Fast evaluation of molecular integrals using solid harmonic Gaussian functions

Dorothea Golze

July 11, 2017

Contents

- Introduction
- SHG scheme
- Results and Application
 - Comparison of algorithms
 - Speed-ups
 - Application
- Conclusions

Motivation

2-center integrals

- RI approaches in KS-DFT
- semi-empirical methods
- QM/MM

Type of integrals

- $(a|\mathcal{O}|b)$ Coulomb, overlap,...
- $(a|r_a^{2n}|b)$ local operator $\mathbf{r}_a = \mathbf{r} \mathbf{R}_a$
- (abã) three-index integrals

Gaussian-type orbitals

Primitive Cartesian Gaussian

$$\psi(\alpha, \mathbf{I}, \mathbf{r}, \mathbf{R}) = (x - R_x)^{l_x} (y - R_y)^{l_y} (z - R_z)^{l_z} \exp\left[-\alpha (\mathbf{r} - \mathbf{R})^2\right]$$

with
$$I=(I_x,I_y,I_z)$$

number: (l+1)(l+2)/2

 $1 = I_x + I_y + I_z$

$$\Psi_{I,m}(\alpha, \mathbf{r}, \mathbf{R}) = r^I Y_{I,m}(\theta, \phi) \exp \left[-\alpha (\mathbf{r} - \mathbf{R})^2\right]$$

$$\chi_{l,m}(\alpha,\mathbf{r}) = \sqrt{\frac{4\pi}{2l+1}} r^l Y_{l,m}(\theta,\phi) \exp\left[-\alpha(\mathbf{r} - \mathbf{R})^2\right]$$

Gaussian-type orbitals

Primitive Cartesian Gaussian

$$\psi(\alpha,\mathbf{I},\mathbf{r},\mathbf{R})=(x-R_x)^{l_x}(y-R_y)^{l_y}(z-R_z)^{l_z}\exp\left[-\alpha(\mathbf{r}-\mathbf{R})^2\right]$$
 with $\mathbf{I}=(I_x,I_y,I_z)$ number: $(I+1)(I+2)/2$
$$I=I_x+I_y+I_z$$

Primitive spherical harmonic Gaussian

$$\Psi_{I,m}(\alpha, \mathbf{r}, \mathbf{R}) = r^I Y_{I,m}(\theta, \phi) \exp\left[-\alpha (\mathbf{r} - \mathbf{R})^2\right]$$

number: 2l + 1

Primitive solid harmonic Gaussian

$$\chi_{l,m}(\alpha,\mathbf{r}) = \sqrt{\frac{4\pi}{2l+1}} r^l Y_{l,m}(\theta,\phi) \exp\left[-\alpha(\mathbf{r} - \mathbf{R})^2\right]$$

number: 2l + 1

Gaussian-type orbitals

Primitive solid harmonic Gaussian

$$\chi_{l,m}(\alpha, \mathbf{r}) = \sqrt{\frac{4\pi}{2l+1}} r^l Y_{l,m}(\theta, \phi) \exp\left[-\alpha (\mathbf{r} - \mathbf{R})^2\right]$$

number: 2l+1

Contracted spherical harmonic Gaussian function

$$\varphi_{I,m}(\mathbf{r}) = N_I \sum_{\alpha \in A} c_{\alpha} \chi_{I,m}(\alpha, \mathbf{r}),$$

 N_1 ...normalization constants

"Traditional" Obara-Saika (OS) scheme

OS scheme for molecular integrals

- ▶ recursive integral scheme based on Cartesian Gaussians
- ▶ popular scheme, also used for libint

Steps in CP2K

- evaluation of integrals of primitive Cartesian Gaussians
- transformation to spherical Gaussian integrals
- contraction of spherical integrals

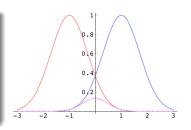
Cartesian Gaussians - Properties

Gaussian product rule

$$\psi_{A} = \exp(-\alpha r_{A}^{2})$$

$$\psi_{B} = \exp(-\beta r_{B}^{2})$$

$$\psi_{AB} = \underbrace{\exp(-\mu R_{AB}^{2})}_{prefactor} \underbrace{\exp(-pr_{P}^{2})}_{product Gaussian}$$



where

$$p = \alpha + \beta$$
$$\mu = \frac{\alpha\beta}{\alpha + \beta}$$
$$R_{AB} = R_A - R_B$$

$$\mathbf{R}_P = \frac{\alpha \mathbf{R}_A + \beta \mathbf{R}_B}{\alpha + \beta}$$

- \leftarrow total exponent
- \leftarrow reduced exponent
- \leftarrow relative separation
- $\leftarrow \text{``center of mass''}$

- greatly simplifies integral evaluation
- two-center integrals reduced to one-center int.

Contents

- Introduction
- SHG scheme
- Results and Application
 - Comparison of algorithms
 - Speed-ups
 - Application
- 4 Conclusions

Solid harmonic Gaussians (SHGs)

Complex solid harmonics

$$C_{l,m}(\mathbf{r}) = \sqrt{\frac{4\pi}{2l+1}} r^l Y_{l,m}(\theta,\phi),$$

Solid harmonic Gaussian

$$\chi_{l,m}(\alpha, \mathbf{r}) = C_{l,m}(\mathbf{r}) \exp(-\alpha r^2)$$

Reformulation of SHG

$$\chi_{l,m}(\alpha, \mathbf{r}_a) = \frac{C_{l,m}(\nabla_a) \exp\left(-\alpha r_a^2\right)}{(2\alpha)^l},$$

 $C_{l,m}(\nabla_a)$...Spherical Tensor Gradient Operator (STGO)

Two-center integrals

$$(\mathbf{a}|\mathcal{O}|\mathbf{b}) = \iint \varphi_{l_a,m_a}(\mathbf{r}_1 - \mathbf{R}_a)\mathcal{O}(\mathbf{r}_1 - \mathbf{r}_2)\varphi_{l_b,m_b}(\mathbf{r}_2 - \mathbf{R}_b)d\mathbf{r}_1d\mathbf{r}_2$$

Coulomb: $\mathcal{O}(\mathbf{r}) = 1/r$, Overlap: $\mathcal{O}(\mathbf{r}) = \delta(\mathbf{r})$

Reformulation in terms of STGO

$$(a|\mathcal{O}|b) = C_{l_a,m_a}(\nabla_a)C_{l_b,m_b}(\nabla_b)O_{l_a,l_b}(R_{ab}^2)$$

Final integral expression^l

$$(a|\mathcal{O}|b) = \sum_{j=0}^{\min(l_a,l_b)} O_{l_a,l_b}^{(l_a+l_b-j)}(R_{ab}^2) \tilde{Q}_{l_a,\mu_a,l_b,\mu_b,j}^{c/s,c/s}(\mathbf{R}_{ab})$$

with $\mu = |m|$

T. Giese, D. York, J. Chem. Phys., 2008, 128, 064104

9 / 30

Two-center integrals

$$(a|\mathcal{O}|b) = \iint \varphi_{l_a,m_a}(\mathbf{r}_1 - \mathbf{R}_a)\mathcal{O}(\mathbf{r}_1 - \mathbf{r}_2)\varphi_{l_b,m_b}(\mathbf{r}_2 - \mathbf{R}_b)d\mathbf{r}_1d\mathbf{r}_2$$

Coulomb: $\mathcal{O}(\mathbf{r}) = 1/r$, Overlap: $\mathcal{O}(\mathbf{r}) = \delta(\mathbf{r})$

Reformulation in terms of STGO

$$(a|\mathcal{O}|b) = C_{l_a,m_a}(\nabla_a)C_{l_b,m_b}(\nabla_b)O_{l_a,l_b}(R_{ab}^2)$$

$$(a|\mathcal{O}|b) = \sum_{j=0}^{\min(l_a,l_b)} O_{l_a,l_b}^{(l_a+l_b-j)}(R_{ab}^2) \tilde{Q}_{l_a,\mu_a,l_b,\mu_b,j}^{c/s,c/s}(\mathbf{R}_{ab})$$

Two-center integrals

$$(a|\mathcal{O}|b) = \iint \varphi_{l_a,m_a}(\mathbf{r}_1 - \mathbf{R}_a)\mathcal{O}(\mathbf{r}_1 - \mathbf{r}_2)\varphi_{l_b,m_b}(\mathbf{r}_2 - \mathbf{R}_b)d\mathbf{r}_1d\mathbf{r}_2$$

Coulomb: $\mathcal{O}(\mathbf{r}) = 1/r$, Overlap: $\mathcal{O}(\mathbf{r}) = \delta(\mathbf{r})$

Reformulation in terms of STGO

$$(a|\mathcal{O}|b) = C_{l_a,m_a}(\nabla_a)C_{l_b,m_b}(\nabla_b)O_{l_a,l_b}(R_{ab}^2)$$

Final integral expression^I

$$(a|\mathcal{O}|b) = \sum_{j=0}^{\min(l_a,l_b)} O_{l_a,l_b}^{(l_a+l_b-j)}(R_{ab}^2) \tilde{Q}_{l_a,\mu_a,l_b,\mu_b,j}^{c/s,c/s}(\mathsf{R}_{ab})$$

with $\mu = |m|$

¹T. Giese, D. York, *J. Chem. Phys.*, **2008**, 128, 064104

Derivative of contracted s type integral

$$O_{l_a,l_b}^{(k)}(R_{ab}^2) = N_{l_a}N_{l_b}\sum_{\alpha\in A}\sum_{\beta\in B}\frac{c_{\alpha}c_{\beta}}{(2\alpha)^{l_a}(2\beta)^{l_b}}\left(\frac{\partial}{\partial R_{ab}^2}\right)^k(0_a|\mathcal{O}|0_b). \tag{1}$$

- dependent on exponents
- dependent on *I*, but not *m* quantum number

Angular dependent part

- $\tilde{Q}_{l_a,\mu_a,l_b,\mu_b,j}^{c/s,c/s}(\mathbf{R}_{ab})$ constructed from regular scaled solid harmonics $R_{l,m}$
- R_{I,m} obtained recursively
- no dependence on exponents!

Derivative of contracted s type integral

$$O_{l_a,l_b}^{(k)}(R_{ab}^2) = N_{l_a}N_{l_b}\sum_{\alpha\in A}\sum_{\beta\in B}\frac{c_{\alpha}c_{\beta}}{(2\alpha)^{l_a}(2\beta)^{l_b}}\left(\frac{\partial}{\partial R_{ab}^2}\right)^k(0_a|\mathcal{O}|0_b). \tag{1}$$

- dependent on exponents
- dependent on I, but not m quantum number

Angular dependent part

- $\tilde{Q}_{l_a,\mu_a,l_b,\mu_b,j}^{c/s,c/s}(\mathbf{R}_{ab})$ constructed from regular scaled solid harmonics $R_{l,m}$
- R_{I,m} obtained recursively
- no dependence on exponents!

Integrals $(a|r_a^{2n}|b)$ and $(ab\tilde{a})$

Integral $(a|r_a^{2n}|b)$

$$(a|r_a^{2n}|b) = \int \varphi_{l_a,m_a}(\mathbf{r}_a)r_a^{2n}\varphi_{l_b,m_b}(\mathbf{r}_b)d\mathbf{r}$$

Derivation of expression in terms of $C_{l,m}(\nabla_a)$ for II

$$\chi_{l,m}(\alpha, \mathbf{r}_a)r_a^{2n} = C_{l,m}(\mathbf{r}_a) \exp(-\alpha r_a^2)r_a^{2n}$$

Integral (abã)

$$(ab\tilde{a}) = \int \varphi_{l_a,m_a}(\mathbf{r}_a)\varphi_{\tilde{l}_a,\tilde{m}_a}(\mathbf{r}_a)\varphi_{l_b,m_b}(\mathbf{r}_b)d\mathbf{r}$$

Derivation of STGO expression for $\chi_{I,m}(\alpha, \mathbf{r}_a)\chi_{\widetilde{I},\widetilde{m}}(\widetilde{\alpha}, \mathbf{r}_a)$ based on $(a|r_a^{2n}|b)$

^{II}D. Golze, N. Benedikter, M. Iannuzzi, J. Wilhelm, J. Hutter, *J. Chem. Phys.*, **2017**, 146, 034105

Implementation

Table: DZVP-MOLOPT-GTH for oxygen

	Contraction coefficients						
Exponents	s	s	p	p	d		
12.015954705512	-0.060190841200	0.065738617900	0.036543638800	-0.034210557400	0.014807054400		
5.108150287385	-0.129597923300	0.110885902200	0.120927648700	-0.120619770900	0.068186159300		
2.048398039874	0.118175889400	-0.053732406400	0.251093670300	-0.213719464600	0.290576499200		
0.832381575582	0.462964485000	-0.572670666200	0.352639910300	-0.473674858400	1.063344189500		
0.352316246455	0.450353782600	0.186760006700	0.294708645200	0.484848376400	0.307656114200		
0.142977330880	0.092715833600	0.387201458600	0.173039869300	0.717465919700	0.318346834400		
0.046760918300	-0.000255945800	0.003825849600	0.009726110600	0.032498979400	-0.005771736600		

Implementation

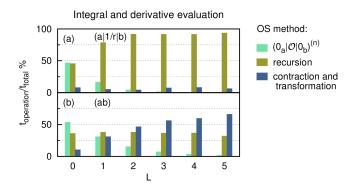
```
For each atomic kind:
       Calculate contraction matrix: C_{l_a,\alpha} = N_{l_a} c_{\alpha}/(2\alpha)^{l_a}
l_{\text{max}} = \text{MAX}(l_{a,\text{max}}, l_{b,\text{max}})
For all 0 \le l \le l_{\text{max}}:
       Tabulate R_{lm}^c(\mathbf{R}_{ab}) and R_{lm}^s(\mathbf{R}_{ab})
For all 0 \le l_{a/b} \le l_{a/b, \max}:
       Calculate \tilde{Q}_{l_a, \mu_a, l_b, \mu_b, i}^{c/s, c/s}(\mathbf{R}_{ab})
       If derivatives required:
           Calculate \frac{\partial}{\partial R_{a,i}} \tilde{Q}_{l_a,\mu_a,l_b,\mu_b,j}^{c/s,c/s}(\mathbf{R}_{ab}), i = x, y, z
For all sets a/b:
       n_{\text{max}} = l_{a,\text{max\_set}} + l_{b,\text{max\_set}}
       If derivatives required:
           n_{\text{max}} = n_{\text{max}} + 1
       For all exponents in set a/b:
              Calculate (0_a | \mathcal{O} | 0_b)^{(k)},
                                                         0 \le k \le n_{max}
              For all shells in set a/b:
                     Contract: O_{l_a,l_b}^{(k)}(R_{ab}^2) = \sum_{\alpha} \sum_{\beta} C_{l_a,\alpha} C_{l_b,\beta}(0_a|\mathcal{O}|0_b)^{(k)}
       For all shells in set a/b:
              For all -l_{a/b} \le m_{a/b} \le l_{a/b}:
                     Calculate (a|\mathcal{O}|b) = \sum_{j} O_{l_a,l_b}^{(l_a+l_b-j)}(R_{ab}^2) \widetilde{Q}_{l_a,l_a,l_b,l_b,j}^{c/s,c/s}(\mathbf{R}_{ab})
                     If derivatives required:
                        Calculate \frac{\partial}{\partial R_{i-1}}(a|\mathcal{O}|b), i = x, y, z
```

◆ロト ◆個 ▶ ◆ 重 ト ◆ 重 ・ 夕 Q で 。

Contents

- Introduction
- SHG scheme
- Results and Application
 - Comparison of algorithms
 - Speed-ups
 - Application
- Conclusions

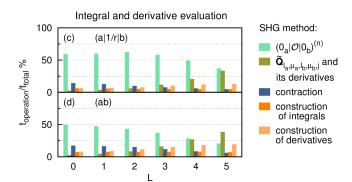
Timings Obara-Saika method



Most expensive step

- (a|1/r|b): recursion of primitive Cartesian integrals
- (ab): contraction+transformation to contracted spherical Gaussian

Timings SHG method



Most expensive step

• evaluation of fundamental (s-type) $(0_a|\mathcal{O}|0_b)^{(n)}$ integrals + their scalar derivatives

Comparison of contraction steps

Table: Number of matrix elements that need to be contracted for (a|O|b)

Integral method	H-DZVP		O-DZVP		
	Int. Int.+Dev.		Int.	Int. + Dev.	
OS SHG	784 147	3136 196	3969 245	15876 294	

Integrals

- SHG: contraction of $(0_a|\mathcal{O}|0_b)^{(n)}$ with $n=I_{a,max}+I_{b,max}$
- ullet OS: contraction of each primitive spherical Gaussian integral $(A|\mathcal{O}|B)$

Comparison of contraction steps

Table: Number of matrix elements that need to be contracted for (a|O|b)

Integral method	H-DZVP		O-DZVP		
	Int.	Int. Int.+Dev. Int		Int. + Dev.	
OS SHG	784 147	3136 196	3969 245	15876 294	
SHG	147	196	245	294	

Integrals + derivatives

- SHG: contraction of $(0_a|\mathcal{O}|0_b)^{(n)}$ with $n=l_{a,max}+l_{b,max}+1$
- OS: contraction of $(A|\mathcal{O}|B)$ and $\partial(A|\mathcal{O}|B)/\partial x$, $\partial(A|\mathcal{O}|B)/\partial y$, $\partial(A|\mathcal{O}|B)/\partial z$

Comparison of recursive part

- recursion for each primitive integral $(A|\mathcal{O}|B)$
- recursion only once for $\widetilde{\mathbf{Q}}_{l_a,\mu_a,l_b,\mu_b,j}(\mathbf{R}_{ab})$ for $0 \le l_a/l_b \le l_{a/b,\max}$

Comparison of recursive part

Example

- SHG: 243 matrix elements $\widetilde{\mathbf{Q}}_{l_a,\mu_a,l_b,\mu_b,j}(\mathbf{R}_{ab})$
- ullet OS: 4900 primitive Cartesian integrals, where $I_{
 m max}=2$

Table: DZVP-MOLOPT-GTH for oxygen

Contraction coefficients							
Exponents	s	s	p	p	d		
12.015954705512	-0.060190841200	0.065738617900	0.036543638800	-0.034210557400	0.014807054400		
5.108150287385	-0.129597923300	0.110885902200	0.120927648700	-0.120619770900	0.068186159300		
2.048398039874	0.118175889400	-0.053732406400	0.251093670300	-0.213719464600	0.290576499200		
0.832381575582	0.462964485000	-0.572670666200	0.352639910300	-0.473674858400	1.063344189500		
0.352316246455	0.450353782600	0.186760006700	0.294708645200	0.484848376400	0.307656114200		
0.142977330880	0.092715833600	0.387201458600	0.173039869300	0.717465919700	0.318346834400		
0.046760918300	-0.000255945800	0.003825849600	0.009726110600	0.032498979400	-0.00577173660		

SHG scheme

OS scheme

Advantages of the SHG scheme

• contraction	for each primitive integral $(A \mathcal{O} B)$	only for s -overlap and its $l_{a,max} + l_{b,max}$ scalar derivatives
derivatives	recursion up to $\emph{I}_{\it max}+1$	recursion up to I_{max}
• contraction of derivatives	for $(A \mathcal{O} B)$ and its Cartesian derivatives	only for one more derivative of the <i>s</i> overlap
• transformation	required	not required

SHG scheme

OS schomo

Advantages of the SHG scheme

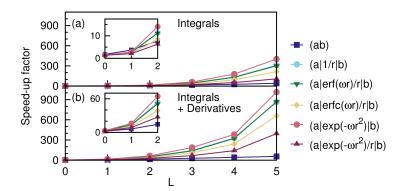
	OS scheme	SITG SCHEINE		
• contraction	for each primitive integral $(A \mathcal{O} B)$	only for s-overlap and its $l_{a,max} + l_{b,max}$ scalar derivatives		
derivatives	recursion up to $\emph{I}_{\it max}+1$	recursion up to I_{max}		
• contraction of derivatives	for $(A \mathcal{O} B)$ and its Cartesian derivatives	only for one more derivative of the <i>s</i> overlap		
• transformation	required	not required		

SHG scheme efficient for

- large contraction lengths
- ▷ large angular momentum
- derivatives

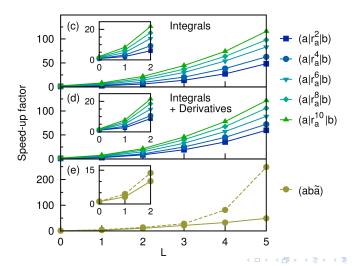
Speed-up dependent on / quantum number

- speed-up with respect to Obara-Saika method
- ▷ Contraction length set to K = 7



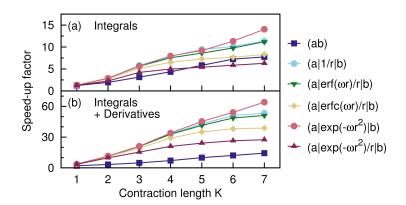
Speed-up dependent on / quantum number

> Contraction length set to K = 7



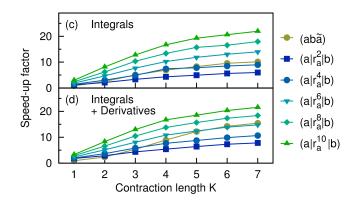
Speed-up dependent on contraction length

 \triangleright angular momentum set to l=2



Speed-up dependent on contraction length

 \triangleright angular momentum set to I=2

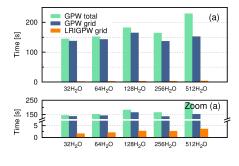


Speed-up for MOLOPT basis sets

Table: Speed-up for DZVP/TZV2PX-MOLOPT-GTH for O and DZVP-MOLOPT-SR-GTH for Cu

Integral type	O-DZVP		O-TZV2PX		Cu-DZVP	
	Int.	Int.+Dev.	Int.	Int.+Dev.	Int.	Int.+Dev.
(ab)	6.2	5.5	11.4	10.3	8.9	8.3
(a 1/r b)	5.9	18.4	16.8	31.6	14.6	26.0
$(a erf(\omega r)/r b)$	5.8	18.4	16.6	31.7	14.4	26.0
$(a \operatorname{erfc}(\omega r)/r b)$	5.2	16.3	14.9	29.5	12.9	24.8
$(a \exp(-\omega r^2) b)$	6.4	19.7	18.0	32.5	16.0	27.4
$(a \exp(-\omega r^2)/r b)$	4.4	14.1	12.3	25.4	10.8	22.0
$(a r_a^2 b)$	9.7	8.8	22.9	18.6	19.7	15.8
$(a r_a^4 b)$	16.0	14.0	39.4	29.3	34.7	25.2
$(a r_a^6 b)$	25.3	21.6	59.5	44.3	56.1	38.9
$(a r_a^8 b)$	34.7	29.6	79.3	61.4	73.4	54.6
$(a r_a^{10} b)$	44.7	36.7	105.2	79.9	97.5	72.2
(abã)	10.1	8.7	7.5	7.2	7.2	10.5

Local resolution of identity (LRI) in GPW



GPW grid-operations

- collocation of $\rho(\mathbf{r})$
- integration of $\int \left[V_{\rm H}({\bf r}) + V_{\rm xc}({\bf r})\right] \chi_{\mu} \chi_{\nu} d{\bf r}$
- dominant

⇒ LRIGPW^{III} : reduction of prefactor for grid-operations

Local density fitting

Pair density approximation

$$\rho(\mathbf{r}) = \sum_{AB} \underbrace{\sum_{\mu\nu} P_{\mu\nu} \chi_{\mu}^{A}(\mathbf{r}) \chi_{\nu}^{B}(\mathbf{r})}_{\rho_{AB}} \approx \sum_{AB} \underbrace{\left[\sum_{i} a_{i}^{A} f_{i}^{A}(\mathbf{r}) + \sum_{j} a_{j}^{B} f_{j}^{B}(\mathbf{r})\right]}_{\tilde{\rho}_{AB}}$$
(2)

Minimization of D_{AB}

$$D_{AB} = \int |\rho_{AB} - \tilde{\rho}_{AB}|^2 d\mathbf{r} \qquad (3)$$

with constraint

$$N_{AB} = \int \rho_{AB} d\mathbf{r} = \int \tilde{\rho}_{AB} d\mathbf{r}.$$
 (4)

Why this type of fitting?

- local: retain linear scaling
- overlap metric: $\tilde{\rho}$ also used for XC potential
- easy to parallelize

Local density fitting

Pair density approximation

$$\rho(\mathbf{r}) = \sum_{AB} \underbrace{\sum_{\mu\nu} P_{\mu\nu} \chi_{\mu}^{A}(\mathbf{r}) \chi_{\nu}^{B}(\mathbf{r})}_{\rho_{AB}} \approx \sum_{AB} \underbrace{\left[\sum_{i} a_{i}^{A} f_{i}^{A}(\mathbf{r}) + \sum_{j} a_{j}^{B} f_{j}^{B}(\mathbf{r}) \right]}_{\tilde{\rho}_{AB}}$$
(2)

Minimization of D_{AB}

$$D_{AB} = \int |\rho_{AB} - \tilde{\rho}_{AB}|^2 d\mathbf{r} \qquad (3)$$

with constraint

$$N_{AB} = \int \rho_{AB} d\mathbf{r} = \int \tilde{\rho}_{AB} d\mathbf{r}.$$
 (4)

Why this type of fitting?

- local: retain linear scaling
- ullet overlap metric: $ilde{
 ho}$ also used for XC potential
- easy to parallelize

Fit equations

Linear set of equations for pair AB

$$Sa = t + \lambda n \tag{5}$$

- \rightarrow one set of equations for each pair
- \rightarrow solved in every SCF step

Calculated prior to SCF

$$S_{ij} = \int f_i^A f_j^B d\mathbf{r}$$

$$n_i = \int f_i^{A/B} d\mathbf{r}$$

$$T_{\mu
u i}=\int \chi_{\mu}^{A}\chi_{
u}^{B}f_{i}^{A/B}d\mathbf{r}$$

Constructed in every SCF step

$$t_i = \sum_{\mu \in A, \nu \in B} P_{\mu\nu} T_{\mu\nu i}$$

$$\lambda = \frac{N_{AB} - \mathbf{n}^T \mathbf{S}^{-1} \mathbf{t}}{\mathbf{n}^T \mathbf{S}^{-1} \mathbf{n}}$$

 $\{f_i\}$... auxiliary functions $\{\chi_{\nu}\}$...orbital basis functions

Fit equations

Linear set of equations for pair AB

$$Sa = t + \lambda n \tag{5}$$

- \rightarrow one set of equations for each pair
- \rightarrow solved in every SCF step

Calculated prior to SCF

$$S_{ij} = \int f_i^A f_j^B d\mathbf{r} = (ab)$$

$$n_i = \int f_i^{A/B} d\mathbf{r}$$

$$T_{\mu\nu i} = \int \chi_{\mu}^{A} \chi_{\nu}^{B} f_{i}^{A/B} d\mathbf{r} = (ab\tilde{a})$$

Constructed in every SCF step

$$t_i = \sum_{\mu \in A, \nu \in B} P_{\mu\nu} T_{\mu\nu i}$$

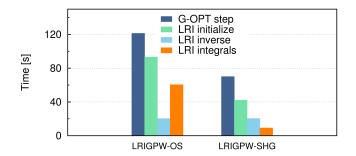
$$\lambda = \frac{N_{AB} - \mathbf{n}^T \mathbf{S}^{-1} \mathbf{t}}{\mathbf{n}^T \mathbf{S}^{-1} \mathbf{n}}$$

 $\{f_i\}$... auxiliary functions $\{\chi_{\nu}\}$...orbital basis functions

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Timings LRI integrals

geometry optimization of molecular crystal (urea)



Other applications

RI for hybrid density functionals

- (a|1/r|b) for PBE0, B3LYP
- $(a|erfc(\omega r)/r|b)$ for HSE06
- $(a|erf(\omega r)/r|b)$, $(a|exp(-\omega r^2)|b)$ for MCY3

Usage

- package shg_int
- called in module library_tests
- routines return integrals of contracted spherical Gaussian functions

Contents

- Introduction
- SHG scheme
- Results and Application
 - Comparison of algorithms
 - Speed-ups
 - Application
- Conclusions

Conclusions

SHG scheme

- solid harmonic Gaussian functions
- available for two-center integrals
 - (a|O|b)
 - $(a|r_a^{2n}|b)$
 - (a)r_a |b
- up to three orders of magnitude faster than OS scheme
- especially efficient for highly contracted basis sets with large angular momentum, derivatives

