

- Introduction: what is CDFT and why use it?
- Theoretical basis of CDFT in brief
- CDFT implementation in CP2K
 - Algorithmic framework
 - Overview of features using examples
- Summary

Introduction

- CDFT allows creation of charge and spin localized states
- Why are such states needed?
 - Charge transfer phenomena
 - Electronic couplings (key role in charge transfer kinetics)
 - Treating self-interaction error due to spurious electron delocalization
 - Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian)
 - And more... [1]
- CDFT in CP2K [2] requires version 5.1 or newer

Aalto University School of Chemical Engineering Kaduk, B.; Kowalczyk, T.; van Voorhis, T., *Chem. Rev.*, **2012**, 112, 321–370.
 Holmberg, N.; Laasonen, K., *J. Chem. Theory Comput.*, **2017**, 13, 587–601.

Generation of constrained states

- Enforce density localization in atom-centered regions with constraint potential(s) [3,4] Lagrange multiplier (potential strength) $E_{\text{CDFT}}[\boldsymbol{\lambda}, \rho] = \max_{\boldsymbol{\lambda}} \min_{\rho} \left(E_{\text{KS}}[\rho] + \sum_{c} \lambda_{c} \left\{ \sum_{i=\uparrow,\downarrow} \int w_{c}^{i}(\boldsymbol{r}) \rho^{i}(\boldsymbol{r}) d\boldsymbol{r} - N_{c} \right\} \right)$
- Weight function defines the type of constraint
 - Total density constraint $(\rho^{\uparrow} + \rho^{\downarrow})$: $w^{\uparrow} = w^{\downarrow} = w$ 0
 - Magnetization density constraint $(\rho^{\uparrow} \rho^{\downarrow})$: $w^{\uparrow} = -w^{\downarrow} = w$ 0
 - Spin specific constraint (ρ^{\uparrow}) : $w^{\uparrow} = w$, $w^{\downarrow} = 0$ 0

alto Universitv

ineerina

Chemical

3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765-774. 4.

value

function

CDFT weight function

Constructed as sum of normalized atomic weight functions

$$w_c^i(\mathbf{r}) = \sum_{i \in \mathcal{C}} c_i P_i(\mathbf{r}) / \sum_i^N P_i(\mathbf{r})$$

- CP2K uses Becke partitioning
 - Smoothed Voronoi-like scheme
 - Atomic sizes can be taken into account (recommended)
 - E.g. oxygen has positive charge in water without adjustment

Optimization of the CDFT energy (1/2)

Constraints are satisfied when

$$\boldsymbol{c}(\boldsymbol{\lambda}) = \begin{bmatrix} \sum_{i=\uparrow,\downarrow} \int w_1^i(\boldsymbol{r}) \rho^i(\boldsymbol{r}) d\boldsymbol{r} - N_1 \\ \vdots \end{bmatrix} = \boldsymbol{0}$$

- In practice, λ iteratively optimized until $\max|c(\lambda)| \leq \epsilon$
 - Uses root-finding algorithms, e.g., Newton's method

$$\lambda_{n+1} = \lambda_n - \alpha J_n^{-1} c(\lambda_n)$$

$$Step \text{ size } \in [-1, 0)$$

$$J_{ij} = \frac{\partial c_i}{\partial \lambda_j} \approx \frac{c_i (\lambda + \delta_j) - c_i (\lambda)}{\delta_j}$$

Jacobian matrix,

Defining constraints (1/2)

&QS . . . &CDFT TYPE_OF_CONSTRAINT BECKE &OUTER_SCF ON TYPE BECKE_CONSTRAINT EXTRAPOLATION_ORDER 2 MAX_SCF 10 ! Convergence threshold EPS_SCF 1.0E-3 ! Optimizer selection: now Newton's method with backtracking line search **OPTIMIZER NEWTON_LS** ! Optimizer step size STEP_SIZE -1.0 ! Line search settings MAX_LS 5 CONTINUE_LS FACTOR_LS 0.5 ! Finite difference settings for calculation of Jacobian matrix JACOBIAN_STEP 1.0E-2 JACOBIAN_FREQ 1 1 **JACOBIAN_TYPE FD1** JACOBIAN_RESTART FALSE &END OUTER_SCF Full example files at https://www.cp2k.org/howto:cdft **&END CDFT**

Defining constraints (2/2)

Example: Zn₂⁺ (1/2)

- When R_{Zn-Zn} grows, charge should localize onto one Zn atom
 - Standard GGA/hybrid functionals place +0.5 charge on both atoms
- Force charge localization on first atom

```
! Set initial constraint strength to 0 (restarting from DFT)
STRENGTH 0.0
! Constraint target is the number of valence electrons - 1
TARGET 11.0
&ATOM_GROUP
ATOMS 1
COEFF 1
CONSTRAINT_TYPE CHARGE
&END ATOM GROUP
```


- The default output file contains the CDFT SCF iterations
 - Each iteration corresponds to standard CP2K energy optimization
 - Uses optimized solution from line search as restart if available
- The following files are created with (quasi-)Newton optimizers
 - *.LineSearch.out: Electronic structure SCF and optimization of step size
 - *.cdftLog: Summary of CDFT parameters and computed partial charges
 - *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed λ
 - *.inverseJacobian: Restart file for inverse Jacobian matrix

	OT	
	Step Update method Time Convergence Total energy Change	
d CP2K SCF with lues of constraint th and step size	<pre>qs_ot_get_orbitals_ref 0: P-I = 0.10493E-10, ortho_irac = POLY qs_ot_ref_poly 1: quick exit! qs_ot_get_orbitals_ref 0: P-I = 0.11959E-12, ortho_irac = POLY qs_ot_ref_poly 1: quick exit! 1 OT DIIS 0.15E+00 2.5 0.00000022 -120.6126709217 -1.21E+02 **** SCF run converged in 1 steps ***</pre>	Restarted from converged density obtained during line search
	Electronic density on regular grids: -22.9999999253 0.0000000747 Core density on regular grids: 24.0000000000 -0.000000000 Total charge density on r-space grids: 1.0000000746 Total charge density g-space grids: 1.0000000746	
	Overlap energy of the core charge distribution:0.000000000000000Self energy of the core charge distribution:-159.30058829583706Core Hamiltonian energy:50.63132167014943Hartree energy:5.66516329750697Exchange-correlation energy:-17.60803221234604Dispersion energy:-0.00058223840320Total energy:-120.61267092172808outer SCF iter =1 RMS gradient =0.22E-06 energy =outer SCF loop converged in1 iterations or1 steps	
FT SCF iteration information	CDFT SCF iter = 5 RMS gradient = 0.13E-03 energy = -120.6126709217 CDFT SCF loop converged in 5 iterations or 37 steps	
Constraint information	Atomic group:1Atomic group:1Type of constraint:Charge density constraintTarget value of constraint:11.00000000000Current value of constraint:11.000126158558Deviation from target:1.262E-04Strength of constraint:0.371415167271	

Standard CP fixed values strength an

> CDFT S info

Fragment constraints (2/2)

 Charge transfer energies of strongly interacting complexes

> $-\Delta E_{\text{CT}} = \underbrace{E_{\text{CDFT}}} - E_{\text{DFT}}$ Energy of system with charge transfer prevented

 Magnitude of charge transferred, |\Delta q|, overestimated by nonfragment constraints

BW: BeckeBW+A: Becke with atomic size adjustmentsFBB+A: Fragment Becke with atomic size adjustments

	$-\Delta E_{\rm CT}$			$ \Delta q $			$ \Delta N_c $	
System	Ref.	BW	BW+A	FBB+A	BW	BW+A	FBB+A	
$H_2O - H_2O$	1.7	45.9	1.1	2.1	0.29	0.03	0.04	0.01
$C_2H_2 - ClF$	2.0	0.0	41.1	3.9	0.01	0.48	0.15	0.33
$\mathrm{C_2H_4}-\mathrm{F_2}$	0.6	5.1	12.0	2.1	0.13	0.18	0.10	0.09
$H_2O - ClF$	2.9	2.4	73.8	4.0	0.10	0.47	0.12	0.36
$\mathrm{HCN}-\mathrm{ClF}$	1.3	0.3	21.9	1.8	0.03	0.31	0.08	0.23
$\rm NH_3 - BH_3$	18.5	81.1	175.8	25.5	0.73	1.14	0.40	0.74
$\mathrm{NH}_3 - \mathrm{Cl}_2$	4.2	0.1	67.4	5.6	0.02	0.53	0.18	0.35
$\rm NH_3 - ClF$	11.6	0.1	104.5	13.2	0.03	0.76	0.29	0.47
$\mathrm{NH}_3 - \mathrm{F}_2$	1.1	10.7	20.6	3.5	0.18	0.23	0.13	0.10
$\rm NH_3 - SO_2$	3.0	0.2	55.9	2.8	0.03	0.42	0.11	0.31
$\mathrm{NMe}_3-\mathrm{BH}_3$	20.0	63.0	153.3	27.0	0.74	1.20	0.47	0.73
$\mathrm{NMe}_3-\mathrm{SO}_2$	20.8	0.0	132.6	18.9	0.00	1.07	0.43	0.64
MUE (mHa)	(17.2	64.4	2.3				
MSE (mHa)		10.1	64.4	1.9				
MAX (mHa)		62.6	157.2	7.0				

Combining multiple CDFT states

- Additional properties can be computed from the interactions between CDFT states
 - Charge transfer kinetics (Marcus theory)Electronic coupling

$$k_{ab} = \frac{2\pi}{\hbar} \frac{\langle |\mathbf{H}_{ab}|^2 \rangle_T}{\sqrt{4\pi kT\xi}} \exp\left(-\frac{(\xi + \Delta A)^2}{4\pi kT\xi}\right) \frac{\text{Solvent reorganization energy}}{\text{Reaction free energy}}$$

- Configuration interaction within the basis of CDFT states
- Approximate electronic coupling with CDFT Kohn-Sham determinants after orthogonalization [5]

$$\boldsymbol{H}_{ij} \approx \left\langle \boldsymbol{\Phi}_{\text{CDFT}}^{i} \middle| \widehat{H}_{\text{KS}} \middle| \boldsymbol{\Phi}_{\text{CDFT}}^{j} \right\rangle = \frac{E_{\text{CDFT}}^{i} + E_{\text{CDFT}}^{j}}{2} \boldsymbol{S}_{ij} - \sum_{c} \left\langle \boldsymbol{\Phi}_{\text{CDFT}}^{i} \middle| \frac{\lambda_{c}^{i} w_{c}^{i}(\boldsymbol{r}) + \lambda_{c}^{j} w_{c}^{j}(\boldsymbol{r})}{2} \middle| \boldsymbol{\Phi}_{\text{CDFT}}^{j} \right\rangle$$

5. Wu, Q.; van Voorhis, T., *J. Chem. Phys.*, **2006**, 125, 164105.

The mixed CDFT module

&MULTIPLE_FORCE_EVALS FORCE_EVAL_ORDER 2 3 MULTIPLE_SUBSYS FALSE &END **&FORCE EVAL** METHOD MIXED **&MIXED** MIXING_TYPE MIXED_CDFT NGROUPS 1 **&MIXED CDFT** ! Calculate mixed CDFT properties every COUPLING step COUPLING 1 ! Settings determining how forces are mixed FORCE_STATES 1 2 LAMBDA 1.0 ! Orthogonalize CDFT states with Lowdin's method LOWDIN TRUE ! Configuration interaction? CI FALSE &PRINT &PROGRAM_RUN_INFO ON &END **&END PRINT &END MIXED CDFT &END MIXED** @include subsys.inc **&END FORCE EVAL**

Additional settings available and explained in the manual

Electronic coupling in Zn⁺₂

$\langle \mathbf{Z}\mathbf{n}^{+}\mathbf{Z}\mathbf{n}|\widehat{H}|\mathbf{Z}\mathbf{n}\mathbf{Z}\mathbf{n}^{+}\rangle$

	MIXED_CDFT Activating mixed CDFT calculation		
	MIXED_CDFT Number of CDFT states:	2	
	MIXED_CDFT CDFT states calculation mode: serial		
	MIXED_CDFT Becke constraint is built before the SCF	procedure of the first	
	CDFT state and subsequently copied to oth	ner states	
	MIXED_CDFT Calculating electronic coupling between s	states: T	
	MIXED_CDFT Calculating electronic coupling reliabili	ity metric: F	
	MIXED_CDFT Configuration interaction (CDFT-CI) was r	requested: F	
	MIXED_CDFT Block diagonalizing the mixed CDFT Hamilt	tonian: F	
	MIXED_CDFT Dynamic load balancing enabled:	F	
	MIXED_CDFT Matrix inversions calculated with LU deco	omposition.	
	CDFT coupling information		
	Information at step (fs):	0.00	

	###### CDFT states I = 1 and J = 2 ######		

	Atomic group:	1	
	Strength of constraint I:	0.371415167271	
	Strength of constraint J:	-0.378315361740	
	Final value of constraint I:	11.000125488935	
	Final value of constraint J:	11.999828674539	
	Overlap between states I and J:	0.030261294466	
	Charge transfer energy (J-I) (Hartree):	0.000739539045	Different
			Different
	Diabatic electronic coupling (rotation, mHartree):	5.674875246867	orthogonalization
	Diabatic electronic coupling (Lowdin, mHartree):	5.674714192287	orthogonalization
			algorithms
	NO FORCE_EVAL section calculated the dipole		
	ENERGY Total FORCE_EVAL (MIXED) energy (a.u.):	-120.612670921735003	
1			

Electronic coupling in Zn⁺₂

$\langle \mathbf{Z}\mathbf{n}^{+}\mathbf{Z}\mathbf{n}|\widehat{H}|\mathbf{Z}\mathbf{n}\mathbf{Z}\mathbf{n}^{+}\rangle$

Agrees with 5.49 mHartree estimate from more expensive wavefunction based method CASSCF/MRCI+Q

<pre>MIXED_CDFT Activating mixed CDFT calculation MIXED_CDFT Number of CDFT states: MIXED_CDFT CDFT states calculation mode: serial MIXED_CDFT Becke constraint is built before the SCF procedure CDFT state and subsequently copied to other states MIXED_CDFT Calculating electronic coupling between states: MIXED_CDFT Calculating electronic coupling reliability metric MIXED_CDFT Calculating electronic coupling reliability metric MIXED_CDFT Configuration interaction (CDFT-CI) was requested: MIXED_CDFT Block diagonalizing the mixed CDFT Hamiltonian: MIXED_CDFT Dynamic load balancing enabled: MIXED_CDFT Matrix inversions calculated with LU decomposition</pre>	2 of the first T F F F F F		
CDFT coupling information Information at step (fs):	0.00		
###### CDFT states I = 1 and J = 2 ######			
######################################			
Atomic group:	1		
Strength of constraint I:	0.371415167271		
Strength of constraint J:	-0.378315361740		
Final value of constraint I:	11.000125488935		
Final value of constraint J:	11.999828674539		
Overlap between states I and J: Charge transfer energy (J-I) (Hartree):	0.030261294466 0.000739539045	Different	
Diabatic electronic coupling (rotation, mHartree): Diabatic electronic coupling (Lowdin, mHartree):	5.674875246867 5.674714192287	orthogonalizatio	n
NO FORCE_EVAL section calculated the dipole		algorithms	
ENERGY Total FORCE_EVAL (MIXED) energy (a.u.): -12	0.612670921735003		

CDFT in solvated systems

- Computational efficiency of GPW/OT allows study of solvated charge transfer processes at full DFT level
- Evaluating intramolecular charge transfer kinetics in QTTFQ⁻
 - 258 water, 12 ps (0.5 fs timestep)
 - 48 s/timestep @ 384 MPI cores (~120k core hours)

List of CDFT capabilities in CP2K

- GPW and GAPW (no fragment constraint)
- Full DFT or QM/MM
- Primarily for OT, diagonalization is supported but difficult to converge
- Energies and forces for an unlimited number of constraints (any type)
- Mixed CDFT module supports
 - Electronic couplings with various orthogonalization methods
 - Configuration interaction
 - Removal of linearly-dependent MOs via SVD decomposition
 - Electronic coupling reliability metrics

Summary

- CDFT is a tool to study charge transfer phenomena
- Available in latest release version
- Tutorial at https://www.cp2k.org/howto:cdft that complements regtests
 - Summaries of CDFT theory and the CP2K implementation
 - Walk throughs of example calculations
- Help provided on Google groups if you encounter issues with CDFT features

Questions?