http://tinyurl.com/CP2KSchool2018
#CP2KSummerSchool

CP2K:
MOVING ATOMS
CP2K Summer School, 19-22 June 2018

Iain Bethune

iain.bethune@stfc.ac.uk
@iainbethune

(material from Jürg Hutter, Matt Watkins, Konstanze Hahn)
Outline

• Geometry & cell optimisation
 • Local Minimisation
 • Global optimisation

• Molecular Dynamics
 • Born-Oppenheimer MD
 • Accuracy and stability

• Ensembles
 • Thermostats
Geometry & Cell optimisation

• What do we mean by optimisation?
 • Minimising the total energy
 • aka. relaxation

• In atomistic simulations, the total energy is a function of atomic positions:
 • In DFT: $E_{\text{tot}}[n(r)]$ and $n(r) \leftrightarrow V(R)$ (Hohenberg-Kohn)
 • In molecular mechanics there is a forcefield:

$$U(R) = \sum_{\text{bonds}:i,j} V_{\text{bond}}(R_i, R_j) + \sum_{\text{angles}:i,j,k} V_{\text{angle}}(R_i, R_j, R_k) + ...$$
Geometry & Cell Optimisation

- We can think of the potential energy as a surface in a 3N-dimensional space (N = number of atoms)
 - + 9 more if we include lattice vectors for a periodic system!

- Minimas may be local or global!

Fig. 12. Different folding scenarios. The vertical axis is internal free energy. Each conformation is represented as a point on the landscape. The two horizontal axes represent the many chain degrees of freedom. a: A rugged landscape with hills and traps, folding kinetics is likely multiple-exponential (from Ref. 8). b: A landscape in which folding is faster than unfolding. A is a through-way folding path, whereas unfolding chains (path B) must surmount a barrier to reach the most stable denatured conformations. c: A landscape in which folding is slower than unfolding. Most folding paths (path A) pass through a kinetic trap, whereas some low-lying denatured conformations are readily accessible from the native state during unfolding (path B).

Local minimisation

- What can CP2K minimise with respect to?
 - **MOTION\%GEO_OPT** – vary atomic coordinates only
 - **MOTION\%CELL_OPT** – both atomic coordinates and lattice vectors
 - Some values may be constrained e.g. cell angles, certain atomic positions
 - Collective variables (distances, angles) can be constrained
Local minimisation

• BFGS (Broyden-Fletcher-Goldfarb-Shanno)
 • most efficient for small–medium size systems with a reasonable guess at the geometry
 • requires inversion/diagonalization of approximate Hessian matrix – Hessian matrix has dimension $3N$ where N is number of atoms being optimized

• L-BFGS

• Conjugate gradients
 • Only uses gradients rather than approximation to curvature, should be more robust when far from minima
Geometry optimisation

- **RUN_TYPE GEO_OPT** in **GLOBAL** section
- **GEO_OPT%OPTIMIZER** in **MOTION** section
 - CG, use with poor initial guesses, noisy forces, rough optimization
 - (L)BFGS, for most QS calculations – consider switching to LBFGS above ~1000 atoms. Look for diagonalization routine timings at end of run to see relative cost
- **MAX_ITER** number of optimization steps
- **Constraints may be defined in** **MOTION%CONSTRAINT** section:
  ```
  &FIXED_ATOMS
   COMPONENTS_TO_FIX X
   LIST 1
  &END
  &FIXED_ATOMS
   COMPONENTS_TO_FIX Y
   LIST 2
  &END
  ```
Cell optimisation

- CP2K can respect cell symmetry (only for `CELL_OPT`)

```fortran
&CELL
    ABC 9.167 9.167 11.808
    SYMMETRY ORTHORHOMBIC
    MULTIPLE_UNIT_CELL 2 2 2
&END CELL

...```

```fortran
&CELL_OPT
 KEEP_SYMMETRY TRUE
&END CELL_OPT```

- Also `KEEP_ANGLES` (e.g. allows cubic symmetry to break)
Cell optimisation

- Three algorithms in CP2K controlled by \texttt{CELL_OPT_TYPE}
 - \texttt{GEO_OPT}: Original implementation.
 - 1. Inner cycle optimize atomic positions
 - 2. Outer cycle optimize cell vectors
 - \texttt{DIRECT_CELL_OPT} (default): New implementation from version 2.4 onwards
 - Cell parameters (stresses) go into the optimizer along with atomic coordinates
 - \texttt{MD}: Optimize at finite temperature.
 - Uses MD, so only of use if you have a cheap Hamiltonian
 - \texttt{DIRECT_CELL_OPT} should be much more efficient – try for yourself
 - Generally best to enforce symmetry / fix angles to start with to minimize number of degrees of freedom.
Output

- Grep for “Max. grad” in output file to see the progress of the optimization.
 - This gives maximum energy gradient on atoms being optimized.
- Below “Convergence check :” there is a summary of the progress.
 - Convergence requires Max and RMS step size and Max and RMS gradients to be converged.
- Pressure extra criteria for CELL_OPT.
- The convergence criteria can be set in the MOTION% [CELL | GEO]_OPT section.
- Default Max. grad is equal to 0.025 eV/Å.
- Good enough for most purposes.
 - May need tighter e.g. for subsequent vibrational analysis.
Global optimisation

• Brute force approach:
 • Generate a grid of points (size m) in each of 3M dimensions
 • \(m^{3N}\) energy evaluations – exponential in system size \(X\)

• Practical methods exploit shape of PES
 • Genetic algorithms
 • Simulated annealing (\texttt{MOTION\%MD\%ANNEALING})
 • Monte Carlo
 • Basin Hopping (\texttt{GLOBAL\%SWARM\%GLOBAL_OPT\%METHOD})

• Details of methods and implementation in Ole Shütt’s Masters Thesis
 • Linked from \url{https://www.cp2k.org/docs}
Optimisation Exercises

• Geometry Optimisation of a water molecule
 • https://www.cp2k.org/howto:geometry_optimisation

• NaCl clusters (classical) and NaCl cell opt (DFT)
 • https://www.cp2k.org/exercises:2016_summer_school:geometry_and_cell_optimization
Molecular Dynamics

• In Classical Molecular Dynamics, particles obey Newton’s 2nd Law and move subject to a position-dependent interaction potential:

\[m_i \ddot{r}_i = F_i \quad F_i = -\frac{dU(R)}{dr_i} \]

• For a fixed number of particles N in a volume V these equations of motion generate the microcanonical (NVE) ensemble.
• The total energy U + the kinetic energy is conserved
Molecular Dynamics

- We solve the equations of motion by discretisation in time, given positions \mathbf{R} and velocities \mathbf{V} at time t_0

\[
\begin{align*}
\mathbf{R}(t_0) & \rightarrow \mathbf{R}(t_0 + \partial t) \rightarrow \mathbf{R}(t_0 + 2\partial t) \\
\mathbf{V}(t_0) & \rightarrow \mathbf{V}(t_0 + \partial t) \rightarrow \mathbf{V}(t_0 + 2\partial t)
\end{align*}
\]

- Want a scheme which is:
 - **Efficient**: minimal number of force evaluations, stored data
 - **Stable**: minimal drift in conserved quantity
 - **Accurate**: minimal distance to exact trajectory
Velocity Verlet Integrator

\[
\begin{align*}
 r_i(t + \partial t) &\rightarrow r_i(t) + \partial t \cdot v_i(t) + \frac{\partial t^2}{2m_i} f_i(t) \\
 v_i(t + \partial t) &\rightarrow v_i(t) + \frac{\partial t}{2m_i} [f_i(t) + f_i(t + \partial t)]
\end{align*}
\]

- **Efficient**: 1 force evaluation, 3 stored quantities
- **Stable**: time reversible
- **Accurate**: symplectic, integration error \(O(\partial t^2) \)

+ extensions for constraints (SHAKE, RATTLE, ROLL)
+ multiple timesteps (r-RESPA) and thermostats
Born-Oppenheimer Approximation:

- Ionic mass >> electron mass so equations of motion for (classical) nuclei and (quantum) electrons are separable

\[m_i \ddot{r}_i = F_i \]

Kohn-Sham BO potential:

\[F_i = -\frac{dU(R)}{dr_i} \]

\[U(R) = \min_{\phi} [E_{KS}(\{\phi(r)\}, R)] \]

\[F_{KS}(R) = \frac{\partial E_{KS}}{\partial R} + \sum_i \frac{\partial E_{KS}}{\partial \phi_i} \frac{\partial \phi_i}{\partial R} \]
BO-MD in CP2K

- Benchmark system setup:
 - 64 water molecules
 - density 1gcm^{-3}
 - Temperature $\approx 330K$
 - Timestep 0.5fs

- DFT Settings:
 - GPW, TZV2P basis (2560 basis functions), PBE functional
 - $\text{CUTOFF 280 Rydberg, } \epsilon_{\text{default}} = 10^{-12}$
 - OT-DIIS, Preconditioner FULL_SINGLE_INVERSE
 - Reference trajectory (1ps), $\epsilon_{\text{SCF}} = 10^{-10}$
BO-MD in CP2K

Unbiased initial guess; $\Phi(t) = \Phi_0(R(t))$

<table>
<thead>
<tr>
<th>ϵ_{SCF}</th>
<th>MAE E_{KS} (Hartree)</th>
<th>MAE f (Hartree/Bohr)</th>
<th>Drift (Kelvin/ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-08}</td>
<td>$1.2 \cdot 10^{-11}$</td>
<td>$5.1 \cdot 10^{-09}$</td>
<td>0.0</td>
</tr>
<tr>
<td>10^{-07}</td>
<td>$9.5 \cdot 10^{-10}$</td>
<td>$5.6 \cdot 10^{-08}$</td>
<td>0.1</td>
</tr>
<tr>
<td>10^{-06}</td>
<td>$6.9 \cdot 10^{-08}$</td>
<td>$4.8 \cdot 10^{-07}$</td>
<td>0.4</td>
</tr>
<tr>
<td>10^{-05}</td>
<td>$7.4 \cdot 10^{-06}$</td>
<td>$5.6 \cdot 10^{-06}$</td>
<td>2.3</td>
</tr>
<tr>
<td>10^{-04}</td>
<td>$3.3 \cdot 10^{-04}$</td>
<td>$5.9 \cdot 10^{-05}$</td>
<td>50</td>
</tr>
</tbody>
</table>
BO-MD in CP2K

4th order Gear predictor (PS extrapolation in CP2K)

<table>
<thead>
<tr>
<th>Method</th>
<th>ϵ_{SCF}</th>
<th>Iterations</th>
<th>Drift (Kelvin/ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess</td>
<td>10^{-06}</td>
<td>14.38</td>
<td>0.4</td>
</tr>
<tr>
<td>Gear(4)</td>
<td>10^{-07}</td>
<td>6.47</td>
<td>5.7</td>
</tr>
<tr>
<td>Gear(4)</td>
<td>10^{-06}</td>
<td>5.22</td>
<td>11.8</td>
</tr>
<tr>
<td>Gear(4)</td>
<td>10^{-05}</td>
<td>4.60</td>
<td>86.8</td>
</tr>
</tbody>
</table>

What is the problem?

Time reversibility has been broken!
BO-MD in CP2K

DFT%QS%EXTRAPOLATION ASPC
DFT%QS%EXTRAPOLATION_ORDER 3

<table>
<thead>
<tr>
<th>Method</th>
<th>ϵ_{SCF}</th>
<th>Iterations</th>
<th>Drift (Kelvin/ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess</td>
<td>10^{-06}</td>
<td>14.38</td>
<td>0.4</td>
</tr>
<tr>
<td>ASPC(3)</td>
<td>10^{-06}</td>
<td>5.01</td>
<td>0.2</td>
</tr>
<tr>
<td>ASPC(3)</td>
<td>10^{-05}</td>
<td>3.02</td>
<td>4.5</td>
</tr>
<tr>
<td>Gear(4)</td>
<td>10^{-07}</td>
<td>6.47</td>
<td>5.7</td>
</tr>
<tr>
<td>Gear(4)</td>
<td>10^{-06}</td>
<td>5.22</td>
<td>11.8</td>
</tr>
<tr>
<td>Gear(4)</td>
<td>10^{-05}</td>
<td>4.60</td>
<td>86.8</td>
</tr>
</tbody>
</table>

Kolafa, JCC (2004)
VandeVondele *et al.*, CPC (2005)
BO-MD in CP2K

DFT\%QS\%EXTRAPOLATION ASPC
DFT\%QS\%EXTRAPOLATION_ORDER 4...

<table>
<thead>
<tr>
<th>Method</th>
<th>ϵ_{SCF}</th>
<th>Iterations</th>
<th>Drift (Kelvin/ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPC(4)</td>
<td>10^{-04}</td>
<td>1.62</td>
<td>1742.4</td>
</tr>
<tr>
<td>ASPC(5)</td>
<td>10^{-04}</td>
<td>1.63</td>
<td>1094.0</td>
</tr>
<tr>
<td>ASPC(6)</td>
<td>10^{-04}</td>
<td>1.79</td>
<td>397.4</td>
</tr>
<tr>
<td>ASPC(7)</td>
<td>10^{-04}</td>
<td>1.97</td>
<td>445.8</td>
</tr>
<tr>
<td>ASPC(8)</td>
<td>10^{-04}</td>
<td>2.06</td>
<td>24.1</td>
</tr>
</tbody>
</table>
BO-MD in CP2K: Summary

- Defaults settings are ASPC(3)
- SCF tolerance for ‘acceptable’ drift is system-dependent but $\text{EPS_SCF} \approx 1E^{-5}$ or $1E^{-6}$ is a good guess
- Use OT and appropriate preconditioner to speed up SCF

Further reading:
- Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Dominik Marx & Jürg Hutter
Ensembles

- Ensemble: set of all microstates $\{r_i, \dot{r}_i\}$ accessible to the simulation, each microstate occurring with a particular probability

- Various possibilities for quantities that may be conserved or fixed in the simulations:
 - Number of particles N
 - Volume V
 - Energy E
 - Temperature T
 - Pressure P
 - Chemical Potential μ (not implemented in CP2K)

 - NVE – microcanonical
 - NVT – canonical
 - NPT – isothermal–isobaric
Ensembles

- Newton’s second law applied to a set of N particles in a fixed box of volume V produces the microcanonical (NVE) ensemble
- Total Energy is conserved as the system is isolated
Ensembles

- If the system is in thermal contact with a heat bath at temperature T (canonical / NVT ensemble) the total energy of the system is no longer conserved
 - It may gain or lose energy from/to the heat bath
 - Instead the constant of the motion is the energy of the system + the energy of the bath
Ensembles

- If the box size/shape is allowed to change in response to internal stress and external pressure (isobaric-isothermal / NPT ensemble) then energy is exchanged with the environment via $dW = PdV$

- Cons. Quantity =
 - Energy of the system +
 - Energy of the ‘thermostat’
 - Energy of the ‘barostat’
Ensembles

&MOTION
 &MD
 ENSEMBLE NVE
 STEPS 1000
 TIMESTEP 0.5
 TEMPERATURE 300
 &END MD
&END MOTION

Possible choices
- microcanonical: NVE
- canonical: NVT
- canonical using Langevin dynamics: LANGEVIN
- isobaric-isothermal: NPT_F / NPT_I
- Constant pressure: NPE_F / NPE_I
- Also: ISOKIN, HYDROSTATICSHOCK, MSST, MSST_DAMPED, NVT_ADIABATIC
Thermostats in CP2K

- Velocity rescaling

MD step

compute instantaneous kinetic energy

rescale velocity by \(\lambda \)

\[
\lambda = \sqrt{\frac{T_0}{T(t)}}
\]

\(T < 290 \text{ K or } T > 310 \text{ K} \)
Thermostats in CP2K

&MOTION
 &MD
 ENSsemble NVE
 STEPS 1000
 TIMEstep 0.5
 TEMPERATURE 300
 TEMP_TOL 10
 &END MD
 &END MOTION

- Rescales velocities when T < 290K or T > 310K
- Does not produce the canonical ensemble
- Use only for equilibration
Thermostats in CP2K

- Langevin Dynamics – adds a dissipative (frictional) force and a stochastic force

\[m_i \ddot{r}_i = -\frac{\partial U(r)}{\partial r_i} - m \Gamma \dot{r}_i + W_i(t) \]

- Magnitude of the perturbation depends on the instantaneous temperature

- Surprisingly useful in practice!
Thermostats in CP2K

• Langevin Dynamics:
 • Produces canonical ensemble (NVT)
 • Local thermostat
 • Ergodic
 • Stable at large timesteps

but

• does not conserve momentum (due to drag force)
• only useful for sampling, not dynamical properties (e.g. diffusion)
Thermostats in CP2K

• Nosé-Hoover (chains)

• Define an extended system with a (set of) thermal reservoirs with effective ‘position’ and ‘momenta’
 • So associated potential and kinetic energies

• Thermostat couples to the particle momenta through modified equations of motion

• Integrate these variables alongside the particle positions, momenta
Thermostats in CP2K

- Produces canonical ensemble (NVT)
- Local thermostat
- Ergodic (N-H chain only)
- Second order – temperature may oscillate towards target
Thermostats in CP2K

&MOTION
 &MD
 ...
 &THERMOSTAT
 TYPE NOSE
 &NOSE
 LENGTH 3
 TIMECON 1000 [fs]
 &END NOSE
 &END THERMOSTAT
 &END MD
 &END MOTION

- Defaults to 3 (1 recovers original Nosé thermostat)
- 1000fs is the target relaxation time
Thermostats in CP2K

- Use a small `TIMECON` for rapid equilibration

- Default is usually OK for production MD

- Check the `PROJECT.ener` file that the constant of motion is indeed conserved

- Check for large fluctuations in the temperature

- Almost all of the same options apply for barostats
 - `MOTION%MD%BAROSTAT`
MD Exercises

• Acetic acid binding to anatase surface
 • https://www.cp2k.org/exercises:2016_summer_school:gga

• Bulk liquid water
 • https://www.cp2k.org/exercises:2016_summer_school:aimd