV“T(T) by a factor of Ny
by this procedure where no additional computations are necessary

5.6 Validation

In this section, we compare the RPA correlation energy computed by the O(N?) algorithm to the
RPA correlation energy computed by the canonical O(N*) algorithm [75, 76, 123]. As starting
point for the RPA correlation energy calculation, we employ DFT with the PBE functional [96].

Quartic-scaling RPA with the overlap metric vs. cubic-scaling RPA with the
overlap metric

We begin with a comparison of cubic-scaling RPA and quartic-scaling RPA employing the overlap
metric [120] in both cases, see Table 5.1. The only difference between both algorithms is the
Fourier transform from 7 to w [Egs. (5.21) and (5.31)] which is needed for the cubic-scaling RPA
algorithm and absent in the quartic-scaling RPA algorithm. The minimax grid for the frequency
integration [Eqgs. (5.19) and (5.32), respectively] is identical for both cases. As it can be seen from
Table 5.1, both algorithms converge quickly with the number of minimax points: An accuracy of

Table 5.1: Convergence of the RPA correlation energy of 32 water molecules in a periodic box
with the number of grid points M. We use the same primary cc-TZVP basis and RI-cc-TZVP Ri-
basis for two different RPA algorithms: The canonical RI-RPA algorithm by Eshuis et al. [123]
with the overlap metric and the cubic-scaling RPA algorithm proposed in this work.

Number of grid points M RPA correlation energy in Hartree computed with

O(N*) RPA (overl. metric) O(N?) RPA (overl. metric)

8 —13.028957756 —13.028909098
12 —13.028899938 —13.028899877
16 —13.028899834 —13.028899834

20 —13.028899834 —13.028899834




5.7 Benchmark calculations on the system size scaling 51

Table 5.2: RPA correlation energy of 32 water molecules computed by three different algorithms.
All algorithms share the same primary and RI basis (cc-TZVP and RI-cc-TZVP, respectively).
The RI-cc-TZVP basis has been generated as described in Ref. [75] and [136]. For all RPA
calculations, 20 quadrature points for the minimax grids have been used.

Method ERPA in Hartree
O(N*) RPA (im. freq., Coulomb metric) —-13.0250
O(N*) RPA (im. freq., overlap metric) —-13.0289
O(N?) RPA (im. time, overlap metric) -13.0289

ten digits is already reached for fourteen minimax points for both algorithms. This observation is
in agreement with Ref. [248]. We conclude that the accuracy of the RPA correlation energy is not
affected by the additional Fourier transform from time to frequency.

Quartic-scaling RPA with the Coulomb metric vs. cubic-scaling RPA with
the overlap metric

As a second test, we compare the canonical RPA with the Coulomb metric to the cubic-scaling
RPA with the overlap metric, see Table 5.2. These algorithms share the same primary and RI
basis. As shown in Table 5.2, the cubic-scaling RPA correlation energy deviates by 71 uH from
the quartic-scaling RPA correlation energy using the Coulomb metric. In contrast, the cubic-
scaling RPA correlation energy agrees within an accuracy better than 107> uH with the quartic-
scaling RPA correlation energy using the overlap metric, see Table 5.1. We conclude, that there
is a deviation between the RPA results using the overlap metric and the RPA results using the
Coulomb metric, but the deviation is small.

Effect of sparsity

Finally, we investigate the effect of filtering blocks of sparse matrices occuring in the cubic-scaling
RPA algorithm, see Table 5.3: We choose the filter coefficients 10~® and 3 - 107° for the atom
blocks (for details on these coefficients, see caption of the table) such that the relative accuracy
of the RPA correlation energy is 0.01 % compared to the non-filtered result. We observe that the
execution time is reduced by a factor three when this filter criterion is applied and we conclude,
that already two third of the computations can be avoided for 32 water molecules in a cubic box.
For all following scaling benchmarks, we employ the filter criteria 1078 and 3 - 107°, respectively.

5.7 Benchmark calculations on the system size scaling

After validating our implementation, we turn over to investigate the scaling of the execution time
with respect to the system size. As in Sec. 6.3, we use a cc-TZVP primary basis with correspond-
ing RI basis [75, 76, 80, 136], the parameters &gier prim =3 * 107°, &hierri =107 and a time and
frequency grid of 15 points. For all calculations presented in this section, we employ this setting.
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Table 5.3: RPA correlation energy of 32 water molecules computed by the cubic-scaling algorithm
and two different filtering thresholds for removing blocks from sparse matrices. Every block
belongs to basis functions of an atom pair. The filtering threshold for Ng;XNg; matrices refers
to filtering P(7) in Eq. (5.29). The filtering threshold for NpimXNpim matrices refers to filtering
D°(1), DV"(7) and all three-index tensors. The execution time was measured on 576 CRAY-
XC40 cores. With the filtering thresholds of 107 and 3 - 107° as given in the table, the relative
change of the RPA correlation energy due to the filtering is 0.01 % where the computation time is
reduced by a factor of three.

in Hartree Execution time in s

Filtering threshold for blocks ina ~ ERPA

NriXNrp matrix  Nprim X Nprim matrix

1078 3-107° —-13.02970 260
no filtering no filtering —13.02890 751
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Figure 5.3: (a) Comparison of the execution time of quartic-scaling RPA (blue dots) and cubic-
scaling RPA (green dots) on a CRAY XC40 machine with 36 cores per node. Both methods share
the high-quality cc-TZVP basis. The basic cell contains 32 water molecules with a density of 1 g/¢.
The larger systems consist of a nx 1x 1 supercell of the 32-water box with n=2,4,8, 16, 32. For
the largest system with 2048 water molecules (16384 electrons), 106732 primary basis functions
and 278528 RI basis functions are used. For small systems, the canonical O(N*) RPA method is
one order of magnitude faster than the cubic-scaling RPA. The break-even point of both methods
lies between 128 and 256 water molecules. For large systems, the cubic-scaling RPA exceeds the
canonical RPA in terms of the execution time. (b) Execution time and scaling of intermediate steps
of the cubic-scaling RPA algorithm where the total execution time (green marks) is identical to (a).
The cubic-scaling steps (brown color) and the linear- and quadratic-scaling steps (magenta) are
categorized according to Fig. 5.1 and Eqgs. (5.27) and (5.29). The quadratic-scaling steps dominate
for small systems. Moreover, the quadratic-scaling steps turn into nearly-linear scaling steps for
systems containing 256 water molecules or more since the density matrix is becoming sparse, see
Fig. 5.4. The cubic-scaling steps (brown color) exhibit a small prefactor and are dominating for
systems with more than 1000 water molecules.
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Quartic- vs. cubic-scaling RPA

In Fig. 5.3 (a), we compare the execution time of O(N*)- and O(N?)-scaling RPA as function of
the system size for water molecules in a periodic box. We observe that for 32 water molecules,
the O(N?)-scaling RPA algorithm [75, 76] requires ten times the execution time of the O(N*)-
scaling RPA algorithm. The reason is that the cubic-scaling RPA algorithm is operating in the
v product basis, where p and v are Gaussian basis functions while the quartic-scaling RPA is
implemented in the ia basis, where i is an occupied MO and a a virtual one: In a cc-TZVP basis,
approximately fifteen Gaussian basis functions per occupied MO are employed which means one
order of magnitude more floating point operations for cubic-scaling RPA compared to quartic-
scaling RPA (without filtering). This explains that the cubic-scaling RPA algorithm is unfavorable
for small systems compared to the quartic-scaling one. With increasing system size, the favorable
scaling of the O(N?)-RPA algorithm is appearing and the break-even point for the two algorithms
is observed between 128 and 256 water molecules. Note that the break-even point is weakly
dependent on the basis set size. For 512 water molecules, the cubic-scaling RPA outperforms the
canonical RPA in terms of the execution time by one order of magnitude.

Analyzing the dominant steps in cubic-scaling RPA

In Fig. 5.3 (b), we break the total execution time of the cubic-scaling RPA algorithm down into
cubic-scaling steps and sub-cubic-scaling steps. The cubic-scaling steps (brown color) and the
linear- and quadratic-scaling steps (magenta) are categorized according to Fig. 5.1. We observe
that the quadratic-scaling steps dominate for small systems which means that for small systems,
the algorithm is effectively quadratic-scaling. Moreover, the quadratic-scaling steps turn into
nearly-linear scaling steps for systems containing 256 water molecules or more since the density
matrix is becoming sparse, see Fig. 5.4. The cubic-scaling steps exhibit a small prefactor and are
dominating for systems with more than 1000 water molecules. We conclude that the bottleneck for
large-scale RPA calculations is the matrix-matrix multiplication from Eq. (5.30) and the Cholesky
decomposition of 1 + Q(w) to compute the determinant in Eq. (5.32).

Truly three-dimensional calculations

In Fig. 5.3, the basic cell of 32 water molecules was repeated in one dimension, e. g. an nx1x1
supercell was employed. For low-scaling algorithms in a Gaussian basis, low-dimensional systems
with large extend in one dimension are favorable since there are many pairs of Gaussian basis
functions which are far away from each other and therefore have zero overlap. To test how the
cubic-scaling RPA algorithm performs for truly three-dimensional systems, we show the execution
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time for the cubic water supercells 2x2x2 and 3x3x3 in Fig. 5.5: We observe a scaling O(N*!¢)
for the execution time from 1x1x1 to 3X3x3. As it can be seen from Fig. 5.5, the execution time
of the cubic nxnxn supercell slightly exceeds the execution time for the corresponding n’x1x1
supercell. The reason is that the scaled density matrices are not yet sparse for the nxnxn supercell
(n=2,3) in contrast to the linear chain of supercells, see Fig. 5.4. We conclude that the cubic-
scaling RPA algorithm from this work also scales well for systems which are extended in all three
dimensions.

5.8 Conclusion and Outlook

We have presented an algorithm for computing the correlation energy in the random phase approx-
imation (RPA) in a Gaussian basis requiring O(N?) operations and O(N?) memory. The method is
a combination of several known techniques: As first technique, we employ the resolution of the
identity (RI) with the overlap metric as suggested by various authors [120,253-255]. The advan-
tage of RI with the overlap metric compared to RI with the Coulomb metric is that the occurring
three-center overlap integrals are sparse [254,255]. To exploit the sparsity of the three-center
overlap integrals, we reformulate RI-RPA in the Gaussian basis as suggested by Schurkus and
Ochsenfeld [253]. Since the density response has a convenient analytic form in imaginary time,
we follow Rojas et al. [24] to compute the density response in the RI basis in imaginary time.
For the Fourier transform from imaginary time to imaginary frequency, we employ the minimax
grids as proposed in the seminal work of Kaltak et al. [248] The final formula for computing the
RPA correlation energy by an integral over imaginary frequencies was established by Eshuis et
al. [123] No localization schemes [250] or stochastic approximations [251,252] are needed in our
algorithm.

Since the computation of the RPA correlation energy is still of high computational cost, an
efficient parallelization is crucial, especially for the sparse matrix operations. For this purpose, we
use the sparse linear algebra library DBCSR [129] which turns out to be highly efficient. Due to
the low-scaling characteristics of the algorithm together with its efficient parallel implementation,
we could apply cubic-scaling RPA up to two thousand water molecules using a cc-TZVP basis.

Our work can be seen as a prototype for a low-scaling wavefunction-based method using a
global RI with the overlap metric. With the techniques presented in this work, efficient low-
scaling algorithms can be designed for Hartree-Fock [264-271], Laplace-SOS-MP2 [272-278]
and GW [20-22, 30, 248].



Chapter 6

Efficient low-scaling GW calculations using
Gaussian basis functions

We present an algorithm [279] for computing quasiparticle levels in the GW approximation in
a Gaussian basis requiring O(N?) operations and O(N?) memory. The method is based on the
resolution of the identity with the overlap metric, a reformulation of GW in the Gaussian ba-
sis, imaginary time and imaginary frequency integration techniques and the use of sparse linear
algebra. As application of the cubic-scaling GW algorithm, we present an alternative route to
compute the fundamental gap of periodic, one-dimensional armchair graphene nanoribbons from
GW: The length of non-periodic ribbons is increased until convergence of the quasiparticle lev-
els is reached. This approach neither requires periodic boundary conditions nor Coulomb cutoft
techniques and opens the way for the high-accuracy computation of fundamental gaps of periodic
low-dimensional materials from GW. The largest graphene nanoribbon we could adress with the
cubic-scaling GW algorithm contains 1734 atoms which demonstrates the possibility to apply GW
to large systems.

6.1 Introduction

For computing the fundamental gap of a material with high accuracy, GW [9] is one of the most
established methods at present involving O(N*) computational cost in a canonical implementation
where N is the system size. GW is a method originating from many-body perturbation theory [9]
and was first applied to real materials by Hybertsen and Louie [10].

Many interesting systems can only be modelled if more than thousand atoms are used in the
GW calculation. One way to reduce the computational cost is to reformulate GW in a smaller,
more efficient basis: Plane-wave GW implementations commonly suffer from requiring many
virtual states and the inversion of large dielectric matrices. Here, the combination of without-
virtual-states techniques [14, 70, 167] with a low-rank approximation of the dielectric matrix [14,
168—171] can improve the computational efficiency enabling large-scale applications [172-174].
Another approach is to reformulate GW in a Gaussian basis which can significantly reduce the
dimensionality of the involved matrices [11-13, 30, 37,42, 161, 175-177]. GW in a Gaussian
basis can be applied to molecules without difficulty [31,34,43,47,48,71,178-182] in contrast to
plane-waves implementations where several technical issues have to be addressed [14,52, 183].

Another way to minimize the computational cost of GW is to reduce its scaling from O(N*) to
lower order. Already three low-scaling GW algorithms have been reported in the literature [20—
22]: The cubic-scaling algorithm by Foerster et al. [20] employs a Gaussian basis and locality
of electronic interactions. The method has been applied to molecules with a few tens of atoms.

55
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Larger applications seem to lie out of reach at presence since a parallel implementation has not
been published yet. The second low-scaling GW algorithm has been reported by Neuhauser et
al. [21] which even scales linearly with the system size and relies on stochastic evaluation of the
involved quantities. This algorithm can be easily parallelized and has been applied to a silicon
nanocluster with one thousand atoms. However, it remains to be explored whether stochastic
GW can be a useful tool for more complex systems than silicon nanoclusters [23]. The recent
cubic-scaling GW algorithm by Liu et al. [22] is a variant of the GW space-time method by
Rojas et al. [24]. In this algorithm, a plane-wave basis, real-space grids and sophisticated minimax
quadratures [22,76, 195,248,262,263] in time and frequency domain are employed. The linear-
scaling behaviour in the number of k-points seems to be promising when applying the method to
large and numerically challenging periodic systems.

In this work, we present a cubic-scaling GW algorithm which is a reformulation of the GW
space-time method [24] in a Gaussian basis employing the minimax time and frequency grids from
Ref. [22]. By using Gaussian basis sets instead of plane waves, the size of involved matrices can
be reduced substantially which makes the algorithm suitable to be applied to large systems. The
algorithm is suited for molecules and materials of arbitrary periodicity in a I'-point-only approach.
In Sec. 6.2, we give details on the cubic-scaling GW algorithm. The algorithm is validated for
the GW100 benchmark suite [71], see Sec. 6.3. Finally, we apply cubic-scaling GW to study
fundamental gaps of graphene nanoribbons in Sec. 6.4 including a validation of the low-scaling
behaviour in Sec. 6.5.

6.2 Method

We employ two different atom-centered Gaussian basis sets: ¢, denote primary Gaussian basis
functions and ¢p auxiliary Gaussian basis functions [30]. The primary basis {¢,} is employed to
expand the Kohn-Sham orbitals ¢, using the molecular orbital (MO) coefficients C,,,,

Y1) = )" Crruy(r) (6.1)
u

while the auxiliary basis {¢p} is used to expand GW quantities as the polarizability, the dielectric
function and the screened Coulomb interaction.

Similarly to the GW space-time method [24], we compute the correlation self-energy in imag-
inary time as

Si7) = = >0 ) Gulin)muP) Y Wi (ir)(Qvn). (6.2)

vP o p 0

The three-center overlap tensors

(nuP) = f dr Y, (1)$,(r)@p(r) (6.3)

are computed analytically [195,257] and originate from the resolution of the identity (RI) with the
overlap metric [120,195,253-255,280]. (nuP) is vanishing if ¢, and ¢p are located at atoms being
far apart from each other introducing sparsity in (nuP). Therefore, the computational complexity
of Eq. (6.2) scales as O(NgwN?) with the system size N, where Ngy is the number of computed
GW energies.
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The Green’s function in Eq. (6.2) is computed in O(N?) operations using the eigenvalues &,
from a previous DFT calculation and the corresponding Fermi level e as [24]

occC

Z Ci,uCiv exp(—|(&; — ep)7l), ifr <0,
Gyit)=3 ' (6.4)

virt

- Z Capcav eXP(—KSa - EF)TD ’ ifr>0 ’
and the scaled screened Coulomb interaction is defined as
We(it) = ST'We(ir)S™! (6.5)

where W;Q(ir) is the correlation part of the screened Coulomb potential [163]. The overlap matrix

Spo = f dr ¢p(t)p(r) (6.6)

accounts for the non-orthogonality of the Gaussian basis.
We obtain W¢(it) in Eq. (6.5) by a cosine transform from W¢(iw) employing minimax grids [22].
W¢(iw) 1s computed by [163]
We(iw) = L|s7'(iw) - 1| L, (6.7)

where L is the Cholesky decomposition of the Coulomb matrix V,

V=LL", Vpy= f drdr’ pp(r) @o(r). (6.8)

Ir—r'|
For molecules, the Coulomb matrix is computed analytically [281] and for periodic systems by
Ewald summation [196] which is commonly used for wavefunction correlation methods [76, 77,
80,197,199].

The symmetric dielectric function &(iw) is computed by [163]

g(iw) = 1 - L™Y’(iw)LL (6.9)
where we obtain the polarizability y°(iw) by a cosine transform from x°(ir). [248] We write [163]

x'(ir) = SIS (6.10)
and compute °(it) as in the cubic-scaling random phase approximation (RPA) [195]

Toolin) = > Y (ATPIG(i7) Y (uvQ)Gio(—iT) . 6.11)
po A v

The computational cost of Eq. (6.11) scales quadratically with the system size since the three-
index tensors (uvP) are only non-vanishing if the Gaussians ¢,, ¢, and ¢p are centered on neigh-
boring atoms. In this way, the memory of (uvP) grows only in linear order with the system size.
The computation time of the matrix-matrix multiplications in Egs. (6.4)-(6.10) scales cubically
with the system size. Despite the O(N?) scaling of Eq. (6.11), it remains the computational bot-
tleneck even for the largest systems we address in this work. Therefore, the computation of the
polarizability from Eq. (6.11) has been optimized for massively parallel use [195] employing lib-
DBCSR, a library for sparse matrix-matrix multiplications [129, 282].
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We obtain X (iw) by a sine and cosine transform from X (it) in Eq. (6.2) employing minimax
grids [22]. Zf (&) is computed by analytic continuation from a 16-parameter Pade approximant to
20 (iw) [22,71]. The final GoW, quasiparticle energies SSOWO are computed using

g6W0 = g, 4+ ¥ + Re X(e90M0) — p*° (6.12)

which is iteratively solved by the Newton-Raphson method. The bare-exchange self-energy is
computed in O(N?) operations employing the resolution of the identity with the overlap metric,

Z D, Z(nuP)VPQ(va (6.13)

where D, = 3% C;,C;, and V = ST'VS~!,

The present algorithm can be applied to molecules and condensed phase systems with arbitrary
periodicity in a I'-point-only approach. For periodicity in three dimensions, decoupling of periodic
images is achieved by a correction scheme using Gaussian basis functions [163].

6.3 Validation

For the validation of the cubic-scaling Gy W, algorithm, we compute the GoW,@PBE HOMO and
LUMO by Eq. (6.12) for all molecules in the GW100 benchmark by van Setten et al. [71,165,183]
For solving the all-electron Kohn-Sham (KS) equations, we employ the Gaussian and augmented
plane waves scheme (GAPW) [283] as implemented in CP2K [73, 127]. The molecular orbitals
are expanded in a def2-QZVP Gaussian basis [71], see Eq. (6.1). As auxiliary basis to expand GW
quantities, we employ sufficiently large Gaussian basis sets to ensure excellent convergence.

We compare HOMOs and LUMOs computed with the O(N?) G, W, algorithm for the GW100
test [71] to FHI-aims [13,71] reference values in Fig. 6.1. The reference values are obtained from
the O(N*)-scaling FHI-aims code where an analytic continuation with a 16-pole model or a Pade-
approximant has been used. It has been shown [71] that these values are in excellent agreement
with values obtained from Turbomole [12] which makes the GW100 benchmark set a reliable suite
for benchmarking. For the HOMO, we find that O(N?) GoW,, and FHI-aims values match within
0.03eV for 74 out of 100 molecules, while for the LUMO, both methods agree within 0.03 eV
for 87 molecules. The largest deviation for the HOMO to FHI-aims is observed for the Neon
atom (—22.58 eV from O(N?)-GoW, vs. —20.38 eV from FHI-aims). In this case, generating the
minimax grid could be numerically unstable due to the large gap of Neon. For the LUMO, the
largest deviation is observed for the beryllium monooxide molecule (BeO) (-2.27 eV from O(N?)-
GoWy vs. —2.56 eV from FHI-aims). The frequency integration and analytic continuation of the
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BeO molecule is rather difficult to converge. This issue also appeared in Ref. [71] where the best
FHI-aims and Turbomole values for the LUMO differed by 0.08 eV for BeO. This nevertheless
overall good agreement of the O(N?)-G, W, algorithm to FHI-aims reference values enables high-
quality GW studies of large systems, as we show in the next section.

6.4 Application: Graphene nanoribbons

As benchmark system, we employ anthenes, which are graphene nanoribbons (GNR) with seven
carbon atoms width, see Fig. 6.2 (a) for the geometry. For solving the singlet open-shell Kohn-
Sham (KS) equations, we employ the Gaussian and plane waves scheme (GPW) [27,284] together
with Goedecker-Teter-Hutter pseudopotentials [130]. The molecular orbitals are expanded in an
aug-DZVP Gaussian basis which gives rise to good convergence of the fundamental gap and
already has been used in Ref. [30]. For the GW calculation, we employ 12 time and frequency
points, respectively. As filter parameter for sparse tensor operations [Egs. (6.2) and (6.11)], we use
a threshold of 107! for atom blocks of basis functions [129]. All blocks with a Frobenius norm
lower than this threshold are removed from the sparse tensor making the tensor multiplication
more efficient. The filter threshold of 10~!" is much lower than the one used for water [195] which
is due to the delocalized electronic structure of graphene nanoribbons compared to water.
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Anthenes have been recently synthesized on a Au(111) surface and studied by scanning tun-
neling spectroscopy and many body perturbation theory [285]. It has been found that the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are
localized at the zigzag edges of the ribbons what also is the result of a DFT calculation, see
Fig. 6.2 (a). The energetic splitting between the HOMO and LUMO edge state is referred to as
zigzag gap A,,. The transport gap Aac is defined as gap between the HOMO-1 and LUMO+1
state which are delocalized over the ribbon, see Fig. 6.2 (b).

We compute A,, and Axc for anthenes containing up to 1734 atoms, see Fig. 6.2 (c) and (d).
We observe that the transport gap saturates from GNR (7,48) to GNR (7,192) at a value of 3.17 eV
(GoWy@PBE), while the zigzag gap converges much faster as function of the ribbon length at
a value of 2.34eV (GyW,@PBE) what is in agreement with the experimental finding [285].
The transport gap of long anthenes directly relates to the fundamental gap of the periodic arm-
chair GNR of seven atoms width (AGNR7) which e.g. have been computed in Ref. [286] by
GoWy@PBE employing periodic boundary conditions, Coulomb cutoff techniques [287,288] and
a plasmon-pole model. The reported value [286] for the Gy W, @PBE bandgap of periodic AGNR7
is 3.79 eV which is larger than the converged GyW,@PBE transport gap from GNR (7,192) of
3.17 eV. Here, agreement in this order of magnitude can be expected as plasmon-pole models can
differ to full-frequency integration [71]. Eigenvalue-selfconsistency (evGW) has been shown to
give improved fundamental gaps in organic semiconductors when compared to experimental data
and high-level methods [11, 178]. We apply evGW to the anthenes and find that both gaps are
enlarged, see Fig. 6.2 (b) and (c) where the evGW @PBE transport gap of GNR (7,96) is 3.82eV.
Interestingly, this value is in better agreement with the bandgap of periodic AGNR7 of 3.79 eV
from Ref. [286]. Starting from 3.79eV as gap of the AGNR?7, it has been shown that applying an
image-charge model [19] gives a bandgap of AGNR7 on a Au(111) surface which is in excellent
agreement with the experimental finding [289].

6.5 Computational scaling

To demonstrate the low-scaling behaviour of the present GW algorithm, we show the execution
time for the graphene nanoribbons from Sec. 6.4 in Fig. 6.3. The total execution time of cubic-
scaling GoW,@PBE is given in green color and is scaling as O(N*!) with the number of atoms N.
The high computational cost of Eq. (6.11) is scaling as O(N?) and therefore dominates the whole
calculation what results in an overall scaling close to O(N?). The cubic-scaling steps are sketched
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in brown color and are more than one order of magnitude less demanding than the quadratic-
scaling steps. For the biggest system containing 1734 atoms, 2883 occupied molecular orbitals,
30195 virtual ones and 80940 auxiliary basis functions have been used. The quartic-scaling GW
algorithm (blue color) is restricted to a nanoribbon with 438 atoms due to the rapid increase of
computation time with the system size. For small systems below 150 atoms, quartic-scaling GW
is more efficient since it is formulated in the occupied-virtual product basis {¢;}®{y,} which is
smaller than the Gaussian product basis {¢,} ®{¢,} which is used in Eq. (6.11).

6.6 Conclusion

We have presented an algorithm for computing quasiparticle levels in the GW approximation in
a Gaussian basis requiring O(N?) operations and O(N?) memory. The method is a combination
of several known techniques: As first technique, we employ the resolution of the identity (RI)
with the overlap metric as suggested by various authors [120,253-255]. The advantage of RI
with the overlap metric compared to RI with the Coulomb metric is that the occurring three-
center overlap integrals are sparse [254,255]. To exploit the sparsity of the three-center overlap
integrals, we reformulate GW in the Gaussian basis. We follow the GW space-time method by
Rojas et al. [24] and employ imaginary time and frequency integration using minimax grids [22].
We have applied cubic-scaling GW to compute the fundamental and the transport gap of graphene
nanoribbons of seven atoms width and increasing length containing up to 1734 atoms. We find
that the fundamental gap and the transport gap saturate when increasing the length. This saturation
enables an alternative route to compute fundamental gaps of periodic one-dimensional materials
from non-periodic calculations.
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Chapter 7

Summary and Outlook

The whole work reported in this thesis has the goal to develop a cubic-scaling GW algorithm for
computing quasiparticle energy levels in large molecular and periodic systems based on Gaussian
basis functions. GW is a well-known method which has been used for many decades to accurately
describe single-electron levels of materials, especially bandgaps. Recently, GW has been applied
to molecules for studying the ionization potential, electron affinity and the fundamental gap where
good agreement to experimental values has been obtained. An overview of the theoretical frame-
work for GW is given in Chapter 2.

The early stage of this work has been focused on adapting the GW methodology to the Gaussian
and plane waves (GPW) method (Chapter 3). This GW implementation can be applied to systems
with several hundreds of atoms where the computational cost scales as O(N*) with the system
size N as it is expected for a canonical GW implementation. GW has been applied to compute the
bandgaps of closed-shell and broken-symmetry open-shell linear acenes, linear chains formed of
connected benzene rings, as function of the acene length up to 11-acene. It has been found that
the closed-shell and broken-symmetry open-shell bandgaps of acenes diftfer by up to 2.0eV (for
11-acene). In experiments, a comparison of measured bandgaps and the calculated GW values of
acenes may be helpful to determine whether their electronic ground state exhibits a closed-shell or
polyradical configuration. This finding inspired experimentalists at the Swiss Federal Laboratories
for Materials Science (EMPA) to measure reference data for acenes on noble-metal surfaces for a
comparison. Since the synthesis of long acenes is very challenging, this is ongoing work.

If periodic boundary conditions are applied, the I'-point-only GW algorithm featured an ex-
tremely slow convergence of the fundamental gap with the supercell size. A detailed analysis of
this problem is given in Chapter 4 and a correction scheme for periodic I'-point-only GW calcula-
tions based on GPW is presented. For four benchmark systems, the convergence of the corrected
GW quasiparticle levels on the cell size is accelerated by a factor of three to ten compared to GW
calculations without correction. The correction scheme comes along with negligible computa-
tional cost and can also be employed in the cubic-scaling GW algorithm.

The computationally most demanding step in GW is to calculate the inverse density response
in the random phase approximation (RPA) which scales as O(N*). The scaling of this step can be
reduced to O(N?) if RPA is reformulated in the Gaussian basis together with the resolution of the
identity (RI) with the overlap metric. Moreover, imaginary time and imaginary frequency integra-
tion techniques as well as sparse linear algebra are necessary to compute the RPA density response
in linear-scaling time (Chapter 5). Additional memory reduction without extra computations can
be achieved by an iterative scheme which overcomes the memory bottleneck of canonical RPA.
We report a massively parallel implementation which is the key for the application to large sys-
tems where more than ten thousand cores have been used. Since low-scaling algorithms are in
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general by far more complex than canonical implementations, the parallelization has been a very
challenging task. Most other low-scaling algorithms are only implemented serially. Based on
the linear-scaling computation of the RPA density response, a cubic-scaling algorithm for the
RPA correlation energy can be derived. This algorithm has been applied to two thousand water
molecules using a correlation-consistent triple-zeta quality basis which is the largest RPA calcu-
lation that has been reported in the literature so far.

The cubic-scaling RPA algorithm has been employed to implement a cubic-scaling GW algo-
rithm for computing highly accurate single-electron levels in molecules and solids (Chapter 6). As
application of the cubic-scaling GW algorithm, an alternative route to compute the fundamental
gap of periodic, one-dimensional armchair graphene nanoribbons from GW has been presented:
The length of non-periodic ribbons is increased until convergence of the quasiparticle levels is
reached. This approach neither requires periodic boundary conditions nor Coulomb cutoff tech-
niques which can be problematic in GW calculations. Therefore, the cubic-scaling GW algorithm
from this work opens the way for the high-accuracy computation of fundamental gaps of periodic
low-dimensional materials from GW. The largest graphene nanoribbon that could be adressed
with the cubic-scaling GW algorithm contains 1734 atoms which is the largest GW calculation
that has been reported in the literature so far.

The work presented in this thesis gives rise to many possible follow-up projects in the direction
of method development and applications.

Concerning method development, the massively parallel implementation of the RI with the
overlap metric can be employed to construct low-scaling algorithms for exact exchange (EXX)
or for scaled-opposite-spin MP2 (SOS-MP2). Also, low-scaling algorithms for forces based on
RPA, EXX, and SOS-MP2 can be designed with the techniques presented in this work. A cubic-
scaling version of GW in combination with the Bethe-Salpeter equation can be employed to study
electronic excitation with high accuracy. The introduction of k-points in RPA and GW in the
canonical and the low-scaling variant would open the way for highly accurate condensed phase
simulations. Here, the low-scaling variants of RPA and GW from this work offer a possibility for
linear scaling of the execution time when increasing the number of k-points.

Concerning applications, low-scaling GW enables calculations on large molecules which could
not be treated before. Large molecular sizes are essential for graphene nanoribbons that can be
synthesized on a noble-metal surface from molecular precursors. This new synthesis route has
enabled the synthesis of atomically precise nanoribbons of unprecedented size. For probing the
electronic structure of ribbons on the surface, scanning tunneling spectroscopy (STS) is employed
which measures the local density of states at a given energy. In this way, the bandgap of ribbons
can be determined. Together with image charge models, cubic-scaling GW can predict bandgaps
of large ribbons on the noble metal surface. Comparing the bandgaps from GW and experimental
values from STS measurements has shed light on the spin configuration of the ribbons. This is
ongoing work in close collaboration with collegues from EMPA in Diibendorf.



Bibliography

[1] E. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sgrensen, C. H. Christensen, and J. K.
Ngrskov, Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogena-
tion of Acetylene, Science 320, 1320-1322 (2008).

[2] M. R. Filip, G. E. Eperon, H. J. Snaith, and F. Giustino, Steric engineering of metal-halide
perovskites with tunable optical band gaps, Nat. Commun. 5, 5757 (2014).

[3] Y. W. Son, M. L. Cohen, and S. G. Louie, Energy Gaps in Graphene Nanoribbons, Phys.
Rev. Lett. 97, 216803 (2006).

[4] J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Sode, L. Liang, V. Meunier, R. Berger,
R. Li, X. Feng, et al., Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9, 896-900
(2014).

[5] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation
Effects, Phys. Rev. 140, A1133 (1965).

[6] R. Koitz, A. P. Seitsonen, M. lannuzzi, and J. Hutter, Structural and electronic properties
of a large-scale Moire pattern of hexagonal boron nitride on Cu(111) studied with density
functional theory, Nanoscale 5, 5589-5595 (2013).

[7] S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71, 1085-1123
(1999).

[8] J. VandeVondele, U. Borstnik, and J. Hutter, Linear Scaling Self-Consistent Field Cal-
culations with Millions of Atoms in the Condensed Phase, J. Chem. Theory Comput 8,
3565-3573 (2012).

[9] L. Hedin, New Method for Calculating the One-Particle Green’s Function with Application
to the Electron-Gas Problem, Phys. Rev. 139, A796-A823 (1965).

[10] M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators:
Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986).

[11] X. Blase, C. Attaccalite, and V. Olevano, First-principles GW calculations for fullerenes,
porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic appli-
cations, Phys. Rev. B 83, 115103 (2011).

[12] M. J. van Setten, F. Weigend, and F. Evers, The GW-Method for Quantum Chemistry
Applications: Theory and Implementation, J. Chem. Theory Comput. 9, 232-246 (2013).

[13] X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, and
M. Schefller, Resolution-of-identity approach to Hartree—Fock, hybrid density functionals,

65


http://dx.doi.org/10.1126/science.1156660
http://dx.doi.org/10.1126/science.1156660
http://dx.doi.org/10.1126/science.1156660
http://dx.doi.org/10.1038/ncomms6757
http://dx.doi.org/10.1038/ncomms6757
http://dx.doi.org/10.1038/ncomms6757
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1038/nnano.2014.184
http://dx.doi.org/10.1038/nnano.2014.184
http://dx.doi.org/10.1038/nnano.2014.184
http://dx.doi.org/10.1038/nnano.2014.184
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1039/C3NR00709J
http://dx.doi.org/10.1039/C3NR00709J
http://dx.doi.org/10.1039/C3NR00709J
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.83.115103
http://dx.doi.org/10.1103/PhysRevB.83.115103
http://dx.doi.org/10.1103/PhysRevB.83.115103
http://dx.doi.org/10.1021/ct300648t
http://dx.doi.org/10.1021/ct300648t
http://dx.doi.org/10.1021/ct300648t

66 Bibliography

RPA, MP2 and GW with numeric atom-centered orbital basis functions, New J. Phys. 14,
053020 (2012).

[14] M. Govoni and G. Galli, Large Scale GW calculations, J. Chem. Theory Comput. 11,
2680-2696 (2015).

[15] C. Friedrich, M. C. Miiller, and S. Bliigel, Band convergence and linearization error cor-
rection of all-electron GW calculations: The extreme case of zinc oxide, Phys. Rev. B 83,

081101 (2011).

[16] R. R. Cloke, T. Marangoni, G. D. Nguyen, T. Joshi, D. J. Rizzo, C. Bronner, T. Cao, S. G.
Louie, M. F. Crommie, and F. R. Fischer, Site-Specific Substitutional Boron Doping of
Semiconducting Armchair Graphene Nanoribbons, J. Am. Chem. Soc. 137, 8872-8875
(2015).

[17] J. B. Neaton, M. S. Hybertsen, and S. G. Louie, Renormalization of Molecular Electronic
Levels at Metal-Molecule Interfaces, Phys. Rev. Lett. 97, 216405 (20006).

[18] C. D. Spataru, Electronic and optical gap renormalization in carbon nanotubes near a
metallic surface, Phys. Rev. B 88, 125412 (2013).

[19] N. Kharche and V. Meunier, Width and Crystal Orientation Dependent Band Gap Renor-
malization in Substrate-Supported Graphene Nanoribbons, J. Phys. Chem. Lett. 7, 1526—
1533 (2016).

[20] D. Foerster, P. Koval, and D. Sanchez-Portal, An O(N?) implementation of Hedin’s GW
approximation for molecules, J. Chem. Phys. 135, 074105 (2011).

[21] D. Neuhauser, Y. Gao, C. Arntsen, C. Karshenas, E. Rabani, and R. Baer, Breaking the
Theoretical Scaling Limit for Predicting Quasiparticle Energies: The Stochastic GW Ap-
proach, Phys. Rev. Lett. 113, 076402 (2014).

[22] P.Liu, M. Kaltak, J. Klimes, and G. Kresse, Cubic scaling GW: Towards fast quasiparticle
calculations, Phys. Rev. B 94, 165109 (2016).

[23] V. VIcek, E. Rabani, D. Neuhauser, and R. Baer, Stochastic GW calculations for molecules,
arXiv preprint arXiv:1612.08999 (2016).

[24] H. N. Rojas, R. W. Godby, and R. J. Needs, Space-Time Method for Ab Initio Calculations
of Self-Energies and Dielectric Response Functions of Solids, Phys. Rev. Lett. 74, 1827
(1995).

[25] G. Kresse and J. Furthmiiller, Efficient iterative schemes for ab initio total-energy calcula-
tions using a plane-wave basis set, Phys. Rev. B 54, 11169-11186 (1996).

[26] P. Ruffieux, S. Wang, B. Yang, C. Sanchez-Séanchez, J. Liu, T. Dienel, L. Talirz, P. Shinde,
C. A. Pignedoli, D. Passerone, T. Dumslaff, F. Xinliang, K. Miillen, and R. Fasel, On-

surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531, 489—-492
(2016).

[27] G. Lippert, J. Hutter, and M. Parrinello, A hybrid Gaussian and plane wave density func-
tional scheme, Mol. Phys. 92, 477-487 (1997).


http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1021/ct500958p
http://dx.doi.org/10.1021/ct500958p
http://dx.doi.org/10.1021/ct500958p
http://dx.doi.org/10.1021/ct500958p
http://dx.doi.org/10.1103/PhysRevB.83.081101
http://dx.doi.org/10.1103/PhysRevB.83.081101
http://dx.doi.org/10.1103/PhysRevB.83.081101
http://dx.doi.org/10.1103/PhysRevB.83.081101
http://dx.doi.org/10.1021/jacs.5b02523
http://dx.doi.org/10.1021/jacs.5b02523
http://dx.doi.org/10.1021/jacs.5b02523
http://dx.doi.org/10.1021/jacs.5b02523
http://dx.doi.org/10.1103/PhysRevLett.97.216405
http://dx.doi.org/10.1103/PhysRevLett.97.216405
http://dx.doi.org/10.1103/PhysRevLett.97.216405
http://dx.doi.org/10.1103/PhysRevB.88.125412
http://dx.doi.org/10.1103/PhysRevB.88.125412
http://dx.doi.org/10.1103/PhysRevB.88.125412
http://dx.doi.org/10.1021/acs.jpclett.6b00422
http://dx.doi.org/10.1021/acs.jpclett.6b00422
http://dx.doi.org/10.1021/acs.jpclett.6b00422
http://dx.doi.org/10.1021/acs.jpclett.6b00422
http://dx.doi.org/10.1063/1.3624731
http://dx.doi.org/10.1063/1.3624731
http://dx.doi.org/10.1063/1.3624731
http://dx.doi.org/10.1103/PhysRevLett.113.076402
http://dx.doi.org/10.1103/PhysRevLett.113.076402
http://dx.doi.org/10.1103/PhysRevLett.113.076402
http://dx.doi.org/10.1103/PhysRevB.94.165109
http://dx.doi.org/10.1103/PhysRevB.94.165109
http://dx.doi.org/10.1103/PhysRevB.94.165109
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1080/002689797170220
http://dx.doi.org/10.1080/002689797170220
http://dx.doi.org/10.1080/002689797170220

Bibliography 67

[28] F. Hiiser, T. Olsen, and K. S. Thygesen, Quasiparticle GW calculations for solids,
molecules, and two-dimensional materials, Phys. Rev. B 87, 235132 (2013).

[29] E. Hiiser, Quasiparticle GW calculations within the GPAW electronic structure code, Ph.D.
thesis, Technical University of Denmark (2013).

[30] J. Wilhelm, M. Del Ben, and J. Hutter, GW in the Gaussian and Plane Waves Scheme with
Application to Linear Acenes, J. Chem. Theory Comput. 12, 3623-3635 (2016).

[31] F. Bruneval and M. A. L. Marques, Benchmarking the Starting Points of the GW Approxi-
mation for Molecules, J. Chem. Theory Comput. 9, 324-329 (2013).

[32] M. Kiihn and F. Weigend, One-Electron Energies from the Two-Component GW Method,
J. Chem. Theory Comput. 11, 969-979 (2015).

[33] X. Ren, N. Marom, F. Caruso, M. Schefller, and P. Rinke, Beyond the GW approximation:
A second-order screened exchange correction, Phys. Rev. B 92, 081104 (2015).

[34] C. Faber, P. Boulanger, C. Attaccalite, I. Duchemin, and X. Blase, Excited states properties

of organic molecules: from density functional theory to the GW and Bethe—Salpeter Green’s
function formalisms, Phil. Trans. R. Soc. A 372, 20130271 (2014).

[35] C. Faber, P. Boulanger, C. Attaccalite, E. Cannuccia, I. Duchemin, T. Deutsch, and X. Blase,
Exploring approximations to the GW self-energy ionic gradients, Phys. Rev. B 91, 155109
(2015).

[36] F. Bruneval, lonization energy of atoms obtained from GW self-energy or from random
phase approximation total energies, J. Chem. Phys. 136, 194107 (2012).

[37] P. Koval, D. Foerster, and D. Sanchez-Portal, Fully self-consistent GW and quasiparticle
self-consistent GW for molecules, Phys. Rev. B 89, 155417 (2014).

[38] S.-H. Ke, All-electron GW methods implemented in molecular orbital space: lonization
energy and electron affinity of conjugated molecules, Phys. Rev. B 84, 205415 (2011).

[39] F. Caruso, P. Rinke, X. Ren, A. Rubio, and M. Schefller, Self-consistent GW: All-electron
implementation with localized basis functions, Phys. Rev. B 88, 075105 (2013).

[40] D. Jacquemin, I. Duchemin, and X. Blase, Benchmarking the Bethe—Salpeter Formalism
on a Standard Organic Molecular Set, J. Chem. Theory Comput. 11, 3290-3304 (2015).

[41] C. Faber, 1. Duchemin, T. Deutsch, C. Attaccalite, V. Olevano, and X. Blase, FElectron-
phonon coupling and charge-transfer excitations in organic systems from many-body per-
turbation theory, J. Mater. Sci. 47, 7472-7481 (2012).

[42] F. Kaplan, F. Weigend, F. Evers, and M. J. van Setten, Off-Diagonal Self-Energy Terms
and Partially Self-Consistency in GW Calculations for Single Molecules: Efficient Imple-
mentation and Quantitative Effects on lonization Potentials, J. Chem. Theory Comput. 11,
5152-5160 (2015).

[43] J. W. Knight, X. Wang, L. Gallandi, O. Dolgounitcheva, X. Ren, J. V. Ortiz, P. Rinke,
T. Korzdorfer, and N. Marom, Accurate lonization Potentials and Electron Affinities of
Acceptor Molecules Il1: A Benchmark of GW Methods, J. Chem. Theory Comput. 12, 615—
626 (2016).


http://dx.doi.org/10.1103/PhysRevB.87.235132
http://dx.doi.org/10.1103/PhysRevB.87.235132
http://dx.doi.org/10.1103/PhysRevB.87.235132
http://dx.doi.org/10.1021/acs.jctc.6b00380
http://dx.doi.org/10.1021/acs.jctc.6b00380
http://dx.doi.org/10.1021/acs.jctc.6b00380
http://dx.doi.org/10.1021/ct300835h
http://dx.doi.org/10.1021/ct300835h
http://dx.doi.org/10.1021/ct300835h
http://dx.doi.org/10.1021/ct501069b
http://dx.doi.org/10.1021/ct501069b
http://dx.doi.org/10.1021/ct501069b
http://dx.doi.org/10.1103/PhysRevB.92.081104
http://dx.doi.org/10.1103/PhysRevB.92.081104
http://dx.doi.org/10.1103/PhysRevB.92.081104
http://dx.doi.org/10.1098/rsta.2013.0271
http://dx.doi.org/10.1098/rsta.2013.0271
http://dx.doi.org/10.1098/rsta.2013.0271
http://dx.doi.org/10.1103/PhysRevB.91.155109
http://dx.doi.org/10.1103/PhysRevB.91.155109
http://dx.doi.org/10.1103/PhysRevB.91.155109
http://dx.doi.org/10.1103/PhysRevB.91.155109
http://dx.doi.org/10.1063/1.4718428
http://dx.doi.org/10.1063/1.4718428
http://dx.doi.org/10.1063/1.4718428
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.84.205415
http://dx.doi.org/10.1103/PhysRevB.84.205415
http://dx.doi.org/10.1103/PhysRevB.84.205415
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1021/acs.jctc.5b00304
http://dx.doi.org/10.1021/acs.jctc.5b00304
http://dx.doi.org/10.1021/acs.jctc.5b00304
http://dx.doi.org/10.1007/s10853-012-6401-7
http://dx.doi.org/10.1007/s10853-012-6401-7
http://dx.doi.org/10.1007/s10853-012-6401-7
http://dx.doi.org/10.1021/acs.jctc.5b00394
http://dx.doi.org/10.1021/acs.jctc.5b00394
http://dx.doi.org/10.1021/acs.jctc.5b00394
http://dx.doi.org/10.1021/acs.jctc.5b00394
http://dx.doi.org/10.1021/acs.jctc.5b00871
http://dx.doi.org/10.1021/acs.jctc.5b00871
http://dx.doi.org/10.1021/acs.jctc.5b00871
http://dx.doi.org/10.1021/acs.jctc.5b00871

68

Bibliography

[44]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

I. Duchemin, D. Jacquemin, and X. Blase, Combining the GW formalism with the polar-
izable continuum model: A state-specific non-equilibrium approach, J. Chem. Phys. 144,
164106 (2016).

P. Boulanger, D. Jacquemin, 1. Duchemin, and X. Blase, Fast and Accurate Electronic
Excitations in Cyanines with the Many-Body Bethe—Salpeter Approach, J. Chem. Theory
Comput. 10, 1212-1218 (2014).

F. Bruneval, S. M. Hamed, and J. B. Neaton, A systematic benchmark of the ab initio Bethe-

Salpeter equation approach for low-lying optical excitations of small organic molecules,
J. Chem. Phys. 142, 244101 (2015).

S. Korbel, P. Boulanger, 1. Duchemin, X. Blase, M. A. L. Marques, and S. Botti, Benchmark
Many-Body GW and Bethe—Salpeter Calculations for Small Transition Metal Molecules,
J. Chem. Theory Comput. 10, 3934-3943 (2014).

X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, and 1. Duchemin, GW and Bethe-
Salpeter study of small water clusters, J. Chem. Phys. 144, 034109 (2016).

D. Jacquemin, I. Duchemin, and X. Blase, Assessment of the convergence of partially
self-consistent BSE/GW calculations, Mol. Phys. 114, 957-967 (2016).

D. Jacquemin, I. Duchemin, and X. Blase, 0-0 Energies Using Hybrid Schemes: Bench-
marks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/GW formalisms for 80 Real-Life Com-
pounds, J. Chem. Theory Comput. 11, 5340-5359 (2015).

X. Gonze, A brief introduction to the ABINIT software package, Z. Kristallogr. 220, 558—
562 (2005).

J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, Berke-
leyGW: A massively parallel computer package for the calculation of the quasiparticle and

optical properties of materials and nanostructures, Comput. Phys. Commun. 183, 1269—
1289 (2012).

H. Jiang, R. I. Gomez-Abal, X.-Z. Li, C. Meisenbichler, C. Ambrosch-Draxl, and M. Schef-
fler, FHI-gap: A code based on the all-electron augmented plane wave method, Comput.
Phys. Commun. 184, 348-366 (2013).

M. Shishkin and G. Kresse, Implementation and performance of the frequency-dependent
GW method within the PAW framework, Phys. Rev. B 74, 035101 (2006).

M. Shishkin and G. Kresse, Self-consistent GW calculations for semiconductors and insu-
lators, Phys. Rev. B 75, 235102 (2007).

M. Shishkin, M. Marsman, and G. Kresse, Accurate Quasiparticle Spectra from Self-
Consistent GW Calculations with Vertex Corrections, Phys. Rev. Lett. 99, 246403 (2007).

F. Fuchs, J. Furthmiiller, F. Bechstedt, M. Shishkin, and G. Kresse, Quasiparticle band
structure based on a generalized Kohn-Sham scheme, Phys. Rev. B 76, 115109 (2007).

A. Marini, C. Hogan, M. Griining, and D. Varsano, yambo: An ab initio tool for excited
state calculations, Comput. Phys. Commun. 180, 1392-1403 (2009).


http://dx.doi.org/10.1063/1.4946778
http://dx.doi.org/10.1063/1.4946778
http://dx.doi.org/10.1063/1.4946778
http://dx.doi.org/10.1063/1.4946778
http://dx.doi.org/10.1021/ct401101u
http://dx.doi.org/10.1021/ct401101u
http://dx.doi.org/10.1021/ct401101u
http://dx.doi.org/10.1021/ct401101u
http://dx.doi.org/10.1063/1.4922489
http://dx.doi.org/10.1063/1.4922489
http://dx.doi.org/10.1063/1.4922489
http://dx.doi.org/10.1021/ct5003658
http://dx.doi.org/10.1021/ct5003658
http://dx.doi.org/10.1021/ct5003658
http://dx.doi.org/10.1080/00268976.2015.1119901
http://dx.doi.org/10.1080/00268976.2015.1119901
http://dx.doi.org/10.1080/00268976.2015.1119901
http://dx.doi.org/10.1021/acs.jctc.5b00619
http://dx.doi.org/10.1021/acs.jctc.5b00619
http://dx.doi.org/10.1021/acs.jctc.5b00619
http://dx.doi.org/10.1524/zkri.220.5.558.65066
http://dx.doi.org/10.1524/zkri.220.5.558.65066
http://dx.doi.org/10.1524/zkri.220.5.558.65066
http://dx.doi.org/10.1524/zkri.220.5.558.65066
http://dx.doi.org/10.1016/j.cpc.2011.12.006
http://dx.doi.org/10.1016/j.cpc.2011.12.006
http://dx.doi.org/10.1016/j.cpc.2011.12.006
http://dx.doi.org/10.1016/j.cpc.2011.12.006
http://dx.doi.org/10.1016/j.cpc.2012.09.018
http://dx.doi.org/10.1016/j.cpc.2012.09.018
http://dx.doi.org/10.1016/j.cpc.2012.09.018
http://dx.doi.org/10.1016/j.cpc.2012.09.018
http://dx.doi.org/10.1103/PhysRevB.74.035101
http://dx.doi.org/10.1103/PhysRevB.74.035101
http://dx.doi.org/10.1103/PhysRevB.74.035101
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevB.76.115109
http://dx.doi.org/10.1103/PhysRevB.76.115109
http://dx.doi.org/10.1103/PhysRevB.76.115109
http://dx.doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/10.1016/j.cpc.2009.02.003

Bibliography 69

[59] C. Friedrich, S. Bliigel, and A. Schindlmayr, Efficient implementation of the GW approxi-
mation within the all-electron FLAPW method, Phys. Rev. B 81, 125102 (2010).

[60] L. Martin-Samos and G. Bussi, SaX: An open source package for electronic-structure and
optical-properties calculations in the GW approximation, Comput. Phys. Commun. 180,
1416-1425 (2009).

[61] P. Umari, G. Stenuit, and S. Baroni, Optimal representation of the polarization propagator
for large-scale GW calculations, Phys. Rev. B 79, 201104 (2009).

[62] M. Usuda, N. Hamada, T. Kotani, and M. van Schilfgaarde, All-electron GW calculation
based on the LAPW method: Application to wurtzite ZnO, Phys. Rev. B 66, 125101 (2002).

[63] T. Kotani and M. van Schilfgaarde, All-electron GW approximation with the mixed basis
expansion based on the full-potential LMTO method, Solid State Comm. 121, 461465
(2002).

[64] B. Arnaud and M. Alouani, All-electron projector-augmented-wave GW approximation:
Application to the electronic properties of semiconductors, Phys. Rev. B 62, 4464 (2000).

[65] J. A. Berger, L. Reining, and F. Sottile, Efficient GW calculations for SnO,, ZnO, and
rubrene: The effective-energy technique, Phys. Rev. B 85, 085126 (2012).

[66] A. Kutepov, K. Haule, S. Y. Savrasov, and G. Kotliar, Electronic structure of Pu and Am
metals by self-consistent relativistic GW method, Phys. Rev. B 85, 155129 (2012).

[67] F. Aryasetiawan and O. Gunnarsson, The GW method, Rep. Prog. Phys. 61, 237 (1998).

[68] G. Onida, L. Reining, and A. Rubio, Electronic excitations: density-functional versus
many-body Green’s-function approaches, Rev. Mod. Phys. 74, 601 (2002).

[69] J. Lischner, S. Sharifzadeh, J. Deslippe, J. B. Neaton, and S. G. Louie, Effects of self-
consistency and plasmon-pole models on GW calculations for closed-shell molecules,
Phys. Rev. B 90, 115130 (2014).

[70] P. Umari, G. Stenuit, and S. Baroni, GW quasiparticle spectra from occupied states only,
Phys. Rev. B 81, 115104 (2010).

[71] M. J. van Setten, F. Caruso, S. Sharifzadeh, X. Ren, M. Scheffler, F. Liu, J. Lischner,
L. Lin, J. R. Deslippe, S. G. Louie, C. Yang, F. Weigend, J. B. Neaton, F. Evers, and
P. Rinke, GW100: Benchmarking GoW, for Molecular Systems, J. Chem. Theory Comput.
11, 5665-5687 (2015).

[72] The CP2K developers group, CP2K is freely available from: http://www.cp2k.org/ (2017).

[73] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, cp2k: atomistic simulations of
condensed matter systems, WIREs Comput. Mol. Sci. 4, 15-25 (2014).

[74] M. Del Ben, J. Hutter, and J. VandeVondele, Second-Order Mgpller—Plesset Perturbation
Theory in the Condensed Phase: An Efficient and Massively Parallel Gaussian and Plane
Waves Approach, J. Chem. Theory Comput. 8, 4177-4188 (2012).

[75] M. Del Ben, J. Hutter, and J. VandeVondele, Electron Correlation in the Condensed Phase
from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme,
J. Chem. Theory Comput. 9, 2654-2671 (2013).


http://dx.doi.org/10.1103/PhysRevB.81.125102
http://dx.doi.org/10.1103/PhysRevB.81.125102
http://dx.doi.org/10.1103/PhysRevB.81.125102
http://dx.doi.org/10.1016/j.cpc.2009.02.005
http://dx.doi.org/10.1016/j.cpc.2009.02.005
http://dx.doi.org/10.1016/j.cpc.2009.02.005
http://dx.doi.org/10.1016/j.cpc.2009.02.005
http://dx.doi.org/10.1103/PhysRevB.79.201104
http://dx.doi.org/10.1103/PhysRevB.79.201104
http://dx.doi.org/10.1103/PhysRevB.79.201104
http://dx.doi.org/10.1103/PhysRevB.84.205415
http://dx.doi.org/10.1103/PhysRevB.84.205415
http://dx.doi.org/10.1103/PhysRevB.84.205415
http://dx.doi.org/10.1016/S0038-1098(02)00028-5
http://dx.doi.org/10.1016/S0038-1098(02)00028-5
http://dx.doi.org/10.1016/S0038-1098(02)00028-5
http://dx.doi.org/10.1016/S0038-1098(02)00028-5
http://dx.doi.org/10.1103/PhysRevB.62.4464
http://dx.doi.org/10.1103/PhysRevB.62.4464
http://dx.doi.org/10.1103/PhysRevB.62.4464
http://dx.doi.org/10.1103/PhysRevB.85.085126
http://dx.doi.org/10.1103/PhysRevB.85.085126
http://dx.doi.org/10.1103/PhysRevB.85.085126
http://dx.doi.org/10.1103/PhysRevB.85.155129
http://dx.doi.org/10.1103/PhysRevB.85.155129
http://dx.doi.org/10.1103/PhysRevB.85.155129
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/PhysRevB.90.115130
http://dx.doi.org/10.1103/PhysRevB.90.115130
http://dx.doi.org/10.1103/PhysRevB.90.115130
http://dx.doi.org/10.1103/PhysRevB.81.115104
http://dx.doi.org/10.1103/PhysRevB.81.115104
http://dx.doi.org/10.1103/PhysRevB.81.115104
http://dx.doi.org/10.1021/acs.jctc.5b00453
http://dx.doi.org/10.1021/acs.jctc.5b00453
http://dx.doi.org/10.1021/acs.jctc.5b00453
http://www.cp2k.org/
http://dx.doi.org/10.1002/wcms.1159
http://dx.doi.org/10.1002/wcms.1159
http://dx.doi.org/10.1002/wcms.1159
http://dx.doi.org/10.1021/ct300531w
http://dx.doi.org/10.1021/ct300531w
http://dx.doi.org/10.1021/ct300531w
http://dx.doi.org/10.1021/ct4002202
http://dx.doi.org/10.1021/ct4002202
http://dx.doi.org/10.1021/ct4002202

70

Bibliography

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[87]

[88]

[89]

[90]

[91]

M. Del Ben, O. Schiitt, T. Wentz, P. Messmer, J. Hutter, and J. VandeVondele, Enabling
simulation at the fifth rung of DFT: Large scale RPA calculations with excellent time to
solution, Comput. Phys. Commun. 187, 120-129 (2015).

M. Del Ben, J. Hutter, and J. VandeVondele, Forces and stress in second order Mgpller-
Plesset perturbation theory for condensed phase systems within the resolution-of-identity
Gaussian and plane waves approach, J. Chem. Phys. 143, 102803 (2015).

M. Del Ben, M. Schonherr, J. Hutter, and J. VandeVondele, Bulk Liquid Water at Ambient
Temperature and Pressure from MP2 Theory, J. Phys. Chem. Lett. 4, 3753-3759 (2013).

M. Del Ben, M. Schonherr, J. Hutter, and J. VandeVondele, Correction to “Bulk Liquid
Water at Ambient Temperature and Pressure from MP2 Theory”, J. Phys. Chem. Lett. §,
3066-3067 (2014).

M. Del Ben, J. VandeVondele, and B. Slater, Periodic MP2, RPA, and Boundary Condition
Assessment of Hydrogen Ordering in Ice XV, J. Phys. Chem. Lett. 5, 41224128 (2014).

M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Libxc: A library of exchange and
correlation functionals for density functional theory, Comput. Phys. Commun. 183, 2272—
2281 (2012).

N. Marom, F. Caruso, X. Ren, O. T. Hofmann, T. Korzdorfer, J. R. Chelikowsky, A. Rubio,
M. Scheffler, and P. Rinke, Benchmark of GW methods for azabenzenes, Phys. Rev. B 86,
245127 (2012).

V. Atalla, M. Yoon, F. Caruso, P. Rinke, and M. Schefller, Hybrid density functional theory
meets quasiparticle calculations: A consistent electronic structure approach, Phys. Rev. B
88, 165122 (2013).

N. Marom, X. Ren, J. E. Moussa, J. R. Chelikowsky, and L. Kronik, Electronic structure
of copper phthalocyanine from GyW, calculations, Phys. Rev. B 84, 195143 (2011).

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable
parameters: The PBEO model, J. Chem. Phys. 110, 6158 (1999).

K. Okuno, Y. Shigeta, R. Kishi, H. Miyasaka, and M. Nakano, Tuned CAM-B3LYP func-
tional in the time-dependent density functional theory scheme for excitation energies and
properties of diarylethene derivatives, J. Photochem. Photobiol. A 235, 29 (2012).

http:/lcccbdb.nist.gov (accessed Jun 16, 2015).

R. Korytér, D. Xenioti, P. Schmitteckert, M. Alouani, and F. Evers, Signature of the Dirac
cone in the properties of linear oligoacenes, Nat. Commun. 5, 5000 (2014).

S. Kivelson and O. L. Chapman, Polyacene and a new class of quasi-one-dimensional
conductors, Phys. Rev. B 728, 7236 (1983).

H. Katauro, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba,
Optical Properties of Single-Wall Carbon Nanotubes, Synt. Met. 103, 2555-2558 (1999).

J.-C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes,
Rev. Mod. Phys. 79, 677 (2007).


http://dx.doi.org/10.1016/j.cpc.2014.10.021
http://dx.doi.org/10.1016/j.cpc.2014.10.021
http://dx.doi.org/10.1016/j.cpc.2014.10.021
http://dx.doi.org/10.1063/1.4919238
http://dx.doi.org/10.1063/1.4919238
http://dx.doi.org/10.1063/1.4919238
http://dx.doi.org/10.1021/jz401931f
http://dx.doi.org/10.1021/jz401931f
http://dx.doi.org/10.1021/jz401931f
http://dx.doi.org/10.1021/jz501672u
http://dx.doi.org/10.1021/jz501672u
http://dx.doi.org/10.1021/jz501672u
http://dx.doi.org/10.1021/jz501672u
http://dx.doi.org/10.1021/jz501985w
http://dx.doi.org/10.1021/jz501985w
http://dx.doi.org/10.1021/jz501985w
http://dx.doi.org/10.1016/j.cpc.2012.05.007
http://dx.doi.org/10.1016/j.cpc.2012.05.007
http://dx.doi.org/10.1016/j.cpc.2012.05.007
http://dx.doi.org/10.1016/j.cpc.2012.05.007
http://dx.doi.org/10.1103/PhysRevB.86.245127
http://dx.doi.org/10.1103/PhysRevB.86.245127
http://dx.doi.org/10.1103/PhysRevB.86.245127
http://dx.doi.org/10.1103/PhysRevB.86.245127
http://dx.doi.org/10.1103/PhysRevB.88.165122
http://dx.doi.org/10.1103/PhysRevB.88.165122
http://dx.doi.org/10.1103/PhysRevB.88.165122
http://dx.doi.org/10.1103/PhysRevB.84.195143
http://dx.doi.org/10.1103/PhysRevB.84.195143
http://dx.doi.org/10.1103/PhysRevB.84.195143
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1016/j.jphotochem.2012.03.003
http://dx.doi.org/10.1016/j.jphotochem.2012.03.003
http://dx.doi.org/10.1016/j.jphotochem.2012.03.003
http://cccbdb.nist.gov
http://dx.doi.org/10.1038/ncomms6000
http://dx.doi.org/10.1038/ncomms6000
http://dx.doi.org/10.1038/ncomms6000
http://dx.doi.org/10.1103/PhysRevB.28.7236
http://dx.doi.org/10.1103/PhysRevB.28.7236
http://dx.doi.org/10.1103/PhysRevB.28.7236
http://dx.doi.org/10.1016/S0379-6779(98)00278-1
http://dx.doi.org/10.1016/S0379-6779(98)00278-1
http://dx.doi.org/10.1016/S0379-6779(98)00278-1
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677

Bibliography 71

[92] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of
nanographite ribbons, Phys. Rev. B 59, 8271 (1999).

[93] M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy Band-Gap Engineering of
Graphene Nanoribbons, Phys. Rev. Lett. 98, 206805 (2007).

[94] J. Wilhelm, M. Walz, and F. Evers, Ab initio quantum transport through armchair graphene
nanoribbons: Streamlines in the current density, Phys. Rev. B 89, 195406 (2014).

[95] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The
electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).

[96] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made
Simple, Phys. Rev. Lett. 77, 3865 (1996).

[97] F. Plasser, H. Pasali¢, M. H. Gerzabek, F. Libisch, R. Reiter, J. Burgdorfer, T. Miiller,
R. Shepard, and H. Lischka, The Multiradical Character of One- and Two-Dimensional
Graphene Nanoribbons, Angew. Chem. Int. Ed. 52, 2581-2584 (2013).

[98] J. Hachmann, J. J. Dorando, M. Avilés, and G. K.-L. Chan, The radical character of the
acenes: A density matrix renormalization group study, J. Chem. Phys. 127, 134309 (2007).

[99] M. Bendikov, H. M. Dong, K. Starkey, K. N. Houk, E. A. Carter, and F. Wudl, Oligoacenes:
theoretical prediction of open-shell singlet diradical ground states, J. Am. Chem. Soc. 126,
7416-7417 (2004).

[100] B. Hajgato, D. Szieberth, P. Geerlings, F. De Proft, and M. S. Deleuze, A benchmark
theoretical study of the electronic ground state and of the singlet-triplet split of benzene
and linear acenes, J. Chem. Phys. 131, 224321 (2009).

[101] Z. Qu, D. Zhang, C. Liu, and Y. Jiang, Open-Shell Ground State of Polyacenes: A Valence
Bond Study, J. Phys. Chem. A 113, 79097914 (2009).

[102] E. S. Kadantsev, M. J. Stott, and A. Rubio, Electronic structure and excitations in
oligoacenes from ab initio calculations, J. Chem. Phys. 124, 134901 (2006).

[103] H. F. Bettinger, Electronic structure of higher acenes and polyacene: The perspective
developed by theoretical analyses, Pure Appl. Chem. 82, 905-915 (2010).

[104] G. Malloci, G. Cappellini, G. Mulas, and A. Mattoni, Electronic and optical properties
of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density
functional theory study, Chem. Phys. 384, 19-27 (2011).

[105] K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye,
D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani,
Y.-L. Loo, and T. Someya, Organic transistors with high thermal stability for medical
applications, Nat. Commun. 3, 723 (2012).

[106] Q. Miao, M. Lefenfeld, T.-Q. Nguyen, T. Siegrist, C. Kloc, and C. Nuckolls, Self-Assembly
and Electronics of Dipolar Linear Acenes, Adv. Mater. 17, 407-412 (2005).

[107] J. Shi and C. W. Tang, Anthracene derivatives for stable blue-emitting organic electrolu-
minescence devices, Appl. Phys. Lett. 80, 3201 (2002).


http://dx.doi.org/10.1103/PhysRevB.59.8271
http://dx.doi.org/10.1103/PhysRevB.59.8271
http://dx.doi.org/10.1103/PhysRevB.59.8271
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevB.89.195406
http://dx.doi.org/10.1103/PhysRevB.89.195406
http://dx.doi.org/10.1103/PhysRevB.89.195406
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1002/anie.201207671
http://dx.doi.org/10.1002/anie.201207671
http://dx.doi.org/10.1002/anie.201207671
http://dx.doi.org/10.1063/1.2768362
http://dx.doi.org/10.1063/1.2768362
http://dx.doi.org/10.1063/1.2768362
http://dx.doi.org/10.1021/ja048919w
http://dx.doi.org/10.1021/ja048919w
http://dx.doi.org/10.1021/ja048919w
http://dx.doi.org/10.1021/ja048919w
http://dx.doi.org/10.1063/1.3270190
http://dx.doi.org/10.1063/1.3270190
http://dx.doi.org/10.1063/1.3270190
http://dx.doi.org/10.1021/jp9015728
http://dx.doi.org/10.1021/jp9015728
http://dx.doi.org/10.1021/jp9015728
http://dx.doi.org/10.1063/1.2186999
http://dx.doi.org/10.1063/1.2186999
http://dx.doi.org/10.1063/1.2186999
http://dx.doi.org/10.1351/PAC-CON-09-10-29
http://dx.doi.org/10.1351/PAC-CON-09-10-29
http://dx.doi.org/10.1351/PAC-CON-09-10-29
http://dx.doi.org/10.1016/j.chemphys.2011.04.013
http://dx.doi.org/10.1016/j.chemphys.2011.04.013
http://dx.doi.org/10.1016/j.chemphys.2011.04.013
http://dx.doi.org/10.1038/ncomms1721
http://dx.doi.org/10.1038/ncomms1721
http://dx.doi.org/10.1038/ncomms1721
http://dx.doi.org/10.1002/adma.200401251
http://dx.doi.org/10.1002/adma.200401251
http://dx.doi.org/10.1002/adma.200401251
http://dx.doi.org/10.1063/1.1475361
http://dx.doi.org/10.1063/1.1475361
http://dx.doi.org/10.1063/1.1475361

72 Bibliography

[108] M. Zhu, T. Ye, C.-G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, Effi-
cient Solution-Processed Nondoped Deep-Blue Organic Light-Emitting Diodes Based on

Fluorene-Bridged Anthracene Derivatives Appended with Charge Transport Moieties, J.
Phys. Chem. C 115, 17965-17972 (2011).

[109] T. Yelin, R. Korytér, N. Sukenik, R. Vardimon, B. Kumar, C. Nuckolls, F. Evers, and O. Tal,
Conductance saturation in a series of highly transmitting molecular junctions, Nat. Mater.
15, 1476 (2016).

[110] B. Kippelen and J.-L. Bredas, Organic photovoltaics, Energy Environ. Sci. 2, 251-261
(2009).

[111] Y. Lin, Y. Li, and X. Zhan, Small molecule semiconductors for high-efficiency organic
photovoltaics, Chem. Soc. Rev. 41, 4245-4272 (2012).

[112] D. M. N. M. Dissanayake, A. A. D. T. Adikaari, and S. R. P. Silva, Enhanced photovoltaic
performance in nanoimprinted pentacene-PbS nanocrystal hybrid device, Appl. Phys. Lett
92, 093308 (2008).

[113] L. Huang, D. Rocca, S. Baroni, K. E. Gubbins, and M. B. Nardelli, Molecular design of
photoactive acenes for organic photovoltaics, J. Chem. Phys. 130, 194701 (2009).

[114] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, McGraw-Hill (1989).

[115] M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele, Ab initio molecular dynamics
using hybrid density functionals, J. Chem. Phys. 128, 214104 (2008).

[116] M. Guidon, J. Hutter, and J. VandeVondele, Robust Periodic Hartree-Fock Exchange for
Large-Scale Simulations Using Gaussian Basis Sets, J. Chem. Theory Comput. 5, 3010—
3021 (2009).

[117] J.Paier, C. V. Diaconu, G. E. Scuseria, M. Guidon, J. VandeVondele, and J. Hutter, Accurate
Hartree-Fock energy of extended systems using large Gaussian basis sets, Phys. Rev. B 80,
174114 (2009).

[118] J. L. Whitten, Coulombic potential energy integrals and approximations, J. Chem. Phys.
58, 4496 (1973).

[119] B. I Dunlap, J. W. D. Connolly, and J. R. Sabin, On some approximations in applications
of Xa theory, J. Chem. Phys. 71, 3396 (1979).

[120] O. Vahtras, J. Almlof, and M. Feyereisen, Integral approximations for LCAO-SCF calcu-
lations, Chem. Phys. Lett. 213, 514-518 (1993).

[121] F. Weigend, M. Hiser, H. Patzelt, and R. Ahlrichs, RI-MP2: optimized auxiliary basis sets
and demonstration of efficiency, Chem. Phys. Lett. 294, 143-152 (1998).

[122] J. P. Boyd, Exponentially convergent Fourier/Chebyshev quadrature schemes on bounded
and infinite intervals, J. Sci. Comput. 2, 99-109 (1987).

[123] H. Eshuis, J. Yarkony, and F. Furche, Fast computation of molecular random phase ap-
proximation correlation energies using resolution of the identity and imaginary frequency
integration, J. Chem. Phys. 132, 234114 (2010).


http://dx.doi.org/10.1021/jp203892q
http://dx.doi.org/10.1021/jp203892q
http://dx.doi.org/10.1021/jp203892q
http://dx.doi.org/10.1021/jp203892q
http://dx.doi.org/10.1038/nmat4552
http://dx.doi.org/10.1038/nmat4552
http://dx.doi.org/10.1038/nmat4552
http://dx.doi.org/10.1039/B812502N
http://dx.doi.org/10.1039/B812502N
http://dx.doi.org/10.1039/B812502N
http://dx.doi.org/10.1039/B812502N
http://dx.doi.org/10.1039/C2CS15313K
http://dx.doi.org/10.1039/C2CS15313K
http://dx.doi.org/10.1039/C2CS15313K
http://dx.doi.org/10.1063/1.2890848
http://dx.doi.org/10.1063/1.2890848
http://dx.doi.org/10.1063/1.2890848
http://dx.doi.org/10.1063/1.3133361
http://dx.doi.org/10.1063/1.3133361
http://dx.doi.org/10.1063/1.3133361
http://dx.doi.org/10.1063/1.2931945
http://dx.doi.org/10.1063/1.2931945
http://dx.doi.org/10.1063/1.2931945
http://dx.doi.org/10.1021/ct900494g
http://dx.doi.org/10.1021/ct900494g
http://dx.doi.org/10.1021/ct900494g
http://dx.doi.org/10.1021/ct900494g
http://dx.doi.org/10.1103/PhysRevB.80.174114
http://dx.doi.org/10.1103/PhysRevB.80.174114
http://dx.doi.org/10.1103/PhysRevB.80.174114
http://dx.doi.org/10.1103/PhysRevB.80.174114
http://dx.doi.org/10.1063/1.1679012
http://dx.doi.org/10.1063/1.1679012
http://dx.doi.org/10.1063/1.1679012
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1016/0009-2614(93)89151-7
http://dx.doi.org/10.1016/0009-2614(93)89151-7
http://dx.doi.org/10.1016/0009-2614(93)89151-7
http://dx.doi.org/10.1016/S0009-2614(98)00862-8
http://dx.doi.org/10.1016/S0009-2614(98)00862-8
http://dx.doi.org/10.1016/S0009-2614(98)00862-8
http://dx.doi.org/10.1007/BF01061480
http://dx.doi.org/10.1007/BF01061480
http://dx.doi.org/10.1007/BF01061480
http://dx.doi.org/10.1063/1.3442749
http://dx.doi.org/10.1063/1.3442749
http://dx.doi.org/10.1063/1.3442749

Bibliography 73

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

M. M. Rieger, L. Steinbeck, I. White, H. Rojas, and R. Godby, The GW space-time method

for the self-energy of large systems, Comput. Phys. Commun. 117, 211-228 (1999).

T. A. Pham, H.-V. Nguyen, D. Rocca, and G. Galli, GW calculations using the spectral de-

composition of the dielectric matrix: Verification, validation, and comparison of methods,
Phys. Rev. B 87, 155148 (2013).

C. Friedrich, M. Betzinger, M. Schlipf, S. Bliigel, and A. Schindlmayr, Hybrid function-
als and GW approximation in the FLAPW method, J. Phys. Condens. Matter 24, 293201
(2012).

J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Quick-
step: Fast and accurate density functional calculations using a mixed Gaussian and plane
waves approach, Comput. Phys. Commun. 167, 103—128 (2005).

J. VandeVondele and J. Hutter, An efficient orbital transformation method for electronic
structure calculations, J. Chem. Phys 118, 4365 (2003).

U. Borstnik, J. VandeVondele, V. Weber, and J. Hutter, Sparse matrix multiplication: The
distributed block-compressed sparse row library, Parallel Comput. 40, 47-58 (2014).

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials,
Phys. Rev. B 54, 1703 (1996).

M. Krack, Pseudopotentials for H to Kr optimized for gradient-corrected exchange-
correlation functionals, Theor. Chem. Acc. 114, 145-152 (2005).

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation
energies for local spin density calculations: a critical analysis, Can. J. Phys. §8, 1200—
1211 (1980).

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. 1. The
atoms boron through neon and hydrogen, J. Chem. Phys. 90, 1007 (1989).

D. E. Woon and T. H. Dunning, Gaussian basis sets for use in correlated molecular calcu-
lations. II1. The atoms aluminum through argon, J. Chem. Phys. 98, 1358 (1993).

J. VandeVondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular
systems in gas and condensed phases, J. Chem. Phys. 127, 114105 (2007).

F. Weigend, A. Kohn, and C. Hittig, Efficient use of the correlation consistent basis sets in
resolution of the identity MP2 calculations, J. Chem. Phys. 116, 3175 (2002).

L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, and G. Beylkin, Efficient solution of
Poisson’s equation with free boundary conditions, J. Chem. Phys. 125, 074105 (2006).

M. Guidon, J. Hutter, and J. VandeVondele, Auxiliary Density Matrix Methods for Hartree-
Fock Exchange Calculations, J. Chem. Theory Comput. 6, 2348-2364 (2010).

P. Merlot, R. Izsdk, A. Borgoo, T. Kjergaard, T. Helgaker, and S. Reine, Charge-
constrained auxiliary-density-matrix methods for the Hartree-Fock exchange contribution,
J. Chem. Phys. 141, 094104 (2014).


http://dx.doi.org/10.1016/S0010-4655(98)00174-X
http://dx.doi.org/10.1016/S0010-4655(98)00174-X
http://dx.doi.org/10.1016/S0010-4655(98)00174-X
http://dx.doi.org/10.1103/PhysRevB.87.155148
http://dx.doi.org/10.1103/PhysRevB.87.155148
http://dx.doi.org/10.1103/PhysRevB.87.155148
http://dx.doi.org/10.1088/0953-8984/24/29/293201
http://dx.doi.org/10.1088/0953-8984/24/29/293201
http://dx.doi.org/10.1088/0953-8984/24/29/293201
http://dx.doi.org/10.1088/0953-8984/24/29/293201
http://dx.doi.org/10.1016/j.cpc.2004.12.014
http://dx.doi.org/10.1016/j.cpc.2004.12.014
http://dx.doi.org/10.1016/j.cpc.2004.12.014
http://dx.doi.org/10.1063/1.1543154
http://dx.doi.org/10.1063/1.1543154
http://dx.doi.org/10.1063/1.1543154
http://dx.doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1007/s00214-005-0655-y
http://dx.doi.org/10.1007/s00214-005-0655-y
http://dx.doi.org/10.1007/s00214-005-0655-y
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.464303
http://dx.doi.org/10.1063/1.464303
http://dx.doi.org/10.1063/1.464303
http://dx.doi.org/10.1063/1.2770708
http://dx.doi.org/10.1063/1.2770708
http://dx.doi.org/10.1063/1.2770708
http://dx.doi.org/10.1063/1.1445115
http://dx.doi.org/10.1063/1.1445115
http://dx.doi.org/10.1063/1.1445115
http://dx.doi.org/10.1063/1.2335442
http://dx.doi.org/10.1063/1.2335442
http://dx.doi.org/10.1063/1.2335442
http://dx.doi.org/10.1021/ct1002225
http://dx.doi.org/10.1021/ct1002225
http://dx.doi.org/10.1021/ct1002225
http://dx.doi.org/10.1063/1.4894267
http://dx.doi.org/10.1063/1.4894267
http://dx.doi.org/10.1063/1.4894267

74 Bibliography

[140] G. Nemeth, H. Selzle, and E. Schlag, Magnetic ZEKE experiments with mass analysis,
Chem. Phys. Lett. 215, 151-155 (1993).

[141] T. Yanai, D. P. Tew, and N. C. Handy, A new hybrid exchange—correlation functional using
the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393, 51-57 (2004).

[142] G. Bieri, L. Asbrink, and W. J. Niessen, 30.4-nm He (1) photoelectron spectra of organic
molecules: Part VII. Miscellaneous compounds, J. Electron. Spectrosc. Relat. Phenom. 27,
129-178 (1982).

[143] L. Gallandi and T. Korzdorfer, Long-Range Corrected DFT Meets GW: Vibrationally Re-
solved Photoelectron Spectra from First Principles, J. Chem. Theory Comput. 11, 5391-
5400 (2015).

[144] K. Krause, M. E. Harding, and W. Klopper, Coupled-cluster reference values for the GW27
and GW100 test sets for the assessment of GW methods, Mol. Phys. 113, 1952-1960 (2015).

[145] M. Del Ben, R. W. A. Havenith, R. Broer, and M. Stener, Density Functional Study on the
Morphology and Photoabsorption of CdSe Nanoclusters, J. Phys. Chem. C 115, 16782-
16796 (2011).

[146] C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly
monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am.

Chem. Soc. 115, 8706-8715 (1993).

[147] M. M. Sigalas, E. N. Koukaras, and A. D. Zdetsis, Size dependence of the structural,
electronic, and optical properties of (CdSe),, n = 6 — 60, nanocrystals, RSC Adv. 4, 14613—
14623 (2014).

[148] A. Puzder, A. J. Williamson, F. Gygi, and G. Galli, Self-Healing of CdSe Nanocrystals:
First-Principles Calculations, Phys. Rev. Lett. 92, 217401 (2004).

[149] S. Kilina, S. Ivanov, and S. Tretiak, Effect of Surface Ligands on Optical and Electronic
Spectra of Semiconductor Nanoclusters, J. Am. Chem. Soc. 131, 7717-7726 (2009).

[150] M. L. del Puerto, M. L. Tiago, and J. R. Chelikowsky, Excitonic Effects and Optical Prop-
erties of Passivated CdSe Clusters, Phys. Rev. Lett. 97, 096401 (2006).

[151] T. M. Inerbaev, A. E. Masunov, S. I. Khondaker, A. Dobrinescu, A.-V. Plamada, and
Y. Kawazoe, Quantum chemistry of quantum dots: Effects of ligands and oxidation,
J. Chem. Phys. 131, 044106 (2009).

[152] A. E. Kuznetsov and D. N. Beratan, Structural and Electronic Properties of Bare and
Capped Cds;Ses; and Cdss;Tes; Quantum Dots, J. Phys. Chem. C 118, 7094-7109 (2014).

[153] S. A.Fischer, A. M. Crotty, S. V. Kilina, S. A. Ivanov, and S. Tretiak, Passivating ligand and
solvent contributions to the electronic properties of semiconductor nanocrystals, Nanoscale
4,904-914 (2012).

[154] P. Deglmann, R. Ahlrichs, and K. Tsereteli, Theoretical studies of ligand-free cadmium
selenide and related semiconductor clusters, J. Chem. Phys. 116, 1585 (2002).


http://dx.doi.org/10.1016/0009-2614(93)89279-Q
http://dx.doi.org/10.1016/0009-2614(93)89279-Q
http://dx.doi.org/10.1016/0009-2614(93)89279-Q
http://dx.doi.org/10.1016/j.cplett.2004.06.011
http://dx.doi.org/10.1016/j.cplett.2004.06.011
http://dx.doi.org/10.1016/j.cplett.2004.06.011
http://dx.doi.org/10.1016/0368-2048(82)85059-7
http://dx.doi.org/10.1016/0368-2048(82)85059-7
http://dx.doi.org/10.1016/0368-2048(82)85059-7
http://dx.doi.org/10.1016/0368-2048(82)85059-7
http://dx.doi.org/10.1021/acs.jctc.5b00820
http://dx.doi.org/10.1021/acs.jctc.5b00820
http://dx.doi.org/10.1021/acs.jctc.5b00820
http://dx.doi.org/10.1021/acs.jctc.5b00820
http://dx.doi.org/10.1080/00268976.2015.1025113
http://dx.doi.org/10.1080/00268976.2015.1025113
http://dx.doi.org/10.1080/00268976.2015.1025113
http://dx.doi.org/10.1021/jp203686a
http://dx.doi.org/10.1021/jp203686a
http://dx.doi.org/10.1021/jp203686a
http://dx.doi.org/10.1021/jp203686a
http://dx.doi.org/10.1021/ja00072a025
http://dx.doi.org/10.1021/ja00072a025
http://dx.doi.org/10.1021/ja00072a025
http://dx.doi.org/10.1021/ja00072a025
http://dx.doi.org/10.1039/C4RA00966E
http://dx.doi.org/10.1039/C4RA00966E
http://dx.doi.org/10.1039/C4RA00966E
http://dx.doi.org/10.1039/C4RA00966E
http://dx.doi.org/10.1103/PhysRevLett.92.217401
http://dx.doi.org/10.1103/PhysRevLett.92.217401
http://dx.doi.org/10.1103/PhysRevLett.92.217401
http://dx.doi.org/10.1021/ja9005749
http://dx.doi.org/10.1021/ja9005749
http://dx.doi.org/10.1021/ja9005749
http://dx.doi.org/10.1103/PhysRevLett.97.096401
http://dx.doi.org/10.1103/PhysRevLett.97.096401
http://dx.doi.org/10.1103/PhysRevLett.97.096401
http://dx.doi.org/10.1063/1.3135193
http://dx.doi.org/10.1063/1.3135193
http://dx.doi.org/10.1063/1.3135193
http://dx.doi.org/10.1021/jp4007747
http://dx.doi.org/10.1021/jp4007747
http://dx.doi.org/10.1021/jp4007747
http://dx.doi.org/10.1039/C2NR11398H
http://dx.doi.org/10.1039/C2NR11398H
http://dx.doi.org/10.1039/C2NR11398H
http://dx.doi.org/10.1063/1.1427718
http://dx.doi.org/10.1063/1.1427718
http://dx.doi.org/10.1063/1.1427718

Bibliography 75

[155] M. Yu, G. W. Fernando, R. Li, F. Papadimitrakopoulos, N. Shi, and R. Ramprasad, First
principles study of CdSe quantum dots: Stability, surface unsaturations, and experimental
validation, Appl. Phys. Lett. 88, 231910 (2006).

[156] A. Kasuya, R. Sivamohan, Y. A. Barnakov, I. M. Dmitruk, T. Nirasawa, V. R. Romanyuk,
V. Kumar, S. V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu,
R. V. Belosludov, and Y. Sundararajan, Vand Kawazoe, Ultra-stable nanoparticles of CdSe
revealed from mass spectrometry, Nat. Mater. 3, 99 (2004).

[157] M. Sola, Forty years of Clar’s aromatic n-sextet rule, Front. Chem. 1, 22 (2013).

[158] Z. Sun, Z. Zeng, and J. Wu, Benzenoid Polycyclic Hydrocarbons with an Open—Shell
Biradical Ground State, Chem. Asian J. 8, 2894-2904 (2013).

[159] 1. Kaur, M. Jazdzyk, N. N. Stein, P. Prusevich, and G. P. Miller, Design, Synthesis, and
Characterization of a Persistent Nonacene Derivative, J. Am. Chem. Soc. 132, 1261-1263
(2010).

[160] T.Rangel, K. Berland, S. Sharifzadeh, F. Brown-Altvater, K. Lee, P. Hyldgaard, L. Kronik,
and J. B. Neaton, Structural and excited-state properties of oligoacene crystals from first
principles, Phys. Rev. B 93, 115206 (2016).

[161] F. Kaplan, M. E. Harding, C. Seiler, F. Weigend, F. Evers, and M. J. van Setten, Quasi-
Farticle Self-Consistent GW for Molecules, J. Chem. Theory Comput. 12, 2528-2541
(2016).

[162] T.Rangel, S. M. Hamed, F. Bruneval, and J. B. Neaton, Evaluating the GW Approximation
with CCSD(T) for Charged Excitations Across the Oligoacenes, J. Chem. Theory. Comput.
12, 2834-2842 (2016).

[163] J. Wilhelm and J. Hutter, Periodic GW calculations in the Gaussian and Plane Waves
Scheme, Phys. Rev. B (2017).

[164] C. Rostgaard, K. W. Jacobsen, and K. S. Thygesen, Fully self-consistent GW calculations
for molecules, Phys. Rev. B 81, 085103 (2010).

[165] F. Caruso, M. Dauth, M. J. van Setten, and P. Rinke, Benchmark of GW Approaches for the
GWI00 Test Set, J. Chem. Theory Comput. 12, 50765087 (2016).

[166] P. Scherpelz, M. Govoni, I. Hamada, and G. Galli, Implementation and Validation of
Fully Relativistic GW Calculations: Spin—Orbit Coupling in Molecules, Nanocrystals, and
Solids, J. Chem. Theory Comput. 12, 3523-3544 (2016).

[167] F. Bruneval, Optimized virtual orbital subspace for faster GW calculations in localized
basis, J. Chem. Phys. 145, 234110 (2016).

[168] M. Shao, L. Lin, C. Yang, F. Liu, F. H. Da Jornada, J. Deslippe, and S. G. Louie, Sci. China
Math. 59, 1593-1612 (2016).

[169] H.-V. Nguyen, T. A. Pham, D. Rocca, and G. Galli, Improving accuracy and efficiency
of calculations of photoemission spectra within the many-body perturbation theory, Phys.
Rev. B 85, 081101 (2012).


http://dx.doi.org/10.1063/1.2209195
http://dx.doi.org/10.1063/1.2209195
http://dx.doi.org/10.1063/1.2209195
http://dx.doi.org/10.1038/nmat1056
http://dx.doi.org/10.1038/nmat1056
http://dx.doi.org/10.1038/nmat1056
http://dx.doi.org/10.3389/fchem.2013.00022
http://dx.doi.org/10.3389/fchem.2013.00022
http://dx.doi.org/10.3389/fchem.2013.00022
http://dx.doi.org/10.1002/asia.201300560
http://dx.doi.org/10.1002/asia.201300560
http://dx.doi.org/10.1002/asia.201300560
http://dx.doi.org/10.1021/ja9095472
http://dx.doi.org/10.1021/ja9095472
http://dx.doi.org/10.1021/ja9095472
http://dx.doi.org/10.1021/ja9095472
http://dx.doi.org/10.1103/PhysRevB.93.115206
http://dx.doi.org/10.1103/PhysRevB.93.115206
http://dx.doi.org/10.1103/PhysRevB.93.115206
http://dx.doi.org/10.1021/acs.jctc.5b01238
http://dx.doi.org/10.1021/acs.jctc.5b01238
http://dx.doi.org/10.1021/acs.jctc.5b01238
http://dx.doi.org/10.1021/acs.jctc.5b01238
http://dx.doi.org/10.1021/acs.jctc.6b00163
http://dx.doi.org/10.1021/acs.jctc.6b00163
http://dx.doi.org/10.1021/acs.jctc.6b00163
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1021/acs.jctc.6b00774
http://dx.doi.org/10.1021/acs.jctc.6b00774
http://dx.doi.org/10.1021/acs.jctc.6b00774
http://dx.doi.org/10.1021/acs.jctc.6b00114
http://dx.doi.org/10.1021/acs.jctc.6b00114
http://dx.doi.org/10.1021/acs.jctc.6b00114
http://dx.doi.org/10.1063/1.4972003
http://dx.doi.org/10.1063/1.4972003
http://dx.doi.org/10.1063/1.4972003
http://dx.doi.org/10.1007/s11425-016-0296-x
http://dx.doi.org/10.1007/s11425-016-0296-x
http://dx.doi.org/10.1007/s11425-016-0296-x
http://dx.doi.org/10.1007/s11425-016-0296-x
http://dx.doi.org/10.1103/PhysRevB.85.081101
http://dx.doi.org/10.1103/PhysRevB.85.081101
http://dx.doi.org/10.1103/PhysRevB.85.081101
http://dx.doi.org/10.1103/PhysRevB.85.081101

76 Bibliography

[170] Y. Ping, D. Rocca, and G. Galli, Electronic excitations in light absorbers for photoelectro-

chemical energy conversion: first principles calculations based on many body perturbation
theory, Chem. Soc. Rev. 42, 2437-2469 (2013).

[171] F. Giustino, M. L. Cohen, and S. G. Louie, GW method with the self-consistent Sternheimer
equation, Phys. Rev. B 81, 115105 (2010).

[172] A. P. Gaiduk, M. Govoni, R. Seidel, J. H. Skone, B. Winter, and G. Galli, Photoelectron
Spectra of Aqueous Solutions from First Principles, J. Am. Chem. Soc. 138, 6912-6915
(2016).

[173] D. Opalka, T. A. Pham, M. Sprik, and G. Galli, Electronic Energy Levels and Band Align-
ment for Aqueous Phenol and Phenolate from First Principles, J. Phys. Chem. B 119,
9651-9660 (2015).

[174] D. Opalka, T. Pham, M. Sprik, and G. Galli, The ionization potential of aqueous hydroxide
computed using many-body perturbation theory, J. Chem. Phys. 141, 034501 (2014).

[175] F. Bruneval, T. Rangel, S. M. Hamed, M. Shao, C. Yang, and J. B. Neaton, molgw I:
Many-body perturbation theory software for atoms, molecules, and clusters, Comp. Phys.
Comm. 208, 149-161 (2016).

[176] M. Rohlfing, P. Kriiger, and J. Pollmann, Quasiparticle band-structure calculations for C,
Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets, Phys. Rev. B 48, 17791-17805
(1993).

[177] M. Rohlfing, P. Kriiger, and J. Pollmann, Efficient scheme for GW quasiparticle band-
structure calculations with applications to bulk Si and to the Si(001)-(2x1) surface, Phys.
Rev. B 52, 1905-1917 (1995).

[178] T.Rangel, S. M. Hamed, F. Bruneval, and J. B. Neaton, Evaluating the GW Approximation
with CCSD(T) for Charged Excitations Across the Oligoacenes, J. Chem. Theory Comput.
12, 2834-2842 (2016).

[179] N.Marom, T. Korzdorfer, X. Ren, A. Tkatchenko, and J. R. Chelikowsky, Size effects in the
interface level alignment of dye-sensitized TiO2 clusters, J. Phys. Chem. Lett. 5, 2395-2401
(2014).

[180] N. Marom, Accurate description of the electronic structure of organic semiconductors by
GW methods, J. Phys. Condens. Matter 29, 103003 (2017).

[181] C. Faber, I. Duchemin, T. Deutsch, and X. Blase, Many-body Green’s function study of
coumarins for dye-sensitized solar cells, Phys. Rev. B 86, 155315 (2012).

[182] X. Leng, J. Feng, T. Chen, C. Liu, and Y. Ma, Optical properties of acene molecules and

pentacene crystal from the many-body Green’s function method, Phys. Chem. Chem. Phys.
18, 30777-30784 (2016).

[183] E. Maggio, P. Liu, M. J. van Setten, and G. Kresse, GW100: A Plane Wave Perspective for
Small Molecules, J. Chem. Theory Comput. 13, 635-648 (2017).

[184] C.Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr, R. W. Godby, and M. Schefller, Dielectric
anisotropy in the GW space—time method, Comp. Phys. Comm. 176, 1-13 (2007).


http://dx.doi.org/10.1039/C3CS00007A
http://dx.doi.org/10.1039/C3CS00007A
http://dx.doi.org/10.1039/C3CS00007A
http://dx.doi.org/10.1103/PhysRevB.81.115105
http://dx.doi.org/10.1103/PhysRevB.81.115105
http://dx.doi.org/10.1103/PhysRevB.81.115105
http://dx.doi.org/10.1021/jacs.6b00225
http://dx.doi.org/10.1021/jacs.6b00225
http://dx.doi.org/10.1021/jacs.6b00225
http://dx.doi.org/10.1021/jacs.6b00225
http://dx.doi.org/10.1021/acs.jpcb.5b04189
http://dx.doi.org/10.1021/acs.jpcb.5b04189
http://dx.doi.org/10.1021/acs.jpcb.5b04189
http://dx.doi.org/10.1021/acs.jpcb.5b04189
http://dx.doi.org/10.1063/1.4887259
http://dx.doi.org/10.1063/1.4887259
http://dx.doi.org/10.1063/1.4887259
http://dx.doi.org/10.1016/j.cpc.2016.06.019
http://dx.doi.org/10.1016/j.cpc.2016.06.019
http://dx.doi.org/10.1016/j.cpc.2016.06.019
http://dx.doi.org/10.1016/j.cpc.2016.06.019
http://dx.doi.org/10.1103/PhysRevB.48.17791
http://dx.doi.org/10.1103/PhysRevB.48.17791
http://dx.doi.org/10.1103/PhysRevB.48.17791
http://dx.doi.org/10.1103/PhysRevB.48.17791
http://dx.doi.org/10.1103/PhysRevB.52.1905
http://dx.doi.org/10.1103/PhysRevB.52.1905
http://dx.doi.org/10.1103/PhysRevB.52.1905
http://dx.doi.org/10.1103/PhysRevB.52.1905
http://dx.doi.org/10.1021/acs.jctc.6b00163
http://dx.doi.org/10.1021/acs.jctc.6b00163
http://dx.doi.org/10.1021/acs.jctc.6b00163
http://dx.doi.org/10.1021/jz5008356
http://dx.doi.org/10.1021/jz5008356
http://dx.doi.org/10.1021/jz5008356
http://dx.doi.org/10.1021/jz5008356
http://dx.doi.org/10.1088/1361-648X/29/10/103003
http://dx.doi.org/10.1088/1361-648X/29/10/103003
http://dx.doi.org/10.1088/1361-648X/29/10/103003
http://dx.doi.org/10.1103/PhysRevB.86.155315
http://dx.doi.org/10.1103/PhysRevB.86.155315
http://dx.doi.org/10.1103/PhysRevB.86.155315
http://dx.doi.org/10.1039/C6CP05902C
http://dx.doi.org/10.1039/C6CP05902C
http://dx.doi.org/10.1039/C6CP05902C
http://dx.doi.org/10.1021/acs.jctc.6b01150
http://dx.doi.org/10.1021/acs.jctc.6b01150
http://dx.doi.org/10.1021/acs.jctc.6b01150
http://dx.doi.org/10.1016/j.cpc.2006.07.018
http://dx.doi.org/10.1016/j.cpc.2006.07.018
http://dx.doi.org/10.1016/j.cpc.2006.07.018

Bibliography 77

[185] J. McClain, Q. Sun, G. K.-L. Chan, and T. C. Berkelbach, Gaussian-Based Coupled-Cluster
Theory for the Ground-State and Band Structure of Solids, J. Chem. Theory Comput. 13,
1209-1218 (2017).

[186] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. McClain,
S. Sharma, S. Wouters, et al., The Python-based Simulations of Chemistry Framework
(PySCF), arXiv preprint arXiv:1701.08223 (2017).

[187] F. Gygi and A. Baldereschi, Self-consistent Hartree-Fock and screened-exchange calcula-
tions in solids: Application to silicon, Phys. Rev. B 34, 4405—4408 (1986).

[188] J. Spencer and A. Alavi, Efficient calculation of the exact exchange energy in periodic
systems using a truncated Coulomb potential, Phys. Rev. B 77, 193110 (2008).

[189] R. Sundararaman and T. A. Arias, Regularization of the Coulomb singularity in exact
exchange by Wigner-Seitz truncated interactions: Towards chemical accuracy in nontrivial

systems, Phys. Rev. B 87, 165122 (2013).

[190] T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Quasiparticle self-consistent GW method:
A basis for the independent-particle approximation, Phys. Rev. B 76, 165106 (2007).

[191] A. Yamasaki and T. Fujiwara, Electronic Structure of Transition Metals Fe, Ni and Cu in
the GW Approximation, J. Phys. Soc. Jpn. 72, 607-610 (2003).

[192] M. Gajdos, K. Hummer, G. Kresse, J. Furthmiiller, and F. Bechstedt, Linear optical prop-
erties in the projector-augmented wave methodology, Phys. Rev. B 73, 045112 (2006).

[193] J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, Linear density response
function in the projector augmented wave method: Applications to solids, surfaces, and
interfaces, Phys. Rev. B 83, 245122 (2011).

[194] S. Baroni and R. Resta, Ab initio calculation of the macroscopic dielectric constant in
silicon, Phys. Rev. B 33, 7017-7021 (1986).

[195] J. Wilhelm, P. Seewald, M. Del Ben, and J. Hutter, Large-Scale Cubic-Scaling Random
Phase Approximation Correlation Energy Calculations Using a Gaussian Basis, J. Chem.
Theory Comput. 12, 5851-5859 (2016).

[196] P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys.
369, 253-287 (1921).

[197] V. V. Rybkin and J. VandeVondele, Spin-Unrestricted Second-Order Mpller-Plesset (MP2)
Forces for the Condensed Phase: From Molecular Radicals to F-Centers in Solids, J.
Chem. Theory Comput. 12, 2214-2223 (2016).

[198] C. Spreafico and J. VandeVondele, The nature of excess electrons in anatase and rutile from
hybrid DFT and RPA, Phys. Chem. Chem. Phys. 16, 26144-26152 (2014).

[199] J. Cheng and J. VandeVondele, Calculation of Electrochemical Energy Levels in Water
Using the Random Phase Approximation and a Double Hybrid Functional, Phys. Rev.

Lett. 116, 086402 (2016).

[200] C. Spreafico and J. VandeVondele, Excess Electrons and Interstitial Li Atoms in TiO,
Anatase: Properties of the (101) Interface, J. Phys. Chem. C 119, 15009-15018 (2015).


http://dx.doi.org/10.1021/acs.jctc.7b00049
http://dx.doi.org/10.1021/acs.jctc.7b00049
http://dx.doi.org/10.1021/acs.jctc.7b00049
http://dx.doi.org/10.1021/acs.jctc.7b00049
http://dx.doi.org/10.1103/PhysRevB.34.4405
http://dx.doi.org/10.1103/PhysRevB.34.4405
http://dx.doi.org/10.1103/PhysRevB.34.4405
http://dx.doi.org/10.1103/PhysRevB.77.193110
http://dx.doi.org/10.1103/PhysRevB.77.193110
http://dx.doi.org/10.1103/PhysRevB.77.193110
http://dx.doi.org/10.1103/PhysRevB.87.165122
http://dx.doi.org/10.1103/PhysRevB.87.165122
http://dx.doi.org/10.1103/PhysRevB.87.165122
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1143/JPSJ.72.607
http://dx.doi.org/10.1143/JPSJ.72.607
http://dx.doi.org/10.1143/JPSJ.72.607
http://dx.doi.org/10.1103/PhysRevB.73.045112
http://dx.doi.org/10.1103/PhysRevB.73.045112
http://dx.doi.org/10.1103/PhysRevB.73.045112
http://dx.doi.org/10.1103/PhysRevB.83.245122
http://dx.doi.org/10.1103/PhysRevB.83.245122
http://dx.doi.org/10.1103/PhysRevB.83.245122
http://dx.doi.org/10.1103/PhysRevB.33.7017
http://dx.doi.org/10.1103/PhysRevB.33.7017
http://dx.doi.org/10.1103/PhysRevB.33.7017
http://dx.doi.org/10.1021/acs.jctc.6b00840
http://dx.doi.org/10.1021/acs.jctc.6b00840
http://dx.doi.org/10.1021/acs.jctc.6b00840
http://dx.doi.org/10.1021/acs.jctc.6b00840
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1021/acs.jctc.6b00015
http://dx.doi.org/10.1021/acs.jctc.6b00015
http://dx.doi.org/10.1021/acs.jctc.6b00015
http://dx.doi.org/10.1021/acs.jctc.6b00015
http://dx.doi.org/10.1039/c4cp03981e
http://dx.doi.org/10.1039/c4cp03981e
http://dx.doi.org/10.1039/c4cp03981e
http://dx.doi.org/10.1103/PhysRevLett.116.086402
http://dx.doi.org/10.1103/PhysRevLett.116.086402
http://dx.doi.org/10.1103/PhysRevLett.116.086402
http://dx.doi.org/10.1103/PhysRevLett.116.086402
http://dx.doi.org/10.1021/acs.jpcc.5b04103
http://dx.doi.org/10.1021/acs.jpcc.5b04103
http://dx.doi.org/10.1021/acs.jpcc.5b04103

78 Bibliography

[201] M. J. McGrath, J. I. Siepmann, I.-F. Kuo, and C. J. Mundy, Spatial correlation of dipole
Sfluctuations in liquid water, Mol. Phys. 105, 1411-1417 (2007).

[202] M. J. McGrath, J. N. Ghogomu, C. J. Mundy, 1.-F. W. Kuo, and J. I. Siepmann, First
principles Monte Carlo simulations of aggregation in the vapor phase of hydrogen fluoride,
Phys. Chem. Chem. Phys. 12, 7678-7687 (2010).

[203] S. Luber, M. Iannuzzi, and J. Hutter, Raman spectra from ab initio molecular dynamics
and its application to liquid S-methyloxirane, J. Chem. Phys. 141, 094503 (2014).

[204] S. Luber, Local electric dipole moments for periodic systems via density functional theory
embedding, J. Chem. Phys. 141, 234110 (2014).

[205] P. Partovi-Azar and T. D. Kiihne, Efficient “On-the-Fly” calculation of Raman Spectra
from Ab-Initio molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk
water, J. Comput. Chem. 36, 2188-2192 (2015).

[206] S. Luber, Sum Frequency Generation of Acetonitrile on a Rutile (110) Surface from Density
Functional Theory-Based Molecular Dynamics, J. Phys. Chem. Lett 7, 5183-5187 (2016).

[207] J. G. Brandenburg, M. Alessio, B. Civalleri, M. F. Peintinger, T. Bredow, and S. Grimme,
Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error
in Periodic Density Functional Theory Calculations, J. Phys. Chem. A 117, 9282-9292
(2013).

[208] J. Klimes, M. Kaltak, and G. Kresse, Predictive GW calculations using plane waves and
pseudopotentials, Phys. Rev. B 90, 075125 (2014).

[209] D. Nabok, A. Gulans, and C. Draxl, Accurate all-electron GoW, quasiparticle energies em-
ploying the full-potential augmented plane-wave method, Phys. Rev. B 94, 035118 (2016).

[210] M. J. van Setten, V. A. Popa, G. A. de Wijs, and G. Brocks, Electronic structure and optical
properties of lightweight metal hydrides, Phys. Rev. B 75, 035204 (2007).

[211] V. G. Plekhanov, V. A. Pustovarov, A. A. O’Konel-Bronin, T. A. Betenekova, and S. O.
Cholakh, Excitons and characteristics of exciton-phonon interaction in LiH and LiD, Sov.
Phys. Solid State Phys. 18, 2438 (1976).

[212] H. Eshuis, J. Bates, and F. Furche, Electron correlation methods based on the random
phase approximation, Theor. Chem. Acc. 131, 1-18 (2012).

[213] X. Ren, P. Rinke, C. Joas, and M. Schefller, Random-phase approximation and its appli-
cations in computational chemistry and materials science, J. Mater. Sci. 47, 7447-7471

(2012).

[214] M. P. Johansson, I. Warnke, A. Le, and F. Furche, At What Size Do Neutral Gold Clusters
Turn Three-Dimensional?, J. Phys. Chem. C 118, 29370-29377 (2014).

[215] H. Eshuis and F. Furche, A Parameter-Free Density Functional That Works for Noncovalent
Interactions, J. Phys. Chem. Lett. 2, 983-989 (2011).

[216] M. Fuchs and X. Gonze, Accurate density functionals: Approaches using the adiabatic-
connection fluctuation-dissipation theorem, Phys. Rev. B 65, 235109 (2002).


http://dx.doi.org/10.1080/00268970701364938
http://dx.doi.org/10.1080/00268970701364938
http://dx.doi.org/10.1080/00268970701364938
http://dx.doi.org/10.1039/B924506E
http://dx.doi.org/10.1039/B924506E
http://dx.doi.org/10.1039/B924506E
http://dx.doi.org/10.1063/1.4894425
http://dx.doi.org/10.1063/1.4894425
http://dx.doi.org/10.1063/1.4894425
http://dx.doi.org/10.1063/1.4903828
http://dx.doi.org/10.1063/1.4903828
http://dx.doi.org/10.1063/1.4903828
http://dx.doi.org/10.1002/jcc.24198
http://dx.doi.org/10.1002/jcc.24198
http://dx.doi.org/10.1002/jcc.24198
http://dx.doi.org/10.1021/acs.jpclett.6b02530
http://dx.doi.org/10.1021/acs.jpclett.6b02530
http://dx.doi.org/10.1021/acs.jpclett.6b02530
http://dx.doi.org/10.1021/jp406658y
http://dx.doi.org/10.1021/jp406658y
http://dx.doi.org/10.1021/jp406658y
http://dx.doi.org/10.1021/jp406658y
http://dx.doi.org/10.1103/PhysRevB.90.075125
http://dx.doi.org/10.1103/PhysRevB.90.075125
http://dx.doi.org/10.1103/PhysRevB.90.075125
http://dx.doi.org/10.1103/PhysRevB.94.035118
http://dx.doi.org/10.1103/PhysRevB.94.035118
http://dx.doi.org/10.1103/PhysRevB.94.035118
http://dx.doi.org/10.1103/PhysRevB.75.035204
http://dx.doi.org/10.1103/PhysRevB.75.035204
http://dx.doi.org/10.1103/PhysRevB.75.035204
http://dx.doi.org/10.1007/s00214-011-1084-8
http://dx.doi.org/10.1007/s00214-011-1084-8
http://dx.doi.org/10.1007/s00214-011-1084-8
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1021/jp505776d
http://dx.doi.org/10.1021/jp505776d
http://dx.doi.org/10.1021/jp505776d
http://dx.doi.org/10.1021/jz200238f
http://dx.doi.org/10.1021/jz200238f
http://dx.doi.org/10.1021/jz200238f
http://dx.doi.org/10.1103/PhysRevB.65.235109
http://dx.doi.org/10.1103/PhysRevB.65.235109
http://dx.doi.org/10.1103/PhysRevB.65.235109

Bibliography 79

[217] F. Furche and T. Van Voorhis, Fluctuation-dissipation theorem density-functional theory,
J. Chem. Phys. 122, 164106 (2005).

[218] A. HeBelmann and A. Gorling, Random-phase approximation correlation methods for
molecules and solids, Mol. Phys. 109, 2473 (2011).

[219] J. Toulouse, I. C. Gerber, G. Jansen, A. Savin, and J. G. Angya’m, Adiabatic-Connection
Fluctuation-Dissipation Density-Functional Theory Based on Range Separation, Phys.
Rev. Lett. 102, 096404 (2009).

[220] F. Furche, Molecular tests of the random phase approximation to the exchange-correlation
energy functional, Phys. Rev. B 64, 195120 (2001).

[221] F. Aryasetiawan, T. Miyake, and K. Terakura, Total Energy Method from Many-Body For-
mulation, Phys. Rev. Lett. 88, 166401 (2002).

[222] H.-V. Nguyen and S. de Gironcoli, Efficient calculation of exact exchange and RPA corre-
lation energies in the adiabatic-connection fluctuation-dissipation theory, Phys. Rev. B 79,
205114 (2009).

[223] M. Del Ben, J. Hutter, and J. VandeVondele, Probing the structural and dynamical prop-
erties of liquid water with models including non-local electron correlation, J. Chem. Phys.

143, 054506 (2015).

[224] L. Schimka, R. Gaudoin, J. KlimeS, M. Marsman, and G. Kresse, Lattice constants and
cohesive energies of alkali, alkaline-earth, and transition metals: Random phase approxi-
mation and density functional theory results, Phys. Rev. B 87, 214102 (2013).

[225] S. Lebegue, J. Harl, T. Gould, J. Angya’m, G. Kresse, and J. Dobson, Cohesive properties
and asymptotics of the dispersion interaction in graphite by the random phase approxima-
tion, Phys. Rev. Lett 105, 196401 (2010).

[226] X. Ren, P. Rinke, and M. Scheffler, Exploring the random phase approximation: Applica-
tion to CO adsorbed on Cu(111), Phys. Rev. B 80, 045402 (2009).

[227] T. Olsen, J. Yan, J. J. Mortensen, and K. S. Thygesen, Dispersive and Covalent Interactions
between Graphene and Metal Surfaces from the Random Phase Approximation, Phys. Rev.
Lett. 107, 156401 (2011).

[228] F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimes, J. Harl, and G. Kresse, Graphene on
Ni(111): Strong interaction and weak adsorption, Phys. Rev. B 84, 201401 (2011).

[229] L. Schimka, J. Harl, A. Stroppa, A. Griineis, M. Marsman, F. Mittendorfer, and G. Kresse,
Accurate surface and adsorption energies from many-body perturbation theory, Nat. Mater.

9,741-744 (2010).

[230] J. Harl, L. Schimka, and G. Kresse, Assessing the quality of the random phase approxi-
mation for lattice constants and atomization energies of solids, Phys. Rev. B 81, 115126
(2010).

[231] J. Harl and G. Kresse, Cohesive energy curves for noble gas solids calculated by adiabatic
connection fluctuation-dissipation theory, Phys. Rev. B 77, 045136 (2008).


http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1080/00268976.2011.614282
http://dx.doi.org/10.1080/00268976.2011.614282
http://dx.doi.org/10.1080/00268976.2011.614282
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1103/PhysRevB.64.195120
http://dx.doi.org/10.1103/PhysRevB.64.195120
http://dx.doi.org/10.1103/PhysRevB.64.195120
http://dx.doi.org/10.1103/PhysRevLett.88.166401
http://dx.doi.org/10.1103/PhysRevLett.88.166401
http://dx.doi.org/10.1103/PhysRevLett.88.166401
http://dx.doi.org/10.1103/PhysRevB.79.205114
http://dx.doi.org/10.1103/PhysRevB.79.205114
http://dx.doi.org/10.1103/PhysRevB.79.205114
http://dx.doi.org/10.1103/PhysRevB.79.205114
http://dx.doi.org/10.1063/1.4927325
http://dx.doi.org/10.1063/1.4927325
http://dx.doi.org/10.1063/1.4927325
http://dx.doi.org/10.1103/PhysRevB.87.214102
http://dx.doi.org/10.1103/PhysRevB.87.214102
http://dx.doi.org/10.1103/PhysRevB.87.214102
http://dx.doi.org/10.1103/PhysRevLett.105.196401
http://dx.doi.org/10.1103/PhysRevLett.105.196401
http://dx.doi.org/10.1103/PhysRevLett.105.196401
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevLett.107.156401
http://dx.doi.org/10.1103/PhysRevLett.107.156401
http://dx.doi.org/10.1103/PhysRevLett.107.156401
http://dx.doi.org/10.1103/PhysRevLett.107.156401
http://dx.doi.org/10.1103/PhysRevB.84.201401
http://dx.doi.org/10.1103/PhysRevB.84.201401
http://dx.doi.org/10.1103/PhysRevB.84.201401
http://dx.doi.org/10.1038/nmat2806
http://dx.doi.org/10.1038/nmat2806
http://dx.doi.org/10.1038/nmat2806
http://dx.doi.org/10.1103/PhysRevB.81.115126
http://dx.doi.org/10.1103/PhysRevB.81.115126
http://dx.doi.org/10.1103/PhysRevB.81.115126
http://dx.doi.org/10.1103/PhysRevB.81.115126
http://dx.doi.org/10.1103/PhysRevB.77.045136
http://dx.doi.org/10.1103/PhysRevB.77.045136
http://dx.doi.org/10.1103/PhysRevB.77.045136

80 Bibliography

[232] M. Macher, J. Klime$, C. Franchini, and G. Kresse, The random phase approximation
applied to ice, J. Chem. Phys. 140, 084502 (2014).

[233] T. Miyake, F. Aryasetiawan, T. Kotani, M. van Schilfgaarde, M. Usuda, and K. Terakura,
Total energy of solids: An exchange and random-phase approximation correlation study,

Phys. Rev. B 66, 245103 (2002).

[234] B. Xiao, J. Sun, A. Ruzsinszky, J. Feng, and J. P. Perdew, Structural phase transitions in Si
and SiO, crystals via the random phase approximation, Phys. Rev. B 86, 094109 (2012).

[235] M. Rohlfing and T. Bredow, Binding Energy of Adsorbates on a Noble-Metal Surface:
Exchange and Correlation Effects, Phys. Rev. Lett. 101, 266106 (2008).

[236] A. Marini, P. Garcia-Gonzélez, and A. Rubio, First-Principles Description of Correlation
Effects in Layered Materials, Phys. Rev. Lett. 96, 136404 (2006).

[237] D. Lu, Y. Li, D. Rocca, and G. Galli, Ab initio Calculation of van der Waals Bonded
Molecular Crystals, Phys. Rev. Lett. 102, 206411 (2009).

[238] Y. Li, D. Lu, H.-V. Nguyen, and G. Galli, van der Waals Interactions in Molecular Assem-
blies from First-Principles Calculations, J. Phys. Chem. A 114, 1944-1952 (2010).

[239] F. Goltl, A. Griineis, T. Bucko, and J. Hafner, Van der Waals interactions between hy-
drocarbon molecules and zeolites: Periodic calculations at different levels of theory, from

density functional theory to the random phase approximation and Mgller-Plesset perturba-
tion theory, J. Chem. Phys. 137, 114111 (2012).

[240] J. Paier, X. Ren, P. Rinke, G. E. Scuseria, A. Griineis, G. Kresse, and M. Scheffler, Assess-
ment of correlation energies based on the random-phase approximation, New J. Phys. 14,
043002 (2012).

[241] S. Grimme and M. Steinmetz, A computationally efficient double hybrid density functional
based on the random phase approximation, Phys. Chem. Chem. Phys. 18, 20926-20937
(2016).

[242] J. Toulouse, W. Zhu, J. G. Angyén, and A. Savin, Range-separated density-functional
theory with the random-phase approximation: Detailed formalism and illustrative applica-
tions, Phys. Rev. A 82, 032502 (2010).

[243] W. Zhu, J. Toulouse, A. Savin, and J. G. Angyén, Range-separated density-functional the-
ory with random phase approximation applied to noncovalent intermolecular interactions,

J. Chem. Phys. 132, 244108 (2010).

[244] J. Harl and G. Kresse, Accurate Bulk Properties from Approximate Many-Body Techniques,
Phys. Rev. Lett. 103, 056401 (2009).

[245] T. Olsen and K. S. Thygesen, Random phase approximation applied to solids, molecules,
and graphene-metal interfaces: From van der Waals to covalent bonding, Phys. Rev. B 87,
075111 (2013).

[246] D. Rocca, Random-phase approximation correlation energies from Lanczos chains and
an optimal basis set: Theory and applications to the benzene dimer, J. Chem. Phys. 140,
18A501 (2014).


http://dx.doi.org/10.1063/1.4865748
http://dx.doi.org/10.1063/1.4865748
http://dx.doi.org/10.1063/1.4865748
http://dx.doi.org/10.1103/PhysRevB.66.245103
http://dx.doi.org/10.1103/PhysRevB.66.245103
http://dx.doi.org/10.1103/PhysRevB.66.245103
http://dx.doi.org/10.1103/PhysRevB.86.094109
http://dx.doi.org/10.1103/PhysRevB.86.094109
http://dx.doi.org/10.1103/PhysRevB.86.094109
http://dx.doi.org/10.1103/PhysRevLett.101.266106
http://dx.doi.org/10.1103/PhysRevLett.101.266106
http://dx.doi.org/10.1103/PhysRevLett.101.266106
http://dx.doi.org/10.1103/PhysRevLett.96.136404
http://dx.doi.org/10.1103/PhysRevLett.96.136404
http://dx.doi.org/10.1103/PhysRevLett.96.136404
http://dx.doi.org/10.1103/PhysRevLett.102.206411
http://dx.doi.org/10.1103/PhysRevLett.102.206411
http://dx.doi.org/10.1103/PhysRevLett.102.206411
http://dx.doi.org/10.1021/jp9095425
http://dx.doi.org/10.1021/jp9095425
http://dx.doi.org/10.1021/jp9095425
http://dx.doi.org/10.1063/1.4750979
http://dx.doi.org/10.1063/1.4750979
http://dx.doi.org/10.1063/1.4750979
http://dx.doi.org/10.1088/1367-2630/14/4/043002
http://dx.doi.org/10.1088/1367-2630/14/4/043002
http://dx.doi.org/10.1088/1367-2630/14/4/043002
http://dx.doi.org/10.1088/1367-2630/14/4/043002
http://dx.doi.org/10.1039/C5CP06600J
http://dx.doi.org/10.1039/C5CP06600J
http://dx.doi.org/10.1039/C5CP06600J
http://dx.doi.org/10.1039/C5CP06600J
http://dx.doi.org/10.1103/PhysRevA.82.032502
http://dx.doi.org/10.1103/PhysRevA.82.032502
http://dx.doi.org/10.1103/PhysRevA.82.032502
http://dx.doi.org/10.1063/1.3431616
http://dx.doi.org/10.1063/1.3431616
http://dx.doi.org/10.1063/1.3431616
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevB.87.075111
http://dx.doi.org/10.1103/PhysRevB.87.075111
http://dx.doi.org/10.1103/PhysRevB.87.075111
http://dx.doi.org/10.1103/PhysRevB.87.075111
http://dx.doi.org/10.1063/1.4849416
http://dx.doi.org/10.1063/1.4849416
http://dx.doi.org/10.1063/1.4849416
http://dx.doi.org/10.1063/1.4849416

Bibliography 81

[247] J. E. Moussa, Cubic-scaling algorithm and self-consistent field for the random-phase ap-
proximation with second-order screened exchange, J. Chem. Phys. 140, 014107 (2014).

[248] M. Kaltak, J. Klimes, and G. Kresse, Low Scaling Algorithms for the Random Phase
Approximation: Imaginary Time and Laplace Transforms, J. Chem. Theory Comput. 10,
2498-2507 (2014).

[249] M. Kaltak, J. Klimes, and G. Kresse, Cubic scaling algorithm for the random phase ap-
proximation: Self-interstitials and vacancies in Si, Phys. Rev. B 90, 054115 (2014).

[250] M. Kaéllay, Linear-scaling implementation of the direct random-phase approximation,
J. Chem. Phys. 142, 204105 (2015).

[251] D. Neuhauser, E. Rabani, and R. Baer, Expeditious Stochastic Calculation of Random-

Phase Approximation Energies for Thousands of Electrons in Three Dimensions, J. Phys.
Chem. Lett. 4, 1172-1176 (2013).

[252] Y. Gao, D. Neuhauser, R. Baer, and E. Rabani, Sublinear scaling for time-dependent
stochastic density functional theory, J. Chem. Phys. 142, 034106 (2015).

[253] H. E. Schurkus and C. Ochsenfeld, Communication: An effective linear-scaling atomic-
orbital reformulation of the random-phase approximation using a contracted double-
Laplace transformation, J. Chem. Phys. 144, 031101 (2016).

[254] Y. Jung, A. Sodt, P. M. Gill, and M. Head-Gordon, Auxiliary basis expansions for large-
scale electronic structure calculations, Proc. Natl. Acad. Sci. U.S.A. 102, 6692-6697
(2005).

[255] S.Reine, E. Tellgren, A. Krapp, T. Kjergaard, T. Helgaker, B. Jansik, S. Hgst, and P. Salek,
Variational and robust density fitting of four-center two-electron integrals in local metrics,
J. Chem. Phys. 129, 104101 (2008).

[256] O. Schiitt, P. Messmer, J. Hutter, and J. VandeVondele, GPU-Accelerated Sparse Ma-
trix—Matrix Multiplication for Linear Scaling Density Functional Theory, pages 173-190,
John Wiley & Sons, Ltd (2016).

[257] S. Obara and A. Saika, Efficient recursive computation of molecular integrals over Carte-
sian Gaussian functions, J. Chem. Phys. 84, 3963-3974 (1986).

[258] D. C. Lengreth and J. P. Perdew, Exchange-correlation energy of a metallic surface: Wave-
vector analysis, Phys. Rev. B 15, 2884 (1977).

[259] M. Hiser and J. Almlof, Laplace transform techniques in Mgller—Plesset perturbation
theory, J. Chem. Phys. 96, 489 (1992).

[260] B. Doser, D. S. Lambrecht, J. Kussmann, and C. Ochsenfeld, Linear-scaling atomic orbital-

based second-order Mpller—Plesset perturbation theory by rigorous integral screening cri-
teria, J. Chem. Phys. 130, 064107 (2009).

[261] S. A. Maurer, L. Clin, and C. Ochsenfeld, Cholesky-decomposed density MP2 with density
fitting: Accurate MP2 and double-hybrid DFT energies for large systems, J. Chem. Phys.
140, 224112 (2014).


http://dx.doi.org/http://dx.doi.org/10.1063/1.4855255
http://dx.doi.org/http://dx.doi.org/10.1063/1.4855255
http://dx.doi.org/http://dx.doi.org/10.1063/1.4855255
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1103/PhysRevB.90.054115
http://dx.doi.org/10.1103/PhysRevB.90.054115
http://dx.doi.org/10.1103/PhysRevB.90.054115
http://dx.doi.org/http://dx.doi.org/10.1063/1.4921542
http://dx.doi.org/http://dx.doi.org/10.1063/1.4921542
http://dx.doi.org/http://dx.doi.org/10.1063/1.4921542
http://dx.doi.org/10.1021/jz3021606
http://dx.doi.org/10.1021/jz3021606
http://dx.doi.org/10.1021/jz3021606
http://dx.doi.org/10.1021/jz3021606
http://dx.doi.org/http://dx.doi.org/10.1063/1.4905568
http://dx.doi.org/http://dx.doi.org/10.1063/1.4905568
http://dx.doi.org/http://dx.doi.org/10.1063/1.4905568
http://dx.doi.org/10.1063/1.4939841
http://dx.doi.org/10.1063/1.4939841
http://dx.doi.org/10.1063/1.4939841
http://dx.doi.org/10.1073/pnas.0408475102
http://dx.doi.org/10.1073/pnas.0408475102
http://dx.doi.org/10.1073/pnas.0408475102
http://dx.doi.org/10.1073/pnas.0408475102
http://dx.doi.org/10.1063/1.2956507
http://dx.doi.org/10.1063/1.2956507
http://dx.doi.org/10.1063/1.2956507
http://dx.doi.org/10.1063/1.450106
http://dx.doi.org/10.1063/1.450106
http://dx.doi.org/10.1063/1.450106
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1063/1.462485
http://dx.doi.org/10.1063/1.462485
http://dx.doi.org/10.1063/1.462485
http://dx.doi.org/10.1063/1.3072903
http://dx.doi.org/10.1063/1.3072903
http://dx.doi.org/10.1063/1.3072903
http://dx.doi.org/10.1063/1.4881144
http://dx.doi.org/10.1063/1.4881144
http://dx.doi.org/10.1063/1.4881144

82

Bibliography

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]

[275]

A. Takatsuka, S. Ten-no, and W. Hackbusch, Minimax approximation for the decomposi-

tion of energy denominators in Laplace-transformed Mgller—Plesset perturbation theories,
J. Chem. Phys. 129, 044112 (2008).

D. Kats, D. Usvyat, S. Loibl, T. Merz, and M. Schiitz, Comment on “Minimax approxima-
tion for the decomposition of energy denominators in Laplace-transformed Mgpller—Plesset
perturbation theories” [J. Chem. Phys. 129, 044112 (2008)], J. Chem. Phys. 130, 127101
(2009).

A. C.Ihrig, J. Wieferink, I. Y. Zhang, M. Ropo, X. Ren, P. Rinke, M. Schefller, and V. Blum,
Accurate localized resolution of identity approach for linear-scaling hybrid density func-
tionals and for many-body perturbation theory, New J. Phys. 17, 093020 (2015).

S. V. Levchenko, X. Ren, J. Wieferink, R. Johanni, P. Rinke, V. Blum, and M. Scheffler,
Hybrid functionals for large periodic systems in an all-electron, numeric atom-centered
basis framework, Comp. Phys. Comm. 192, 60-69 (2015).

A. Sodt and M. Head-Gordon, Hartree-Fock exchange computed using the atomic resolu-
tion of the identity approximation, J. Chem. Phys. 128, 104106 (2008).

F. Della Sala and A. Gorling, Efficient localized Hartree—Fock methods as effective exact-
exchange Kohn—Sham methods for molecules, J. Chem. Phys. 115, 5718-5732 (2001).

C. Koppl and H.-J. Werner,  Parallel and Low-Order Scaling Implementation of
Hartree—Fock Exchange Using Local Density Fitting, J. Chem. Theory Comput. 12, 3122—
3134 (2016).

E. Rebolini, R. Izsdk, S. S. Reine, T. Helgaker, and T. B. Pedersen, Comparison of Three
Efficient Approximate Exact-Exchange Algorithms: The Chain-of-Spheres Algorithm, Pair-
Atomic Resolution-of-the-Identity Method, and Auxiliary Density Matrix Method, J. Chem.
Theory Comput. 12, 3514-3522 (2016).

P. Merlot, T. Kjergaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B. Peder-
sen, Attractive electron—electron interactions within robust local fitting approximations, J.
Comput. Chem. 34, 1486-1496 (2013).

J. Dziedzic, Q. Hill, and C.-K. Skylaris, Linear-scaling calculation of Hartree-Fock ex-

change energy with non-orthogonal generalised Wannier functions, J. Chem. Phys. 139,
214103 (2013).

C. Pisani, L. Maschio, S. Casassa, M. Halo, M. Schiitz, and D. Usvyat, Periodic local
MP?2 method for the study of electronic correlation in crystals: Theory and preliminary
applications, J. Comput. Chem. 29, 2113-2124 (2008).

L. Maschio, Local MP2 with Density Fitting for Periodic Systems: A Parallel Implementa-
tion, J. Chem. Theory Comput. 7, 2818-2830 (2011).

S. A. Maurer, J. Kussmann, and C. Ochsenfeld, Communication: A reduced scaling J-
engine based reformulation of SOS-MP?2 using graphics processing units, J. Chem. Phys.
141, 051106 (2014).

D. Kats, D. Usvyat, and M. Schiitz, On the use of the Laplace transform in local correlation
methods, Phys. Chem. Chem. Phys. 10, 3430-3439 (2008).


http://dx.doi.org/10.1063/1.2958921
http://dx.doi.org/10.1063/1.2958921
http://dx.doi.org/10.1063/1.2958921
http://dx.doi.org/10.1063/1.3092982
http://dx.doi.org/10.1063/1.3092982
http://dx.doi.org/10.1063/1.3092982
http://dx.doi.org/10.1063/1.3092982
http://dx.doi.org/10.1088/1367-2630/17/9/093020
http://dx.doi.org/10.1088/1367-2630/17/9/093020
http://dx.doi.org/10.1088/1367-2630/17/9/093020
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1063/1.2828533
http://dx.doi.org/10.1063/1.2828533
http://dx.doi.org/10.1063/1.2828533
http://dx.doi.org/10.1063/1.1398093
http://dx.doi.org/10.1063/1.1398093
http://dx.doi.org/10.1063/1.1398093
http://dx.doi.org/10.1021/acs.jctc.6b00251
http://dx.doi.org/10.1021/acs.jctc.6b00251
http://dx.doi.org/10.1021/acs.jctc.6b00251
http://dx.doi.org/10.1021/acs.jctc.6b00251
http://dx.doi.org/10.1021/acs.jctc.6b00074
http://dx.doi.org/10.1021/acs.jctc.6b00074
http://dx.doi.org/10.1021/acs.jctc.6b00074
http://dx.doi.org/10.1021/acs.jctc.6b00074
http://dx.doi.org/10.1002/jcc.23284
http://dx.doi.org/10.1002/jcc.23284
http://dx.doi.org/10.1002/jcc.23284
http://dx.doi.org/10.1002/jcc.23284
http://dx.doi.org/http://dx.doi.org/10.1063/1.4832338
http://dx.doi.org/http://dx.doi.org/10.1063/1.4832338
http://dx.doi.org/http://dx.doi.org/10.1063/1.4832338
http://dx.doi.org/http://dx.doi.org/10.1063/1.4832338
http://dx.doi.org/10.1002/jcc.20975
http://dx.doi.org/10.1002/jcc.20975
http://dx.doi.org/10.1002/jcc.20975
http://dx.doi.org/10.1021/ct200352g
http://dx.doi.org/10.1021/ct200352g
http://dx.doi.org/10.1021/ct200352g
http://dx.doi.org/http://dx.doi.org/10.1063/1.4891797
http://dx.doi.org/http://dx.doi.org/10.1063/1.4891797
http://dx.doi.org/http://dx.doi.org/10.1063/1.4891797
http://dx.doi.org/10.1039/B802993H
http://dx.doi.org/10.1039/B802993H
http://dx.doi.org/10.1039/B802993H

Bibliography 83

[276] A.F. Izmaylov and G. E. Scuseria, Resolution of the identity atomic orbital Laplace trans-

formed second order Mgller—Plesset theory for nonconducting periodic systems, Phys.
Chem. Chem. Phys. 10, 3421-3429 (2008).

[277] P. Y. Ayala, K. N. Kudin, and G. E. Scuseria, Atomic orbital Laplace-transformed second-
order Mpller—Plesset theory for periodic systems, J. Chem. Phys. 115, 9698-9707 (2001).

[278] P. Y. Ayala and G. E. Scuseria, Linear scaling second-order Mgller—Plesset theory in the
atomic orbital basis for large molecular systems, J. Chem. Phys. 110, 3660-3671 (1999).

[279] J. Wilhelm, D. Golze, C. A. Pignedoli, and J. Hutter, in preparation (2017).

[280] I. Duchemin, J. Li, and X. Blase, Hybrid and Constrained Resolution-of-ldentity Tech-
niques for Coulomb Integrals, J. Chem. Theory Comput. 13, 1199-1208 (2017).

[281] D. Golze, N. Benedikter, M. lannuzzi, J. Wilhelm, and J. Hutter, Fast evaluation of
solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-
separated hybrid functionals, J. Chem. Phys. 146, 034105 (2017).

[282] A. Lazzaro, J. VandeVondele, J. Hutter, and O. Schiitt, Increasing the Efficiency of Sparse
Matrix-Matrix Multiplication with a 2.5 D Algorithm and One-Sided MPI, arXiv preprint
arXiv:1705.10218 (2017).

[283] G. Lippert, J. Hutter, and M. Parrinello, The Gaussian and augmented-plane-wave density
functional method for ab initio molecular dynamics simulations, Theor. Chem. Acc. 103,
124-140 (1999).

[284] D. Golze, M. lannuzzi, and J. Hutter, Local Fitting of the Kohn—Sham Density in a Gaussian
and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations, J. Chem.
Theory Comput. 13, 2202-2214 (2017).

[285] S. Wang, L. Talirz, C. A. Pignedoli, X. Feng, K. Miillen, R. Fasel, and P. Ruffieux, Giant
edge state splitting at atomically precise graphene zigzag edges, Nat. Commun. 7, 11507
(2016).

[286] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Quasiparticle Energies and
Band Gaps in Graphene Nanoribbons, Phys. Rev. Lett. 99, 186801 (2007).

[287] C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Exact Coulomb cutoff
technique for supercell calculations, Phys. Rev. B 73, 205119 (2006).

[288] S. Ismail-Beigi, Truncation of periodic image interactions for confined systems, Phys. Rev.
B 73, 233103 (2006).

[289] O. Deniz, C. Sanchez-Sinchez, T. Dumslaff, X. Feng, A. Narita, K. Miillen, N. Kharche,
V. Meunier, R. Fasel, and P. Ruffieux, Revealing the Electronic Structure of Silicon Interca-

lated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy, Nano Lett.
17, 2197-2203 (2017).


http://dx.doi.org/10.1039/B803274M
http://dx.doi.org/10.1039/B803274M
http://dx.doi.org/10.1039/B803274M
http://dx.doi.org/10.1039/B803274M
http://dx.doi.org/10.1063/1.1414369
http://dx.doi.org/10.1063/1.1414369
http://dx.doi.org/10.1063/1.1414369
http://dx.doi.org/http://dx.doi.org/10.1063/1.478256
http://dx.doi.org/http://dx.doi.org/10.1063/1.478256
http://dx.doi.org/http://dx.doi.org/10.1063/1.478256
http://dx.doi.org/10.1021/acs.jctc.6b01215
http://dx.doi.org/10.1021/acs.jctc.6b01215
http://dx.doi.org/10.1021/acs.jctc.6b01215
http://dx.doi.org/10.1063/1.4973510
http://dx.doi.org/10.1063/1.4973510
http://dx.doi.org/10.1063/1.4973510
http://dx.doi.org/10.1007/s002140050523
http://dx.doi.org/10.1007/s002140050523
http://dx.doi.org/10.1007/s002140050523
http://dx.doi.org/10.1007/s002140050523
http://dx.doi.org/10.1021/acs.jctc.7b00148
http://dx.doi.org/10.1021/acs.jctc.7b00148
http://dx.doi.org/10.1021/acs.jctc.7b00148
http://dx.doi.org/10.1021/acs.jctc.7b00148
http://dx.doi.org/10.1038/ncomms11507
http://dx.doi.org/10.1038/ncomms11507
http://dx.doi.org/10.1038/ncomms11507
http://dx.doi.org/10.1038/ncomms11507
http://dx.doi.org/10.1103/PhysRevLett.99.186801
http://dx.doi.org/10.1103/PhysRevLett.99.186801
http://dx.doi.org/10.1103/PhysRevLett.99.186801
http://dx.doi.org/10.1103/PhysRevB.73.205119
http://dx.doi.org/10.1103/PhysRevB.73.205119
http://dx.doi.org/10.1103/PhysRevB.73.205119
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/10.1021/acs.nanolett.6b04727
http://dx.doi.org/10.1021/acs.nanolett.6b04727
http://dx.doi.org/10.1021/acs.nanolett.6b04727

List of Publications

[9]

[8]

[71]

[6]

[5]

[4]

[3]

(2]

[1]

J. Wilhelm and J. Hutter, Periodic GW calculations in the Gaussian and plane waves scheme,
Phys. Rev. B 95, 235123 (2017).

D. Golze, N. Benedikter, M. lannuzzi, J. Wilhelm, and J. Hutter, Fast evaluation of solid har-
monic Gaussian integrals for local resolution-of-the-identity methods and range-separated
hybrid functionals, J. Chem. Phys. 146, 034105 (2017).

J. Wilhelm, P. Seewald, M. Del Ben, and J. Hutter, Large-Scale Cubic-Scaling Random Phase
Approximation Correlation Energy Calculations Using a Gaussian Basis, J. Chem. Theory

Comput. 12, 5851-5859 (2016).

J. Wilhelm, M. Del Ben, and J. Hutter, GW in the Gaussian and Plane Waves Scheme with
Application to Linear Acenes, J. Chem. Theory Comput. 12, 3623-3635 (2016).

J. Wilhelm, M. Walz, and F. Evers, Ab initio spin-flip conductance of hydrogenated graphene
nanoribbons: Spin-orbit interaction and scattering with local impurity spins, Phys. Rev. B 92,

014405 (2015).

M. Walz, J. Wilhelm, and F. Evers, Current Patterns and Orbital Magnetism in Mesoscopic
dc Transport, Phys. Rev. Lett. 113, 136602 (2014).

J. Wilhelm, M. Walz, and F. Evers, Ab initio quantum transport through armchair graphene
nanoribbons: Streamlines in the current density, Phys. Rev. B 89, 195406 (2014).

N. Bajales, S. Schmaus, T. Miyamashi, W. Wulthekel, J. Wilhelm, M. Walz, M. Stendel, A. Ba-
grets, F. Evers, S. Ulas, B. Kern, A. Bottcher, and M. M. Kappes, Csg on Au(111): A scanning-
tunnelling-microscopy study, J. Chem. Phys. 138, 104703 (2013).

J. Wilhelm, M. Walz, M. Stendel, A. Bagrets, and F. Evers, Ab initio simulations of scanning-
tunneling-microscope images with embedding techniques and application to Csg dimers on

Au(111), Phys. Chem. Chem. Phys. 15, 6684-6690 (2013).

84


https://doi.org/10.1103/PhysRevB.95.235123
http://dx.doi.org/10.1063/1.4973510
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00840
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00840
http://dx.doi.org/10.1021/acs.jctc.6b00380
http://dx.doi.org/10.1103/PhysRevB.92.014405
http://dx.doi.org/10.1103/PhysRevB.92.014405
http://dx.doi.org/10.1103/PhysRevLett.113.136602
http://dx.doi.org/10.1103/PhysRevB.89.195406
http://dx.doi.org/10.1063/1.4793761 
http://dx.doi.org/10.1039/C3CP44286A

Acknowledgments

My sincere gratitude goes to Jiirg Hutter for his generous support. I am grateful to him for sharing
his wide experience in quantum chemistry. He also provided various resources to perform com-
putations and to attend conferences and summer schools which I really enjoyed.

This work builds on the extensive computational MP2 and RPA methodology which has been
developed and implemented by Mauro Del Ben. I kindly thank him for introducing me into his
comprehensive code, for interesting discussions and remote support after moving to Berkeley.

Many thanks goes to Patrick Seewald for the pleasant collaborations on Gaussian integrals, sparse-
tensor operations and the Hartree-Fock exchange. Hopefully, many people will enjoy the use of
his sparse-tensor library and the Hartree-Fock in the future.

I deeply thank Carlo Pignedoli and Leopold Talirz for sharing their knowledge about graphene
nanoribbons. This exciting application added substantial benefit to this thesis. I am also pleased
to thank Vladimir Rybkin for remembering GW when he started his studies on the solvated elec-
tron and very interesting discussions on various topics.

Special thanks goes to Dorothea Golze for including me in the LRI integral team and sharing
insights in GW beyond the numerics. Tiziano Miiller is acknowledged for running the automated
Fatman calculations. I kindly thank Andreas GI68 for constant technical support and Joost Van-

deVondele for useful help and discussions on the code.

Finally, I thank all former and current members of the Hutter group for the good time at UZH.

85



	Title
	Contents
	Introduction
	Quasiparticle energies in the framework of many-body perturbation theory
	Definition and properties of quasiparticles
	Many-body perturbation theory: Hedin's equations and GW approximation
	G0W0 method for computing quasiparticle energies

	GW in the Gaussian and plane waves scheme with application to linear acenes
	Introduction
	Theory and implementation
	G0W0 benchmark calculations
	Application of eigenvalue-selfconsistent GW to linear acenes
	Conclusions

	Periodic GW calculations in the Gaussian and plane waves scheme
	Introduction
	Derivation of the correction to the periodic GW self-energy in a Gaussian basis
	Benchmark calculations
	Conclusions

	Cubic-scaling RPA correlation energy calculations using a Gaussian basis
	Introduction
	Resolution-of-the-identity approximation (RI)
	Cubic-scaling RPA with real-space density response 
	Cubic-scaling RPA in a Gaussian basis
	Parallel implementation
	Validation
	Benchmark calculations on the system size scaling
	Conclusion and Outlook

	Efficient low-scaling GW calculations using Gaussian basis functions
	Introduction
	Method
	Validation
	Application: Graphene nanoribbons
	Computational scaling
	Conclusion

	Summary and Outlook
	Bibliography
	List of Publications
	Acknowledgments

