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Introduction

Motivation

2-center integrals

RI approaches in KS-DFT

semi-empirical methods

QM/MM

Type of integrals

(a|O|b) Coulomb, overlap,...

(a|r2n
a |b) local operator ra = r − Ra

(abã) three-index integrals
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Introduction

Gaussian-type orbitals

Primitive Cartesian Gaussian

ψ(α, l, r,R) = (x − Rx)lx (y − Ry )ly (z − Rz)lz exp [−α(r − R)2]

with l=(lx ,ly ,lz)

number: (l+1)(l+2)/2 l=lx+ly+lz

Primitive spherical harmonic Gaussian

Ψl,m(α, r,R) = r lYl,m(θ, φ) exp [−α(r − R)2]

number: 2l+1

Primitive solid harmonic Gaussian

χl,m(α, r) =

√
4π

2l + 1
r lYl,m(θ, φ) exp [−α(r − R)2]

number: 2l+1
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Introduction

Gaussian-type orbitals

Primitive solid harmonic Gaussian

χl,m(α, r) =

√
4π

2l + 1
r lYl,m(θ, φ) exp [−α(r − R)2]

number: 2l+1

Contracted spherical harmonic Gaussian function

ϕl,m(r) = Nl

∑
α∈A

cαχl,m(α, r),

Nl ...normalization constants
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Introduction

“Traditional” Obara-Saika (OS) scheme

OS scheme for molecular integrals

. recursive integral scheme based on Cartesian Gaussians

. popular scheme, also used for libint

Steps in CP2K

1 evaluation of integrals of primitive Cartesian Gaussians

2 transformation to spherical Gaussian integrals

3 contraction of spherical integrals
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Introduction

Cartesian Gaussians - Properties

Gaussian product rule

ψA = exp(−αr2
A)

ψB = exp(−βr2
B)

ψAB = exp(−µR2
AB)︸ ︷︷ ︸

prefactor

exp(−pr2
P)︸ ︷︷ ︸

product Gaussian

where

p = α + β ← total exponent

µ =
αβ

α + β
← reduced exponent

RAB = RA − RB ← relative separation

RP =
αRA + βRB

α + β
← “center of mass”

. greatly simplifies integral
evaluation

. two-center integrals
reduced to one-center int.
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SHG scheme

Solid harmonic Gaussians (SHGs)

Complex solid harmonics

Cl,m(r) =

√
4π

2l + 1
r lYl,m(θ, φ),

Solid harmonic Gaussian

χl,m(α, r) = Cl,m(r) exp (−αr2)

Reformulation of SHG

χl,m(α, ra) =
Cl,m(∇a) exp

(
−αr2

a

)
(2α)l

,

Cl,m(∇a)...Spherical Tensor Gradient Operator (STGO)
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SHG scheme

Integrals (a|O|b)

Two-center integrals

(a|O|b) =

∫∫
ϕla,ma(r1 − Ra)O(r1 − r2)ϕlb,mb

(r2 − Rb)dr1dr2

Coulomb: O(r) = 1/r , Overlap: O(r) = δ(r)

Reformulation in terms of STGO

(a|O|b) = Cla,ma(∇a)Clb,mb
(∇b)Ola,lb(R2

ab)

Final integral expressionI

(a|O|b) =

min(la,lb)∑
j=0

O
(la+lb−j)
la,lb

(R2
ab)Q̃

c/s,c/s
la,µa,lb,µb,j

(Rab)

with µ = |m|

IT. Giese, D. York, J. Chem. Phys., 2008, 128, 064104
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SHG scheme
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SHG scheme

Integrals (a|O|b)

Derivative of contracted s type integral

O
(k)
la,lb

(R2
ab) = NlaNlb

∑
α∈A

∑
β∈B

cαcβ
(2α)la(2β)lb

(
∂

∂R2
ab

)k

(0a|O|0b). (1)

dependent on exponents

dependent on l , but not m quantum number

Angular dependent part

Q̃
c/s,c/s
la,µa,lb,µb,j

(Rab) constructed from regular scaled solid harmonics Rl,m

Rl,m obtained recursively

no dependence on exponents!
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SHG scheme

Integrals (a|r 2n
a |b) and (abã)

Integral (a|r2n
a |b)

(a|r2n
a |b) =

∫
ϕla,ma(ra)r2n

a ϕlb,mb
(rb)dr

Derivation of expression in terms of Cl,m(∇a) forII

χl,m(α, ra)r2n
a = Cl,m(ra) exp

(
−αr2

a

)
r2n
a

Integral (abã)

(abã) =

∫
ϕla,ma(ra)ϕl̃a,m̃a

(ra)ϕlb,mb
(rb)dr

Derivation of STGO expression for χl,m(α, ra)χl̃,m̃(α̃, ra) based on (a|r2n
a |b)

IID. Golze, N. Benedikter, M. Iannuzzi, J. Wilhelm, J. Hutter, J. Chem. Phys., 2017, 146,
034105
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SHG scheme

Implementation

Table: DZVP-MOLOPT-GTH for oxygen

Contraction coefficients
Exponents s s p p d

12.015954705512 -0.060190841200 0.065738617900 0.036543638800 -0.034210557400 0.014807054400
5.108150287385 -0.129597923300 0.110885902200 0.120927648700 -0.120619770900 0.068186159300
2.048398039874 0.118175889400 -0.053732406400 0.251093670300 -0.213719464600 0.290576499200
0.832381575582 0.462964485000 -0.572670666200 0.352639910300 -0.473674858400 1.063344189500
0.352316246455 0.450353782600 0.186760006700 0.294708645200 0.484848376400 0.307656114200
0.142977330880 0.092715833600 0.387201458600 0.173039869300 0.717465919700 0.318346834400
0.046760918300 -0.000255945800 0.003825849600 0.009726110600 0.032498979400 -0.005771736600
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SHG scheme

Implementation

For each atomic kind:

Calculate contraction matrix: Cla,α = Nlacα/(2α)
la

lmax = MAX(la,max, lb,max)

For all 0 ≤ l ≤ lmax:

Tabulate Rcl,m(Rab) and Rsl,m(Rab)

For all 0 ≤ la/b ≤ la/b,max:

Calculate Q̃
c/s,c/s
la,µa,lb,µb,j

(Rab)

If derivatives required:

Calculate ∂
∂Ra,i

Q̃
c/s,c/s
la,µa,lb,µb,j

(Rab), i = x, y, z

For all sets a/b:

nmax = la,max set + lb,max set

If derivatives required:

nmax = nmax + 1

For all exponents in set a/b:

Calculate (0a|O|0b)(k), 0 ≤ k ≤ nmax

For all shells in set a/b:

Contract: O
(k)
la,lb

(R2
ab) =

∑
α

∑
β Cla,αClb,β(0a|O|0b)(k)

For all shells in set a/b:

For all −la/b ≤ ma/b ≤ la/b:
Calculate (a|O|b) = ∑

j O
(la+lb−j)
la,lb

(R2
ab)Q̃

c/s,c/s
la,µa,lb,µb,j

(Rab)

If derivatives required:

Calculate ∂
∂Ra,i

(a|O|b), i = x, y, z
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Results and Application Comparison of algorithms

Timings Obara-Saika method

Most expensive step

(a|1/r|b): recursion of primitive Cartesian integrals

(ab): contraction+transformation to contracted spherical Gaussian
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Results and Application Comparison of algorithms

Timings SHG method

Most expensive step

evaluation of fundamental (s-type) (0a|O|0b)(n) integrals + their scalar
derivatives
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Results and Application Comparison of algorithms

Comparison of contraction steps

Table: Number of matrix elements that need to be contracted for (a|O|b)

Integral method
H-DZVP O-DZVP

Int. Int.+Dev. Int. Int.+Dev.

OS 784 3136 3969 15876
SHG 147 196 245 294

Integrals

SHG: contraction of (0a|O|0b)(n) with n = la,max + lb,max

OS: contraction of each primitive spherical Gaussian integral (A|O|B)
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Results and Application Comparison of algorithms

Comparison of contraction steps

Table: Number of matrix elements that need to be contracted for (a|O|b)

Integral method
H-DZVP O-DZVP

Int. Int.+Dev. Int. Int.+Dev.

OS 784 3136 3969 15876
SHG 147 196 245 294

Integrals + derivatives

SHG: contraction of (0a|O|0b)(n) with n = la,max + lb,max + 1

OS: contraction of (A|O|B) and ∂(A|O|B)/∂x , ∂(A|O|B)/∂y , ∂(A|O|B)/∂z
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Results and Application Comparison of algorithms

Comparison of recursive part

recursion for each primitive integral (A|O|B)

recursion only once for Q̃la,µa,lb,µb,j(Rab) for 0 ≤ la/lb ≤ la/b,max
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Results and Application Comparison of algorithms

Comparison of recursive part

Example

SHG: 243 matrix elements Q̃la,µa,lb,µb,j(Rab)

OS: 4900 primitive Cartesian integrals, where lmax = 2
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Contraction coefficients
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Results and Application Comparison of algorithms

Advantages of the SHG scheme

OS scheme SHG scheme

• contraction for each primitive integral
(A|O|B)

only for s-overlap and
its la,max + lb,max scalar
derivatives

• derivatives recursion up to lmax + 1 recursion up to lmax

• contraction of
derivatives

for (A|O|B) and its Carte-
sian derivatives

only for one more deriva-
tive of the s overlap

• transformation required not required

SHG scheme efficient for

. large contraction lengths

. large angular momentum

. derivatives
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Results and Application Speed-ups

Speed-up dependent on l quantum number

. speed-up with respect to Obara-Saika method

. Contraction length set to K = 7
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Results and Application Speed-ups

Speed-up dependent on contraction length

. angular momentum set to l = 2
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Results and Application Speed-ups
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Results and Application Speed-ups

Speed-up for MOLOPT basis sets

Table: Speed-up for DZVP/TZV2PX-MOLOPT-GTH for O and DZVP-MOLOPT-SR-GTH for Cu

Integral type
O-DZVP O-TZV2PX Cu-DZVP

Int. Int.+Dev. Int. Int.+Dev. Int. Int.+Dev.

(ab) 6.2 5.5 11.4 10.3 8.9 8.3
(a|1/r |b) 5.9 18.4 16.8 31.6 14.6 26.0
(a|erf(ωr)/r |b) 5.8 18.4 16.6 31.7 14.4 26.0
(a|erfc(ωr)/r |b) 5.2 16.3 14.9 29.5 12.9 24.8
(a| exp(−ωr2)|b) 6.4 19.7 18.0 32.5 16.0 27.4
(a| exp(−ωr2)/r |b) 4.4 14.1 12.3 25.4 10.8 22.0
(a|r2

a |b) 9.7 8.8 22.9 18.6 19.7 15.8
(a|r4

a |b) 16.0 14.0 39.4 29.3 34.7 25.2
(a|r6

a |b) 25.3 21.6 59.5 44.3 56.1 38.9
(a|r8

a |b) 34.7 29.6 79.3 61.4 73.4 54.6
(a|r10

a |b) 44.7 36.7 105.2 79.9 97.5 72.2
(abã) 10.1 8.7 7.5 7.2 7.2 10.5
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Results and Application Application

Local resolution of identity (LRI) in GPW

GPW grid-operations

collocation of ρ(r)

integration of∫
[VH(r) + Vxc(r)]χµχνdr

. dominant

⇒ LRIGPWIII : reduction of prefactor for grid-operations

IIID. Golze, M. Iannuzzi, J. Hutter, JCTC, 2017, 13 (5), 2202
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Results and Application Application

Local density fitting

Pair density approximation

ρ(r) =
∑
AB

∑
µν

Pµνχ
A
µ(r)χB

ν (r)︸ ︷︷ ︸
ρAB

≈
∑
AB

∑
i

aAi f
A
i (r) +

∑
j

aBj f
B
j (r)


︸ ︷︷ ︸

ρ̃AB

(2)

Minimization of DAB

DAB =

∫
|ρAB − ρ̃AB |2dr (3)

with constraint

NAB =

∫
ρABdr =

∫
ρ̃ABdr. (4)

Why this type of fitting?

local: retain linear scaling

overlap metric: ρ̃ also used for XC
potential

easy to parallelize

July 11, 2017 25 / 30



Results and Application Application

Local density fitting

Pair density approximation

ρ(r) =
∑
AB

∑
µν

Pµνχ
A
µ(r)χB

ν (r)︸ ︷︷ ︸
ρAB

≈
∑
AB

∑
i

aAi f
A
i (r) +

∑
j

aBj f
B
j (r)


︸ ︷︷ ︸

ρ̃AB

(2)

Minimization of DAB

DAB =

∫
|ρAB − ρ̃AB |2dr (3)

with constraint

NAB =

∫
ρABdr =

∫
ρ̃ABdr. (4)

Why this type of fitting?

local: retain linear scaling

overlap metric: ρ̃ also used for XC
potential

easy to parallelize

July 11, 2017 25 / 30



Results and Application Application

Fit equations

Linear set of equations for pair AB

Sa = t + λn (5)

→ one set of equations for each pair
→ solved in every SCF step

Calculated prior to SCF

Sij =

∫
f Ai f Bj dr

ni =

∫
f
A/B
i dr

Tµνi =

∫
χA
µχ

B
ν f

A/B
i dr

Constructed in every SCF step

ti =
∑

µ∈A,ν∈B

PµνTµνi

λ =
NAB − nTS−1t

nTS−1n

{fi}... auxiliary functions

{χν}...orbital basis functions
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Results and Application Application

Timings LRI integrals

geometry optimization of molecular crystal (urea)
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Results and Application Application

Other applications

RI for hybrid density functionals

(a|1/r |b) for PBE0, B3LYP

(a|erfc(ωr)/r |b) for HSE06

(a|erf (ωr)/r |b), (a| exp(−ωr2)|b) for MCY3

Usage

package shg int

called in module library tests

routines return integrals of contracted spherical Gaussian functions
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Conclusions

Conclusions

SHG scheme

solid harmonic Gaussian functions

available for two-center integrals

(a|O|b)
(a|r2n

a |b)
(abã)

up to three orders of magnitude faster than OS scheme

especially efficient for highly contracted basis sets with large angular
momentum, derivatives
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