SCF Methods
— Diagonalisation & Orbital Transformation

Lianheng Tong
King’s College London, UK
24 August 2016
Self Consistent Field Calculation

- Central to the QuickStep (DFT) calculation is the Self-Consistent-Field cycle

\[H[\rho]\psi_n = E_n \psi_n \]

\[\rho(r) = \sum_n f_n \psi_n(r)\psi^*_n(r) \]

- Key to speed and stability of the calculation:
 - Energy minimisation
 - Charge mixing
Topics In This Talk

- Common Methods In CP2K
 - Eigensolvers
 - Optimisers
- Orbital Transformation (OT)
 - Preconditions
- Charge Mixing for Diagonalisation Methods
 - Methods used in CP2K
 - Important parameters for convergence
- Examples
Eigensolvers In CP2K

- General Eigen problem:
 \[A x = \lambda B x \]

- Find a way to rewrite back to the standard Eigen problem
 \[A' x' = \lambda x' \]

- Cholesky decomposition based methods: \(B = U^T U \) must be positive definite:
 \[(U^{-1})^T A U^{-1} U x = \lambda U x \]

 - REDUCE: \(A | U \Rightarrow A' | 1 \) followed by solving \(U x = x' \)
 - RESTORE: Same as Reduce, but with the single reduce step for \(A' \) replaced with two restore steps:
 - Solve \(x U = A \) \(\Rightarrow \) \(x = A U^{-1} \)
 - Solve \(U^T y = x \) \(\Rightarrow \) \(y = (U^T)^{-1} A U^{-1} \)
 - INVERSE: Same as Reduce, but calculate \(A' \) using the direct inverse of \(U \) (involves one inversion of a triangular matrix plus two matrix multiplications)
 - INVERSE_DBCSR: Same as inverse, but utilising sparse matrix algebra engine whenever possible (e.g. when doing matrix multiplication)
Without Cholesky decomposition:
- Useful if your basis set contains linearly dependent functions, i.e. B is non-positive definite
- Slower, but more robust

Find the inverse square root of B: $B^{-\frac{1}{2}}$

\[
B = B^\frac{1}{2} \cdot B^\frac{1}{2} \\
B^{-\frac{1}{2}} AB^{-\frac{1}{2}} B^\frac{1}{2} x = B^\frac{1}{2} x \\
x' = B^\frac{1}{2} x \quad \Rightarrow \quad x = B^{-\frac{1}{2}} x'
\]

$B^{-\frac{1}{2}}$ is calculated by diagonalise B, invert the eigenvalues and then transform back.

If B is non-positive definite: this normally corresponds to the basis set containing redundant linearly dependent vectors. This means the zero eigenvalues of B should not contribute to the linear problem.
- This is equivalent to set inverse of the eigenvalues to zero
• Concerns with finding the local minimum of a function of many variables

• Steepest Decent:

\[f(x_n) = f(x_{n-1}) + \alpha \nabla f(x_{n-1}) \]

- How much we travel along the gradient is determined by a line search to find the minimum of the function along the path
• **Conjugate Gradient:**
 - If we start from a point \(x_0 \) close to the minimum, we may Taylor expand around the point to the second order, and assume the minimum is within the radius of convergence:
 \[
 f(x) = f(x_0) + b^T(x - x_0) + (x - x_0)^T H(x - x_0) + O((x - x_0)^3)
 \]
 \[
 (H)_{ij} = \frac{1}{2} \left. \frac{\partial^2 f}{\partial x_i \partial x_j} \right|_{x_0} \quad b = \nabla f \big|_{x_0}
 \]
 - We notice that \(x \) is the unique solution to \(\nabla f(x) = 0 \) if it is the solution of the equation
 \[
 \nabla f(x) = b + Hx = 0 \quad \Rightarrow Hx = -b
 \]
 - The Conjugate gradient method then tries to solve the above equation iteratively. Notice that \(H \) is always symmetric and when near a minimum, positive definite
 - We can express \(x \) in a basis set
 \[
 x = \sum_i \alpha_i P_i
 \]
 - Hence
 \[
 \sum_j P_i^T H P_j \alpha_j = -P_i^T b
 \]
Conjugate Gradient:

Now since H is symmetric and positive definite, it can be diagonalised, and we can choose P_i to be a set of conjugate vectors of H, then we can see that

$$
\alpha_i = \frac{-P_i^T b}{P_i^T H P_i} \quad P_i^T H P_j = 0 \quad (i \neq j)
$$

The conjugate gradient method then involves iteratively finding each P_i using a Gram-Schmidt like process.

In other words: we take exactly $n = \dim H$ steps, starting from an initial guess x_0

$$
d_i = -b - Hx_i
$$

$$
P_1 = d_0
$$

$$
P_2 = d_1 - \frac{P_0^T H d_1}{P_0^T H P_0} P_0
$$

$$
P_3 = d_2 - \frac{P_0^T H d_2}{P_0^T H P_0} P_0 - \frac{P_1^T H d_2}{P_1^T H P_1} P_1
$$

$$
\vdots
$$

$$
x_n = \alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3 + \cdots + \alpha_n P_n
$$

$$
P_n = d_{n-1} - \frac{P_0^T H d_{n-1}}{P_0^T H P_0} P_0 - \frac{P_1^T H d_{n-1}}{P_1^T H P_1} P_1 - \cdots - \frac{P_{n-1}^T H d_{n-1}}{P_{n-1}^T H P_{n-1}} P_{n-1}
$$
• **Discrete Inversion in Iterative Space (DIIS), a.k.a. Pulay Method:**
 - The new step is based on considerations over a list of previous steps:
 \[
 x_{n+1} = \sum_{i}^{n} \alpha_i x_i, \quad \sum_{i}^{n} \alpha_i = 1
 \]
 - Minimise by seeking the solution to \(\nabla f(x) = 0 \)
 - Assume when close enough to minimum, the gradient becomes a linear function:
 \[
 \nabla f(x_{n+1}) = \sum_{i}^{n} \alpha_i \nabla f(x_i) \quad d_i \equiv \nabla f(x_i)
 \]
 - The new gradient (residual) is then a function of \(\alpha_i \), solve:
 \[
 \frac{\partial \|d_{n+1}\|}{\partial \alpha_i} = 0
 \]
 with constraints \(\sum_{i}^{n} \alpha_i = 1 \), we obtain:
 \[
 \alpha_i = \frac{\sum_{i}^{n} A^{-1}_{ji}}{\sum_{ij}^{n} A^{-1}_{ji}}, \quad A_{ij} = d_i^T d_j
 \]
 - Can be over 50% faster than CG, but not as stable because bad history contribute to the next step.
 - Too many history included may not be beneficial.
Broyden’s Method:

- Again, seeks the solution to $\nabla f(x) = 0$, but using the secant method.
- The next step can be determined by the inverse of Jacobian:

 \[
 x_{n+1} = x_n - J_n^{-1}d_n \\
 d_n \equiv \nabla f(x_n) \\
 (J_n)_{ij} = \frac{\partial (d_n)_i}{\partial x_j}
 \]

- But inverse of Jacobian too expensive, so instead approximate J_n^{-1} to be able to reproduce the changes in step (x) and residual (d) close to a set of previous results. In other words, minimise the weighted norm:

 \[
 \sum_{i=1}^{n} w_i \| (x_i - x_{i-1}) - J_n^{-1}(d_i - d_{i-1}) \|^2
 \]

- And at the same time the changes in J_n^{-1} should be the minimal possible from the initial step. So we find J_n^{-1} by minimise:

 \[
 N = \sum_{i=1}^{n} w_i \| (x_i - x_{i-1}) - J_n^{-1}(d_i - d_{i-1}) \|^2 + w_0 \| J_n^{-1} - J_0^{-1} \|
 \]
Orbital Transform

- Seeks to find the minimum of the energy functional with respect to the MO coefficients, with the constraint that MO are normalised.
- Optimisation problem on a M-dimensional spherical surface.
- Perform a variable transformation, from MO coefficients C to a set of auxiliary variables X such that the optimisation of E is now on a $M-1$ dimensional linear space w.r.t. X

$$C(X) = C_0 \cos(U) + XU^{-1} \sin(U)$$

$$U = (X^T SX)^{\frac{1}{2}}$$

- With constraint (fixes the direction of the plane):

$$X^T SC_0 = 0$$
Orbital Transform

- Seeks to find the minimum of the energy functional with respect to the MO coefficients, with the constraint that MO are normalised.

- Optimisation problem on a M-dimensional spherical surface.

- Perform a variable transformation, from MO coefficients C to a set of auxiliary variables X such that the optimisation of E is now on a M-1 dimensional linear space w.r.t. X

$$C(X) = C_0 \cos(U) + XU^{-1} \sin(U)$$

$$U = (X^T S X)^\frac{1}{2}$$

- With constraint (fixes the direction of the plane):

$$X^T S C_0 = 0$$

\[C = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} = C_0 \cos(\theta) + \hat{X} \sin(\theta) \]

$$\theta = \frac{\|X\|}{\|C\|} = \|X\| \quad \hat{X} = \frac{X}{\|X\|}$$

$$\|X\| = \langle X, X \rangle^{\frac{1}{2}} = (X^T S X)^{\frac{1}{2}}$$
Orbital Transform

- Computation of SIN and COS terms
 - Can be calculated by diagonalisation: transforming to eigenspace, operate on eigenvalues, and then transform back. BUT too expensive.
 - Use Taylor expansion: 2 or 3 order expansion already give machine precision.
 - Calculate U^{-1} as part of the Taylor expansion

\[
\cos(U) = \sum_{i=0}^{K} \frac{(-1)^i}{(2i)!} (X^T S X)^i
\]

\[
U^{-1} \sin(U) = \sum_{i=0}^{K} \frac{(-1)^i}{(2i + 1)!} (X^T S X)^i
\]
Preconditioners

- The function to be minimised:

\[E(c(x)) = \text{tr}(c^T(x))H_{KS}c(x) + x^TSc_0\Lambda \]

- While minimisation of \(E \) with respect to the OT variable is guaranteed to converge, it may do so very slowly.

- Preconditioners can greatly speed up the convergence of an iterative optimisation process

- Assuming \(c_0 \) are eigenstates of the initial KS hamiltonian, and we Taylor expand close by:

\[E(x_0 + h) = E_{x_0} + \nabla_h E(x_0)^T h + \frac{1}{2} h^T E''(x_0) h + O(h^3) \]

- Then the Hessian of \(E \) close to minimum is:

\[\frac{\partial^2 E}{\partial x_{i\mu} \partial x_{j\nu}} \bigg|_{x_0} = 2H_{ij}\delta_{\mu\nu} - 2S_{ij}\delta_{\mu\nu}\epsilon^0_\mu \]

- At minimum, we expect

\[\frac{dE(x_0 + h)}{dh} = \nabla_h E(x_0) + E''(x_0) h + O(h^2) = 0 \]
Orbital Transform

Therefore, $h = -E''(x_0)^{-1} \nabla_h E(x_0)$, i.e.:

$$x_{n+1} = x_n - P_n \nabla E_n$$

The ideal preconditioner to the gradient is therefore:

$$P_n = (H_{KS} - S\epsilon_n)^{-1} \quad \epsilon_n = c_n^T H_{KS} c_n$$

- Practical Approximations to Preconditioner:
 - Ideal preconditioner requires:
 - Evaluation at every step
 - A different preconditioner matrix for every gradient vector
 - Matrix inversion
 - **FULL_ALL**:
 - Instead of calculating ϵ_n, replace it with a single scalar ϵ_0 that is similar to other energy levels. It is chosen to be the highest eigenvalue of the initial step/guess
 - Instead of evaluating at every step, do once at the beginning, and reuse the same preconditioner
 - Invert by diagonalisation, keep positive definite by truncating small eigenvalues
Orbital Transform

- **FULL_KINETIC**
 - Same as **FULL_ALL**, except only use kinetic energy part of KS matrix.
 - This gives sparse matrices, and can be taken advantage of using DBCSR based methods.
- **FULL_SINGLE**
 - Same as **FULL_ALL**, however, only use the block diagonal parts of $H_{KS} - S\epsilon_0$.
 - In other words, only on-site terms are considered by the preconditioner.
 - Much faster, as each block can be calculated separately.
- **FULL_SINGLE_INVERSE**
 - Same as **FULL_SINGLE**, but with the inversion process replaced by Cholesky process. Only works if $H_{KS} - S\epsilon_0$ is already positive definite.
 - Therefore less robust, but more efficient than **FULL_SINGLE**.
- **FULL_S_INVERSE**
 - Ignore the KS matrix contribution all together, and utilise Cholesky decomposition of the full overlap matrix.
 - Generally avoid.
- **NONE**
 - Not recommended…
Orbital Transform

- Inner and Outer SCF/OT minimisation Loop:
 - Relevant only for OT:
 - KS matrix is updated at every OT minimisation step: minimisation and SCF happening at the same time
 - Inner Loop: Preconditioner is calculated at the beginning of the loop, and remains constant throughout the inner loop
 - Outer Loop: Loops over the inner loop, this means the preconditioner is updated at every outer loop step
 - Tips for OT convergence:
 - If inner loop is converging slowly, try to reduce the number of allowed iterations in the inner loop, and increase the number of iterations allowed for the outer loop.
 - This effectively forces the preconditioner to be updated more frequently
Mixing Methods for Diagonalisation

• Diagonalisation:
 - Solves the generalised eigen problem:
 \[H_{KS} c = \lambda S c \]
 - Uses any one of the eigensolvers implemented in CP2K
 - Density matrix can be constructed from the MOs.
 \[P_{ij} = \sum_n f_n c_i n c_j n \]
 - Occupy the MOs from the lowest energy up, until total number of electrons has reached.
 • This gives Fermi energy
 • Allows the opportunity to introduce smearing into the occupancy
 - From the density matrix, we can obtain electron charge, and this is then mixed back into the KS Hamiltonian, to complete the SCF loop
Mixing Methods for Diagonalisation

- Smearing:
 - Integer occupation numbers: discontinuity at Fermi energy.
 - If Fermi energy is close to a number of MOs, a small variation of MO energies can lead to a jump in total energy, due to the electrons either occupy or leave a particular orbital completely.
 - This brings havoc to SCF optimisers, because all numerical optimisers work on the basis that functions they try to minimise is continuous and (at least once or twice) differentiable.
 - Not a problem if the Fermi energy is in a band gap. Is a problem for metals.

- Smearing: replace the step function of occupancy with a smooth function of the similar shape, with smoothness controlled by a parametric temperature.
- The higher the smearing temperature, the less resolution (system size) required for the band structure, but also less accurate.
Mixing Methods for Diagonalisation

- **Broyden / Pulay Mixing**
 - The same as Broyden / DIIS optimisation method
 - Solving for \(R[\rho^{\text{in}}] = \rho^{\text{out}} - \rho^{\text{in}} = 0 \)
 - Broyden mixing is very similar to Pulay mixing, but slightly faster and somewhat more robust, as it does not involve matrix inversion

- **Kerker Preconditioning (automatically turns on Pulay):**
 - Solve SCF convergence issues caused by large changes in the Hartree energy due to the changes in charge density that are far apart at every iteration step.
 - The large change in Hartree energy then causes a corresponding reaction correction in the next output density, leading to a phenomenon referred to as “charge sloshing”.
 - The problem can be solved by performing charge mixing in reciprocal space, and change the mixing parameter \(A \) to a preconditioner:
 \[
 A \to A \frac{q^2}{q^2 + B^2}
 \]
 Long range change correspond to small \(q \), and its contribution goes to 0
If you have a restart file, use RESTART

&SCF
 SCF_GUESS ATOMIC
 EPS_SCF 1.0E-06
 MAX_SCF 200
&OT ON
 MINIMIZER DIIS
 PRECONDITIONER FULL_SINGLE_INVERSE
&END OT
&OUTER_SCF
 MAX_SCF 10
&END OUTER_SCF
&PRINT
 &RESTART OFF
&END RESTART
&END PRINT
&END SCF

64 water box
SCF WAVEFUNCTION OPTIMIZATION

Minimizer: DIIS

- diis
- in the iterative subspace

Preconditioner: FULL_SINGLE_INVERSE

- inverse of
- $H + eS - 2(S(c^T H c + \text{const})(S c)^T)$

Precond_solver: DEFAULT

Step	**Update method**	**Time**	**Convergence**	**Total energy**	**Change**
Trace(PS): | | | | | |
Electronic density on regular grids: | 512.0000000000 | | | | |
Core density on regular grids: | -512.0000014957 | | | | |
Total charge density on r-space grids: | -0.0000014959 | | | | |
Total charge density g-space grids: | -0.0000014959 | | | | |
1 OT DIIS | $0.80E-01$ | 1.9 | 0.02242151 | -1059.3825079557 | $-1.06E+03$ |
Trace(PS): | | | | | |
Electronic density on regular grids: | 512.0000000000 | | | | |
Core density on regular grids: | -512.0000014959 | | | | |
Total charge density on r-space grids: | -0.0000014914 | | | | |
Total charge density g-space grids: | -0.0000014914 | | | | |
149 OT DIIS | $0.80E-01$ | 1.2 | 0.00000102 | -1101.0377081868 | $-3.67E-07$ |
Trace(PS): | | | | | |
Electronic density on regular grids: | 512.0000000000 | | | | |
Core density on regular grids: | -512.0000014957 | | | | |
Total charge density on r-space grids: | -0.0000014912 | | | | |
Total charge density g-space grids: | -0.0000014912 | | | | |
150 OT DIIS | $0.80E-01$ | 1.2 | 0.00000101 | -1101.0377093306 | $-3.27E-07$ |
Trace(PS): | | | | | |
Electronic density on regular grids: | 512.0000000000 | | | | |
Core density on regular grids: | -512.0000014957 | | | | |
Total charge density on r-space grids: | -0.0000014912 | | | | |
Total charge density g-space grids: | -0.0000014912 | | | | |
151 OT DIIS | $0.80E-01$ | 1.2 | 0.00000100 | -1101.0377096545 | $-3.24E-07$ |
Trace(PS): | | | | | |
Electronic density on regular grids: | 512.0000000000 | | | | |
Core density on regular grids: | -512.0000014957 | | | | |
Total charge density on r-space grids: | -0.0000014912 | | | | |
Total charge density g-space grids: | -0.0000014912 | | | | |
152 OT DIIS | $0.80E-01$ | 1.2 | 0.00000100 | -1101.0377099336 | $-3.97E-07$ |
Trace(PS): | | | | | |
Electronic density on regular grids: | 512.0000000000 | | | | |
Core density on regular grids: | -512.0000014957 | | | | |
Total charge density on r-space grids: | -0.0000014912 | | | | |
Total charge density g-space grids: | -0.0000014912 | | | | |
153 OT DIIS | $0.80E-01$ | 1.2 | 0.00000100 | -1101.0377102545 | $-3.24E-07$ |

*** SCF run converged in 153 steps ***
Examples

64 water box

&SCF
 SCF_GUESS ATOMIC
 EPS_SCF 1.0E-06
 MAX_SCF 200
&OT ON
 MINIMIZER DIIS
 PRECONDITIONER FULL_ALL
&END OT
&OUTER_SCF
 MAX_SCF 10
&END OUTER_SCF
&PRINT
 &RESTART OFF
&END RESTART
&END PRINT
&END SCF
SCF WAVEFUNCTION OPTIMIZATION

Minimizer : DIIS : direct inversion
in the iterative subspace
using 7 DIIS vectors
safer DIIS on
Preconditioner : FULL_ALL : diagonalization, state selective
Precond_solver : DEFAULT
stepsize : 0.15000000 energy_gap : 0.08000000
eps_taylor : 0.10000E-15 max_taylor : 4

Step Update method Time Convergence Total energy Change
--
Trace(PS): 512.0000000000
Electronic density on regular grids: -512.0000014959 -0.0000014959
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000014914
Total charge density g-space grids: -0.0000014914
1 OT DIIS 0.15E+00 4.2 0.02500388 -1059.3825079557 -1.06E+03
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000020917 -0.0000020917
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000020873
Total charge density g-space grids: -0.0000020873
2 OT DIIS 0.15E+00 1.3 0.01405947 -1101.0377126778 -3.21E+01
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
110 OT DIIS 0.15E+00 1.3 0.00000102 -1101.0377133249 -3.11E-07
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
111 OT DIIS 0.15E+00 1.3 0.00000100 -1101.0377136686 -3.48E-07
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
112 OT DIIS 0.15E+00 1.3 0.00000101 -1101.0377140259 -3.57E-07
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
113 OT DIIS 0.15E+00 1.3 0.00000100 -1101.0377143737 -3.48E-07

*** SCF run converged in 113 steps ***

Examples

108 OT DIIS 0.15E+00 1.3 0.00000105 -1101.0377126778 -3.05E-07
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
109 OT DIIS 0.15E+00 1.3 0.00000104 -1101.0377130143 -3.37E-07
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
110 OT DIIS 0.15E+00 1.3 0.00000103 -1101.0377133249 -3.11E-07
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
111 OT DIIS 0.15E+00 1.3 0.00000102 -1101.0377136686 -3.44E-07
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
112 OT DIIS 0.15E+00 1.3 0.00000101 -1101.0377140259 -3.57E-07
Trace(PS): 511.9999999999
Electronic density on regular grids: -512.0000015456 -0.0000015456
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015411
Total charge density g-space grids: -0.0000015411
113 OT DIIS 0.15E+00 1.3 0.00000100 -1101.0377143737 -3.48E-07

*** SCF run converged in 113 steps ***
&SCF
 SCF_GUESS ATOMIC
 EPS_SCF 1.0E-06
 MAX_SCF 20
&OT ON
 MINIMIZER DIIS
 PRECONDITIONER FULL_ALL
&END OT
&OUTER_SCF
 MAX_SCF 100
&END OUTER_SCF
&PRINT
 &RESTART OFF
&END RESTART
&END PRINT
&END SCF

64 water box
18 OT DIIS 0.15E+00 1.3 0.00010381 -1101.033773217 -3.82E-03
Trace(PS): 512.0000000000
Electronic density on regular grids: -512.0000015462 -0.0000015462
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015417
Total charge density g-space grids: -0.0000015417

19 OT DIIS 0.15E+00 1.3 0.00009753 -1101.0345262445 -1.15E-03
Trace(PS): 512.0000000000
Electronic density on regular grids: -512.0000015467 -0.0000015467
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015422
Total charge density g-space grids: -0.0000015422

20 OT DIIS 0.15E+00 1.3 0.00006603 -1101.0350962104 -5.70E-04
Trace(PS): 512.0000000000
Electronic density on regular grids: -512.0000015454 -0.0000015454
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015409
Total charge density g-space grids: -0.0000015409

3 OT DIIS 0.15E+00 5.9 0.00016580 -1101.0355385583 -4.42E-04
Trace(PS): 512.0000000000
Electronic density on regular grids: -512.0000015459 -0.0000015459
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015415
Total charge density g-space grids: -0.0000015415

4 OT DIIS 0.15E+00 1.2 0.00006738 -1101.0374081725 -1.87E-03
Trace(PS): 512.0000000000
Electronic density on regular grids: -512.0000015475 -0.0000015475
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015430
Total charge density g-space grids: -0.0000015430

5 OT DIIS 0.15E+00 1.2 0.00003004 -1101.0377417272 -3.34E-04
Trace(PS): 512.0000000000
Electronic density on regular grids: -512.0000015460 -0.0000015460
Core density on regular grids: 512.0000000045 0.0000000045
Total charge density on r-space grids: -0.0000015415
Total charge density g-space grids: -0.0000015415

*** SCF run converged in 5 steps ***
&SCF
 SCF_GUESS ATOMIC
 EPS_SCF 1.0E-6
 MAX_SCF 500
 ADDED_MOS 200
 CHOLESKY INVERSE
&SMEAR ON
 METHOD FERMI_DIRAC
 ELECTRONIC_TEMPERATURE [K] 300
&END SMEAR
&DIAOGNALIZATION
 ALGORITHM STANDARD
&END DIAOGNALIZATION
&MIXING
 METHOD DIRECT_P_MIXING
 ALPHA 0.5
&END MIXING
&OUTER_SCF
 EPS_SCF 1.0E-6
 MAX_SCF 1
&END OUTER_SCF
&END SCF
<table>
<thead>
<tr>
<th>Step</th>
<th>Update method</th>
<th>Time</th>
<th>Convergence</th>
<th>Total energy</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>2.1</td>
<td>0.41056021</td>
<td>-2133.4408435676 -2.13E+03</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.2</td>
<td>0.20432922</td>
<td>-2132.0776002852 1.36E+00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.2</td>
<td>0.10741372</td>
<td>-2131.367751799 7.10E-01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.2</td>
<td>0.05420394</td>
<td>-2131.008867703 3.60E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DIIS/Diag. 0.39E-03</td>
<td>3.2</td>
<td>0.02722180</td>
<td>-2130.827699683 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DIIS/Diag. 0.19E-03</td>
<td>3.2</td>
<td>0.0062404</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DIIS/Diag. 0.84E-04</td>
<td>3.2</td>
<td>0.00059933</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DIIS/Diag. 0.63E-04</td>
<td>3.2</td>
<td>0.00012500</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DIIS/Diag. 0.11E-03</td>
<td>3.2</td>
<td>0.00019003</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DIIS/Diag. 0.29E-03</td>
<td>3.1</td>
<td>0.00037131</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DIIS/Diag. 0.34E-03</td>
<td>3.2</td>
<td>0.00045761</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DIIS/Diag. 0.10E-02</td>
<td>3.2</td>
<td>0.00121294</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>DIIS/Diag. 0.47E-03</td>
<td>3.1</td>
<td>0.00355236</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DIIS/Diag. 0.74E-02</td>
<td>3.1</td>
<td>0.00485367</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DIIS/Diag. 0.80E-02</td>
<td>3.1</td>
<td>0.01204111</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>DIIS/Diag. 0.10E-01</td>
<td>3.2</td>
<td>0.00709698</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DIIS/Diag. 0.73E-02</td>
<td>3.1</td>
<td>0.06036111</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>DIIS/Diag. 0.32E-01</td>
<td>3.1</td>
<td>0.06706048</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>1.20934863</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>1.643814103</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>484.77129296</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>242.49533726</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>108.28873503</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>133.38323194</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>243.65162842</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>360.75338107</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.2</td>
<td>423.23836111</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>527.98757101</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>467.44558067</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>511.11190255</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>531.81962633</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>P_Mix/Diag. 0.50E+00</td>
<td>3.1</td>
<td>469.22980247</td>
<td>-2130.647371946 1.80E-01</td>
<td></td>
</tr>
</tbody>
</table>

Examples
&SCF
 SCF_GUESS ATOMIC
 EPS_SCF 1.0E-6
 MAX_SCF 500
 ADDED_MOS 200
 CHOLESKY_INVERSE
&SMEAR ON
 METHOD FERMI_DIRAC
 ELECTRONIC_TEMPERATURE [K] 300
&END SMEAR
&DIAGONALIZATION
 ALGORITHM STANDARD
&END DIAGONALIZATION
&MIXING
 METHOD PULAY_MIXING
 ALPHA 0.2
 NBUFFER 5
&END MIXING
&OUTER_SCF
 EPS_SCF 1.0E-6
 MAX_SCF 1
&END OUTER_SCF
&END SCF

Au128 bulk
SCF WAVEFUNCTION OPTIMIZATION

<table>
<thead>
<tr>
<th>Step</th>
<th>Update method</th>
<th>Time</th>
<th>Convergence</th>
<th>Total energy</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NoMix/Diag.</td>
<td>2.1</td>
<td>0.41056021</td>
<td>-2133.4408435676</td>
<td>-2.13E+03</td>
</tr>
<tr>
<td>2</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.09203127</td>
<td>-2201.3765392945</td>
<td>-6.79E+01</td>
</tr>
<tr>
<td>3</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.16880309</td>
<td>-2158.2415807244</td>
<td>4.31E+01</td>
</tr>
<tr>
<td>4</td>
<td>Pulay/Diag.</td>
<td>3.1</td>
<td>0.00518342</td>
<td>-2130.6192970241</td>
<td>2.76E+01</td>
</tr>
<tr>
<td>5</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.00047075</td>
<td>-2130.6728564565</td>
<td>-5.36E-02</td>
</tr>
<tr>
<td>6</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.00158949</td>
<td>-2130.6457378471</td>
<td>2.71E-02</td>
</tr>
<tr>
<td>7</td>
<td>Pulay/Diag.</td>
<td>3.1</td>
<td>0.00183981</td>
<td>-2130.6474323880</td>
<td>-1.69E-03</td>
</tr>
<tr>
<td>8</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.00070883</td>
<td>-2130.6475388056</td>
<td>-1.06E-04</td>
</tr>
<tr>
<td>9</td>
<td>Pulay/Diag.</td>
<td>3.1</td>
<td>0.0008650</td>
<td>-2130.6474330363</td>
<td>1.06E-04</td>
</tr>
<tr>
<td>10</td>
<td>Pulay/Diag.</td>
<td>3.1</td>
<td>0.0006343</td>
<td>-2130.6473426916</td>
<td>9.03E-05</td>
</tr>
<tr>
<td>11</td>
<td>Pulay/Diag.</td>
<td>3.1</td>
<td>0.0001087</td>
<td>-2130.6473443079</td>
<td>-1.62E-06</td>
</tr>
<tr>
<td>12</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.0001251</td>
<td>-2130.6473829189</td>
<td>-3.86E-05</td>
</tr>
<tr>
<td>13</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.0000690</td>
<td>-2130.6474093517</td>
<td>-2.64E-05</td>
</tr>
<tr>
<td>14</td>
<td>Pulay/Diag.</td>
<td>3.1</td>
<td>0.0000588</td>
<td>-2130.6474056927</td>
<td>3.66E-06</td>
</tr>
<tr>
<td>15</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.0000429</td>
<td>-2130.6473907798</td>
<td>1.49E-05</td>
</tr>
<tr>
<td>16</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.0000128</td>
<td>-2130.6473708497</td>
<td>1.99E-05</td>
</tr>
<tr>
<td>17</td>
<td>Pulay/Diag.</td>
<td>3.0</td>
<td>0.0000069</td>
<td>-2130.6473700587</td>
<td>7.91E-07</td>
</tr>
</tbody>
</table>

*** SCF run converged in 17 steps ***
&SCF
 SCF_GUESS ATOMIC
 EPS_SCF 1.0E-6
 MAX_SCF 500
 ADDED_MOS 200
 CHOLESKY_INVERSE
 &SMEAR ON
 METHOD FERMI_DIRAC
 ELECTRONIC_TEMPERATURE [K] 300
 &END SMEAR
 &DIAGONALIZATION
 ALGORITHM STANDARD
 &END DIAGONALIZATION
 &MIXING
 METHOD BRYODEN_MIXING
 ALPHA 0.2
 NBUFFER 5
 &END MIXING
 &OUTER_SCF
 EPS_SCF 1.0E-6
 MAX_SCF 1
 &END OUTER_SCF
&END SCF

Au128 bulk
SCF WAVEFUNCTION OPTIMIZATION

<table>
<thead>
<tr>
<th>Step</th>
<th>Update method</th>
<th>Time</th>
<th>Convergence</th>
<th>Total energy</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NoMix/Diag. 0.20E+00</td>
<td>2.1</td>
<td>0.41056021</td>
<td>-2133.440845676</td>
<td>-2.13E+03</td>
</tr>
<tr>
<td>2</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.09203127</td>
<td>-2201.3765392945</td>
<td>-6.79E+01</td>
</tr>
<tr>
<td>3</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.16796900</td>
<td>-2158.0252203875</td>
<td>4.34E+01</td>
</tr>
<tr>
<td>4</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00119322</td>
<td>-2130.7623431374</td>
<td>2.73E+01</td>
</tr>
<tr>
<td>5</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00354041</td>
<td>-2130.8401320934</td>
<td>-7.78E-02</td>
</tr>
<tr>
<td>6</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00027721</td>
<td>-2130.6310148769</td>
<td>2.09E-01</td>
</tr>
<tr>
<td>7</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00021364</td>
<td>-2130.6341596109</td>
<td>-3.14E-03</td>
</tr>
<tr>
<td>8</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00096927</td>
<td>-2130.6425441433</td>
<td>-8.38E-03</td>
</tr>
<tr>
<td>9</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00061032</td>
<td>-2130.6310148769</td>
<td>5.72E-03</td>
</tr>
<tr>
<td>10</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00081999</td>
<td>-2130.6450994448</td>
<td>-3.69E-03</td>
</tr>
<tr>
<td>11</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.1</td>
<td>0.00043764</td>
<td>-2130.6475333293</td>
<td>-7.02E-03</td>
</tr>
<tr>
<td>12</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.1</td>
<td>0.00016383</td>
<td>-2130.6493205024</td>
<td>-1.79E-03</td>
</tr>
<tr>
<td>13</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.1</td>
<td>0.00014511</td>
<td>-2130.6486762850</td>
<td>6.44E-04</td>
</tr>
<tr>
<td>14</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.2</td>
<td>0.00014322</td>
<td>-2130.6482674682</td>
<td>4.09E-04</td>
</tr>
<tr>
<td>15</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.1</td>
<td>0.00011222</td>
<td>-2130.6476512837</td>
<td>6.16E-04</td>
</tr>
<tr>
<td>16</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.1</td>
<td>0.00001122</td>
<td>-2130.6472295415</td>
<td>4.22E-04</td>
</tr>
<tr>
<td>17</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.1</td>
<td>0.00001033</td>
<td>-2130.6472635676</td>
<td>3.40E-05</td>
</tr>
<tr>
<td>18</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.1</td>
<td>0.00001122</td>
<td>-2130.6472999859</td>
<td>3.64E-05</td>
</tr>
<tr>
<td>19</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00001688</td>
<td>-2130.6473550000</td>
<td>-5.50E-05</td>
</tr>
<tr>
<td>20</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.0</td>
<td>0.00001444</td>
<td>-2130.6473964425</td>
<td>-4.14E-05</td>
</tr>
<tr>
<td>21</td>
<td>Broy./Diag. 0.20E+00</td>
<td>3.1</td>
<td>0.00000909</td>
<td>-2130.6474004989</td>
<td>-4.06E-06</td>
</tr>
</tbody>
</table>

*** SCF run converged in 21 steps ***