CP2K PARALLELISATION
AND OPTIMISATION

lain Bethune (ibethune@epcc.ed.ac.uk)

http://[tinyurl.com/CP2K2016
#CP2KSummerSchool

\3“ 1 VEQ‘P
N ~7 | @
o} - T
“@ &5 Qfﬁ

OrneY

crak




Overview

- Overview of Parallel Programming models
- Shared Memory
- Distributed Memory

- CP2K Algorithms and Data Structures
- Parallel Performance

- CP2K Timing Report

N ~3
= g -
O

<

sk epce




Parallel Programming Models

- Why do we need parallelism at all?

- Parallel programming is (even) harder than sequential
programming

- Single processors are reaching limitations
- Clock rate stalled at ~2.5 GHz (due to heat)
- Full benefits of vectorisation (SIMD) can be hard to realise
- Chip vendors focused on low-power (for mobile devices)

sk epcc




-
Parallel Programming Models

- But we need more speed!
- Solve problems faster (strong scaling)
- Solve bigger problems in same time (weak scaling)
- Tackle new science that emerges at long runtimes / large system size
- Enables more accurate force models (HFX, MP2, RPA ...)

- Need strategies to split up our computation between different
processors

- Ideally our program should run P times faster on P processors -
but not in practice!
- Some parts may be inherently serial (Amdahl’s Law)

- Parallelisation will introduce overheads e.g. communication, load
imbalance, synchronisation...

gk epce




Parallel Programming Models

“The performance improvement to be gained by parallelisation is limited
by the proportion of the code which is serial”

Gene Amdahl, 1967

Serial
1
1
Parallel
1 2 4 8 Processors
i 1.33 1.6 1.8 Speedup

epCC




Parallel Programming Models

- Almost all modern CPUs are multi-core
- 2,4,6... CPU cores, sharing access to a common memory

- This is Shared Memory Parallelism
- Several processors executing the same program
- Sharing the same address space i.e. the same variables
- Each processor runs a single ‘thread’
- Threads communicate by reading/writing to shared data

- Example programming models include:
- OpenMP, POSIX threads (pthreads)

gk epce




0
Analogy

- One very large whiteboard in a two-person office
- the shared memory

- Two people working on the same problem
- the threads running on different cores attached to the memory

- How do they collaborate? shared

- working together

- but not interfering data

- Also need private data




Hardware

- Needs support of a shared-memory architecture

Shared Bus

Processor Processor Processor Processor Processor

epCcc

i



Parallel Programming Models

- Most supercomputers are built from 1000s of nodes
- Each node consists of some CPUs and memory
- Connected together via a network

- This is Distributed Memory Parallelism
- Several processors executing (usually) the same program
- Each processor has it's own address space
- Each processor runs a single ‘process’
- Threads communicate by passing messages

- Example programming models include:
- MPI, SHMEM

gk epce




Analogy

- Two whiteboards in different single-person offices
- the distributed memory

- Two people working on the same problem
- the processes on different nodes attached to the interconnect

- How do they collaborate?
- to work on single problem

- Explicit communication
- e.g. by telephone
- no shared data

cRak




Hardware

———3
’rocesso

- Natural map to
distributed-memory

* One process per
processor-core

- messages go over
the interconnect,
between nodes/OS’s

Interconnect

———3
rocesso

r—
PrOCesso

epCcc




Parallel Programming Models

- Support both OpenMP or MPI (ssmp and popt)
- Use OpenMP for desktop PCs with multi-cores or
- MPI for clusters and supercomputers
- Maybe also support for Accelerators (GPUs)

- May also combine MPI| and OpenMP (psmp)
- Called hybrid or mixed-mode parallelism
- Use shared memory within a node (with several processors)
- Use message passing between nodes
- Usually only useful for scaling to 10,000s of cores!

gk epce




CP2K Algorithms and Data Structures

- (A,G) — distributed

matrices
- (B,F) — realspace
multigrids m ?

- (C,E) —realspace data
on planewave —— |
multigrids (A.G) (BF) I“'V’

- (D) — planewave grids

+ (I,VI) — integration/ W 7 7
collocation of | HiH ]
gaussian products | m |

- (I,V) - realspace-to- i N J l |

ISRSISSNNRRENE N (BININIRENNEEEREN
planewave transfer ©) )

FFTs
ave transfer)

- (L)

A




-
CP2K Algorithms and Data Structures

16000000

14000000

- Distributed realspace grids
- Overcome memory bottleneck
- Reduce communication costs
- Parallel load balancing

B Replicate
OLevel 1

Load

Hlevel 0
O Rank

- On a single grid level
- Re-ordering multiple grid levels IR Soe ot e
- Finely balance with replicated tasks . .
y P libgrid for
Level 1, fine grid, distributed Level 2, medium grid, dist Level 3, coarse grid, replicated Optimised

1 2 3 5 6 8 collocate/integrate
routines

4 5 6 3 1 7 ~5-10% speedup




CP2K Algorithms and Data Structures

* GLOBALSFEFTW PLAN TYPE
MEASURE | PATIENT

- Fast Fourier Transforms

. * Up to 5% Speedup
- 1D or 2D decomposition possible

- FFTW3 and CuFFT library interface

- Cache and re-use data
- FFTW plans, cartesian communicators

Libsmm vs. Libsci DGEMM Performance

- DBCSR
- Distributed MM based on Cannon’s
Algorithm T |
- Local multiplication recursive, cache , ”” @M HW”HW
oblivious

GFLOP/s

Figure 5: Comparing performance of SMM and Libsci BLAS for block sizes up to 22,22,22

* Lib[x]smm for small
tpa‘ block multiplications ‘ epCC




-
CP2K Algorithms and Data Structures

20 &

—8—XT4 (MPI Only)
--0 - XT4 (MPl/OpenMP)
—®— XT6 (MPI Only)
-4~ XT6 (MPI/OpenMP)

- OpenMP
- Now in all key areas of CP2K

- FFT, DBCSR, Collocate/

Time per MD step (seconds)

Integrate, Buffer Packing -
- Incremental addition over time T
- Usually 2 or 4 threads per P S
process o <,
2 10 100 1000 10000 100000

Number of cores

- Dense Linear Algebra

- Matrix operations during SCF
- GEMM - ScaLAPACK GLOBAL

- SYEVD = Scal APACK / ELPA $PREFERRED DIAG LIBRARY ELPA
Up to ~5x Speedup for large, metallic

F ‘ systems »
x PoEq B
- ‘7

-D_ELPA[2]3] and link library to
enable




Parallel Performance

- Different ways of comparing time-to-solution and compute
resource...

- Speedup: S =T,/ Ty,
- Efficiency: E; =S,/ p, ‘good scalingis E>0.7

. 2; IEJ <)1, then using more processors uses more compute time
S

- Compromise between overall speed of calculation and efficient
use of budget
- Depends if you have one large or many smaller calculations

sk epcc




Parallel Performance : H20O-xx
.\o H20512

500 |

H20:2048

H20-512,
(2005) '

""XTS Stage 0
S H20-256

Time per MD steip (seconds)

~8-X(30 ARCHER (2013) ™,
FH20-128

—m H20-64
H20-32

0.5 I . 1 ‘., 1
1 10 100 1000 10000

Number of cores

-
oS




Parallel Performance: LIH-HF X

Performance comparison of the LiH-HFX benchmark

1000 . ———r] . ———] .
r ARCHER
HECToR
4TH
m
©
c
o
[&]
g/ 100 B |
(9]
1S
=
2.37
10 | L L L L MR L L L L MR
10 100 1000 10000

Number of nodes used

a
T




Parallel Performance: H20-LS-DFT

Performance comparison of the H20-LS-DFT benchmark

1000' oy I I ] I IARC.:HEIIRII”
2TH HECToR
m
©
c
o
(6]
@ 100 B |
[0
£
|_
4.66
3.68 3.45
10 | L L L L PR | L L L L MR
10 100 1000 10000 Ve
Number of nodes used

-
s




Parallel Performance: H20-64-RI-MP2

1000 |

HECToH Piiass 3 B |

100

Time (seconds)

10

L L PR T S S T | L L L M ST |
10 100 1000

1000(
Number of nodes used

epcc




Time (seconds)

1000

Performance of the H20-DFT-LS benchmark

100+

10

e—e piz-daint ‘
v—v piz-daint-gpu |

10

7100 1000 10000
Number of nodes used



-
CP2K Timing Report

- CP2K measures are reports time spent in routines and communication
- timing reports are printed at the end of the run

ROUTINE CALLS TOT TIME [s] AVE VOLUME [Bytes] PERFORMANCE [MB/s]
MP Group 4 0.000
MP Bcast 186 0.018 958318. 9942.82
MP Allreduce 1418 0.619 2239. 5.13
MP Gather 44 0.321 21504. 2.95
MP Sync 1372 0.472
MP Alltoall 1961 5.334 323681322. 119008.54
MP ISendRecv 337480 0.177 1552. 2953.86
MP Wait 352330 5.593
MP comm split 48 0.054
MP ISend 39600 0.179 14199. 3147.38
MP IRecv 39600 0.100 14199. 5638.21




-
CP2K Timing Report

SUBROUTINE CALLS ASD SELF TIME TOTAL TIME

MAXIMUM AVERAGE MAXIMUM AVERAGE MAXIMUM
CP2K 1 1.0 0.018 0.018 57.900 57.900
gs_mol dyn low 1 2.0 0.007 0.008 57.725 57.737
gs_forces 11 3.9 0.262 0.278 57.492 57.493
gs energies scf 11 4.9 0.005 0.006 55.828 55.836
scf env_do_scf 11 5.9 0.000 0.001 51.007 51.019
scf env _do scf inner loop 99 6.5 0.003 0.007 43.388 43.389
velocity verlet 10 3.0 0.001 0.001 32.954 32.955
gs_scf loop do ot 99 7.5 0.000 0.000 29.807 29.918
ot scf mini 99 8.5 0.003 0.004 28.538 28.627
cp _dbcsr multiply d 2338 11.6 0.005 0.006 25.588 25.936
dbcsr mm cannon multiply 2338 13.6 2.794 3.975 25.458 25.809
cannon multiply low 2338 14.6 3.845 4.349 14.697 15.980
ot minj 99 9.5 0.003 0.004 15.701 15.




-
CP2K Timing Report

- Not just for developers!
- Check that communication is < 50% of total runtime

- Check where most time is being spent:
- Sparse matrix multiplication - co dbcsr multiply d

- Dense matrix algebra — cp fm syevd (&§DIAGONALISATION),
cp fm cholesky * (&OT), cp fm gemm

- FFT - ££ft3d *
- Collocate / int_egrate —calculate rho elec, integrate v rspace
- Control level of granularity
&GLOBAL
&§TIMINGS
THRESHOLD 0.00001 Defaultis 0.02 (2%)
&END TIMINGS

tﬂaﬁm GLOBAL epcce




Summary

- First look for algorithmic gains

- Cell size, SCF settings, preconditioner, choice of basis set, QM/
MM, ADMM...

- Check scaling of your system
- Run a few MD steps / reduced MAX SCF

- Almost all performance-critical code is in libraries
- Compiler optimisation —O3 is good enough
- Intel vs gfortran vs Cray — difference is close to zero

- Before spending 1,000s of CPU hours, build lib[x]smm,
libgrid, ELPA, FFTW3...

- Or ask your local HPC support team ©

gk epce




CP2K Parallelisation and Optimisation

Questions?




