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Overview

• Equations of motion and Integrators

• General Lagrangian for AIMD

• Car–Parrinello MD and Born–Oppenheimer MD

• ab initio Langevin MD

• Stability and efficiency

• Thermostats

• External Drivers



Equations of Motion (EOM)

Newton’s EOM for a set of classical point particles in a
potential.

MIR̈I = −dV (R)

dRI

These EOM generate for a given number of particles N in a
volume V the micro canonical ensemble (NVE ensemble).

The total energy E is a constant of motion!



Total Energy

Total Energy = Kinetic energy + Potential energy

Kinetic energy = T (Ṙ) =
N∑

I=1

MI

2
Ṙ

2

Potential energy = V (R)

We will use the total energy as an indicator for the numerical
accuracy of simulations.



Lagrange Equation

d
dt
∂L
∂Ṙ

=
∂L
∂R

with
L(R, Ṙ) = T (Ṙ)− V (R)

Equivalent to Newton’s EOM in Cartesian coordinates, but is
more general and flexible.

• Extended systems

• Constraints



Integration of EOM

Discretization of time

R(t)→ R(t + τ)→ R(t + 2τ)→ · · · → R(t + mτ)

V (t)→ V (t + τ)→ V (t + 2τ)→ · · · → V (t + mτ)

• Efficiency: minimal number of force evaluations, minimal
number of stored quantities

• Stability: minimal drift in constant of motion (energy)

• Accuracy: minimal distance to exact trajectory



Sources of Errors

• Type of integrator
predictor-corrector, time-reversible, symplectic

• Time step τ
short time accuracy measured as O(τn)

• Consistency of forces and energy
e.g. cutoffs leading to non-smooth energy surfaces

• Accuracy of forces
e.g. convergence of iterative force calculations (SCF,
constraints)



Velocity Verlet Integrator

R(t + τ) = R(t) + τV (t) +
τ2

2M
f (t)

V (t + τ) = V (t) +
τ

2M
[f (t) + f (t + τ)

• Efficiency: 1 force evaluation, 3 storage vectors

• Stability: time reversible

• Accuracy: O(τ2)

• Simple adaptation for constraints (shake, rattle, roll)

• Simple adaptation for multiple time steps and thermostats



Test on Required Accuracy of Forces
Classical Force Field Calculations, 64 molecules, 330 K

TIP3P (flexible), SPME (α = 0.44,GMAX = 25),



Stability: Accuracy of Forces

Stdev. ∆f Stdev. Energy Drift
Hartree/Bohr µHartree µHartree/ns Kelvin/ns

– 170.35 35.9 0.06
10−10 179.55 -85.7 -0.14
10−08 173.68 6.5 0.01
10−07 177.83 -58.2 -0.10
10−06 — -385.4 -0.63
10−05 — 9255.8 15.21
10−04 — 972810.0 1599.31



Born–Oppenheimer MD: The Easy Way

MIR̈I = −dV (R)

dRI
EOM

V (R) = min
Φ

[EKS({Φ(r)}; R) + const.] Kohn–Sham BO potential

Forces

fKS(R) =
d minΦ EKS({Φ(r)}; R)

dR

=
∂EKS

∂R
+
∂const.
∂R

+
∑

i

∂(EKS + const.)
∂Φi︸ ︷︷ ︸
=0

∂Φi

∂R



Computational Details

• System
• 64 water molecules

• density 1gcm−3

• Temperature ≈ 330K

• Timestep 0.5fs

• DFT Calculations
• GPW, TZV2P basis (2560 bsf), PBE functional

• Cutoff 280 Rydberg, εdefault = 10−12

• OT-DIIS, Preconditioner FULL_SINGLE_INVERSE

• Reference trajectory (1ps), εSCF = 10−10



Stability in BOMD

Unbiased initial guess; Φ(t) = Φ0(R(t))

εSCF MAE EKS MAE f Drift
Hartree Hartree/Bohr Kelvin/ns

10−08 1.2 · 10−11 5.1 · 10−09 0.0
10−07 9.5 · 10−10 5.6 · 10−08 0.1
10−06 6.9 · 10−08 4.8 · 10−07 0.4
10−05 7.4 · 10−06 5.6 · 10−06 2.3
10−04 3.3 · 10−04 5.9 · 10−05 50.0

Consistent with results from classical MD
Note accuracy of forces!



Efficiency: Initial Guess of Wavefunction

4th order Gear predictor (PS extrapolation in CP2K)

Method εSCF Iterations Drift (Kelvin/ns)

Guess 10−06 14.38 0.4

Gear(4) 10−07 6.47 5.7

Gear(4) 10−06 5.22 11.8

Gear(4) 10−05 4.60 86.8

What is the problem?

Time reversibility has been broken!



Generalized Lagrangian

L(q, q̇,x, ẋ) =
1
2

Mq̇2 +
1
2
µẋ2 − E(q,y) + kµG(‖x− y‖)

y = F (q,x) wavefunction optimization
G(‖x− y‖) wavefunction retention potential

Equations of motion

Mq̈ = −∂E
∂q
− ∂E
∂y

∂F
∂q

+ kµ
∂G
∂y

∂F
∂q

µẍ = −∂E
∂y

∂F
∂x

+ kµ
[
∂G
∂x

+
∂G
∂y

∂F
∂x

]

Extension of Niklasson Lagrangian, PRL 100 123004 (2008)



Dynamical System



Car–Parrinello Molecular Dynamics

y = x ⇒ G(‖x− y‖) = 0

Lagrangian

L(q, q̇,x, ẋ) =
1
2

Mq̇2 +
1
2
µẋ2 − E(q,x)

Equations of motion

Mq̈ = −∂E
∂q

µẍ = −∂E
∂x



Properties of CPMD

• Accuracy: Medium
Distance from BO surface controlled by mass µ
Requires renormalization of dynamic quantities (e.g.
vibrational spectra)

• Stability: Excellent
All forces can be calculated to machine precision easily

• Efficiency: Good
Efficiency is strongly system dependent (electronic gap)
Requires many nuclear gradient calculations

Not implemented in CP2K!



BOMD

y = MinxE(q,x) and µ = 0

Lagrangian

L(q, q̇) =
1
2

Mq̇2 + E(q,y)

L(x, ẋ) =
1
2

ẋ2 + kG(‖x− y‖)

Equations of motion

Mq̈ = −∂E
∂q

ẍ = −k ∂G
∂x



decoupled equations



BOMD with Incomplete SCF Convergence

y = F (q,x) ≈ MinxE(q,x) and µ = 0

Equations of motion

Mq̈ = −∂E
∂q
− ∂E
∂y

∂F
∂q

ẍ = −k
∂G
∂x
− ∂G
∂y

∂F
∂x

SCF Error: Neglect of force terms ∂E
∂y

∂F
∂q and ∂G

∂y
∂F
∂x .

EOM are coupled through terms neglected!



ASPC Integrator

Integration of electronic DOF (x) has to be
• accurate: good wavefunction guess gives improved

efficiency
• stable: do not destroy time-reversibility of nuclear trajectory

ASPC: Always Stable Predictor Corrector

• J. Kolafa, J. Comput Chem. 25: 335–342 (2004)
• ASPC(k): time-reversible to order 2k + 1



Orthogonality Constraint

Wavefunction extrapolation for non-orthogonal basis sets

Cinit =
K∑

j=0

Bj+1 Ct−jτCT
t−jτSt−jτ︸ ︷︷ ︸
PS

Ct−τ

Coefficients Bi are given by ASPC algorithm

x = Cinit

y[t ] = Ct

S overlap matrix

J. VandeVondele et al. Comp. Phys. Comm. 167: 103–128 (2005)



Importance of Time-Reversibility

Method εSCF Iterations Drift (Kelvin/ns)

Guess 10−06 14.38 0.4

ASPC(3) 10−06 5.01 0.2

ASPC(3) 10−05 3.02 4.5

Gear(4) 10−07 6.47 5.7

Gear(4) 10−06 5.22 11.8

Gear(4) 10−05 4.60 86.8



Efficiency and Drift

Method εSCF Iterations Drift (Kelvin/ns)

Guess 10−06 14.38 0.4

ASPC(4) 10−06 5.01 0.2

ASPC(4) 10−05 3.02 4.5

ASPC(4) 10−04 1.62 1742.4

ASPC(4) 10−02 1.03 21733.2



Efficiency and Drift

Method εSCF Iterations Drift (Kelvin/ns)

ASPC(4) 10−04 1.62 1742.4

ASPC(5) 10−04 1.63 1094.0

ASPC(6) 10−04 1.79 397.4

ASPC(7) 10−04 1.97 445.8

ASPC(8) 10−04 2.06 24.1



Langevin BOMD

Starting point: BOMD with ASPC(k) extrapolation

Analysis of forces

fBO(R) = fHF(R) + fPulay(R)︸ ︷︷ ︸
f (R)

+fnsc(R)

• fBO : correct BO force
• fHF : Hellmann–Feynman force
• fPulay : Pulay force
• fnsc : non-self consistency error force
• f : approximate BO force



Forces in Approximate BOMD

Approximate fnsc by

f̃nsc = −
∫

dr
[(

∂Vxc(ρi)

∂ρi

)
∆ρ+ VH(∆ρ)

]
∇Iρ

i

with ∆ρ = ρo − ρi , ρo final (output) density, ρi initial (predicted)
density.

Now assume

f (R) + f̃nsc(R) = fBO(R)− γDṘ

where γD is a constant friction parameter.



Langevin EOM

MR̈ = fBO(R)− (γD + γL)Ṙ + Θ

with Θ a Gaussian random noise term and

〈Θ(0)Θ(t)〉 = 6(γD + γL)MkBT δ(t)

Given temperature T = kB
3 〈MṘ

2〉 and an arbitrary γL this
determines γD



Langevin BOMD
2nd Generation Car–Parrinello (SGCP)

T. D. Kühne et al., Phys. Rev. Lett. 98 066441 (2007)

• single SCF step plus force correction needed
extremely efficient for systems with slow SCF convergence

• γD is small: correct statistics and dynamics

• difficult to stabilize in complex systems



SGCP: Examples
T. Musso et al. Eur. Phys. J. B, 91 148 (2018)

Analysis of Force Errors

Liquid Silicon at 3000 K



SGCP: Nanomesh

h-BN on Rh(111)



SGCP: Force Errors



SGCP: h-BN on Rh(111)
Comparision of MD Results



SGCP: h-BN on Rh(111)
Performance





Micro-Canonical Ensemble

• System variables: N, V, E

• Microstate definition: Γ = {rN ,pN}

• Energy H(Γ) =
∑

i
p2

i
2mi

+ U(rN)

• All states have the same weight δ(H(Γ)− E)

• Partitionfunction

Ω(N,V ,E) =
∑

Γ

δ(H(Γ)−E) =
1
N

1
h3N

∫
drNdpNδ(H(Γ)−E)



Molecular Dynamics

• Fixed number of particles: N

• Fixed volume: V

• Periodic boundary condition to avoid surface effects

• Total energy

E(t) =
∑

i

mi

2
ṙ2
i (t) + U(r(t))



Constant of Motion: E

dE(t)
dt

=
∑

i

mi

2
2ṙi r̈i +

∑

i

dU(r)

dri
ṙi

Fi = −dU(r)

dri
= mi r̈i

Ė =
∑

i

mi ṙi
Fi

mi
+
∑

i

(−Fi)ṙi

=
∑

i

(ṙiFi − ṙiFi)

= 0

The energy is conserved. MD samples correct microstates.



Definition of Temperature

Instantaneous temperature

T (t) =
2

3NkB

1
2

∑

i

mi ṙ2
i (t)

Temperature

T = 〈T (t)〉



Equipartition Theorem

The equipartition theorem is a general formula that relates the
temperature of a system with its average energies. For a
system described by the Hamiltonian (energy function) H(r , ṙ)

〈
ri
∂H
∂rj

〉
=

〈
pi
∂H
∂pj

〉
= δijkBT

For an ideal gas

〈H〉 = 〈Hkin〉 =
3
2

kBT



Canonical Ensemble

• System variables: N, V, T

• Closed system exchanging energy with a heat bath at
temperature T.

How to simulate on a computer?

• We can directly manipulate velocities (temperature).

• No extended heat bath needed.

• Molecular dynamics with periodic boundary conditions, but
manipulate ṙi during the integration.



Control of velocities/temperature

• Differential control: the temperature is fixed to the
predescribed value and no fluctuations occur.

• Proportional control: velocities are corrected at each
integration step through a coupling constant towards the
prescribed temperature. The coupling constant determines
the strength of the fluctuations around 〈T 〉.

• Integral control: the Hamiltonian is extended and variables
are introduced wich reflect the effect of an external system
which fix the temperature. Time evolution is derived from
the extended Hamiltonian.

• Stochastic control: position and velocities are propagated
according to modified equations of motion with friction and
stochastic forces. The final equations give the correct
mean value of the temperature.



NVE

Γ = {rN ,pN} microstate

H(Γ) =
N∑

i=1

1

2mi
pi + U(rN) const.

All accessible microstates are equally probable

WNVE(Γ) = δ(H(Γ)− E ) statistical weight

Distribution of microstates

ΩNVE =
∑

Γ

δ(H(Γ)− E ) ≈ 1

N!

1

h3N

∫
drNpN δ(H(Γ)− E )

5 / 1



Canonical Ensemble (NVT)

Microstates follow the Boltzmann’s distribution

WNVT(Γ) = exp

[
−H(rN ,pN)

kBT

]

Canonical partition function: describes the statistical properties

QNVT =
∑

Γ

exp

[
−H(Γ)

kBT

]
≈ 1

N!h3N

∫
drNdpN exp

[
−H(rN ,pN)

kBT

]

Probability distribution

P(Γ) =
WNVT(Γ)

QNVT

and the expectation value of the total energy is (β ≡ 1/kBT )

〈E 〉 = −∂ lnQNVT

∂β
=

1

QNVT

{∑

Γ

H(Γ) exp

[
−H(Γ)

kBT

]}



Velocity Rescaling
At t and temperature T (t) all velocities are multiplied by λ

∆T =
1

2

N∑

i=1

2

3

mi (λvi )
2

NkB
− 1

2

N∑

i=1

2

3

miv
2
i

NkB
= (λ2 − 1)T (t)

To control the temperature

λ =
√

T0/T (t)

• Easy to implement

• Sampling does not correspond to any ensemble

• Not recommended for production MD

• Good for equilibration

• Not time-reversible, not deterministic

24 / 1



Velocity rescaling

Perform one (or more) MD steps

Compute the instantanous kinetic energy

Rescale the velocities by a factor

25 / 1



Jumps by RescalingVelocity rescaling (II)
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Pisa, Scuola Normale – p. 25/73
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Berendsen Thermostat
Weak coupling to a heat bath: temperature correction

dT (t)

dt
=

1

τ
(Tbath − T (t))

τ coupling parameter: larger τ weaker coupling
Exponential decay of the system towards the desired temperature

∆T =
δt

τ
(Tbath − T (t))

τ →∞, thermostat is inactive
too small τ , unrealistically low fluctuations
τ = δt, standard rescaling
Same problems as velocity rescaling

Berendsen Thermostat

Another popular velocity scaling thermostat is that of Berendsen. Here,
the scaling is given by

dv

dt
=

f

m
+

1

2τ

(
Tmd

T (t)
− 1

)
v (13)

τ is called the ‘rise time’ of the thermostat. It describes the strength of
the coupling of the system to a hypothetical heat bath.

The larger τ , the weaker
the coupling, i.e., the
longer it takes to achieve

a given Tmd from the cur-

rent T (t):

Simulation of Biomolecules – p. 28

T

Time

27 / 1



Like a friction
Continuous formulation of the velocity rescaling

ṗi = fi − ζpi

(1− ζδt) =


1− δt

τ



∑

i
p2
i

mi

NkBT
− 1






1/2

Friction positive when K > NkBT/2, ⇒ cooling.Berendsen thermostat (III)
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Langevin Thermostat

Random forces due to impacts exerted by molecules in the environment:
irregular motion and friction. At each step all vi are corrected by a
random force and a friction term

mr̈i = −∂U
∂ri
−mΓṙi + Wi (t)

Frictional force and random motion are related, i.e.
fluctuation–dissipation theorem is satisfied

〈Wi (t),Wj(t
′)〉 = δijδ(t − t ′)6mΓkBT

Gaussian distribution with infinitely short correlation time (great number
of collisions)
Transition probability

∂P
∂t

=
∑

i

(
− pi

mi

∂P
∂ri

+
∂U
∂ri

∂P
∂pi

+ miD
∂2P
∂p2

i

+ Γ
∂piP
∂pi

)



Stochastic Behavior

The canonical distribution is then recovered as

lim
t→∞

P = C exp

(
− 1

kBT
{
∑

i

mp2
i

2
+ U(rN)}

)

and friction and diffusion are related

D =
Γ

m
kBT

Local thermostat: noise term depends on the particle

• Samples from canonical ensemble and ergodic.

• Allows larger time steps compared to non-stochastic thermostats.

• Momentum transfer is destroyed, i.e., no diffusion coefficients.

34 / 1



Nose Thermostat

Heat bath integral part of the system: s, ṡ, and Q (coupling)

L =
∑

i

ms2ṙ2
i

2
− U(rN) +

1

2
Qṡ2 − gkBT ln s

The conjugate momenta in the extended system are

pi ≡
∂L
∂ṙi

= mi s
2ṙi ps ≡

∂L
∂ṡ

= Qṡ

where the auxiliary variable is a time-scaling parameter

dt ′ = sdt p′i = p/s real system momentum

Microcanonical ensemble in the extended system: for g = 3N + 1
canonical ensemble for the real system

38 / 1



Nose–Hoover

Using only differentiation in real time t ′: 1
s

d
dt′

ṙi =
pi

mi

ṗi = −∂U
∂ri
− ξpi ξ = sps/Q

ξ̇ =
1

Q

(∑

i

p2
i

mi
− g

β

)

ṡ

s
=

d ln s

dt
= ξ

HNose =
∑

i

pi

2mi
+ U(rN) +

ξ2Q

2
+ g

ln s

β
conserved

39 / 1



Friction Coefficient
Define the relaxation time as

νT ≡
√

3NkBT/Q

dynamics of friction coefficient by (feed-back mechanism)

ξ̇ = ν2
T



∑

i
p2
i

mi

3NkBT
− 1


 = ν2

T

[T
T
− 1

]

Too large Q: canonical distribution after long simulation
Too small Q: high-frequency T oscillations



Ergodicity Problems

Microcanonic Andersen Nose-Hoover

v

r r r

NVE: closed loop, constant energy shell
Andersen: points corresponding to a Gaussian velocity distribution
Nose–Hoover: band trajectory determined by the initial conditions

Not sufficiently chaotic to sample all phase-space; trapped in a subspace

41 / 1



Nose–Hoover Chain
Ergodicity is improved by thermostatting the thermostat variable: M
Nose–Hoover thermostats

ṙi =
pi

mi

ṗi = −∂U
∂ri
− ξ1pi

ξ̇1 =
1

Q1

(∑

i

p2
i

mi

g

β

)
− ξiξ2

ξ̇j =
1

Qj

(
Qj−1ξ

2
j−1 − kBT

)
− ξjξj+1

ξ̇M =
1

QM

(
QM−1ξ

2
M−1 − kBT

)

HNHC =
∑

i

pi

2mi
+ U(rN) +

∑

j

Qjξ
2
j

2
+ gkBTs1 +

M∑

j=2

kBTsj

42 / 1



Thermostats Comparison
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Thermostats TableThermostat table

tune cont. L/G correct ergodic cons. q. determ. cp2k

Velocity rescaling G ? X

Andersen X L X X

Berendsen X X G ? X

Nosé-Hoover X X L/G X X X NOSE*

Nosé-Hoover 
chains

X X L/G X X X X NOSE

Langevin X X L X X X CSVR**

Stochastic velocity 
rescaling

X X L/G X X X CSVR

*use “LENGTH=1”
**use “MASSIVE”44 / 1



Other Ensembles

N, V, E microcanonical inner energy U

N, V, T canonical Helmholtz free energy F

F = U − TS

N, P, H isobaric-isoenthalpic enthalpy H

H = U + pV

N, P, T isobaric-isothermal Gibbs free energy G

G = U − TS + pV = H − TS



How to simulate an isobaric ensemble?

• We can manipulate the volume of the system.

• This emulates an external piston used to keep the
pressure constant.

• Instantaneous pressure p(t) fluctuates, forces on the
container

• Averaging p(t) gives the observable internal pressure.



Pressure: Virial Theorem

From equipartition theorem

〈Hkin〉 =
〈∑

i

p2
i

2mi

〉
=

1
2

∑

i

〈
ri
∂U(r)
∂ri

〉

The total potential U(r) is coming from in internal potential
Vint(r) and and a wall potential W (r).

∑

i

〈
ri
∂W (r)
∂ri

〉
= p

∫
df · r = p

∫
dV (divr) = 3pV

The virial theorem is then

3pV = 2〈Hkin〉 −
∑

i

〈
ri
∂V (r)
∂ri

〉



Isobaric-Isoenthalpic Ensemble

The system exchange work with an external surface: Ω is a variable
Cubic box

h =




Ω
1
3 0 0

0 Ω
1
3 0

0 0 Ω
1
3




Scaled coordinates
ri = Ω1/3si

Lagrangian in terms of scaled coordinates

L =
1

2

∑

i

miΩ
2
3 ṡ2

i − U(sN ,Ω)

External applied pressure P
−P∆Ω

work on the system to balance P: the internal pressure fluctuates

46 / 1



Barostat

Correct the internal pressure by scaling the voluem, i.e. the inter-particle
distances

The system is coupled to a barostat

Isobaric-Isoenthalpic ensemble NPH

P(rN ,pN ,Ω) ∝ δ(C −K(pN)− U(rN ,Ω)− ΠΩ)

where Π is the internal pressure
Isobaric-Isothermal ensemble NPT

P(rN ,pN ,Ω) ∝ exp

(
−K(pN) + U(rN ,Ω) + ΠΩ

kBT

)

47 / 1



Berendsen Barostat

Deviation from desired pressure

dP(t)

dt
=

P0 − P(t)

τP
τP relaxation time

Rescale volume by η the volume, η1/3 coordinates

η(t) = 1− δt

τP
γ(P0 − P(t))

γ is the compressibility.

Asotropic or anisotropic, τP strength of coupling,
not correct ensemble distribution



Andersen Barostat
Associate a kinetic energy to the variable volume

L =
1

2

∑

i

miΩ
2
3 ṡ2

i +
1

2
W Ω̇2 − U(sN ,Ω)− PΩ

The coupling mimics the action of a piston of mass W (strength of
coupling)
Equations of motion

s̈i = − 1

miΩ
2
3

∂U

∂si
− 2

3

Ω̇

Ω
si

W Ω̈ =
1

3Ω

(
Ω

2
3

∑

i

mi ṡ
2
i −

∑

i

si
∂U
∂si

)
− P = Pint − P

Feedback loop to adjust the simulation volume: internal pressure
fluctuates around the external pressure

49 / 1



Correct Distribution

Conserved Hamiltonian of the 6N + 2 dimensional system

H =
1

2

∑

i

π2
i

miΩ
2
3

+
Π2

2W
+ U(sN ,Ω) + PΩ

low W will result in rapid box size oscillations
large W slow adjustmen of the volume
Partition function

∆(N,P,H) =

∫
dΩ

∫
dΠ

∫
dπN

∫
sNδ

(
H +

Π2

2W
−H

)

trajectories consistent with the NPH ensemble
The combination with one of the constant temperature methods allows
the simulation in the NPT ensemble.
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Experiment with barostat and thermostat

Experiments with barostats

Equilibration with Berendsen
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Experiments with barostats

Equilibration with Berendsen

τT =0.1

τP =1, 2, 4, 8

-1400

-1300

-1200

-1100

-1000

C
o
n
s.

 [
k
J/

m
o
l]

0

0.5

1

1.5

2

P
 [

k
at

m
]

0 5 10 15 20
time (ps)

11000

11500

12000

12500

13000

V
 [

A
3
]

Pisa, Scuola Normale – p. 64/73

Berendsen Thermostat and Barostat

Experiments with barostats

Equilibration with Nosé-Hoover

τT =0.1

τP =1, 2, 4, 8

-305

-300

-295

C
o
n
s.

 [
k
J/

m
o
l]

0
1
2
3
4
5
6

P
 [

k
at

m
]

0 5 10 15 20
time (ps)

10000

11000

12000

13000

V
 [

A
3
]

Pisa, Scuola Normale – p. 65/73

Nose--Hoover Thermostat and Barostat

Experiments with barostats

Equilibration with Nosé-Hoover
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Multiple Time Step Method (r-RESPA)
M.E. Tuckerman et al. JCP, 97 1990 (1992)

Equation of motion

ṙ =
p
m

ṗ = Ffast + Fslow

Liouville operator

iL =

(
p
m
∂

∂r
+ Ffast

∂

∂p

)
+ Fslow

∂

∂p
+ iLref + iLslow

Integrator

x(δt) = exp(iLδt)x(0)

= exp(iLslowδt/2) [exp(iLrefδt)]n exp(iLslowδt/2) +O(δt3)



MTS in CP2K
• Two FORCE_EVAL sections defining methods

• Example DFT with hybrid functionals

Fref = FGGA

Fslow = Fhybrid



PLUMED: MD Driver and Enhanced Sampling

• Definition of many Collective Variables (CV)
• Analysis features for MD and MetaDynamics
• Bias methods for enhanced sampling MD
• Logarithmic Mean Force Dynamics Method
• Experiment Directed Simulation Methods



i-Pi: External MD Driver
Kapil et al., Comp. Phys. Comm. 236, 214-223 (2018)

Driver software communicating with force engines (e.g. CP2K)
through socket interfaces



i-Pi: Features
• MD and Path-Integral MD (PIMD) for NVE, NVT, NPT

• Ring Polymer Contraction (RPC) MD and Centroid MD

• Generalized Langevin Equation (GLE) thermostats

• PI+GLE and PIGLET

• Ring Polymer Instantons

• Thermodynamic Integration, Geomerty optimization, Saddle
point search

• Harmonic vibrations

• Multiple Time Step algorithms

• Metadynamics (interface to PLUMED)

• Replica Exchage MD

• Second Generation CP like integration



i-PI: Multiple Time Steps



Summary: BOMD in CP2K

• Born–Oppenheimer MD with ASPC(3) is default in CP2K

• SCF convergence criteria depends on system
10−5 − 10−6 is a reasonable starting guess

• Best used together with OT and the
FULL_SINGLE_INVERSE preconditioner, for large system
an iterative update of the preconditioner should be used
PRECOND_SOLVER INVERSE_UPDATE

• Langevin dynamics is an option
needs some special care, analysis of forces


