

SCF Methods — Diagonalisation & Orbital Transformation

Lianheng Tong

King's College London, UK

24 August 2016

Self Consistent Field Calculation

 Central to the QuickStep (DFT) calculation is the Self-Consistent-Field cycle

$$H[\rho]\psi_n = E_n\psi_n$$
$$\rho(\mathbf{r}) = \sum_n f_n\psi_n(\mathbf{r})\psi_n^*(\mathbf{r})$$

- Key to speed and stability of the calculation:
 - Energy minimisation
 - Charge mixing

Topics In This Talk

- Common Methods In CP2K
 - Eigensolvers
 - Optimisers
- Orbital Transformation (OT)
 - Preconditions
- Charge Mixing for Diagonalisation Methods
 - Methods used in CP2K
 - Important parameters for convergence
- Examples

Eigensolvers In CP2K

• General Eigen problem:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x}$$

• Find a way to rewrite back to the standard Eigen problem

 $\mathbf{A'x'} = \lambda \mathbf{x'}$ upper triangular

- Cholesky decomposition based methods: $\mathbf{B} = \mathbf{U}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}$ must be positive definite: $(\mathbf{U}^{-1})^{\mathsf{T}}\mathbf{A}\mathbf{U}^{-1}\mathbf{U}\mathbf{x} = \lambda\mathbf{U}\mathbf{x}$
 - **–** REDUCE: $\mathbf{A}|\mathbf{U}\Rightarrow\mathbf{A}'|\mathbb{1}$ followed by solving $\mathbf{U}\mathbf{x}=\mathbf{x}'$
 - **RESTORE:** Same as Reduce, but with the single reduce step for A' replaced with two restore steps:
 - Solve xU = A \Rightarrow $x = AU^{-1}$
 - Solve $\mathbf{U}^{\mathsf{T}}\mathbf{y} = \mathbf{x} \qquad \Rightarrow \qquad \mathbf{y} = (\mathbf{U}^{\mathsf{T}})^{-1}\mathbf{A}\mathbf{U}^{-1}$
 - INVERSE: Same as Reduce, but calculate A' using the direct inverse of U (involves one inversion of a triangular matrix plus two matrix multiplications)
 - INVERSE_DBCSR: Same as inverse, but utilising sparse matrix algebra engine whenever possible (e.g. when doing matrix multiplication)

- Without Cholesky decomposition:
 - Useful if your basis set contains linearly dependent functions, i.e. B is nonpositive definite
 - Slower, but more robust
- Find the inverse square root of **B**: $\mathbf{B}^{-\frac{1}{2}}$

$$\mathbf{B} = \mathbf{B}^{\frac{1}{2}} \mathbf{B}^{\frac{1}{2}}$$
$$\mathbf{B}^{-\frac{1}{2}} \mathbf{A} \mathbf{B}^{-\frac{1}{2}} \mathbf{B}^{\frac{1}{2}} \mathbf{x} = \mathbf{B}^{\frac{1}{2}} \mathbf{x}$$
$$\mathbf{x}' = \mathbf{B}^{\frac{1}{2}} \mathbf{x} \implies \mathbf{x} = \mathbf{B}^{-\frac{1}{2}} \mathbf{x}'$$

- $B^{-\frac{1}{2}}$ is calculated by diagonalise B, invert the eigenvalues and then transform back.
- If B is non-positive definite: this normally corresponds to the basis set containing redundant linearly dependent vectors. This means the zero eigenvalues of B should not contribute to the linear problem.
 - This is equivalent to set inverse of the eigenvalues to zero

- Concerns with finding the local minimum of a function of many variables
- Steepest Decent:

$$f(\mathbf{x}_n) = f(\mathbf{x}_{n-1}) + \alpha \nabla f(\mathbf{x}_{n-1})$$

 How much we travel along the gradient is determined by a line search to find the minimum of the function along the path

• Conjugate Gradient:

- If we start from a point x_0 close to the minimum, we may Taylor expand around the point to the second order, and assume the minimum is within the radius of convergence:

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \mathbf{b}^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0)^{\mathsf{T}} \mathbf{H}(\mathbf{x} - \mathbf{x}_0) + \mathcal{O}((\mathbf{x} - \mathbf{x}_0)^3)$$
$$(\mathbf{H})_{ij} = \frac{1}{2} \left. \frac{\partial^2 f}{\partial x_i \partial x_j} \right|_{\mathbf{x}_0} \qquad \mathbf{b} = \mathbf{\nabla} f \big|_{\mathbf{x}_0}$$

- We notice that x is the unique solution to $\nabla f(\mathbf{x}) = 0$ if it is the solution of the equation

$$\nabla f(\mathbf{x}) = \mathbf{b} + \mathbf{H}\mathbf{x} = 0 \quad \Rightarrow \mathbf{H}\mathbf{x} = -\mathbf{b}$$

- The Conjugate gradient method then tries to solve the above equation linearly. Notice that H is always symmetric and when near a minimum, positive definite
- We can express x in a basis set

$$\mathbf{x} = \sum_{i} \alpha_i \mathbf{P}_i$$

Hence

$$\sum_{j} \mathbf{P}_{i}^{\mathsf{T}} \mathbf{H} \mathbf{P}_{j} \alpha_{j} = -\mathbf{P}_{i}^{\mathsf{T}} \mathbf{b}$$

- Conjugate Gradient:
 - Now since H is symmetric and positive definite, it can be diagonalised, and we can choose P_i to be a set of conjugate vectors of H, then we can see that

$$\alpha_i = \frac{-\mathbf{P}_i^{\mathsf{T}} \mathbf{b}}{\mathbf{P}_i^{\mathsf{T}} \mathbf{H} \mathbf{P}_i} \qquad \mathbf{P}_i^{\mathsf{T}} \mathbf{H} \mathbf{P}_j = 0 \quad (i \neq j)$$

- The conjugate gradient method then involves iteratively finding each P_i using a Gram-Schmidt like process
- In other words: we take exactly $n = \dim \mathbf{H}$ steps, starting from an initial guess \mathbf{x}_0

$$\mathbf{d}_i = -\mathbf{b} - \mathbf{H}\mathbf{x}_i$$

$$\mathbf{P}_{1} = \mathbf{d}_{0}$$

$$\mathbf{r}_{1} = \mathbf{d}_{0}$$

$$\mathbf{P}_{2} = \mathbf{d}_{1} - \frac{\mathbf{P}_{0}^{\mathsf{T}}\mathbf{H}\mathbf{d}_{1}}{\mathbf{P}_{0}^{\mathsf{T}}\mathbf{H}\mathbf{P}_{0}}\mathbf{P}_{0}$$

$$\mathbf{P}_{2} = \mathbf{d}_{1} - \frac{\mathbf{P}_{0}^{\mathsf{T}}\mathbf{H}\mathbf{d}_{1}}{\mathbf{P}_{0}^{\mathsf{T}}\mathbf{H}\mathbf{P}_{0}}\mathbf{P}_{0}$$

$$\mathbf{P}_{3} = \mathbf{d}_{2} - \frac{\mathbf{P}_{0}^{\mathsf{T}}\mathbf{H}\mathbf{d}_{2}}{\mathbf{P}_{0}^{\mathsf{T}}\mathbf{H}\mathbf{P}_{0}}\mathbf{P}_{0} - \frac{\mathbf{P}_{1}^{\mathsf{T}}\mathbf{H}\mathbf{d}_{2}}{\mathbf{P}_{1}^{\mathsf{T}}\mathbf{H}\mathbf{P}_{1}}\mathbf{P}_{1}$$

$$\vdots$$

$$\mathbf{x}_{n} = \alpha_{1}\mathbf{P}_{1} + \alpha_{2}\mathbf{P}_{2} + \alpha_{3}\mathbf{P}_{3} + \dots + \alpha_{n}\mathbf{P}_{n}$$

$$\mathbf{P}_{n} = \mathbf{d}_{n-1} - \frac{\mathbf{P}_{0}^{\mathsf{T}}\mathbf{H}\mathbf{d}_{n-1}}{\mathbf{P}_{0}^{\mathsf{T}}\mathbf{H}\mathbf{P}_{0}}\mathbf{P}_{0} - \frac{\mathbf{P}_{1}^{\mathsf{T}}\mathbf{H}\mathbf{d}_{n-1}}{\mathbf{P}_{1}^{\mathsf{T}}\mathbf{H}\mathbf{P}_{1}}\mathbf{P}_{1} - \dots - \frac{\mathbf{P}_{n-1}^{\mathsf{T}}\mathbf{H}\mathbf{d}_{n-1}}{\mathbf{P}_{n-1}^{\mathsf{T}}\mathbf{H}\mathbf{P}_{n-1}}\mathbf{P}_{n-1}$$

- Discrete Inversion in Iterative Space (DIIS), a.k.a. Pulay Method :
 - The new step is based on considerations over a list of previous steps:

$$\mathbf{x}_{n+1} = \sum_{i}^{n} \alpha_i \mathbf{x}_i, \quad \sum_{i}^{n} \alpha_i = 1$$

- Minimise by seeking the solution to $\nabla f(\mathbf{x}) = 0$
- Assume when close enough to minimum, the gradient becomes a linear function:

$$\nabla f(\mathbf{x}_{n+1}) = \sum_{i}^{n} \alpha_i \nabla f(\mathbf{x}_i) \qquad \mathbf{d}_i \equiv \nabla f(\mathbf{x}_i)$$

- The new gradient (residual) is then a function of α_i , solve: $\frac{\partial \|\mathbf{d}_{n+1}\|}{\partial \alpha_i} = 0$ with constraints $\sum_{i=1}^{n} \alpha_i = 1$, we obtain:

$$\alpha_i = \frac{\sum_{i=1}^{n} A_{ji}^{-1}}{\sum_{ij=1}^{n} A_{ji}^{-1}}, \quad A_{ij} = \mathbf{d}_i^{\mathsf{T}} \mathbf{d}_j$$

- Can be over 50% faster than CG, but not as stable because bad history contribute to the next step.
- Too many history included may not be beneficial.

• Broyden's Method:

- Again, seeks the solution to $\nabla f(\mathbf{x}) = 0$, but using the secant method
- The next step can be determined by the inverse of Jacobian:

But inverse of Jacobian too expensive, so instead approximate J_n⁻¹ to be able to reproduce the changes in step (x) and residual (d) close to a set of previous results. In other words, minimise the weighted norm:

$$\sum_{i=1}^{n} w_i \| (\mathbf{x}_i - \mathbf{x}_{i-1}) - \mathbf{J}_n^{-1} (\mathbf{d}_i - \mathbf{d}_{i-1}) \|^2$$

And at the same time the changes in \mathbf{J}_n^{-1} should be the minimal possible from the initial step. So we find \mathbf{J}_n^{-1} by minimise:

$$N = \sum_{i=1}^{n} w_i \| (\mathbf{x}_i - \mathbf{x}_{i-1}) - \mathbf{J}_n^{-1} (\mathbf{d}_i - \mathbf{d}_{i-1}) \|^2 + w_0 \| \mathbf{J}_n^{-1} - \mathbf{J}_0^{-1} \|$$

- Seeks to find the minimum of the energy functional with respect to the MO coefficients, with the constraint that MO are normalised.
- Optimisation problem on a Mdimensional spherical surface.
- Perform a variable transformation, from MO coefficients C to a set of auxiliary variables X such that the optimisation of E is now on a M-I dimensional linear space w.r.t. X

$$\mathbf{C}(\mathbf{X}) = \mathbf{C}_0 \cos(\mathbf{U}) + \mathbf{X}\mathbf{U}^{-1}\sin(\mathbf{U})$$
$$\mathbf{U} = (\mathbf{X}^{\mathsf{T}}\mathbf{S}\mathbf{X})^{\frac{1}{2}}$$

• With constraint (fixes the direction of the plane):

 $\mathbf{X}^{\mathsf{T}}\mathbf{S}\mathbf{C}_0 = 0$

- Seeks to find the minimum of the energy functional with respect to the MO coefficients, with the constraint that MO are normalised.
- Optimisation problem on a Mdimensional spherical surface.
- Perform a variable transformation, from MO coefficients C to a set of auxiliary variables X such that the optimisation of E is now on a M-I dimensional linear space w.r.t. X

$$\mathbf{C}(\mathbf{X}) = \mathbf{C}_0 \cos(\mathbf{U}) + \mathbf{X} \mathbf{U}^{-1} \sin(\mathbf{U})$$

 $\mathbf{U} = (\mathbf{X}^\mathsf{T} \mathbf{S} \mathbf{X})^{\frac{1}{2}}$

• With constraint (fixes the direction of the plane):

 $\mathbf{X}^{\mathsf{T}}\mathbf{S}\mathbf{C}_0 = 0$

• Computation of SIN and COS terms

- Can be calculated by diagonalisation: transforming to eigenspace, operate on eigenvalues, and then transform back. BUT too expensive.
- Use Taylor expansion: 2 or 3 order expansion already give machine precision.
- Calculate U^{-1} as part of the Taylor expansion

$$\cos(\mathbf{U}) = \sum_{i=0}^{K} \frac{(-1)}{(2i)!} (\mathbf{X}^{\mathsf{T}} \mathbf{S} \mathbf{X})^{i}$$

$$\mathbf{U}^{-1}\sin(\mathbf{U}) = \sum_{i=0}^{K} \frac{(-1)^{i}}{(2i+1)!} (\mathbf{X}^{\mathsf{T}} \mathbf{S} \mathbf{X})^{i}$$

• Preconditioners

- The function to be minimised:

$$E(\mathbf{c}(\mathbf{x})) = \operatorname{tr}(\mathbf{c}^{\mathsf{T}}(\mathbf{x}))\mathbf{H}_{KS}\mathbf{c}(\mathbf{x}) + \mathbf{x}^{\mathsf{T}}\mathbf{S}\mathbf{c}_{0}\mathbf{\Lambda})$$

- While minimisation of E with respect to the OT variable is guaranteed to converge, it may do so very slowly.
- Preconditioners can greatly speed up the convergence of an iterative optimisation process
- Assuming c_0 are eigenstates of the initial KS hamiltonian, and we Taylor expand close by:

$$E(\mathbf{x}_0 + \mathbf{h}) = E_{\mathbf{x}_0} + \nabla_{\mathbf{h}} E(\mathbf{x}_0)^{\mathsf{T}} \mathbf{h} + \frac{1}{2} \mathbf{h}^{\mathsf{T}} \mathbf{E}''(\mathbf{x}_0) \mathbf{h} + O(h^3)$$

- Then the Hessian of E close to minimum is:

$$\left. \frac{\partial^2 E}{\partial x_{i\mu} \partial x_{j\nu}} \right|_{\mathbf{x}_0} = 2H_{ij} \delta_{\mu\nu} - 2S_{ij} \delta_{\mu\nu} \epsilon^0_\mu$$

At minimum, we expect

$$\frac{\mathrm{d}E(\mathbf{x}_0 + \mathbf{h})}{\mathrm{d}\mathbf{h}} = \boldsymbol{\nabla}_{\mathbf{h}}E(\mathbf{x}_0) + \mathbf{E}''(\mathbf{x}_0)\mathbf{h} + O(h^2) = 0$$

- Therefore, $\mathbf{h} = -\mathbf{E}''(\mathbf{x}_0)^{-1} \nabla_{\mathbf{h}} E(\mathbf{x}_0)$, i.e.:

 $\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{P}_n \boldsymbol{\nabla} \boldsymbol{E}_n$

- The ideal precondioner to the gradient is therefore:

$$\mathbf{P}_n = (\mathbf{H}_{KS} - \mathbf{S}\epsilon_n)^{-1} \qquad \epsilon_n = \mathbf{c}_n^{\mathsf{T}} \mathbf{H}_{KS} \mathbf{c}_n$$

- Practical Approximations to Preconditioner :
 - Ideal preconditioner requires:
 - Evaluation at every step
 - A different preconditioner matrix for every gradient vector
 - Matrix inversion
 - FULL_ALL:
 - Instead of calculating ϵ_n , replace it with a single scalar ϵ_0 that is similar to other energy levels. It is chosen to be the highest eigenvalue of the initial step/guess
 - Instead of evaluating at every step, do once at the beginning, and reuse the same preconditioner
 - Invert by diagonalisation, keep positive definite by truncating small eigenvalues

- FULL_KINETIC

- Same as FULL_ALL, except only use kinetic energy part of KS matrix.
- This gives sparse matrices, and can be taken advantage of using DBCSR based methods
- FULL_SINGLE
 - Same as FULL_ALL, however, only use the block diagonal parts of $\, {f H}_{KS} {f S} \epsilon_0 \,$
 - In other words, only on-site terms are considered by the preconditioner
 - Much faster, as each block can be calculated separately
- FULL_SINGLE_INVERSE
 - Same as FULL_SINGLE, but with the inversion process replaced by Cholesky process. Only works if $H_{KS} S\epsilon_0$ is already positive definite.
 - Therefore less robust, but more efficient than FULL_SINGLE
- FULL_S_INVERSE
 - Ignore the KS matrix contribution all together, and utilise Cholesky decomposition of the full overlap matrix
 - Generally avoid
- NONE
 - Not recommended...

- Inner and Outer SCF/OT minimisation Loop :
 - Relevant only for OT:
 - KS matrix is updated at every OT minimisation step: minimisation and SCF happening at the same time
 - Inner Loop: Preconditioner is calculated at the begging of the loop, and remains constant throughout the inner loop
 - Outer Loop: Loops over the inner loop, this means the preconditioner is updated at every outer loop step
 - Tips for OT convergence:
 - If inner loop is converging slowly, try to reduce the number of allowed iterations in the inner loop, and increase the number of iterations allowed for the outer loop.
 - This effectively forces the preconditioner to be updated more frequently

Mixing Methods for Diagonalisation

- Diagonalisation:
 - Solves the generalised eigen problem:

 $\mathbf{H}_{KS}\mathbf{c}=\lambda\mathbf{S}\mathbf{c}$

- Uses any one of the eigensolvers implemented in CP2K
- Density matrix can be constructed from the MOs.

$$P_{ij} = \sum_{n} f_n c_{in} c_{jn}$$

- Occupy the MOs from the lowest energy up, until total number of electrons has reached.
 - This gives Fermi energy
 - Allows the opportunity to introduce smearing into the occupancy
- From the density matrix, we can obtain electron charge, and this is then mixed back into the KS Hamiltonian, to complete the SCF loop

Mixing Methods for Diagonalisation

• Smearing:

- Integer occupation numbers: discontinuity at Fermi energy.
- If Fermi energy is close to a number of MOs, a small variation of MO energies can lead to a jump in total energy, due to the electrons either occupy or leave a particular orbital completely
 - This brings havoc to SCF optimisers, because all numerical optimisers work on the basis that functions they try to minimise is continuous and (at least once or twice) differentiable.
- Not a problem if the Fermi energy is in a band gap. Is a problem for metals.
- Smearing: replace the step function of occupancy with a smooth function of the similar shape, with smoothness controlled by a parametric temperature
- The higher the smearing temperature, the less resolution (system size) required for the band structure, but also less accurate

Mixing Methods for Diagonalisation

- Broyden / Pulay Mixing
 - The same as Broyden / DIIS optimisation method
 - Solving for $R[\rho^{in}] = \rho^{out} \rho^{in} = 0$
 - Broyden mixing is very similar to Pulay mixing, but slightly faster and somewhat more robust, as it does not involve matrix inversion
- Kerker Preconditioning (automatically turns on Pulay):
 - Solve SCF convergence issues caused by large changes in the Hartree energy due to the changes in charge density that are far apart at every iteration step.
 - The large change in Hartree energy then causes a corresponding reaction correction in the next output density, leading to a phenomenon referred to as "charge sloshing".
 - The problem can be solved by performing charge mixing in reciprocal space, and change the mixing parameter A to a preconditioner:

$$A \to A \frac{q^2}{q^2 + B^2}$$

Long range change correspond to small q, and its contribution goes to 0

If you have a restart file, use RESTART &SCF SCF_GUESS ATOMIC 64 water box EPS_SCF 1.0E-06 MAX_SCF 200 &OT ON MINIMIZER DIIS PRECONDITIONER FULL_SINGLE_INVERSE &END OT &OUTER_SCF MAX_SCF 10 &END OUTER_SCF **&PRINT** &RESTART OFF & END RESTART **&END PRINT** &END SCF

SCF WAVEFUNCTION OPTIMIZATION	Trace(PS): 512.000000000 Electronic density on regular grids: -512.0000015457 Core density on regular grids: 512.0000000045
Minimizer : DIIS : direct inversion in the iterative subspace using 7 DIIS vectors	Total charge density on r-space grids:-0.0000015412Total charge density g-space grids:-0.0000015412
Preconditioner : FULL_SINGLE_INVERSE : inversion of H + eS - 2*(Sc)(c^T*H*c+const)(Sc)^TPrecond_solver : DEFAULT stepsize : 0.08000000 energy_gap : 0.08000000 eps_taylor : 0.10000E-15 max_taylor : 4	149 OT DIIS 0.80E-01 1.2 0.0000102 -1101.0377081868 -3.67E-07 Trace(PS): 512.000000000 Electronic density on regular grids: -512.0000015457 -0.0000015457 Core density on regular grids: 512.000000045 0.000000045 Total charge density on r-space grids: -0.0000015412 -0.0000015412
Step Update method Time Convergence Total energy Change	150 OT DIIS 0.80E-01 1.2 0.00000101 -1101.0377086068 -4.20E-07 Trace(PS): 512.0000000000 Flashmania danailar an academ anidar 512.0000000000
Trace(PS):512.0000000000Electronic density on regular grids:-512.000014959Core density on regular grids:512.0000000045Total charge density on r-space grids:-0.0000014914Total charge density g-space grids:-0.0000014914	Core density on regular grids:-512.0000015457-0.0000015457Core density on regular grids:512.00000000450.0000000045Total charge density on r-space grids:-0.0000015412Total charge density g-space grids:-0.0000015412
1 OT DIIS 0.80E-01 1.9 0.02242151 -1059.3825079557 -1.06E+03	151 OT DIIS 0.80E-01 1.2 0.00000101 -1101.0377089336 -3.27E-07 Trace(PS): 512.000000000
Trace(PS): 512.000000000 Electronic density on regular grids: -512.0000017437 Core density on regular grids: 512.000000045 Total charge density on r-space grids: -0.0000017392 Total charge density g-space grids: -0.0000017392	Electronic density on regular grids:-512.0000015457-0.0000015457Core density on regular grids:512.00000000450.000000045Total charge density on r-space grids:-0.0000015412-0.0000015412Total charge density g-space grids:-0.0000015412-0.0000015412
2 OT DIIS 0.80E-01 1.2 0.01583191 -1079.2016155971 -1.98E+01	152 OT DIIS 0.80E-01 1.2 0.00000100 -1101.0377093306 -3.97E-07 Trace(PS): 512.000000000
Trace(PS): 512.000000000 Electronic density on regular grids: -512.0000015128 -0.0000015128 Core density on regular grids: 512.000000045 0.000000045 Total charge density on r-space grids: -0.0000015083 -0.0000015083	Electronic density on regular grids:-512.0000015457-0.0000015457Core density on regular grids:512.00000000450.000000045Total charge density on r-space grids:-0.0000015412-0.0000015412Total charge density g-space grids:-0.0000015412-0.0000015412
Total charge density g-space grias0.0000013005	153 OT DIIS 0.80E-01 1.2 0.00000100 -1101.0377096545 -3.24E-07 *** SCF run converged in 153 steps ***

64 water box

&SCF SCF_GUESS ATOMIC EPS_SCF 1.0E-06 MAX_SCF 200 &OT ON MINIMIZER DIIS PRECONDITIONER FULL_ALL &END OT &OUTER_SCF MAX_SCF 10 &END OUTER_SCF **&PRINT** &RESTART OFF & END RESTART **&END PRINT** &END SCF

	108 OT DIIS 0.15E+00 1.3 0.00000105 -1101.0377126778 -3.05E-07
SCF WAVEFUNCTION OPTIMIZATION 	Trace(PS): 511.9999999999 Electronic density on regular grids: -512.0000015456 Core density on regular grids: 512.000000045 Total charge density on r-space grids: -0.0000015411 Total charge density g-space grids: -0.0000015411
Preconditioner : FULL_ALL : diagonalization, state selective Precond_solver : DEFAULT : 0.15000000 energy_gap : 0.08000000 energy_gap : 0.08000000	109 OT DIIS 0.15E+00 1.3 0.00000104 -1101.0377130143 -3.37E-07 Trace(PS): 511.99999999999 Electronic density on regular grids: -512.0000015456 -0.0000015456 Core density on regular grids: 512.000000045 0.000000045
Step Update method Time Convergence Total energy Change	Total charge density on r-space grids: -0.0000015411 Total charge density g-space grids: -0.0000015411 110 OT DIIS 0.15E+00 1.3 0.00000103 -1101.0377133249 -3.11E-07
Trace(PS): 512.000000000 Electronic density on regular grids: -512.0000014959 -0.0000014959 Core density on regular grids: 512.000000045 0.000000045 Total charge density on r-space grids: -0.0000014914 -0.0000014914	Trace(PS): 511.9999999999 Electronic density on regular grids: -512.0000015456 Core density on regular grids: 512.000000045 Total charge density on r-space grids: -0.0000015411 Total charge density g-space grids: -0.0000015411
1 OT DIIS 0.15E+00 4.2 0.02500388 -1059.3825079557 -1.06E+03	111 OT DIIS 0.15E+00 1.3 0.00000102 -1101.0377136686 -3.44E-07
Trace(PS): 512.000000000 Electronic density on regular grids: -512.0000020917 -0.0000020917 Core density on regular grids: 512.0000000045 0.0000000045 Total charge density on r-space grids: -0.0000020873 -0.0000020873 Total charge density g-space grids: -0.0000020873 -0.0000020873	Trace(PS): 511.9999999999 Electronic density on regular grids: -512.0000015456 -0.0000015456 Core density on regular grids: 512.000000045 0.000000045 Total charge density on r-space grids: -0.0000015411 -0.0000015411 Total charge density g-space grids: -0.0000015411 -0.0000015411
2 OT DIIS 0.15E+00 1.3 0.01405947 -1091.5303639854 -3.21E+01	112 OT DIIS 0.15E+00 1.3 0.00000101 -1101.0377140259 -3.57E-07
Trace(PS): 512.000000000 Electronic density on regular grids: -512.000011239 -0.0000011239 Core density on regular grids: 512.000000045 0.000000045 Total charge density on r-space grids: -0.0000011194 -0.0000011194 Total charge density g-space grids: -0.0000011194 -0.0000011194	Trace(PS): 511.9999999999 Electronic density on regular grids: -512.0000015456 Core density on regular grids: 512.000000045 Total charge density on r-space grids: -0.0000015411 Total charge density g-space grids: -0.0000015411
	113 OT DIIS 0.15E+00 1.3 0.00000100 -1101.0377143737 -3.48E-07 *** SCF run converged in 113 steps ***

64 water box

&SCF SCF_GUESS ATOMIC EPS_SCF 1.0E-06 MAX_SCF 20 &OT ON MINIMIZER DIIS PRECONDITIONER FULL_ALL &END OT &OUTER_SCF MAX_SCF 100 &END OUTER_SCF **&PRINT** &RESTART OFF & END RESTART **&END PRINT** &END SCF

	Step Update method Time Convergence Total energy Change
	Trace(PS): 512.00000000
18 OT DIIS 0.15E+00 1.3 0.00010381 -1101.0333773217 -3.82E-03	Electronic density on regular grids: -512.0000015467 -0.0000015467
Theco(DS). 512,00000000	Core density on regular grids: 512.000000045 0.000000045
Flectronic density on regular arids: -512.00000015462 -0.0000015462	Total charge density on r-space grids: -0.0000015422
Core density on regular grids: 512.000000045 0.000000045	Total charge density g-space grius0.0000013422
Total charge density on r-space grids: -0.0000015417	1 OT DIIS 0.15E+00 5.9 0.00016580 -1101.0355385583 -4.42E-04
	Trace(PS): 512 00000000
19 OT DIIS 0.15E+00 1.3 0.00009753 -1101.0345262445 -1.15E-03	Electronic density on regular grids: -512.0000015454 -0.0000015454
	Core density on regular grids: 512.000000045 0.000000045
Trace(PS): 512.00000000	Total charge density on r-space grids: -0.0000015409
Electronic density on regular grids: -512.0000015467 -0.0000015467 Core density on regular grids: 512.0000000045 0.000000045	Total charge density g-space grids: -0.0000015409
Total charge density on r-space grids: -0.0000015422 Total charge density a-space grids: -0.0000015422	2 OT DIIS 0.15E+00 1.2 0.00006738 -1101.0374081725 -1.87E-03
	Trace(PS): 512.000000000
20 OT DIIS 0.15E+00 1.3 0.00006603 -1101.0350962104 -5.70E-04	Electronic density on regular grids: -512.0000015475 -0.0000015475
	Core density on regular grids: 512.000000045 0.000000045
*** SCF run NOT converged ***	Total charge density on r-space grids: -0.0000015430
	Total charge density g-space grids: -0.0000015430
Electronic density on regular grids: -512.0000015467 -0.0000015467	3 OT DIIS 0.15E+00 1.2 0.00003004 -1101.0377417272 -3.34E-04
Core density on regular grids: 512.000000045 0.000000045	
Total charge density on r-space grids: -0.0000015422	Trace(PS): 512.000000000
Iotal charge density g-space grids: -0.0000015422	Electronic density on regular grids:-512.0000015459-0.0000015459
Overlap energy of the core charge distribution: 0 00000562509749	Core density on regular grids: 512.0000000045 0.0000000045
Self energy of the core charge distribution: -2805 30499493854950	Total charge density on r-space grids: -0.0000015415
Core Hamiltonian energy: 825.30614501411810	Total charge density g-space grius0.0000013413
Hartree energy: 1145.24847973284727	4 OT DITS 0.15F+00 1.2 0.00000106 -1101.0377661454 -2.44F-05
Exchange-correlation energy: -266.28473164478658	
Tatal ananayy 1101 02500621027247	Trace(PS): 512.000000000
-1101.05509021057547	Electronic density on regular grids: -512.0000015460 -0.0000015460
outer SCF iter = 1 RMS aradient = 0.66E-04 energy = -1101.0350962104	Total charge density on r-space arids:
	Total charge density g-space grids: -0.0000015415
	5 OT DIIS 0.15E+00 1.2 0.00000062 -1101.0377661763 -3.09E-08
	*** SCF run converged in 5 steps ***

&SCF SCF_GUESS ATOMIC EPS_SCF 1.0E-6 MAX_SCF 500 ADDED_MOS 200 CHOLESKY INVERSE **&SMEAR ON** METHOD FERMI_DIRAC ELECTRONIC_TEMPERATURE [K] 300 &END SMEAR &DIAGONALIZATION ALGORITHM STANDARD & END DIAGONALIZATION &MIXING METHOD DIRECT_P_MIXING ALPHA 0.5 &END MIXING &OUTER_SCF EPS_SCF 1.0E-6 MAX_SCF 1 &END OUTER_SCF &END SCF

Aul 28 bulk

							27	4 P_Mix/Diag.	0.50E+00	3.1	496.18271982	1433.1258409018	-2.52E+02
Step	Update	method	Time	Convergence	Total energy	Change	27	5 P_Mix/Diag.	0.50E+00	3.1	465.21950527	1708.0865674753	2.75E+02
							27	6 P_Mix/Diag.	0.50E+00	3.2	526.35992000	1701.9896437225	-6.10E+00
1	P_Mix/Diag.	0.50E+00	2.1	0.41056021	-2133.4408435676	-2.13E+03	27	7 P_Mix/Diag.	0.50E+00	3.1	500.55201331	1429.0695309273	-2.73E+02
2	P_Mix/Diag.	0.50E+00	3.2	0.20432922	-2132.0776002852	1.36E+00	27	8 P_Mix/Diag.	0.50E+00	3.1	452.47323777	1685.6997235986	2.57E+02
3	P_Mix/Diag.	0.50E+00	3.2	0.10741372	-2131.3677551799	7.10E-01	27	9 P_Mix/Diag.	0.50E+00	3.1	525.66284299	1726.0727258188	4.04E+01
4	P_Mix/Diag.	0.50E+00	3.2	0.05420394	-2131.0080867703	3.60E-01	28	0 P_Mix/Diag.	0.50E+00	3.1	504.85174061	1437.1005594299	-2.89E+02
5	DIIS/Diag.	0.39E-03	3.2	0.02722180	-2130.8276990683	1.80E-01	28	1 P_Mix/Diag.	0.50E+00	3.1	452.73958110	1626.9128568615	1.90E+02
6	DIIS/Diag.	0.19E-03	3.1	0.00062404	-2130.6473761946	1.80E-01	28	2 P_Mix/Diag.	0.50E+00	3.2	524.88774970	1767.5496813722	1.41E+02
7	DIIS/Diag.	0.84E-04	3.2	0.00050993	-2130.6473778175	-1.62E-06	28	3 P_Mix/Diag.	0.50E+00	3.1	509.84684807	1454.1863412940	-3.13E+02
8	DIIS/Diag.	0.63E-04	3.2	0.00021250	-2130.6473781683	-3.51E-07	28	4 P_Mix/Diag.	0.50E+00	3.1	424.76338293	1583.5008811158	1.29E+02
9	DIIS/Diag.	0.11E-03	3.2	0.00019003	-2130.6473780859	8.24E-08	28	5 P_Mix/Diag.	0.50E+00	3.1	516.88135732	1784.1133181315	2.01E+02
10	DIIS/Diag.	0.29E-03	3.1	0.00037131	-2130.6473764995	1.59E-06	28	6 P_Mix/Diag.	0.50E+00	3.1	514.48307366	1475.1702369153	-3.09E+02
11	DIIS/Diag.	0.34E-03	3.2	0.00045761	-2130.6473757354	7.64E-07	28	7 P_Mix/Diag.	0.50E+00	3.1	429.02575267	1494.4059971253	1.92E+01
12	DIIS/Diag.	0.10E-02	3.2	0.00121294	-2130.6473574307	1.83E-05	28	8 P_Mix/Diag.	0.50E+00	3.2	505.84474236	1762.0172683978	2.68E+02
13	DIIS/Diag.	0.47E-03	3.1	0.00355236	-2130.6473668667	-9.44E-06	28	9 P_Mix/Diag.	0.50E+00	3.1	521.09854796	1519.1104495575	-2.43E+02
14	DIIS/Diag.	0.74E-02	3.1	0.00485367	-2130.6464389964	9.28E-04	29	0 P_Mix/Diag.	0.50E+00	3.2	460.28042402	1463.1850194878	-5.59E+01
15	DIIS/Diag.	0.80E-02	3.1	0.01204111	-2130.6462412097	1.98E-04	29	1 P_Mix/Diag.	0.50E+00	3.1	494.65034012	1736.5367974686	2.73E+02
16	DIIS/Diag.	0.10E-01	3.1	0.00709698	-2130.6441536117	2.09E-03	29	2 P_Mix/Diag.	0.50E+00	3.1	523.62795354	1561.0634325581	-1.75E+02
17	DIIS/Diag.	0.73E-02	3.1	0.06036011	-2130.6454804871	-1.33E-03	29	3 P_Mix/Diag.	0.50E+00	3.1	470.92963686	1458.4095785993	-1.03E+02
18	DIIS/Diag.	0.32E-01	3.1	0.07606048	-2130.6085108701	3.70E-02	29	4 P_Mix/Diag.	0.50E+00	3.1	489.94822751	1740.7536880093	2.82E+02
19	P_Mix/Diag.	0.50E+00	3.1	1.20934863	-2130.4320575334	1.76E-01	29	5 P_Mix/Diag.	0.50E+00	3.1	527.88371821	1586.4713619002	-1.54E+02
20	P_Mix/Diag.	0.50E+00	3.1	164.38141403	-2083.0458429170	4.74E+01	29	6 P_Mix/Diag.	0.50E+00	3.1	477.46948475	1461.2599044466	-1.25E+02
21	P_Mix/Diag.	0.50E+00	3.1	484.77129296	642.3682176809	2.73E+03	29	7 P_Mix/Diag.	0.50E+00	3.1	481.52741519	1744.2498516733	2.83E+02
22	P_Mix/Diag.	0.50E+00	3.1	242.49533726	680.0967740982	3.77E+01	29	8 P_Mix/Diag.	0.50E+00	3.1	528.64978975	1631.2670959487	-1.13E+02
23	P_Mix/Diag.	0.50E+00	3.1	108.28073503	713.7098573905	3.36E+01	29	9 P_Mix/Diag.	0.50E+00	3.1	483.01432540	1447.7674793116	-1.83E+02
24	P_Mix/Diag.	0.50E+00	3.1	133.38323194	-83.2160327233	-7.97E+02	30	0 P_Mix/Diag.	0.50E+00	3.1	475.21476950	1734.9217161865	2.87E+02
25	P_Mix/Diag.	0.50E+00	3.1	243.65162842	257.9355830764	3.41E+02	30	1 P_Mix/Diag.	0.50E+00	3.1	527.70245328	1640.9047892819	-9.40E+01
26	P_Mix/Diag.	0.50E+00	3.1	360.75338107	804.4210109712	5.46E+02	30	2 P_Mix/Diag.	0.50E+00	3.1	485.65879289	1448.0327123002	-1.93E+02
27	P_Mix/Diag.	0.50E+00	3.2	423.28363111	790.1670568787	-1.43E+01	30	3 P_Mix/Diag.	0.50E+00	3.1	474.33206574	1735.1993514743	2.87E+02
28	P_Mix/Diag.	0.50E+00	3.1	527.98757101	1358.0740107382	5.68E+02	30	4 P_Mix/Diag.	0.50E+00	3.1	528.41442815	1652.4630012861	-8.27E+01
29	P_Mix/Diag.	0.50E+00	3.1	467.44558067	1279.1848521006	-7.89E+01	30	5 P_Mix/Diag.	0.50E+00	3.1	487.89310966	1441.5618979731	-2.11E+02
30	P_Mix/Diag.	0.50E+00	3.1	511.11190255	1700.0469627750	4.21E+02	30	6 P_Mix/Diag.	0.50E+00	3.1	472.80773473	1735.6753322017	2.94E+02
31	P_Mix/Diag.	0.50E+00	3.1	531.81962633	1488.0293045448	-2.12E+02	30	7 P_Mix/Diag.	0.50E+00	3.1	528.03454596	1664.1188498883	-7.16E+01
32	P_Mix/Diag.	0.50E+00	3.1	469.22980247	1449.5252473273	-3.85E+01	30	8 P_Mix/Diag.	0.50E+00	3.1	489.55606395	1439.4935858980	-2.25E+02
							30	9 P_Mix/Diag.	0.50E+00	3.2	471.87729366	1733.8307029231	2.94E+02
							31	0 P_Mix/Diag.	0.50E+00	3.1	527.88042982	1669.9038337698	-6.39E+01

&SCF SCF_GUESS ATOMIC EPS_SCF 1.0E-6 MAX_SCF 500 ADDED_MOS 200 CHOLESKY INVERSE **&SMEAR ON** METHOD FERMI_DIRAC ELECTRONIC_TEMPERATURE [K] 300 &END SMEAR &DIAGONALIZATION ALGORITHM STANDARD & END DIAGONALIZATION &MIXING METHOD PULAY_MIXING ALPHA 0.2 **NBUFFER 5** &END MIXING &OUTER_SCF EPS_SCF 1.0E-6 MAX_SCF 1 &END OUTER_SCF &END SCF

Aul 28 bulk

SCF WA	AVEFUNCTION	OPTIMIZATI	ON		
Step	Update	method	Time	Convergence	Total energy Chang
1	NoMix/Diag.	0.20E+00	2.1	0.41056021	-2133.4408435676 -2.13E+0
2	Pulay/Diag.	0.20E+00	3.0	0.09203127	-2201.3765392945 -6.79E+0
3	Pulay/Diag.	0.20E+00	3.0	0.16880309	-2158.2415807244 4.31E+0
4	Pulay/Diag.	0.20E+00	3.1	0.00518342	-2130.6192970241 2.76E+0
5	Pulay/Diag.	0.20E+00	3.0	0.00047075	-2130.6728564565 -5.36E-0
6	Pulay/Diag.	0.20E+00	3.0	0.00158949	-2130.6457378471 2.71E-0
7	Pulay/Diag.	0.20E+00	3.1	0.00183981	-2130.6474323880 -1.69E-0
8	Pulay/Diag.	0.20E+00	3.0	0.00070883	-2130.6475388056 -1.06E-0
9	Pulay/Diag.	0.20E+00	3.1	0.00008650	-2130.6474330363 1.06E-0
10	Pulay/Diag.	0.20E+00	3.1	0.00006343	-2130.6473426916 9.03E-0
11	Pulay/Diag.	0.20E+00	3.1	0.00001087	-2130.6473443079 -1.62E-0
12	Pulay/Diag.	0.20E+00	3.0	0.00001251	-2130.6473829189 -3.86E-0
13	Pulay/Diag.	0.20E+00	3.0	0.0000690	-2130.6474093517 -2.64E-0
14	Pulay/Diag.	0.20E+00	3.1	0.0000588	-2130.6474056927 3.66E-0
15	Pulay/Diag.	0.20E+00	3.0	0.00000429	-2130.6473907798 1.49E-0
16	Pulay/Diag.	0.20E+00	3.0	0.00000128	-2130.6473708497 1.99E-0
17	Pulay/Diag.	0.20E+00	3.0	0.0000069	-2130.6473700587 7.91E-0
*** (SCF run conv	verged in	17 step)S ***	

&SCF SCF_GUESS ATOMIC EPS_SCF 1.0E-6 MAX_SCF 500 ADDED_MOS 200 CHOLESKY INVERSE **&SMEAR ON** METHOD FERMI_DIRAC ELECTRONIC_TEMPERATURE [K] 300 &END SMEAR &DIAGONALIZATION ALGORITHM STANDARD & END DIAGONALIZATION &MIXING METHOD BRYODEN_MIXING ALPHA 0.2 **NBUFFER 5** &END MIXING &OUTER_SCF EPS_SCF 1.0E-6 MAX_SCF 1 &END OUTER_SCF &END SCF

Aul 28 bulk

SCF WAVEFUNCTION OPTIMIZATION Step Update method Convergence Total energy Time Change _____ -----_____ 1 NoMix/Diag. 0.20E+00 2.1 0.41056021 -2133.4408435676 -2.13E+03 2 Broy./Diag. 0.20E+00 -2201.3765392945 -6.79E+01 3.0 0.09203127 3 Broy./Diag. 0.20E+00 3.0 0.16796900 -2158.0252203875 4.34E+01 4 Broy./Diag. 0.20E+00 3.0 0.00119322 -2130.7623431374 2.73E+01 5 Broy./Diag. 0.20E+00 0.00354041 -2130.8401320934 -7.78E-02 3.0 6 Broy./Diag. 0.20E+00 3.0 0.00027721 -2130.6310148769 2.09E-01 7 Broy./Diag. 0.20E+00 3.0 0.00021364 -2130.6341596109 -3.14E-03 8 Broy./Diag. 0.20E+00 0.00096927 3.0 -2130.6425441433 -8.38E-03 9 Broy./Diag. 0.20E+00 3.0 0.00061032 -2130.6368211911 5.72E-03 10 Broy./Diag. 0.20E+00 0.00008199 3.0 -2130.6405099448 -3.69E-03 11 Broy./Diag. 0.20E+00 3.1 0.00004376 -2130.6475333293 -7.02E-03 12 Broy./Diag. 0.20E+00 3.1 0.00001638 -2130.6493205024 -1.79E-03 13 Broy./Diag. 0.20E+00 3.1 0.00001451 -2130.6486762850 6.44E-04 14 Broy./Diag. 0.20E+00 3.2 0.00001432 -2130.6482674682 4.09E-04 15 Broy./Diag. 0.20E+00 0.00001122 3.1 -2130.6476512837 6.16E-04 16 Broy./Diag. 0.20E+00 3.1 0.00000112 -2130.6472295415 4.22E-04 17 Broy./Diag. 0.20E+00 3.1 0.00000103 -2130.6472635676 -3.40E-05 18 Broy./Diag. 0.20E+00 3.1 0.00000112 -2130.6472999859 -3.64E-05 19 Broy./Diag. 0.20E+00 3.0 0.00000168 -2130.6473550000 -5.50E-05 20 Broy./Diag. 0.20E+00 0.00000144 3.0 -2130.6473964425 -4.14E-05 21 Broy./Diag. 0.20E+00 3.1 0.0000009 -2130.6474004989 -4.06E-06 *** SCF run converged in 21 steps ***

Examples