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The Problem:
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Diagonalisation
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Self-Consistent Field Calculation
Select basis

Initialise density matrix

Construct density in planewave rep.
Construct E and H

Minimise E
Obtain new density 

matrix

Self-consistent 
cycle

From optimised density
construct H and calculate force



Standard Diagonalisation Problem:

• ~ 100 to 1000 atoms, or even more 
• Pseudopotential and DZVP basis set: Double     for occupied 

orbitals, plus a set of polarisation/unoccupied orbitals. 
• Typical:  Si atom (2*s, 2*p, d):  4 X 2 + 5 = 13 orbitals 
• 1000 atom Si lattice:  13000 X 13000 matrix 
• Minimum basis (s, p): include only one copy of occupied orbitals 

per atom 
• 1000 Si atoms:  4 orbitals per atom, leading to 4000 X 4000 

matrix
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34 times cheaper



Density Matrix is a Projection Operator

X

n

fn| nih n|vi =
X

n,i↵

fn 
⇤
i↵,nvi↵| ni

Scalar

• The density matrix projects any state into a space 
spanned by the lower energy eigenstates 

• The smaller set of lower energy eigenstates give 
exact ground state energy (i.e. a smaller basis set)
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We do not know Molecular Orbitals… 

• Rayson and Briddon, Phys. Rev. B 80, 205104 (2009)
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atomic haloIf we know the molecular orbitals 
then we already know the answer to 
our problem.
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So we try to construct a new basis set, still 
centred on each atom, but with fewer 
shells, while still give good ground state 
energy.
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It may be better to do the shrinking dynamically…

• More basis functions generally gives more 

accurate results 

• Goal: From a given set of basis functions, try 

to find an optimal subspace, which minimises 

energy 

• Approaches: 

• Optimise a reduced basis set before calculation 

starts, based on sample calculations on atoms 

or sub-systems/molecules, then carry out the 

calculation using the optimised basis set 

• Optimise a reduced basis set dynamically 

during a calculation, based on changes in 

charge density and ionic positions — Filter 

Matrix Diagonalisation Method
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Interactions are important
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Atomic Density Matrices: Projectors for our new basis
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Diagonalise
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Optimised for the atom 
within its environment

A high temperature Fermi-Dirac 
function to include more higher 
energy orbitals, as we are in an 
interactive environment
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position of atom i



Meaning of Basis Transformation Matrix
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The iµ-th column in the basis transformation matrix K is

exactly the coe�cients of the new basis function |˜�iµi
in the original basis
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Overall Scheme Of SCF Calculation
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Expected Speed Up

T = cost of diagonalising one atomic block

nµ = number of reduced basis orbitals per atom

n↵ = number of original basis orbitals per atom

N = number of atoms in system

m = number of atoms within interaction range of one atom
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Expected Speed Up
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Input
&SCF
  &DIAGONALIZATION
    ALGORITHM FILTER_MATRIX

&FILTER_MATRIX
  FILTER_TEMPERATURE 300000
  AUTO_CUTOFF_SCALE  1.0
&END FILTER_MATRIX

  &END DIAGONALIZATION
  &PRINT
    &FILTER_MATRIX  ON
    &END FILTER_MATRIX
  &END PRINT
&END SCF



Accuracy and Speed w.r.t. Cutoff Radius
Atomic Cutoff (au) Time / SCF Step (s) Err in SCF Energy (au) Err in Lattice Const (au)

Standard DZP 1.4000 0.0000000 0.000000

Standard SZ 0.7442 1.7138000 0.305077

3.0428 0.8891 0.2907160 —

4.5642 1.3608 0.0719113 0.00568571

7.6070 5.1726 0.0028373 0.00392925

8.3677 5.0489 0.0028373 0.00392925

9.1284 4.8699 0.0003192 0.00403831

12.1712 4.8811 0.0003192 0.00403831

15.2140 4.9502 0.0003192 0.00403831

18.2568 4.8746 0.0003192 0.00403831

Bulk Si with 64 atom unit cell (LDA); running on 32 MPI processes.  SCF 
Energy + Cell Optimisation calculations.  Tor = 1E-06 a.u. for Energy, 1E-04 
a.u. for forces and pressure in cell.



Cost of 1 SCF Iteration
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Bulk Si (LDA); running on 32 MPI 
processes.  Single SCF step.


