

Rhodium(I) Alkane σ -Complexes

Computational Modelling of Organometallic Reactivity in Condensed Phase

Tobias Kraemer

Prof Stuart A. Macgregor Heriot-Watt University, Edinburgh, UK

Prof Andrew S. Weller, Dr Mark Chadwick University of Oxford, UK

> 22nd February 2016 CP2K-UK Third Annual Users Meeting King's College, London

Introduction

• (Catalytic) C-H bond activation (CHA) important process

synthesis functionalisation of alkanes (petrochemical feedstock)

• σ – Complexes as key intermediates of CHA

fundamental interest in understanding electronic structure catalyst design (activity, selectivity)

Labinger and Bercaw, Nature, 2002, 417, 507.

Exploring the Scope of the Solid-Gas Reaction

- vary substituents/phosphine backbone to identify more stable alkane complexes
 - in most cases displacement of NBA by counterion occurs, on varying timescales:

 $*-(CH_2)_3$ - backbone

Pike, Thompson, Algarra, Apperley, Macgregor, Weller, Science, **2012**, 337, 1648. Pike, Chadwick, Rees, Scott, Weller, Krämer, Macgregor, J. Am. Chem. Soc., **2015**, 137, 820.

Organometallic transformations in the solid-state

Synthesis, reactivity and catalysis using well-defined single-site species

- small structural reorganisation (crystallinity, ~4% vol.)
- rigid porous framework (bulky ligands / anions)
- well-defined channels and voids (diffusion of gases)
- constrained environments allowing for small movements around metal centre

Solid State Reactivity

• with D_2 the alkane σ -complex of the *endo-endo* product is seen exclusively:

• further reaction (hours) with D_2 leads to d_8 -norbornane products:

- C-H/D activation is reversible and selective for the exo-positions

Solid State Reactivity

• with D_2 the alkane σ -complex of the *endo-endo* product is seen exclusively:

• further reaction (hours) with D_2 leads to d_8 -norbornane products:

- C-H/D activation is reversible and selective for the *exo*-positions
 - implies significant rearrangement of the initially formed ligand (NBA)

NBA rearrangement: rocking and slipping...

[G03] BP86-D3/SDD(Rh, P+d)/6-31G**

Solid State Reactivity: Summary of Molecular Calculations vs. Experiment

 \checkmark calculations readily account for the observed *endo-endo* selectivity:

✓ and favour reversible exo-C-H activation over endo-C-H activation:

Solid State Reactivity: Summary of Molecular Calculations vs. Experiment

BUT: indicate low barriers to reorganisation:

 \rightarrow inconsistent with static SSNMR and lack of disorder in X-ray

***** predict the wrong geometry of the σ -alkane complex!

Cation embedded in cavity

Computational Model for Solid Phase

+ full unit cell

- + QM (periodic DFT)
- + CP2K
- large system
 - (>600 atoms)
- "spectator" sites

- + 3x3x4 "block"
- + QM/MM
- + Gaussian
- FF parameters not well-defined
- rigid framework (frozen atoms)

Between the displayed. Your computer may have been corrupted. Since the image are the image may have been corrupted. Since the image may have been corrupted. Since the image may have been corrupted. Since the image may have been corrupted.

- + QM cluster embedded in large array of MM atoms
- + QM/MM
- + ChemShell interface
- + surrounding point charges

GEO_OPT Input Sections

&FORCE EVAL METHOD OS &DFT (usual DFT stuff) &SCF SCF GUESS ATOMIC (testing) EPS SCF 1.0E-7 &OT ON MINIMIZER DIIS &END OT MAX SCF 30 &OUTER_SCF MAX SCF 30 EPS SCF 1.0E-7 &END OUTER SCF &END SCF &XC FUNCTIONAL PBE &END XC FUNCTIONAL &vdW POTENTIAL DISPERSION_FUNCTIONAL PAIR_POTENTIAL &PAIR_POTENTIAL TYPE DFTD3 (Grimme D3) PARAMETER FILE NAME /work/e338/e338/kraemer/DATA/dftd3.dat REFERENCE FUNCTIONAL PBE &END PAIR POTENTIAL &END vdW_POTENTIAL &END XC &END DFT &SUBSYS &CELL ABC 17.2650 19.2495 19.8297 (size of cell) ALPHA_BETA_GAMMA 88.0526 87.5056 89.1472 PERIODIC XYZ (periodic boundary conditions) &END CELL &TOPOLOGY COORDINATE XYZ COORD FILE NAME input.xyz (external xyz) CONNECTIVITY OFF &END TOPOLOGY

&KIND Rh BASIS SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q17 &END &KIND C BASIS SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q4 &END &KIND P BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q5 &END [...] &END SUBSYS &END FORCE_EVAL &MOTION &GEO OPT OPTIMIZER BFGS MAX DR [bohr] 3.0E-3 (default) RMS_DR [bohr] 1.5E-3 (default) MAX FORCE [bohr^-1*hartree] 1.0E-4 (testing) RMS FORCE [bohr^-1*hartree] 3.0E-4 (default) &END GEO OPT &PRINT &TRAJECTORY check stress tensor &EACH GEO OPT 1 (< I GPa)&END EACH &END TRAJECTORY &END &END MOTION &GLOBAL PROJECT Rh-dcype-nbd bulk opt PRINT LEVEL MEDIUM RUN_TYPE GEO_OPT &END GLOBAL

VIB_ANALYSIS Input Sections

&FORCE EVAL METHOD QS STRESS TENSOR ANALYTICAL &DFT (usual DFT stuff) &SCF (in combination with WFN RESTART FILE NAME) SCF GUESS RESTART EPS SCF 1.0E-8 (testing) &OT ON MINIMIZER DIIS &END OT MAX SCF 30 &OUTER SCF MAX SCF 30 EPS SCF 1.0E-8 &END OUTER SCF &END SCF &XC FUNCTIONAL PBE &END XC FUNCTIONAL &vdW POTENTIAL DISPERSION_FUNCTIONAL PAIR_POTENTIAL &PAIR POTENTIAL TYPE DFTD3 (Grimme D3) PARAMETER FILE NAME /work/e338/e338/kraemer/DATA/dftd3.dat REFERENCE FUNCTIONAL PBE &END PAIR POTENTIAL &END vdW POTENTIAL &END XC &END DFT &SUBSYS &CELL (size of cell) ABC 17.2650 19.2495 19.8297 ALPHA BETA GAMMA 88.0526 87.5056 89.1472 (periodic boundary conditions) PERIODIC XYZ &END CELL &TOPOLOGY COORDINATE XYZ COORD FILE NAME finalt.xyz (external xyz) CONNECTIVITY OFF &END TOPOLOGY

&KIND Rh BASIS SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q17 &END &KIND C BASIS SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q4 &END &KIND P BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q5 &END [...] &END SUBSYS **&END FORCE EVAL &VIBRATIONAL ANALYSIS** NPROC REP 64 DX 0.01 FULLY_PERIODIC TRUE INTENSITIES &PRINT & PROGRAM RUN INFO ON &END &MOLDEN VIB FILENAME=frequencies.mol &END &END &END VIBRATIONAL_ANALYSIS &GLOBAL

PROJECT Rh-dcype-nbd_bulk_freq PRINT_LEVEL MEDIUM RUN_TYPE VIBRATIONAL_ANALYSIS &END GLOBAL

VIB_ANALYSIS

GEO_OPT

EPS_SCF	MAX_DR	RMS_DR	MAX_FORCE	RMS_FORCE	EPS_SCF	#Imag
10-6	0.00300	0.00150	0.00045	0.00030	10-6	>80
I 0 ⁻⁷	0.00300	0.00150	0.00045	0.00030	I 0 ⁻⁷	10
I 0 ^{_8}	0.00300	0.00150	0.00045	0.00030	I 0 ⁻⁸	2
I 0 ⁻⁷	0.00300	0.00150	0.00045	0.00030	I 0 ⁻⁷	10
I 0 ⁻⁷	0.00300	0.00150	0.00010	0.00030	I 0 ⁻⁷	9
I 0 ⁻⁷	0.00300	0.00150	0.00010	0.00030	I 0 ⁻⁸	0

VIB	NORMAL MODE	ES - CARTESIAN DISPLAC	EMENTS
VIB			
VIB	1	2	3
VIB Frequency (cm^-1)	-408.337558	-385.206963	-356.051407
VIB Intensities	0.005867	0.003045	0.005495
VIB Red.Masses (a.u.)	2.907822	2.843022	2.136175
VIB Frc consts (a.u.)	-0.000207	-0.000160	-0.00088

Hydrogenation in the Solid State

• NBD to NBE @NBD unit cell

[CP2K] PBE-D3/DZVP-MOLOPT-SR-GTH/GTH-PBE (cutoff 500 Ry)

Hydrogenation in the Solid State

• NBD to NBE @NBD unit cell

BAND Input Sections

&FORCE EVAL METHOD OS &DFT (usual DFT stuff) &SCF SCF GUESS ATOMIC (testing) EPS SCF 1.0E-6 &OT ON MINIMIZER DIIS &END OT MAX SCF 30 &OUTER SCF MAX SCF 30 EPS SCF 1.0E-6 &END OUTER SCF &END SCF &XC FUNCTIONAL PBE &END XC FUNCTIONAL &vdW POTENTIAL DISPERSION_FUNCTIONAL PAIR_POTENTIAL &PAIR_POTENTIAL TYPE DFTD3 (Grimme D3) PARAMETER FILE NAME /work/e338/e338/kraemer/DATA/dftd3.dat REFERENCE FUNCTIONAL PBE &END PAIR POTENTIAL &END vdW_POTENTIAL &END XC &END DFT &SUBSYS &CELL ABC 17.2650 19.2495 19.8297 (size of cell) ALPHA BETA GAMMA 88.0526 87.5056 89.1472 PERIODIC XYZ (periodic boundary conditions) &END CELL &TOPOLOGY COORDINATE XYZ COORD FILE NAME start.xyz (external xyz) CONNECTIVITY OFF &END TOPOLOGY

&KIND Rh BASIS SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q17 &END [...] &END SUBSYS &END FORCE EVAL &MOTION &BAND NPROC REP 48 (optimizes to TS) BAND TYPE CI-NEB NUMBER_OF_REPLICA 16 &CONVERGENCE CONTROL MAX FORCE [bohr^-1*hartree] 8.0E-4 (testing) &END CONVERGENCE CONTROL &OPTIMIZE BAND OPT TYPE DIIS &DIIS MAX_STEPS 1000 N DIIS 3 &END DIIS &END OPTIMIZE BAND &REPLICA COORD_FILE_NAME start.xyz (external xyz) &END REPLICA &REPLICA COORD FILE NAME inter.xyz (external xyz) 1 &END REPLICA &REPLICA COORD_FILE_NAME end.xyz (external xyz) &END REPLICA &END BAND &END MOTION &GLOBAL PROJECT Rh-dcype-nbd HH bulk ts PRINT LEVEL MEDIUM RUN TYPE BAND &END GLOBAL

DIMER Input Sections

&FORCE_EVAL		&MOTION	
METHOD QS	&GEO_OPT		
&DFT		TYPE TRANSITION_	_STATE
(usual DFT stuff)		&TRANSITION_STA	ATE
&SCF		METHOD DIMER	3
SCF_GUESS RESTART (in combination with WFN_R	ESTART_FILE_NAME)	&DIMER	
EPS_SCF 1.0E-7 (test	ting)	DR [angst	trom] 0.01
&OT ON		INTERPOLA	ATE_GRADIENT T
MINIMIZER DIIS		&ROT_OPT	
&END OT		OPTIMIZ	ZER CG
MAX_SCF 30		MAX_ITE	ĒR
&OUTER_SCF		&CG	
MAX_SCF 30		MAX_S	STEEP_STEPS 0
EPS SCF 1.0E-7		&L1	INE SEARCH
&END OUTER SCF			TYPE 2PNT
&END SCF		&EN	ND LINE SEARCH
&XC FUNCTIONAL PBE		&END (2G
&END XC FUNCTIONAL		&END ROT	Γ ΟΡΤ
&vdW POTENTIAL		&DIMER \	 /ECTOR
	<pre>@include 'vector' (external file)</pre>		
&PAIR POTENTIAL		&END DIM	1ER VECTOR
TYPE DFTD3 (Gri	imme D3)	&END DIMER	-
PARAMETER FILE NAME /work/e338/e338/krae	emer/DATA/dftd3.dat	&END TRANSITION	N STATE
REFERENCE FUNCTIONAL PBE		OPTIMIZER CG	-
&END PAIR POTENTIAL		&CG	
&END vdW POTENTIAL		&LINE SEARG	СН
&END XC		TYPE 2PN	ſ
&END DFT		&END LINE S	SEARCH
&SUBSYS		&END CG	
&CELL		MAX FORCE 1.0	-4
ABC 17.2650 19.2495 19.8297 (siz	ze of cell)	MAX ITER 1000	
ALPHA BETA GAMMA 88.0526 87.5056 89.1472	,	&END GEO OPT	
PERIODIC XYZ (periodic boundary of	conditions)	&PRINT	
&END CELL	,	&TRAJECTORY	
&TOPOLOGY		&FACH	
COORDINATE XYZ		GEO OPT 1	8.CL OBAL
COORD FILE NAME start, xvz (external xvz)	&FND FACH	PROJECT Rh-dcyne-nhd HH dimen	
&FND_TOPOLOGY	&END TRAJECTORY		
[]		&FND PRINT	RUN TYPE GEO OPT
&END FORCE EVAL		&END MOTION	&FND GLOBAL
			GEND GLODAL

"SCAN" Input Sections

&FORCE EVAL [...] METHOD QS &DFT (usual DFT stuff) &END SUBSYS &SCF &END FORCE_EVAL SCF GUESS ATOMIC EPS SCF 1.0E-5 &MOTION &OT ON &CONSTRAINT MINIMIZER DIIS &COLLECTIVE &END OT COLVAR 1 MAX SCF 30 INTERMOLECULAR T &OUTER SCF &RESTRAINT MAX SCF 30 (force constant for harmonic K=10.0 EPS SCF 1.0E-5 restraint) &END OUTER SCF &END RESTRAINT &END SCF TARGET [angstrom] 2.72 **&XC FUNCTIONAL PBE** &END COLLECTIVE &END CONSTRAINT &END XC FUNCTIONAL &vdW POTENTIAL &GEO OPT DISPERSION_FUNCTIONAL PAIR_POTENTIAL OPTIMIZER BFGS &PAIR POTENTIAL MAX FORCE 1.0E-3 TYPE DFTD3 (Grimme D3) &END GEO_OPT PARAMETER FILE NAME /work/e338/e338/kraemer/DATA/dftd3.dat &PRINT REFERENCE_FUNCTIONAL PBE &TRAJECTORY &END PAIR POTENTIAL &EACH &END vdW POTENTIAL GEO OPT 1 &END XC &END EACH &END DFT &END TRAJECTORY &SUBSYS &END PRINT &CELL &END MOTION ABC 17.2650 19.2495 19.8297 ALPHA_BETA_GAMMA 88.0526 87.5056 89.1472 &GLOBAL PERIODIC XYZ PROJECT scan &END CELL PRINT LEVEL MEDIUM &COLVAR (define collective variable) RUN_TYPE GEO_OPT &DISTANCE &END GLOBAL ATOMS 648 307 &END DISTANCE &PRINT &END PRINT &END COLVAR

NBA Rearrangement in the Solid State (@NBA unit cell)

Contreras-García, Johnson, Keinan, Chaudret, Piquemal, Beratan, Yang J. Chem. Theo. Comp. 2011, 373, 625.

Ionic Ligand Exchange

Established protocols for running periodic DFT calculations

Mechanistic study of Hydrogenation steps in Solid Phase

Mapping out H_2 addition PES, substrate rearrangement Stereoselectivity (*endo/endo*) Considering changes in unit cell

Molecular dynamics

Dynamical behaviour of substrate and cavity

NMR Spectroscopy

Estimate chemical shifts of species in solid phase (impact of crystal environment)

Long-term goal

"The real test of understanding is prediction" Roald Hoffmann Understanding – Prediction – Design

Acknowledgements

Prof Andrew S. Weller Dr Mark Chadwick

Dr Sebastian Pike

Dr Nick Rees (SSNMR)

Prof Stuart A. Macgregor

Dr Dave Johnson

Dr Alex Simperler

Dr Iain Bethune

Dr Fiona Reid

NSCCS

HERIOT WATT UNIVERSITY

Prof Jürg Hutter Dr Marcella lannuzzi

Pioneering research and skills

9

Thank you for your attention...

