CP2K: INTRODUCTION AND ORIENTATION

4th CECAM CP2K Tutorial, 31 Aug – 4 Sep 2015

Iain Bethune
ibethune@epcc.ed.ac.uk
Outline

• CP2K Overview
 • Project History

• CP2K Features

• CP2K Information

• Obtaining CP2K

• CP2K exercises
CP2K Overview

“CP2K is a program to perform atomistic and molecular simulations of solid state, liquid, molecular, and biological systems. It provides a general framework for different methods such as e.g., density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW) and classical pair and many-body potentials.”

From www.cp2k.org (and original home page from 2004!)
CP2K Overview

• Many force models:
 • Classical
 • DFT (GPW, GAPW + vDW)
 • LS-DFT
 • Hybrid Hartree-Fock
 • post-HF (MP2, RPA)
 • Combinations (QM/MM, mixed)

Simulation tools:
• MD (various ensembles)
• Monte Carlo
• Minimisation (GEO/CELL_OPT)
• Properties (Spectra, excitations …)

Open Source
• GPL, www.cp2k.org
• 1m loc, ~2 commits per day
• ~10 core developers
CP2K History

• 25th June 2001 – CP2K repository online at berliOS.de
 • Merger of Quickstep (DFT) + FIST (MD) codes
 • Jürg Hutter, Matthias Krack, Chris Mundy

• Oct 2011 – First ‘official’ release
 • CP2K 2.2

• 14 years on…
 • 1m lines of code, ~16k commits
 • 25 developers + many contributors
 • 100s of users
 • Fully open-source (GPL)
CP2K Features

• **QUICKSTEP DFT: Gaussian and Plane Waves Method**
 - Advantages of atom-centred basis (primary)
 - Density, KS matrices are sparse
 - Advantages of plane-wave basis (auxiliary)
 - Efficient computation of Hartree potential
 - Efficient mapping between basis sets
 - -> Construction of the KS Matrix is $\sim O(n)$

• **Orbital Transformation Method**
 - Replacement for traditional diagonalisation to orthogonalise wave functions (non-metallic systems only)
 - Cubic scaling but $\sim 10\%$ cost
CP2K Features

• QM/MM (Laino et al, JCTC, 2005, 2006)
 • Fully periodic, linear scaling electrostatic coupling

• Gaussian and Augmented Plane Waves (Iannuzzi et al, CHIMIA, 2005)
 • Partitioning the electronic density -> all-electron calculations

• Hartree-Fock Exchange (Guidon et al, JCP, 2008)
 • Beyond local DFT (later MP2, RPA…)
 • Auxiliary Density Matrix Method (Guidon et al, JCTC, 2010)

• Linear Scaling DFT (VandeVondele, Borstnik & Hutter, JCTC, 2012)
 • Fully linear scaling condensed-phase DFT, up to ~1m atoms
CP2K Features

• And LOTS more…
 • Recent review paper:
 Hutter et al, WIREs Comput Mol Sci 2014, 4:15–25
 http://dx.doi.org/10.1002/wcms.1159

• Some highlight applications:
 • http://www.cp2k.org/science

• All for free!
 • Please cite the references
 • Please give feedback / patches / feature requests
 • Please spread the word about CP2K!

DSSC: see Shiffmann et al, PNAS, 2010
CP2K Information

- CP2K Website (http://www.cp2k.org)
 - Everything else is linked from here
 - Now a wiki – so feel free to contribute!

- CP2K Sourceforge site (http://sf.net/p/cp2k):
 - Contains source code repository (SVN)
 - public read-only, read-write access to developers
 - Bug reporting
 - Source tarball / binary downloads
CP2K Information

• CP2K Discussion Group (http://groups.google.com/group/cp2k)
 • Email / web forum
 • Users and developers
 • Searchable history

• CP2K Input reference manual (http://manual.cp2k.org)
 • Documents every possible CP2K input keyword
 • Mostly with helpful descriptions
 • More later…
Obtaining CP2K

• Which version?
 • Current release 2.6 (Dec 2014) / 2.6.1 (May 2015)
 + stable, major bug-fixes are back-ported
 + source and binaries available from http://www.cp2k.org/download
 + available for Ubuntu / Debian / Fedora via package managers
 - missing latest features, minor bugs are not always fixed

 • SVN trunk version 2.7
 + latest features, fixes, performance improvements
 + actively developed
 - bugs may exist (see dashboard.cp2k.org)
 - must be obtained from SVN and compiled from source
Obtaining CP2K

- CP2K download contents:
 - README, COPYRIGHT, INSTALL
 - src – source code (mostly Fortran 03, a little C++)
 - makefiles – To build CP2K
 - arch – machine-specific options files
 - data – standard data files (basis sets, PPs …)
 - tests – over 2700 input files!
 - tools – mostly for developers + cubecruncher

- After building:
 - lib – CP2K internal libraries
 - obj – compiled object files
 - exe – CP2K binaries
CP2K Exercises

• Various exercises are available from:
 • http://www.cp2k.org/exercises
 • See “CECAM 4th CP2K Tutorial” for this week
 • Also older exercises
 • Mostly ‘worked examples’ from system setup and calculations to analysis / visualisation of results

• For specific ‘HowTo’ guides see:
 • http://www.cp2k.org/tutorials
 • Guides to basic (and some advanced!) CP2K skills
 • e.g. converging CUTOFF for QS calculations
CP2K Exercises

• The CP2K tests directory

 • Great source for example input files for all kinds of calculations
 • Grouped (mostly) logically:

 • QS/regtest-gpw-1 – Quickstep GPW calculations
 • QS/regtest-dm-1s-scf – Quickstep using linear scaling SCF
 • Fist/regtest-opt – Geometry and Cell optimisations using classical potentials
 • SE/regtest-* - various semi-empirical calculations

• WARNING:

 • Tests are designed to run quickly so may not produce converged or accurate outputs! Check parameters for your system…
CP2K: Introduction and Orientation

Questions?
BASICS OF CP2K CALCULATIONS

Iain Bethune (ibethune@epcc.ed.ac.uk)
Overview

- How to run CP2K

- CP2K Input file
 - The Basics
 - The How – FORCE_EVAL
 - The What – MOTION

- Basis Sets and Pseudopotential libraries

- CP2K Output
 - Controlling what gets written
 - Overview of an output file

- Restarting a calculation

CP2K
How to run CP2K

• CP2K binaries:
 • `cp2k.version` where `version` is usually one of:
 • `sopt` – Serial, optimised
 • `ssmp` – Single process + symmetric multiprocessor (OpenMP)
 • `popt` – Parallel (MPI), optimised
 • `psmp` – Parallel (MPI) + symmetric multiprocessor (OpenMP)

• Available from http://www.cp2k.org/download
 • Linux binaries (released versions)
 • Also in Linux package managers
 • Source code (released versions and latest trunk), GPL
 • May be pre-installed, e.g. NSCCS, ARCHER …
How to run CP2K

• Basic command line options:
 • `cp2k.sopt -i input_file -o output_file`

 • By default, output goes to the standard output
 • Output to file appends (beware!)
 • Input file is the last argument if not otherwise specified

• Other useful options:
 • `cp2k.sopt --version`
 • `cp2k.sopt --check input_file`
 • `cp2k.sopt --html-manual`
 • `cp2k.sopt --help`
How to run CP2K

• Typical files associated with a CP2K run:
 • Input (required):
 • e.g. H2O-32.inp (main input file, name and extension are arbitrary)
 • Optional inputs:
 • POTENTIAL (psuedopotential library)
 • BASIS_SET (basis set library)
 • Structure file (e.g. psf, xyz, crd …)
 • …
 • Outputs:
 • PROJECT-1.restart (input file to restart calculation)
 • PROJECT-pos-1.xyz (trajectory for MD or GEO_OPT)
 • PROJECT-1.ener (MD energies, temperature, cons. Q …)
 • PROJECT-1.cell (cell parameters for NPT MD or CELL_OPT)
 • PROJECT-RESTART.wfn (orbitals for restart)
CP2K Input file: The Basics

- Full documentation available online:
 - http://manual.cp2k.org
 - Or generate with --html-manual

- Sections – 13 (optional) top level sections
 &BEGIN section_name [params]
 ...
 &END [section_name]

- Keywords
 KEYWORD value
 KEYWORD [ON|OFF] [YES|NO] [TRUE|FALSE] ...
 KEYWORD

- Nesting
 Sections may others sections and keywords
CP2K Input file: The Basics

• Basic pre-processing syntax
 @INCLUDE ‘filename’ – copy in text from file
 @SET VAR value – define a variable
 $VAR – replaced with variable value
 @IF / @ENDIF – simple logic
 ! or # – comments

• Units
 • Numerical entries have a default unit (see manual)
 • Specify other units by hand e.g.
 ABC [nm] 100 100 100 (or bohr, default is angstrom)
 EMAX_SPLINE [eV] 50 (or Ry, joule, default is hartree)
 • Also combinations e.g. [hartree*bohr^-2]
CP2K Input file: The Basics

• **GLOBAL** section (required)

 &GLOBAL

 PROJECT H2O-32
 RUN_TYPE MD
 PRINT_LEVEL HIGH
 &TIMINGS

 THRESHOLD 0.000001
 &END

 WALLTIME 3600

 &END GLOBAL
CP2K Input file: The How

- **FORCE_EVAL** section (required)

  ```plaintext
  &FORCE_EVAL
      METHOD QS  (or FIST, QMMM ...)
      &DFT
      ...
      &END DFT
  &SUBSYS
      ...
      &END SUBSYS
  &END FORCE_EVAL
  ```
CP2K Input file: The How

&DFT
 BASIS_SET_FILE_NAME GTH_BASIS_SETS
 POTENTIAL_FILE_NAME POTENTIAL
&END BASIS_SET_FILE_NAME
&MGRID
 CUTOFF 280
 REL_CUTOFF 30
&END MGRID
&QS
 EPS_DEFAULT 1.0E-12
 WF_INTERPOLATION PS
 EXTRAPOLATION_ORDER 3
&END QS
&SCF
 SCF_GUESS ATOMIC
 &OT ON
 MINIMIZER DIIS
 &END OT
 &PRINT
 &RESTART OFF
 &END
&END SCF
&XC
 &XC_FUNCTIONAL Pade
 &END XC_FUNCTIONAL
&END XC
&END DFT

Basis and PP library files

Parameters for the realspace multi-grids

Quickstep options

Control of SCF procedure, including minimisation scheme

Exchange-Correlation Functional (LDA)
CP2K Input file: The How

&SUBSYS
 &CELL
 ABC 9.8528 9.8528 9.8528
 &END CELL
 # 32 H2O (TIP5P,1bar,300K) a = 9.8528
 &COORD
 O 2.280398 9.146539 5.088696
 O 1.251703 2.406261 7.769908
 O 1.596302 6.920128 0.656695
 ...
 H 0.837635 8.186808 8.987268
 H 8.314696 10.115534 2.212519
 H 8.687134 8.667252 2.448452
 &END COORD
 &KIND H
 BASIS_SET TZV2P-GTH
 POTENTIAL GTH-PADE-q1
 &END KIND
 &KIND O
 BASIS_SET TZV2P-GTH
 POTENTIAL GTH-PADE-q6
 &END KIND
 &END SUBSYS

Cell definition

Particle coordinates

Could also @include an external file
or parse other formats via
&TOPOLOGY
 COORD_FILE_NAME
 &END TOPOLOGY

Definitions of atomic kinds

Could specify charge, mass …
CP2K Input file: The What

- **MOTION section**
  ```
  &MOTION
  &MD
  ENSEMBLE NVE
  STEPS 10
  TIMESTEP 0.5
  TEMPERATURE 300.0
  &END MD
  &END MOTION
  ```

- Also used to control Geometry Optimisation, NEB, Monte Carlo, …
Basis Sets and PP libraries

- CP2K uses Goedecker-Teter-Hutter, separable Pseudopotentials
 - Several sets of PPs and corresponding optimised basis sets are available
 - See cp2k/data or online: http://sourceforge.net/p/cp2k/code/HEAD/tree/trunk/cp2k/data

- POTENTIAL, GTH_POTENTIALS
 - Wide range of PPs for at many elements - LDA (PADE), PBE, BLYP ...

- BASIS_SET, GTH_BASIS_SET, BASIS_MOLOPT
 - Various qualities / size of basis
 - Make sure Basis and PP match (functional and number of electrons)
 - Some documentation and references at head of each file
CP2K Output: Controlling what gets written

• The PRINT_LEVEL keyword in &GLOBAL

 • SILENT, LOW, MEDIUM (default), HIGH, DEBUG

 • HIGH can give more information if you are interested
 • Also gives some per-process logging in parallel jobs
 • For long MD runs (e.g. classical), recommend using LOW

• Fine grained control is available via print-keys
 • Most input sections contain a &PRINT sub-section
 • Each &PRINT sub-section has further subsections for each quantity that may be printed
CP2K Output: Controlling what gets written

• For example, the &PRINT section in &MOTION contains
 &CELL
 &FORCES
 &TRAJECTORY
 &VELOCITIES
 ...

• Each section has parameters (and defaults) for which print level it is output
 • &TRAJECTORY defaults to LOW
 • &VELOCITIES defaults to HIGH
CP2K Output: Controlling what gets written

- Can also specify frequency of printing via `&EACH` sub-section e.g.

  ```
  &PRINT
  &CELL
  &EACH
  MD 100
  &END EACH
  &END CELL
  &END PRINT
  ```

- Control over filenames, file formats etc. at each `&PRINT` section
CP2K Output: Overview of an output file
Restarting a calculation

• If you need to restart your job...
 • Hardware failure
 • Batch system time limit
 • Need more MD sampling
 • ...

• CP2K dumps a restart input file which can be directly re-run
 • `cp2k.sopt -i PROJECT-1.restart`
 • Continuous numbering of MD steps
 • Stores all state variables (incl. extended system)
 • May want to use `SCF_GUESS RESTART`
Basics of CP2K Calculations

Questions?
BUILDING CP2K

lain Bethune (ibethune@epcc.ed.ac.uk)
Overview

• Machine Access

• Prerequisites
 • Environment
 • Libraries

• Optional Libraries
 • Functionality
 • Performance

• Arch files and compilation

• Running example input files

• Testing CP2K
Machine Access

• Where can you run CP2K?
 • Own Laptop
 • Serial / OpenMP build
 • Institute workstation / cluster
 • UZH Guest logins
 • CP2K 2.6.0 pre-installed
 • ARCHER Guest accounts
 • Cray XC30 @ EPCC
 • CP2K 2.7 psmp pre-installed, massively parallel calculations
Prerequisites - Environment

- POSIX-compliant OS
 - Linux, UNIX (e.g. AIX) …
 - Cygwin, Mac OS X also possible

- Build tools
 - GNU Make, Python 2.x (or later)

- Compilers
 - GNU gcc / gfortran 4.6 (or later)
 - Intel ifort 15.x
 - IBM XLF 14.1
Prerequisites - Libraries

- **BLAS & LAPACK (required)**
 - Vendor-tuned libraries preferred (MKL, ACML, ESSL)
 - Free auto-tuned libraries (GotoBLAS, ATLAS)
 - Reference BLAS + LAPACK from Netlib (last resort, very slow!)

- **MPI & ScaLAPACK (required for MPI parallel build)**
 - Usually provided by your cluster / HPC
 - Require MPI 2.x (3.x optional)
 - OpenMPI, MPICH, Intel MPI, Cray MPT all tested
 - ScaLAPACK provided by vendor maths libraries…
 - ... or download from Netlib
 - `-D__parallel` `-D__SCALAPACK`
Prerequisites - Libraries

- FFTW3 (Recommended)
 - CP2K has an inbuilt FFT implementation
 - FFTW3 will give much better performance
 + freely available
 + easy to compile / install
 - Enable using `-D__FFTW3`
Optional Libraries

• Libxc
 • CP2K has various common XC functionals e.g. PBE, LDA, BLYP…
 • Many more available via libxc
 • Version 2.0.1 or later
 • –D__LIBXC2 or –D__LIBXC3

• Libint
 • Required for all Hartree-Fock Exchange calculations
 • Version 1.1.4 only
 • –D__LIBINT
Optional Libraries

- **ELPA**
 - Optimised diagonalisation routines
 - Build process optimises for specific architecture
 - < June 2014 version: `-D__ELPA`
 - >= June 2014 version: `-D__ELPA2`

- All other libraries / options / flags
 - See http://www.cp2k.org/howto:compile
 - and `cp2k/INSTALL`

- Auto-tuned performance libraries (libsmm, libgrid)
 - More on Friday…
Arch files and compilation

• Compiler and architecture-specific options are given in an ‘arch file’
 • Examples in cp2k/arch
 • e.g. Linux_x86-64-gfortran.popt
 • Copy/customise for your environment

• To build CP2K
 • in the cp2k/makefiles directory:

 make -j 4 ARCH=Linux-x86-64-gfortran VERSION=popt

Errors? Ask us!
Arch files and compilation

• CP2K binary should be built in
 • `cp2k/exe/<ARCH>/cp2k.<VERSION>`

• Very quick test:

 `cp2k.soxt --version`

 • MPI binaries (`popt`) should be run with `mpirun`
 • Maybe within a batch script?

• Quick test
 • in the `cp2k/tests/QS` directory:

 `..../..../exe/ARCH/cp2k.soxt C.inp`
Testing CP2K

• CP2K comes with a suite of >2600 test input files

• Good for checking you have correctly compiled CP2K
 • Tests that all enabled features of CP2K run
 • Most tests compare against a reference result

• To execute regression tests:
 • Instructions in cp2k/tools/regtesting
 • Also online: http://cp2k.org/dev:regtesting
Testing CP2K

- `do_regtest` script
 - SVN update, builds CP2K (`--nosvn -nobuild` to skip)
 - Runs all tests (in parallel, if possible)
 - Takes ~10 mins – a few hours
 - Summary of results and details of any failing tests

---------------------------------- Summary --------------------------------

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of COMPILE warns</td>
<td>0</td>
</tr>
<tr>
<td>Number of FAILED tests</td>
<td>2</td>
</tr>
<tr>
<td>Number of WRONG tests</td>
<td>51</td>
</tr>
<tr>
<td>Number of CORRECT tests</td>
<td>2589</td>
</tr>
<tr>
<td>Number of NEW tests</td>
<td>0</td>
</tr>
<tr>
<td>Total number of tests</td>
<td>2642</td>
</tr>
</tbody>
</table>

- Test failed to complete
- Test completed, but does not match reference
- Test completed for first time (and no reference result available)
Testing CP2K

- Automatic testing on 30+ different platforms
 - Test failures automatically reported to developers

- Results available online at http://dashboard.cp2k.org

- Check here when using an SVN trunk version
Building CP2K

Questions?