CP2K: INTRODUCTION AND ORIENTATION

4th CECAM CP2K Tutorial, 31 Aug – 4 Sep 2015

Iain Bethune ibethune@epcc.ed.ac.uk

Outline

- CP2K Overview
 Project History
- CP2K Features
- CP2K Information
- Obtaining CP2K
- CP2K exercises

CP2K Overview

"CP2K is a program to perform atomistic and molecular simulations of solid state, liquid, molecular, and biological systems. It provides a general framework for different methods such as e.g., density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW) and classical pair and many-body potentials."

From <u>www.cp2k.org</u> (and original home page from 2004!)

CP2K Overview

- Many force models:
 - Classical
 - DFT (GPW, GAPW + vDW)
 - LS-DFT
 - Hybrid Hartree-Fock
 - post-HF (MP2, RPA)
 - Combinations (QM/MM, mixed)

Simulation tools:

- MD (various ensembles)
- Monte Carlo
- Minimisation (GEO/CELL_OPT)
- Properties (Spectra, excitations ...)

Open Source

- GPL, <u>www.cp2k.org</u>
- 1m loc, ~2 commits per day
- ~10 core developers

CP2K History

- 25th June 2001 CP2K repository online at berliOS.de
 - Merger of Quickstep (DFT) + FIST (MD) codes
 - Jürg Hutter, Matthias Krack, Chris Mundy

CP2K SOURCE CODE DEVELOPMENT

CP2K Features

- QUICKSTEP DFT: Gaussian and Plane Waves Method (VandeVondele *et al*, Comp. Phys. Comm., 2005)
 - Advantages of atom-centred basis (primary)
 - Density, KS matrices are sparse
 - Advantages of plane-wave basis (auxiliary)
 - Efficient computation of Hartree potential
 - Efficient mapping between basis sets
 - -> Construction of the KS Matrix is ~O(n)

- Orbital Transformation Method (VandeVondele & Hutter, J. Chem. Phys., 2003)
 - Replacement for traditional diagonalisation to orthogonalise wave functions (non-metallic systems only)

Cubic scaling but ~10% cost

CP2K Features

- QM/MM (Laino *et al*, JCTC, 2005, 2006)
 - Fully periodic, linear scaling electrostatic coupling
- Gaussian and Augmented Plane Waves (Iannuzzi *et al*, CHIMIA, 2005)
 - Partitioning the electronic density -> all-electron calculations
- Hartree-Fock Exchange (Guidon et al, JCP, 2008)
 - Beyond local DFT (later MP2, RPA...)
 - Auxiliary Density Matrix Method (Guidon *et al*, JCTC, 2010)
- Linear Scaling DFT (VandeVondele, Borstnik & Hutter, JCTC, 2012)
 - Fully linear scaling condensed-phase DFT, up to ~1m atoms

CP2K Features

- And LOTS more...
 - Recent review paper:

Hutter *et al*, *WIREs Comput Mol Sci* 2014, 4:15–25 http://dx.doi.org/10.1002/wcms.1159

- Some highlight applications:
 - http://www.cp2k.org/science
- All for free!
 - Please cite the references
 - Please give feedback / patches / feature requests
 - Please spread the word about CP2K!

DSSC: see Shiffmann et al, PNAS, 2010

CP2K Information

- CP2K Website (<u>http://www.cp2k.org</u>)
 - Everything else is linked from here
 - Now a wiki so feel free to contribute!

- CP2K Sourceforge site (<u>http://sf.net/p/cp2k</u>) :
 - Contains source code repository (SVN)
 - public read-only, read-write access to developers
 - Bug reporting
 - Source tarball / binary downloads

CP2K Information

- CP2K Discussion Group (<u>http://groups.google.com/group/cp2k</u>)
 - Email / web forum
 - Users and developers
 - Searchable history
- CP2K Input reference manual (<u>http://manual.cp2k.org</u>)
 - Documents every possible CP2K input keyword
 - Mostly with helpful descriptions
 - More later...

Obtaining CP2K

- Which version?
 - Current release 2.6 (Dec 2014) / 2.6.1 (May 2015)
 - + stable, major bug-fixes are back-ported
 - + source and binaries available from http://www.cp2k.org/download
 - + available for Ubuntu / Debian / Fedora via package managers
 - missing latest features, minor bugs are not always fixed

http://www.cp2k.org/version_history

- SVN trunk version 2.7
- + latest features, fixes, performance improvements
- + actively developed
- bugs may exist (see dashboard.cp2k.org)
- must be obtained from SVN and compiled from source

Obtaining CP2K

- CP2K download contents:
 - README, COPYRIGHT, INSTALL
 - src source code (mostly Fortran 03, a little C++)
 - makefiles To build CP2K
 - arch machine-specific options files
 - data standard data files (basis sets, PPs ...)
 - tests over 2700 input files!
 - tools mostly for developers + cubecruncher
- After building:
 - lib CP2K internal libraries
 - obj compiled object files
 - exe CP2K binaries

CP2K Exercises

- Various exercises are available from:
 - http://www.cp2k.org/exercises
 - See "CECAM 4th CP2K Tutorial" for this week
 - Also older exercises
 - Mostly 'worked examples' from system setup and calculations to analysis / visualisation of results
- For specific 'HowTo' guides see:
 - http://www.cp2k.org/tutorials
 - Guides to basic (and some advanced!) CP2K skills
 - e.g. converging CUTOFF for QS calculations

CP2K Exercises

- The CP2K tests directory
 - Great source for example input files for all kinds of calculations
 - Grouped (mostly) logically:
 - QS/regtest-gpw-1 Quickstep GPW calculations
 - QS/regtest-dm-ls-scf Quickstep using linear scaling SCF
 - Fist/regtest-opt Geometry and Cell optimisations using classical potentials
 - SE/regtest-* various semi-empirical calculations

• WARNING:

• Tests are designed to run quickly so may not produce converged or accurate outputs! Check parameters for your system...

CP2K: Introduction and Orientation

Questions?

BASICS OF CP2K CALCULATIONS

lain Bethune (ibethune@epcc.ed.ac.uk)

Overview

- How to run CP2K
- CP2K Input file
 - The Basics
 - The How FORCE_EVAL
 - The What MOTION
- Basis Sets and Pseudopotential libraries
- CP2K Output
 - Controlling what gets written
 - Overview of an output file

How to run CP2K

CP2K binaries:

- cp2k.version where version is usually one of:
 - sopt Serial, optimised
 - ssmp Single process + symmetric multiprocessor (OpenMP)
 - popt Parallel (MPI), optimised
 - psmp Parallel (MPI) + symmetric multiprocessor (OpenMP)
- Available from <u>http://www.cp2k.org/download</u>
 - Linux binaries (released versions)
 - Also in Linux package managers
 - Source code (released versions and latest trunk), GPL
 - May be pre-installed, e.g. NSCCS, ARCHER ...

How to run CP2K

- Basic command line options:
 - cp2k.sopt -i input_file -o output_file
 - By default, output goes to the standard output
 - Output to file appends (beware!)
 - Input file is the last argument if not otherwise specified
- Other useful options:
 - cp2k.sopt --version
 - cp2k.sopt --check input_file
 - cp2k.sopt --html-manual
 - cp2k.sopt --help

How to run CP2K

- Typical files associated with a CP2K run:
 - Input (required):
 - e.g. H2O-32.inp (main input file, name and extension are arbitrary)
 - Optional inputs:
 - POTENTIAL (psuedopotential library)
 - BASIS_SET (basis set library)
 - Structure file (e.g. psf, xyz, crd ...)
 - ...
 - Outputs:
 - PROJECT-1.restart (input file to restart calculation)
 - PROJECT-pos-1.xyz (trajectory for MD or GEO_OPT)
 - PROJECT-1.ener (MD energies, temperature, cons. Q ...)

PROJECT-1.cell (cell parameters for NPT MD or CELL_OPT)

ROJECT-RESTART.wfn (orbitals for restart)

CP2K Input file: The Basics

Full documentation available online:

- http://manual.cp2k.org
- Or generate with --html-manual

• Sections - 13 (optional) top level sections &BEGIN section_name [params] ...

```
&END [section_name]
```

Keywords

KEYWORD value KEYWORD [ON|OFF] [YES|NO] [TRUE|FALSE] ... KEYWORD

CP2K Input file: The Basics

Basic pre-processing syntax

@INCLUDE `filename' - copy in text from file @SET VAR value \$VAR @IF / @ENDIF

! or #

- define a variable
 - replaced with variable value
 - simple logic
 - comments

Units

- Numerical entries have a default unit (see manual)
- Specify other units by hand e.g.

ABC [nm] 100 100 100 (or bohr, default is angstrom) EMAX SPLINE [eV] 50 (or Ry, joule, default is hartree)

Also combinations e.g. [hartree*bohr^-2]

CP2K Input file: The Basics

• GLOBAL section (required) &GLOBAL PROJECT H20-32 RUN TYPE MD PRINT LEVEL HIGH &TIMINGS THRESHOLD 0.00001 &END WALLTIME 3600 &END GLOBAL

CP2K Input file: The How

• FORCE_EVAL section (required)

&FORCE_EVAL

METHOD QS (Or FIST, QMMM ...)

&DFT

•••

&END DFT

&SUBSYS

•••

&END SUBSYS &END FORCE EVAL

CP2K Input file: The How

&DFT BASIS SET FILE NAME GTH BASIS SETS POTENTIAL FILE NAME POTENTIAL &MGRID CUTOFF 280 REL CUTOFF 30 &END MGRID &QS EPS DEFAULT 1.0E-12 WF INTERPOLATION PS EXTRAPOLATION ORDER 3 &END QS &SCF SCF GUESS ATOMIC &OT ON MINIMIZER DIIS &END OT &PRINT &RESTART OFF &END &END &END SCF &XC &XC FUNCTIONAL Pade &END XC FUNCTIONAL &END 📈 C

Basis and PP library files

Parameters for the realspace multi-grids

Quickstep options

Control of SCF procedure, including minimisation scheme

Exchange-Correlation Functional (LDA)

CP2K Input file: The How

&SUBS	SYS	Cell definit		
&CEI	LL			
AI	BC 9.8528 9.852	8 9.8528		
&ENI) CELL			_
# 32	2 H2O (TIP5P,1b	Particle co		
&COC	ORD			
0	2.280398	9.146539	5.088696	
0	1.251703	2.406261	7.769908	
0	1.596302	6.920128	0.656695	or parse o
• • •				
Н	0.837635	8.186808	8.987268	
Н	8.314696	10.115534	2.212519	COORD_
Н	8.687134	8.667252	2.448452	&END TOE
&ENI	D COORD			
&KI1	ND H			
BA	ASIS_SET TZV2P-	Definitione		
PC	OTENTIAL GTH-PA	Demnitions		
&ENI	O KIND			
&KIN	ND O	Could spe		
BZ	ASIS_SET TZV2P-			
PC	OTENTIAL GTH-PA	DE-q6		
&ENI &END S	D KIND SUBSYS			

tion

ordinates

o @include an external file ther formats via GΥ FILE NAME POLOGY

of atomic kinds

cify charge, mass ...

CP2K Input file: The What

• MOTION section

&MOTION

&MD

ENSEMBLE NVE

STEPS 10

TIMESTEP 0.5

TEMPERATURE 300.0

&END MD

&END MOTION

• Also used to control Geometry Optimisation, NEB, Monte Carlo, ...

Basis Sets and PP libraries

- CP2K uses Goedecker-Teter-Hutter, seperable Pseudopotentials
 - Several sets of PPs and corresponding optimised basis sets are available
 - See cp2k/data or online: <u>http://sourceforge.net/p/cp2k/code/HEAD/tree/trunk/cp2k/data</u>
 - POTENTIAL, GTH_POTENTIALS
 - Wide range of PPs for at many elements LDA (PADE), PBE, BLYP ...
 - BASIS_SET, GTH_BASIS_SET, BASIS_MOLOPT
 - Various qualities / size of basis
 - Make sure Basis and PP match (functional and number of electrons)

Some documentation and references at head of each file

CP2K Output: Controlling what gets written

- The PRINT_LEVEL keyword in &GLOBAL
 - SILENT, LOW, MEDIUM (default), HIGH, DEBUG
 - HIGH can give more information if you are interested
 - Also gives some per-process logging in parallel jobs
 - For long MD runs (e.g. classical), recommend using LOW
- Fine grained control is available via print-keys
 - Most input sections contain a &PRINT sub-section
 - Each & PRINT sub-section has further subsections for each quantity that may be printed

CP2K Output: Controlling what gets written

- For example, the &PRINT section in &MOTION contains &CELL
 - &FORCES
 - &TRAJECTORY
 - &VELOCITIES
 - . . .
- Each section has parameters (and defaults) for which print level it is output
 - &TRAJECTORY defaults to LOW
 - &VELOCITIES defaults to HIGH

CP2K Output: Controlling what gets written

• Can also specify frequency of printing via &EACH subsection e.g.

&PRINT

&CELL

&EACH

MD 100

&END EACH

&END CELL

&END PRINT

 Control over filenames, file formats etc. at each & PRINT section

CP2K Output: Overview of an output file

. . .

Restarting a calculation

- If you need to restart your job...
 - Hardware failure
 - Batch system time limit
 - Need more MD sampling

• ...

- CP2K dumps a restart input file which can be directly rerun
 - cp2k.sopt -i PROJECT-1.restart
 - Continuous numbering of MD steps
 - Stores all state variables (incl. extended system)
 - May want to use SCF_GUESS RESTART

Basics of CP2K Calculations

Questions?

BUILDING CP2K

lain Bethune (ibethune@epcc.ed.ac.uk)

Overview

- Machine Access
- Prerequisites
 - Environment
 - Libraries
- Optional Libraries
 - Functionality
 - Performance
- Arch files and compilation
- Running example input files

Machine Access

- Where can you run CP2K?
 - Own Laptop
 - Serial / OpenMP build
 - Institute workstation / cluster
 - UZH Guest logins
 - CP2K 2.6.0 pre-installed
 - ARCHER Guest accounts
 - Cray XC30 @ EPCC
 - CP2K 2.7 psmp pre-installed, massively parallel calculations

Prerequisites - Environment

- POSIX-compliant OS
 - Linux, UNIX (e.g. AIX) ...
 - Cygwin, Mac OS X also possible
- Build tools
 - GNU Make, Python 2.x (or later)
- Compilers
 - GNU gcc / gfortran 4.6 (or later)
 - Intel ifort 15.x
 - IBM XLF 14.1

Prerequisites - Libraries

- BLAS & LAPACK (required)
 - Vendor-tuned libraries preferred (MKL, ACML, ESSL)
 - Free auto-tuned libraries (GotoBLAS, ATLAS)
 - Reference BLAS + LAPACK from Netlib (last resort, very slow!)
- MPI & ScaLAPACK (required for MPI parallel build)
 - Usually provided by your cluster / HPC
 - Require MPI 2.x (3.x optional)
 - OpenMPI. MPICH, Intel MPI, Cray MPT all tested
 - ScaLAPACK provided by vendor maths libraries...
 - ... or download from Netlib
 - -D__parallel -D__SCALAPACK

Prerequisites - Libraries

- FFTW3 (Recommended)
 - CP2K has an inbuilt FFT implementation
 - FFTW3 will give much better performance
 - + freely available
 - + easy to compile / install
 - Enable using -D___FFTW3

Optional Libraries

- Libxc
 - CP2K has various common XC functionals e.g. PBE, LDA, BLYP...
 - Many more available via libxc
 - Version 2.0.1 or later
 - -D__LIBXC2 or -D__LIBXC3
- Libint
 - Required for all Hartree-Fock Exchange calculations
 - Version 1.1.4 only
 - -D__LIBINT

Optional Libraries

- ELPA
 - Optimised diagonalisation routines
 - Build process optimises for specific architecture
 - < June 2014 version : -D___ELPA</pre>
 - >= June 2014 version : -D___ELPA2
- All other libraries / options / flags
 - See <u>http://www.cp2k.org/howto:compile</u>
 - and cp2k/INSTALL
- Auto-tuned performance libraries (libsmm, libgrid)
 - More on Friday...

Arch files and compilation

- Compiler and architecture-specific options are given in an 'arch file'
 - Examples in cp2k/arch
 - e.g. Linux_x86-64-gfortran.popt
 - Copy/customise for your environment
- To build CP2K

Arch files and compilation

- CP2K binary should be built in
 - cp2k/exe/<ARCH>/cp2k.<VERSION>
- Very quick test:

cp2k.sopt --version

- MPI binaries (popt) should be run with mpirun
- Maybe within a batch script?
- Quick test
 - in the cp2k/tests/QS directory:

../../exe/ARCH/cp2k.sopt C.inp

Testing CP2K

- CP2K comes with a suite of >2600 test input files
- Good for checking you have correctly compiled CP2K
 - Tests that all enabled features of CP2K run
 - Most tests compare against a reference result
- To execute regression tests:
 - Instructions in cp2k/tools/regtesting
 - Also online: <u>http://cp2k.org/dev:regtesting</u>

- do_regtest script
 - SVN update, builds CP2K (--nosvn -nobuild to skip)
 - Runs all tests (in parallel, if possible)
 - Takes ~10 mins a few hours
 - Summary of results and details of any failing tests

Summary								
Number	of	COMPILE	warns	0	Test failed to complete			
Number	of	FAILED	tests	2				
Number	of	WRONG	tests	51	Test completed, but does not match reference			
Number	of	CORRECT	tests	2589				
Number	of	NEW	tests	0	Test completed for first time (and no reference			
Total r	numk	per of	tests	2642	result available)			

Testing CP2K

- Automatic testing on 30+ different platforms
 - Test failures automatically reported to developers
- Results available online at <u>http://dashboard.cp2k.org</u>
- Check here when using an SVN trunk version

Questions?

