Calculation of redox potentials and pKa's using DFTMD

Jun Cheng
College of Chemistry and Chemical Engineering, Xiamen University, China
Department of Chemistry, University of Aberdeen, UK

1

Pourbaix diagram

- Phase diagram of redox species under various conditions of potential and pH in aqueous solutions

Redox and acid-base chemistry

Redox half reaction

$$
\mathrm{X}^{-}(a q) \rightarrow \mathrm{X}^{*}(a q)+\mathrm{e}^{-}(v a c)
$$

Acid dissociation reaction

$$
\mathrm{XH}(a q) \rightarrow \mathrm{X}^{-}(a q)+\mathrm{H}^{+}(a q)
$$

Thermochemistry of proton coupled electron transfer (PCET)

PCET in water oxidation

Computation of redox potentials

 and pKa's- Implicit solvation:

Dielectric continuum
PCM, SMx, COMSO, SCCS, etc.
Semi-empirical, effective, accurate (often)

- Explicit solvation:
- QM/MM: classical water
- AIMD: treating solutes and solvents at the same level of electronic structure theory (DFT), and accounting for statistical mechanics of solvent dynamic fluctuation.

5

From vertical to adiabatic

Marcus theory

Generalisation to vertical proton insertion

$$
\begin{aligned}
& \text { Switch on/off the } \\
& \text { proton charge } \\
& \text { M. Sulpizi, M. Sprik. FCCP, } \\
& 2008,16,5238 \text {. }
\end{aligned}
$$

6

Thermodynamic integration

Mapping potential: $E_{1}=(1-\eta) E_{0}+\eta E_{1}$	Redox (De)protonatio	$\begin{aligned} & E_{n}=(1-\eta) E_{m o d}+\eta E_{m} \\ & E_{n}=(1-\eta) E_{A I I}+\eta E_{A} \end{aligned}$
Vertical energy gap: $\frac{\partial E_{0}}{\partial \eta}-E_{1}-E_{0}=\Delta E$ Adiabatic (free) energy:		
$\Delta A=A(1-1)-A(1-0)-\int_{0}^{1} d \eta\langle\Delta E\rangle$		$\text { upling parameter } \eta=1$

1. Blumberger, L.TrwaraelE, MLL Klein. M. Sprik, |CP 2006, 124,064507. M. Sulpazi, M. Sprik. FCCP, 2508, 10,5238. 1. Chang M. Supitir, M. Sprik, JCP, 2009, 131, 154504 E. Coatanza, M. Sulpisi, R. G. Della Vale, M. Sprik, 2011 , 134,244508

10

Multiple_Force_Evals

qeneric paraseter
SET a

GLLOBML

PROJECT water- $\$$ (ETA)
RIR_TYPE MD
PRINT_LEVEL sedius
FLUSH SHOUD FLISH WHLLTIME 1050.
gEND GLOBAL
SMULTIPLE_FORCE_EVALS FORCE EVAL_ORDER 123 HMLIPLE

GET METHOD MIXED
ginclede input.inc

GEET VETHOD QS GET a 1
ginclude input.inc
force_eva for ox/Depr GET METHOD QS
GET a 2
oinclude input.inc

- force_eva for restraining ater
GET METHOD FIST
ginclude input.inc
CMOTIOW
GMD
$\stackrel{\square}{C B D}$ GENDHOTION

13

Restraining potential

GFORCE_EVAL METHOS $\$\{$ METHCO

SMDED
GNOUP_PARTITION 24.24 .4

I X: Energy force_eval 2 (Red/Pro)
\# Y: Energy force_eval 3 (0x/Depr)
I 2: Energy force_eval 4 Irestraints
MIXING_FINCTION $\mathrm{k} * \mathrm{X}+11-\mathrm{k} \mid+\mathrm{Y}+\mathrm{Z}$
VARIMELES X Y Z
PARAMETERS K
VALUES \$ $\$$ (ETA
SERPTMT
EDIPOLE OFF GOIPO
GEND
SERD
SERD MIXED

Switch on/off dummy H atom

GDFT
ジFF" $\$\{a\}=-1$
SKIND HI
BASIS_SET TZV2P-GTH
POTENTIAL GTH-BLYP-q1
semD KIMD
GENDIF
eIf $\begin{gathered}\$\{\mathrm{a}\}=-2 \\ \text { SKIND } \\ \text { H2 }\end{gathered}$
${ }_{\text {SKIND }}^{\text {BASIS }}$ SET NSNE
POTENTIAL GTH-BLYP-q1
CEROST TI
GENDIF
GEND" DFT

Vertical energy gaps

Thermodynamic integration

dehydrogenation of a water molecule in a 32 water box (HSE06 functional)

17
Standard hydrogen electrode (SHE)
Reference electrode
Working electrode
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{e} \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e} \rightarrow \mathrm{Cu}(\mathrm{s})$

1. Charg M Supixi, M. Sprik.JCP, 2009, 131, 154504.

Electrostatics under PBC:
potential reference

Open boundary condition

$$
\varphi(\infty)=0
$$

Periodic boundary condition (Ewald sum)

$$
\frac{1}{V_{\mathrm{col}}} \int_{\mathrm{ov}} \varphi(r) d r=0
$$

$$
E_{o}=\sum q_{1} w_{1} ? \sum q_{1}\left(\varphi_{i}+C\right)-\sum q_{1} w_{1}+\sum q_{1} C
$$

Klainman, Phys. Rev. B 1981, 24, 7412.
18

Redox potentials

$$
\begin{array}{cc}
\mathrm{X}^{-}(a q)+\mathrm{H}^{+}(a q) \rightarrow \mathrm{X}^{*}(a q)+1 / 2 \mathrm{H}_{2}(g) \\
\mathrm{X}^{-}(a q) \rightarrow \mathrm{X}^{*}(a q)+\mathrm{e}^{-}(v a c) & \Delta_{\mathrm{ox}} \mathrm{AX}_{\mathrm{X}} \\
1 / 2 \mathrm{H}_{2}(g) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{e}^{-}(v a c) & \\
\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow \mathrm{H}_{2} \mathrm{Od}(a q) & \Delta_{\mathrm{dp}} \mathrm{~A} \\
1 / 2 \mathrm{H}_{2}(g) \rightarrow \mathrm{H}^{+}(g)+\mathrm{e}^{-}(v a c) & \mu_{\mathrm{H}^{+}}^{g .0}
\end{array}
$$

PKa's
$\mathrm{XH}(a q) \rightarrow \mathrm{X}^{-}(a q)+\mathrm{H}^{+}(a q)$
$\mathrm{XH}(a q)+\mathrm{H}_{2} \mathrm{O}(a q) \rightarrow \mathrm{X}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
$\mathrm{XH}(a q) \rightarrow \mathrm{Xd}^{-}(a q)$
$\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow \mathrm{H}_{2} \mathrm{Od}(a q)$

21

Redox potentials and pKa's

25

Energy levels from MBPT

RPA and doable lypbrid calculations
use HSEN6/PEES MD trajectaries.

26

Acknowledgements

- Prof. Michiel Sprik (Cambridge)
* Dr.joost VandeVondele (ETHZ)
- Dr.Aron Cohen (Cambridge)
- ARCHER (previously HECToR)

Thank you for your attention!

