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Equations of Motion (EOM)

Newton’s EOM for a set of classical point particles in a
potential.

dV(R)

MiR; = - dR,

These EOM generate for a given number of particles N in a

volume V the micro canonical ensemble (NVE ensemble).
The total energy E is a constant of motion!



Total Energy

Total Energy = Kinetic energy + Potential energy

Kinetic energy = T(R) =) M g2

1=1

Potential energy = V(R)

We will use the total energy as an indicator for the numerical
accuracy of simulations.



Lagrange Equation

doc _oc
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with ) )
L(R,R)=T(R)- V(R)

Equivalent to Newton’s EOM in Cartesian coordinates, but is
more general and flexible.

¢ Extended systems

e Constraints



Integration of EOM

Discretization of time

R(t) — R(t+ 1) — R(t+27) —» --- — R(t+ m7)
V(it) > V(it+7)—=> V(t+27r)— - — V(t+ m7)

¢ Efficiency: minimal number of force evaluations, minimal
number of stored quantities

e Stability: minimal drift in constant of motion (energy)

e Accuracy: minimal distance to exact trajectory



Sources of Errors

Type of integrator
predictor-corrector, time-reversible, symplectic

Time step 7
short time accuracy measured as O(7")

Consistency of forces and energy
e.g. cutoffs leading to non-smooth energy surfaces

Accuracy of forces
e.g. convergence of iterative force calculations (SCF,
constraints)



Velocity Verlet Integrator

2

R(t+ 1) = R(t) + TV(t) + QLMf(t)

V(t+7) = V(1) + 5rlf(5) + (¢ +7)

Efficiency: 1 force evaluation, 3 storage vectors
Stability: time reversible

Accuracy: O(72)

Simple adaptation for constraints (shake, rattle, roll)

Simple adaptation for multiple time steps and thermostats



Test on Required Accuracy of Forces

Classical Force Field Calculations, 64 molecules, 330 K
TIP3P (flexible), SPME (o« = 0.44, GMAX = 25),
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Stability: Accuracy of Forces

Stdev. Af Stdev. Energy Drift

Hartree/Bohr uHartree  pHartree/ns  Kelvin/ns
— 170.35 35.9 0.06

1010 179.55 -85.7 -0.14

10708 173.68 6.5 0.01

10707 177.83 -58.2 -0.10

1006 — -385.4 -0.63

10705 — 9255.8 15.21

1004 — 972810.0 1599.31




Born—Oppenheimer MD: The Easy Way

dV(R)
dR;
V(R) = min [Exs({®(r)}; R) + const] Kohn—Sham BO potential

MR, = — EOM

Forces

_ dming Egs({®(r)}; R)

B dR

_ OEgs | Oconst. 0(Eks + const.) 09;
SR om T2 90, oR

=0

fks(R)




Computational Details

e System
e 64 water molecules

e density 1gem—3
e Temperature ~ 330K
e Timestep 0.5fs

e DFT Calculations
o GPW, TZV2P basis (2560 bsf), PBE functional

e Cutoff 280 Rydberg, egefaut = 10712
e OT-DIIS, Preconditioner FULL SINGLE INVERSE

o Reference trajectory (1ps), escr = 10~1°



Stability in BOMD

Unbiased initial guess; ®(t) = ®o(R(1))

€SCF MAE EKS MAE f Drift

Hartree Hartree/Bohr Kelvin/ns
10798 12.10- " 51-10-° 0.0
10797 95.10 10 56-1008 0.1
107% 69.107%  48.107% 0.4
10705 7.4.10°06 56-1006 2.3
10794 3.3.10°% 59.10°0 50.0

Consistent with results from classical MD

Note accuracy of forces!



Efficiency: Initial Guess of Wavefunction

4th order Gear predictor (PS extrapolation in CP2K)

Method escr lterations Drift (Kelvin/ns)

Guess 10706 14.38 0.4
Gear(4) 10797 6.47 5.7
Gear(4) 10796 5.22 11.8
Gear(4) 1079 4.60 86.8

What is the problem?

Time reversibility has been broken!



Generalized Lagrangian

R TP
£(a.9,%,X) = ;MG + 5X* — E(q,y) + kuG(||x - y|))

y = F(q,x) wavefunction optimization
G(||lx —vyl) wavefunction retention potential

Equations of motion

OE OEOF |, 0GOF
aq oy oq Hay oq
. OEOF G OGOF
= oy ox “[axwyax]

Extension of Niklasson Lagrangian, PRL 100 123004 (2008)



Dynamical System
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Car—Parrinello Molecular Dynamics

y=x = G(x-y[)=0

Lagrangian

T PR I
£(9,9,%,%) = 5M§® + 5 ux* — £(q,X)

Equations of motion

0E
-~ oq
- OE
HE= " x



Properties of CPMD

e Accuracy: Medium
Distance from BO surface controlled by mass u
Requires renormalization of dynamic quantities (e.g.
vibrational spectra)

o Stability: Excellent
All forces can be calculated to machine precision easily

o Efficiency: Good
Efficiency is strongly system dependent (electronic gap)
Requires many nuclear gradient calculations

Not implemented in CP2K!



BOMD

y = MingkE(q,x) and pu=0

Lagrangian

. 1 .
£(q.9) = 5M4* + E(q,y)

. 1.
£(x,%) = 3% + KG(|x — y])

Equations of motion

My — -2

X — _kiax



BOMD with Incomplete SCF Convergence

y = F(q,x) =~ MinkE(q,x) and =0

Equations of motion

v _OE _OEOF

oq 0y dq
_,0G 0GOF
T T ox Oy ox

: OE OF 0G OF
SCF Error: Neglect of force terms 5 50 and 57 5¢.

EOM are coupled through terms neglected!



ASPC Integrator

Integration of electronic DOF (x) has to be

e accurate: good wavefunction guess gives improved
efficiency

e stable: do not destroy time-reversibility of nuclear trajectory

ASPC: Always Stable Predictor Corrector

¢ J. Kolafa, J. Comput Chem. 25: 335-342 (2004)
e ASPC(k): time-reversible to order 2k + 1



Orthogonality Constraint

Wavefunction extrapolation for non-orthogonal basis sets

K
.
Cinic = »_ Bj+1Ctj-C{ ;. St jr Cr—s
j=0 —_—

PS
Coefficients B; are given by ASPC algorithm
X = Cipi¢

y[f] = C;
S overlap matrix

J. VandeVondele et al. Comp. Phys. Comm. 167: 103—128 (2005)



Importance of Time-Reversibility

Method escr Iterations Drift (Kelvin/ns)
Guess 1079 14.38 0.4
ASPC(3) 10706 5.01 0.2
ASPC(3) 107 3.02 4.5
Gear(4) 10797 6.47 5.7
Gear(4) 10706 5.22 11.8
Gear(4) 1079 4.60 86.8




Efficiency and Drift

Method escr Iterations Drift (Kelvin/ns)
Guess 10706 14.38 0.4
ASPC(4) 10706 5.01 0.2
ASPC(4) 1070 3.02 4.5
ASPC(4) 10704 1.62 1742.4
ASPC(4) 10702 1.03 21733.2




Efficiency and Drift

Method escr Iterations Drift (Kelvin/ns)
ASPC(4) 10704 1.62 1742.4
ASPC(5) 107% 1.63 1094.0
ASPC(6) 107%4 1.79 397.4
ASPC(7) 10704 1.97 445.8
ASPC(8) 10704 2.06 241




Langevin BOMD

Starting point: BOMD with ASPC(k) extrapolation

Analysis of forces

fso(R) = fur(R) + fouiay(R) +fusc(R)
#(R)

fgo : correct BO force

fur : Hellmann—Feynman force

foulay - Pulay force

fase © non-self consistency error force
f : approximate BO force



Forces in Approximate BOMD

Approximate f,s. by

fase = — /dr [<6V5°p(,m) Ap+ VH(AP)} Vi

with Ap = p° — p/, p° final (output) density, o’ initial (predicted)
density.

Now assume
f(R) + fisc(R) = fzo(R) — 7pR

where vp is a constant friction parameter.



Langevin EOM

MR = f30(R) — (70 + )R+ ©

with ©® a Gaussian random noise term and

(©(0)e(1)) = 6(7p + )Mk T4(t)

Given temperature T = %(Mi?2> and an arbitrary ~, this
determines ~p



Langevin BOMD

2nd Generation Car—Parrinello (SGCP)

T. D. Kihne et al., Phys. Rev. Lett. 98 066441 (2007)

¢ single SCF step plus force correction needed
extremely efficient for systems with slow SCF convergence

e 7p is small: correct statistics and dynamics

o difficult to stabilize in complex systems



Force deviation (atomic units)

SGCP: Examples

T. Musso et al. Eur. Phys. J. B, 91 148 (2018)
Analysis of Force Errors
Liquid Silicon at 3000 K

0.008
I-Si

0.004

0

-0.004
3000 K

-0.008

Distribution



SGCP: Nanomesh
h-BN on Rh(111)
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Rh farce deviabon (atomic units}

SGCP: Force Errors

;,’_ Nigy) —— Bty —— Rh —
L. el ) -
B %
£
5 g
Time Time .01 “0.005 o 0.005 0.01
Force deviation (atomic units)
YL o B Yo N T Rh
430 K 0.0010  0.0004 0.0004 0.0002
710 K 0.0010  0.0035 0.0005  0.0020

1380 K 0.0010  0.0007  0.0000 0.0010
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SGCP: h-BN on Rh(111)

Comparision of MD Results
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SGCP: h-BN on Rh(111)

Performance

2ndG CP-MD BO-MD
Time per MD step: 46 s vs. 385 s
(Daint system @ CSCS) (256 cores) (512 cores)

Speed-up (914 atoms): ~17x




Advanced Review

Car-Parrinello molecular
dynamics
Jurg Hutter*

The Car-Parrinello (CP) method made molecular dynamics simulation with on-
the-fly computation of interaction potentials from electronic structure theory
computationally feasible. The method reformulates ab initio molecular dynamics
(AIMD) as a two-component classical dynamical system. This approach proved
to be valuable far beyond the original CP molecular dynamics method. The mod-
ern formulation of Born-Oppenheimer (BO) dynamics is based on the same ba-
sic principles and can be derived from the same Lagrange function as the CP
method. These time-reversible BO molecular dynamics methods allow higher ac-
curacy and efficiency while providing similar longtime stability as the CP method.
AIMD is used in many fields of computational physics and chemistry. Its appli-
cations are instrumental in fields as divers as enzymatic catalysis and the study
of the interior of planets. With its versatility and predictive power, AIMD has
become a major approach in atomistic simulations. © 2011 John Wiley & Sons, Ltd.

How to cite this article:
WIREs Comput Mol Sci 2012, 2: 604—612 doi: 10.1002/wems.90




Micro-Canonical Ensemble

System variables: N, V, E

Microstate definition: I = {rN, pN}

[ N
Energy H(I) = >, 5 + U(r™)

All states have the same weight 6(H(I') — E)

Partitionfunction

Q(N,V,E)=> §(H(N-E) = ;\Ihl"V/ drVdpVs(H(r)—E)
r



Molecular Dynamics

Fixed number of particles: N
Fixed volume: V
Periodic boundary condition to avoid surface effects

Total energy



Constant of Motion: E

de(t) mi... au(r) ..
= > - 2fili + Z,: ar

Fi dg(}r) = m;fj
E= Zm,r, +Z( Fi),
S GE
i
=0

The energy is conserved. MD samples correct microstates.



Definition of Temperature

Instantaneous temperature

B 2 1 2
T(t) = 3/\//(3221,:,””" (1)

Temperature

T=(T(1))



Equipartition Theorem

The equipartition theorem is a general formula that relates the
temperature of a system with its average energies. For a
system described by the Hamiltonian (energy function) H(r, )

OH oOH
(75 ) = (Pig,) = ke

(H) = (Hkin) = ngT

For an ideal gas



Canonical Ensemble

System variables: N, V, T

Closed system exchanging energy with a heat bath at
temperature T.

How to simulate on a computer?
We can directly manipulate velocities (temperature).
No extended heat bath needed.

Molecular dynamics with periodic boundary conditions, but
manipulate r; during the integration.



Control of velocities/temperature

Differential control: the temperature is fixed to the
predescribed value and no fluctuations occur.

Proportional control: velocities are corrected at each
integration step through a coupling constant towards the
prescribed temperature. The coupling constant determines
the strength of the fluctuations around (T).

Integral control: the Hamiltonian is extended and variables
are introduced wich reflect the effect of an external system
which fix the temperature. Time evolution is derived from
the extended Hamiltonian.

Stochastic control: position and velocities are propagated
according to modified equations of motion with friction and
stochastic forces. The final equations give the correct
mean value of the temperature.



NVE

r={r",p"}  microstate

N
1
H(M) = Z 5 Pi +u(r) const.

i=1
All accessible microstates are equally probable

Wive(T) = 6(H(T) — E) statistical weight

Distribution of microstates

e = 3 (H(T) ~ )~ s | de! () — )
r |



Canonical Ensemble (NVT)

Microstates follow the Boltzmann's distribution

%(r”vp”)}

WNVT(F) = exp |:— kB T

Canonical partition function: describes the statistical properties

r 1 N opN
ONvT = Zexp[ M )} N!h3N/ dr'dp" exp [7?{(2377") )]

Probability distribution

Wi (I)
OnvT

P(r) =

and the expectation value of the total energy is (3 =1/kgT)

_ _(9|n QNVT o ex H(I’)
() = B QNVT {ZH p{ BT]}




Velocity Rescaling
At t and temperature T(t) all velocities are multiplied by A

N N

I 2m(Av)?  1=2mpv? )
AT=2) 20 2N S0 = (N2 - 1)T(¢
2;3 Nkg 2;3Nk3 ( )T()

To control the temperature

A= VTl T

e Easy to implement

e Sampling does not correspond to any ensemble
e Not recommended for production MD

e Good for equilibration

e Not time-reversible, not deterministic

24 /1



‘Perform one (or more) MD steps%—

‘Compute the instantanous kinetic energy‘

Rescale the velocities by a factor

Q
|
=5

N
K:%kBT




Jumps by Rescaling

20 40 60

80



Berendsen Thermostat
Weak coupling to a heat bath: temperature correction

O _ X (T~ T(2)

7 coupling parameter: larger 7 weaker coupling
Exponential decay of the system towards the desired temperature

ot
AT - ?(Tbath - T(t))

T — 00, thermostat is inactive ; - w
too small 7, unrealistically low fluctuations 16 rﬁ'
T = Jt, standard rescaling Tt / P,
Same problems as velocity rescaling ey T =oa1
N 5
10” 10t 10 10t 10* 10t 10°



Like a friction
Continuous formulation of the velocity rescaling

pi =fi —(p;i
> 1/2
(1—¢st)= |1 ot (Lim
N T \ NkgT
Friction positive when IC > Nkg T /2, = cooling.
M'0%’\/\/\/\/‘/\/\/\/»\/\/\'\/\/\




Langevin Thermostat

Random forces due to impacts exerted by molecules in the environment:
irregular motion and friction. At each step all v; are corrected by a
random force and a friction term

u—ml_i',- + W,‘(t)

¥

mF,-:—

Frictional force and random motion are related, i.e.
fluctuation—dissipation theorem is satisfied

(W;(t),Wj(t/» = 6U5(t — t’)6kaBT

Gaussian distribution with infinitely short correlation time (great number
of collisions)
Transition probability

oP p; OP  OU OP %P op;iP
N (P DL T
ot Z < m; Or;  Or; Op; ML op? + opi



Stochastic Behavior

The canonical distribution is then recovered as

lim P = Cexp ( {Z P Ly N)})

and friction and diffusion are related

r
D=—ksT
m

Local thermostat: noise term depends on the particle

e Samples from canonical ensemble and ergodic.

e Allows larger time steps compared to non-stochastic thermostats.

e Momentum transfer is destroyed, i.e., no diffusion coefficients.

34



Nose Thermostat

Heat bath integral part of the system: s, $, and Q (coupling)

ms2i? 1 .
E:Z 5 ! —Z/l(rN)+§QSQ—ngTIns

The conjugate momenta in the extended system are

_ 2. _ .

pi = —— = m;s°F; ps=— = Qs

8I’,‘

where the auxiliary variable is a time-scaling parameter

dt' =sdt pi=p/s real system momentum

Microcanonical ensemble in the extended system: for g = 3N + 1
canonical ensemble for the real system

38



Nose—Hoover

. . L . 14
Using only differentiation in real time t': Sar
. pi
rh = —
m;j
. ou
pi - 78",‘ - §P: é- - 5Ps/Q
¢ = Ly g
Q\5mi
S dins
s = a ¢
. 2 |
HNose = Z,: 2le7; + Uy + % + g%s conserved

39



_ Friction Coefficient
Define the relaxation time as

vr = \/3NkB T/Q

dynamics of friction coefficient by (feed-back mechanism)

2
b
. P T
=12 Imi_ 1] =3 | = -1
S=VT SN T TT

Too large Q: canonical distribution after long simulation
Too small Q: high-frequency T oscillations

04

P(v)

02

2053 0.0 5.0

time step




Ergodicity Problems

40 40 40
Microcanonic : Nose-Hoover
20 20 20
00 00 00
v
-20 20 20
."04.0 -20 00 20 40 "‘n-m 20 0.0 20 40 "'°<,o 20 0.0 20 40
r r r

NVE: closed loop, constant energy shell
Andersen: points corresponding to a Gaussian velocity distribution
Nose—Hoover: band trajectory determined by the initial conditions

Not sufficiently chaotic to sample all phase-space; trapped in a subspace

41



Nose—Hoover Chain

Ergodicity is improved by thermostatting the thermostat variable: M
Nose—-Hoover thermostats
Pi
mj
ou

pi = —ari—ﬁpi

1 p; g
€1 - Q1<’ m:ﬁ) £l€2

. 1
§ = = (ijlfffl — ks T) = &&j+1

o=

Qj
. 1 )
v = o (Qm-1&_1 — ks T)
HNHC = 2':7' N)Jrz J + gkg Ts; +ZkBTsj

j=2

42



Thermostats Comparison

0
l velocity rescaling
N "\hl >
LTI 5
300 m«ﬂ——-lr’-%mw«mwmm wl"‘”"”‘ o 9
VIR 3
I >
|
d position
2 4 (3
Berendsen
z
S
o
[3)
e
position

7 3

Nose-Hoover chain

velocity

Time [ps]



Thermostats Table

tune cont. L/G | correct | ergodic | cons. q. | determ.
Velocity rescaling G ? X
Andersen X L X X
Berendsen X X G ? X
Nosé-Hoover X X LG X X X
Nose-Hoover X X LG X X X X
chains
Langevin X X L X X X
Stochastic Yelocn:y X X UG X X X
rescaling

44



Other Ensembles

N, V, E microcanonical inner energy U

N,V, T canonical Helmholiz free energy F
F=U-TS

N, P, H isobaric-isoenthalpic enthalpy H
H=U+pV

N, P, T isobaric-isothermal  Gibbs free energy G
G=U-TS+pV=H-TS



How to simulate an isobaric ensemble?

We can manipulate the volume of the system.

This emulates an external piston used to keep the
pressure constant.

Instantaneous pressure p(t) fluctuates, forces on the
container

Averaging p(t) gives the observable internal pressure.



Pressure: Virial Theorem

From equipartition theorem

(Hhin) :<sz,> 2Z< 8r,>

The total potential U(r) is coming from in internal potential
Vint(r) and and a wall potential W(r).

Z<:8V6V,$ >=P/df-f:p/dV(divr):3pV

The virial theorem is then

3PV = 2(Har) = < 852 )>

i




Isobaric-Isoenthalpic Ensemble

The system exchange work with an external surface: Q is a variable
Cubic box

Q5 0 0
h=| 0 Q5 0
0 0 Qs
Scaled coordinates
ri= 91/35,'

Lagrangian in terms of scaled coordinates
1 .
L= 5 Z m,-Q%s,2 — Ui, Q)

External applied pressure P
—PAQ

work on the system to balance P: the internal pressure fluctuates

46



Barostat

Correct the internal pressure by scaling the voluem, i.e. the inter-particle
distances

The system is coupled to a barostat
Isobaric-Isoenthalpic ensemble NPH
PV, pM,Q) x 6(C — K(p") —u(",Q) - NQ)

where [T is the internal pressure
Isobaric-Isothermal ensemble NPT

N N
P(I’N,pN,Q)O(eXp <_K(p )—|—Z/{(r 7Q)+HQ>

ke T

47



Berendsen Barostat

Deviation from desired pressure

dP(t) _ Py — P(t)

Tprelaxation time
dt P

Rescale volume by 7 the volume, /3 coordinates
ot
n(t) =1——~(Po— P(t))
TP
v is the compressibility.

Asotropic or anisotropic, Tp strength of coupling,
not correct ensemble distribution



Andersen Barostat

Associate a kinetic energy to the variable volume
1 2. 1 .
L= Z miQ3s? + 5WQ2 —u(s", Q) — PQ

The coupling mimics the action of a piston of mass W (strength of
coupling)
Equations of motion

¢ 19U 2Q_
T miQ%aS; 3Q7

. 1 2 ) 57/{
wa = oo (QSZm;s, —Zs,a&) —P=Pn—P

Feedback loop to adjust the simulation volume: internal pressure
fluctuates around the external pressure

49



Correct Distribution

Conserved Hamiltonian of the 6/N + 2 dimensional system

1 71'2 n?
== N Q)+ PQ
"=3 Z 2w )+
low W will result in rapid box size oscillations
large W slow adjustmen of the volume
Partition function

A(N, P, H) = /dQ/dI‘I/dﬂ /”5<H+——’H>

trajectories consistent with the NPH ensemble
The combination with one of the constant temperature methods allows
the simulation in the NPT ensemble.



Cons. (Kl /mol]
g
2

12500
"< 12000
11500
11000

Experiment with barostat and thermostat

Berendsen Thermostat and Barostat

T
=01
rp=1,2,4,

T

10
time (ps)

)
2
b

Cons. [kI/mol]
P
s

P [katm]

SC—NwRUuo

=
= 11000

10000

Nose--Hoover Thermostat and Barostat

time (ps)

51/1



Multiple Time Step Method (r-RESPA)

M.E. Tuckerman et al. JCP, 97 1990 (1992)

Equation of motion

’;:% p:Ffast+,:slow

Liouville operator

. 0 0
iL = <p8+Ffast )+Fslow+

.Lre 'LSOW
mor op op ret + 151

Integrator

x(0t) = exp(iL5t)x(0)
= exp(iLsiowdt/2) [exp(iLretd1)]” exp(iLsowdt/2) + O(5t3)



MTS in CP2K
e Two FORCE_EVAL sections defining methods
e Example DFT with hybrid functionals
Fret = FGga

F, slow — Fi hybrid

-458.070
— -458.0731- MTSH ]
-458.075 ]
-458.078

-458.030 I'\ ,'ﬁﬂe' !

-458.083 ﬂ‘ M]Sfj ]

Total energy [a.u

Wik b < - -
458,085 P B e T T L e o et




PLUMED: MD Driver and Enhanced Sampling

b O

Definition of many Collective Variables (CV)
Analysis features for MD and MetaDynamics
Bias methods for enhanced sampling MD
Logarithmic Mean Force Dynamics Method
Experiment Directed Simulation Methods



i-Pi: External MD Driver

Kapil et al., Comp. Phys. Comm. 236, 214-223 (2018)

1-

PI

Driver software communicating with force engines (e.g. CP2K)

i-P1 EXTERNAL
FORCEFIELDS FORCE CODES
SYSTEM
INITIALIZE
main loop:
“1{FORCES for each system:
system.step()
ENSEMBLE smotion.step()
for each output:
MOTION, output.write()
SMOTION
OUTPUTS POSTPROCESSING

through socket interfaces



i-Pi: Features

MD and Path-Integral MD (PIMD) for NVE, NVT, NPT
Ring Polymer Contraction (RPC) MD and Centroid MD
Generalized Langevin Equation (GLE) thermostats
Pl+GLE and PIGLET

Ring Polymer Instantons

Thermodynamic Integration, Geomerty optimization, Saddle
point search

Harmonic vibrations

Multiple Time Step algorithms
Metadynamics (interface to PLUMED)
Replica Exchage MD

Second Generation CP like integration



i-Pl: Multiple Time Steps

<ffsocket name='v_slow-hq' mode='unix'>
<address>vshg_socket</address>

</ffsocket>

<ffsocket name='v_slow-lg' mode='unix'>
<address>vslqg _socket</address>

</ffsocket>

<ffsocket name='v_fast' mode='unix'>
<address>vf_socket</address>

</ffsocket> sockets linking to the

<forces> actual force evaluators
<force forcefield='wv_fast'>

<mts_weights> [[ 0} 1] </mts_weights>

</force>
<force forcefield= slow-1q'>

0
v
<mts_weights> [|-1}j1]/0) </mts_weights>
</force>
<force forcefield=|{v|lsllow-hg'>

<mts_weights> [| 1||0}{0} </mts_weights>
</force> 12

0
£ .
</forces> weights of force components
<motion mode='dynamics'>  ateach MTS level
<dynamics mode='nve'>

<timestep units='femtosecond'>
timestep refers to the outer level

) </nmts>
iterations at the three levels

</motion>

level 0]

| evolve p using £, 11q - Fuowo for At=41s/2 |

evolve p using £, o for At=2fs/2 |

evolve p using fy,, for At=0.5fs/2 |

evolve q for At=0.5fs

repeat 2x
repeat 4x

evolve p using i, for At=0.5fs/2 |

evolve p using f,,,; o for At=2fs/2 |

evolve p using £, g - fiow1o for At=41s/2 |




Summary: BOMD in CP2K

Born—Oppenheimer MD with ASPC(3) is default in CP2K

SCF convergence criteria depends on system
10~ — 108 is a reasonable starting guess

Best used together with OT and the
FULL_SINGLE_INVERSE preconditioner, for large system
an iterative update of the preconditioner should be used
PRECOND_SOLVER INVERSE_UPDATE

Langevin dynamics is an option
needs some special care, analysis of forces



