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Kohn–Sham (KS) Density Functional Theory (DFT)

• Hohenberg–Kohn Theorem I
The total energy can be calculated from a universal
functional of the density.
Existence theorem

• Hohenberg–Kohn Theorem II
The correct density minimizes the energy functional.
Variational principle.

• Kohn–Sham Theorem
For each density exists a system of non-interacting
particles in a local external potential with the same density.
Orbital picture.



Kohn–Sham DFT (II)
Minimization with constraints

Min E({Φi})∫
Φi(r)Φj(r)dr = δij

∫
ρ(r)dr = N

Energy functional

E({Φi}) = −
∑

i

fi
2

∫
Φi∇iΦidr +

∫
Vext(r)ρ(r)dr

+
1
2

∫∫
ρ(r)ρ(r ′)
|r − r ′|

dr dr ′ + Exc[ρ]

ρ(r) =
∑

i

fi |Φi(r)|2



Kohn–Sham DFT (III)

• Kinetic energy
Ekin = −1

2
∑

i fi(Φi |∇2|Φi)

• External energy (electron-nuclei interaction)
Eext =

∫
Vext(r)ρ(r) dr

• Hartree (classical Coulomb) energy
EH =

∫ ∫ ρ(r)ρ(r ′)
|r−r ′| dr ′ dr

• Exchange-correlation (non-classical Coulomb) (XC) energy
Exc =

∫
F [ρ] dr

• Orbital orthogonality constraint
(Φi |Φj) = δij

• Electron number constraint∑
i fi(Φi |Φi) = N



Linear Combination of Atomic Orbitals (LCAO)

Basis set Φi(r) =
∑
α

cαi ϕα(r)

Overlap Sαβ =

∫
dr ϕ?α(r)ϕβ(r)

Orthogonality
∫

dr Φ?
i (r)Φj(r) =

∑
αβ

c?αi Sαβ cβj = δij

Density matrix Pαβ =
∑

i

fi cαic?βi

Density ρ(r) =
∑
αβ

Pαβ ϕα(r)ϕ?β(r)

Energy E = Minc[Ekin(c) + Eext(ρ) + EH(ρ) + Exc(ρ)]



Gaussian Type Orbitals (GTO): General

• Primitive function

ϕ(r) = r lYlm(r̂) exp[−α(r − A)2]

• Contracted GTO

χ(r) =
∑

k

dkϕk (r)

Contraction coefficients dk and exponents are fixed.
Contraction over functions with same angular momentum.



Gaussian Type Orbitals: Advantages

• GTO’s are "atomic orbital-like"

• Compact basis set (approx. 15-25 functions per atom)

• Analytic integration possible for many operators.

• Optimal for regular grids. Fourier transform is again a
Gaussian.

• Compact support (finite extend)



Gaussian Type Orbitals: Disadvantages

• Non-orthogonal basis

• Linear dependencies for larger basis sets

• Complicated to generate and no easy way to improve

• Basis set superposition error (BSSE)

• Molecules (wavefunction tails) and solids have different
requirements



KS-DFT with GTO Basis

• Kinetic energy integrals: analytic

• External potential integrals: analytic

• Coulomb: 4 center electron repulsion integrals (ERI)
Mulliken notation :(αβ|γδ): analytic
CPU and memory bottleneck

• XC energy and integrals: numerical integration

• Overlap integrals: analytic



Hartree Energy

• Goal: Avoid calculation of ERI

• Combine all electrostatic energy terms

Electrostatic Energy

ECoulomb =
1
2

∫ ∫
ρ(r)ρ(r ′)
|r − r ′|

dr dr ′ electron-electron interaction

−
∑

A

ZA

∫
ρ(r)

|r − RA|
dr electron-core interaction

+
∑
A<B

ZAZB

|RA − RB|
ion-ion interaction



Hartree Energy
Total charge density: electronic charge + Gaussian atomic charges:

ρtot (r) = ρe(r) +
∑

A

ρA(r)

ρA(r) = ZA

(α
π

)3/2
exp(−α(r − A)2)

ECoulomb =
1
2

∫ ∫
ρtot (r)ρtot (r ′)
|r − r ′|

dr dr ′ long range interaction

−
∑

A

ZA

∫
erfc(α(r − RA))

|r − RA|
ρe(r) dr short range interaction

+
∑
A<B

Epair(RA − RB) short range pair interaction

−
∑

A

Eself self interaction correction



Periodic Boundary Condition (PBC)

• Optimal for condensed phase systems (avoids interface effects)

• Bloch states, Brillouin zone sample, see k-points

• Energy per simulation cell

• Γ point simulation (Integration with single point at (0,0,0))

• (α|O|β)→
∑

L(α(0)|O|β(L))



Plane Waves (PW)

Definition

ϕ(r) =
1√
Ω

exp[iG · r]

+ orthogonal

+ independent of atomic positions

± naturally periodic

– many functions needed



Computational Box

a

a

a

1

2

3

• Box matrix : h = [a1,a2,a3]

• Box volume : Ω = det h



Lattice Vectors

• Direct lattice h = [a1,a2,a3]

• Direct lattice vectors : L = i · a1 + j · a2 + k · a3

• Reciprocal lattice 2π(ht )−1 = [b1,b2,b3]

bi · aj = 2πδij

• Reciprocal lattice vectors : G = i · b1 + j · b2 + k · b3

Direct and reciprocal space are connected by Fourier
transforms.
The expansion of the periodic part of the functions defined in
real space includes only the G that satisfy the PBC: Fourier
decomposition.



Properties of Plane Waves

ϕG(r) =
1√
Ω

exp[iG · r]

• Plane waves are periodic wrt. box h
• Plane waves are orthonormal

〈ϕG′ |ϕG〉 = δG′,G

• Plane waves are complete

ψ(r) = ψ(r + L) =
1√
Ω

∑
G

ψ(G) exp[iG · r]



Cutoff: Finite Basis Set

1
2

G2 ≤ Ecut

NPW ≈
1

2π2 Ω E3/2
cut [a.u.]

Basis set size depends on volume of box and cutoff only



Real Space Grid

Sampling Theorem: Interval ∆ = L
N ; Nyquist critical frequency

fc = 1
2∆

For a given plane wave cutoff (frequency) there is a minimum number
of equidistant real space grid points needed for the same accuracy.

Real space grid: Ri = (i − 1)∆

Fast Fourier Transform (FFT)

ψ(G)←→ ψ(R)

Information contained in ψ(G) and ψ(R) are equivalent.

Fourier transform N2 operations
fast Fourier transform N log[N] operations



Integrals

I =

∫
Ω

A?(r)B(r)dr

=
∑
GG′

A?(G)B(G′)
∫

exp[−iG · r] exp[iG′ · r]dr

=
∑
GG′

A?(G)B(G′) Ω δGG′ = Ω
∑

G

A?(G)B(G)

Parseval’s theorem

Ω
∑

G

A?(G)B(G) =
Ω

N

∑
i

A?(Ri)B(Ri)

Integrals in real space and in reciprocal space are equivalent



Long Range Term in Coulomb Energy

ELRT =
1
2

∫ ∫
ρtot (r)ρtot (r ′)
|r − r ′|

dr dr ′ =

∫
VH(r)ρtot (r) dr

where VH(r) is the solution of Poisson equation

∇2VH(r) = −4πρtot (r)

Plane wave expansion of total charge density

ρtot (r) =
∑

G

ρtot (G)eiG·r VH(G) = 4π
ρtot (G)

G2

ELRT =
2π
Ω

∑
G

ρ∗tot (G)ρtot (G)

G2



Exchange-Correlation (XC) Functionals

Exc =

∫
dr εxc(r) ρ(r) = Ω

∑
G

εxc(G)ρ?(G)

εxc(G) is not local in G space. Calculation in real space
requires very accurate integration scheme.

New definition of Exc

Exc =
Ω

NxNyNz

∑
R

εxc(R)ρ(R) = Ω
∑

G

ε̃xc(G)n(G)

where ε̃xc(G) is the finite Fourier transform of εxc(R).



Energy and Force of He Atom
Only translations by a multiple of the grid spacing do not
change the total energy. This introduces a small modulation of
the energy hyper surface, known as "ripples".



KS-DFT GPW Energy

EGPW
KS = Ekin(P) + δEext(P) + Exc(ρ̃) + EH(ρ̃) + Eovrl − Eself

Gaussian orbital part: Φi (r) =
∑
α

cαiϕα

Pαβ =
∑

i

ficαicβi

PW part: ρ̃(G) =
∑
αβ

(ϕα · ϕβ)(G)

ρ̃tot(G) = ρ̃(G) +
∑

A

ρA(G)

(ϕα · ϕβ)(G) = ϕαβ(G)

• EGPW
KS is variational in the GTO coefficients cαi alone.

• ρ̃(G) is a function of cαi and the auxiliary PW basis



Efficient Calculation of GPW Energy
Screening

• Always work with primitive Gaussians

• Analytic integrals→ distance screening with R = A− B

Overlap Sαβ ϕα(r − A)↔ ϕβ(r − B)

↓ sparsity pattern

Tαβ

• Density on the real space grid∑
αβ Pαβϕα(R)ϕβ(R)

FFT→ ρ̃(G)

↓ overlap screening

Pαβ is only needed with Sαβ sparsity pattern

• ϕαβ(R) 6= 0 distance (radial) screening



Screening

• All individual screening thresholds can be controlled by
EPS_DEFAULT

CP2K_INPUT / FORCE_EVAL / DFT / QS

• Problems associated with thresholds

• Failure in Cholesky decomposition of overlap matrix

• Combination of basis set condition number and too big
EPS_DEFAULT

• Inaccurate charge on real space grid

• Too low PW cutoff and/or too big EPS_DEFAULT
(extend of ϕαβ)



Real Space Grid

Finite cutoff and computational box define a real space grid {R}



Gaussians and Plane Waves

√
α

π
exp

(
−αr2

)
FFT−→ exp

(
−G2

4α

)

• Efficient screening in R space
• Exponential convergence for integration



GTOs and PW

Integration

For the integartion of a Gaussian
function with exponent 1 an
accuracy of 10−10 requires an
integration range of 10 bohr, a
cutoff of 25 Rydberg, resulting in
22 integration points.

≈ 5000 integration points/integral batch



Multigrid



PW Cutoff
• Density expansion

PW cutoff and multigrid settings determine accuracy and
efficiency of density expansion

&MGRID . . . &END MGRID section
• CUTOFF: Maximal cutoff used in the calculation

(default: 280 Ry)
• REL_CUTOFF: Minimal cutoff used for Gaussian with

exponent of 1 (default: 40 Ry)
• NGRIDS: Total number of real space grids (cutoffs) used

(default: 4)
• PROGRESSION_FACTOR: factor used for cutoff reduction

in multigrids (default: 3)
• MULTIGRID_SET: T/F set multigrid cutoff from input

(default: F)
• MULTIGRID_CUTOFF: list of cutoffs for N grids



PW Cutoff

• XC functional

Accuracy of density expansion and total PW cutoff
determine XC energy accuracy

CP2K calculates gradient of density from plane wave
expansion of density

Fourier interpolation may lead to negative densities in low
density regions (problem is enhanced by multigrids!)

LDA vs. GGA vs. Meta-functionals
ρ vs. (∇ρ)2/ρ4/3 vs. τ

DENSITY_CUTOFF, GRADIENT_CUTOFF, TAU_CUTOFF
in FORCE_EVAL / DFT / XC

See more advanced options
in FORCE_EVAL / DFT / XC / XC_GRID



Coulomb Potential

P → ρ(R)
FFT−−−→ ρ(G)→ VH(G) =

ρ(G)

G2
FFT−−−→︸ ︷︷ ︸

O(n log n)

VH(R)→ V

ρ(R) =
∑
µν

Pµνχµ(R)χν(R) =
∑
µν

Pµνχ̄µν(R)

Vµν =
∑

R

V (R)χµ(R)χν(R) =
∑

R

V (R)χ̄µν(R)

Efficient screening of sums using χ̄µν(R).



Accuracy of Plane Wave Expansion

Coulomb Energy



Accuracy of Plane Wave Expansion
XC Energy

PBE functional, Bulk Silicon



Accuracy and Numerical Errors
64 water, 2560 basis functions, LDA functional, 24 cores

EPS_DEFAULT cutoff(Ry) ngrids time(s) Energy(Ha)

-12 280(30) 4 1.5 x.0377660911
-12 400(60) 4 2.7 x.0368292349
-12 400(60) 1 21.9 x.0368292282
-12 800(60) 6 3.0 x.0371244786
-12 800(60) 4 3.0 x.0371244689
-12 800(60) 1 76.5 x.0371244096
-8 1600(60) 6 3.7 x.0371421086

-10 1600(60) 6 4.7 x.0371296795
-12 1600(60) 6 4.7 x.0371288794
-14 1600(60) 6 4.9 x.0371287675



Basis Set Superposition Error (BSSE)
• Localized non-orthogonal AO basis sets are incomplete

• Local ’completeness’ of basis depends on position of
atoms

• Basis set is more complete for molecular clusters than
single molecules
−→ overstabilization of bound clusters

• Overestimation of binding energies (dimers, molecules on
surfaces, etc.)

• Counterpoise Correction: Estimation of BSSE

EBSSE ≈ EA(A + B) + EB(A + B)− EA(A)− EB(B)

with fragments A,B at their cluster geometry.



BSSE in liquid water
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Non-Periodic Calculations using PW

Solving Poisson equation for non-periodic boundary conditions

• Analytic for spherical cutoff or cylindrical or 1-d cutoff
Marx and Hutter, Ab initio molecular dynamics, NIC Series

• Wavelet solvers
Genovese et al, JCP 2006, 125 074105

• Solvers by Martyna and Tuckerman
Martyna & Tuckerman, JCP 1999, 110 2810-2821



Pseudopotentials

Why Pseudopotentials?

• Reduction of basis set size
effective speedup of calculation

• Reduction of number of electrons
reduces the number of degrees of freedom

• Inclusion of relativistic effects
relativistic effects can be included "partially" into effective
potentials



Frozen Core Approximation

• Replace inactive electronic degrees of freedom in the
Hamiltonian by an effective potential

• The potential should be additive and transferable
additive most general choice: atomic pseudopotentials

transferable remove only core electrons

• Core electrons are chemically inert

• Core/Valence separation is often not clear
in plane wave calculations: core = all filled shells

• Core wavefunctions are transfered from atomic reference
calculation

• Core electrons of different atoms do not overlap



Remaining Problems

• Valence wavefunctions have to be orthogonalized to core
states
→ nodal structures→ high plane wave cutoff

• Pseudopotential should produce node-less functions and
include Pauli repulsion

• Pseudopotential replaces Hartree and XC potential due to
the core electrons

• XC functionals are not linear: approximation

EXC(ρc + ρv) = EXC(ρc) + EXC(ρv)

This assumes that core and valence electrons do not
overlap. This restriction can be overcome with the
"non–linear core correction".



General Recipe

1. Atomic all–electron calculation (reference state)
⇒ Φv

i (r) and εi .

2. Pseudize Φv
i ⇒ ΦPS

i

3. Calculate potential from

(T + Vi(r)) ΦPS
i (r) = εiΦ

PS
i (r)

4. Calculate pseudopotential by unscreening of Vi(r)

V PS
i (r) = Vi(r)− VH(nPS)− VXC(nPS)

V PS
i is state dependent !



Pseudization of Valence Wavefunctions

Smooth continuation of orbitals inside a cutoff radius

r
r

p

c

V(r)

V (r)p

u(r)

u (r)



Semi-local Pseudopotentials

V PS(r, r′) =
∞∑

L=0

V PS
L (r)|YL〉〈YL|

Separation of Local and Nonlocal Parts

Approximation: all potentials with L > Lmax are equal to V PS
loc

V PS(r, r′) =
Lmax∑
L=0

(
V PS

L (r)− V PS
loc(r)

)
|YL〉〈YL|+ V PS

loc(r)

Final Form

V PS(r, r′) = V PS
loc(r) +

Lmax∑
L=0

∆V PS
L (r)|YL〉〈YL|

• Local pseudopotential V PS
loc(r)

• Non-local pseudopotential ∆V PS
L (r)







Kleinman–Bylander Form

Basis set expansion with the following approximation for the
identity:

1 =
∑

L

| ϕL〉〈∆VLϕL |
〈ϕL∆VLϕL〉

where ϕL is the pseudo–atomic wavefunction from the
reference calculation.

EPS =
∑

L

∑
i

fi〈Φi | ∆VLϕL〉ωL〈∆VLϕL | Φi〉

where
ωL = 〈ϕL∆VLϕL〉

For an atom with s and p non-local potential this requires the
calculation of 4 times number of states integrals 〈∆VLϕL | Φi〉.



Dual-Space PP
• Goedecker et al, PRB, (1996), 54, 1703

Hartwigsen et al, PRB, (1998), 58, 3641
M. Krack, TCA, (2005), 114, 145

• Fully non-local: easy analytic integrals and FFTs

Vpp(r) = Vloc(r) +
∑

L

∑
ij

|pL
i 〉hL

ij 〈pL
j |

• Gaussian form with few adjustable parameters: [r̄ = r
rc

]

Vloc(r) = −Zion

r
erf
[

r̄√
2

]
+exp

[
− r̄2

2

] [
C1 + C2 r̄2 + C3 r̄4 + C4r̄6]

pi
L(r) = NiL(rl )exp

[
− r2

2r2
l

]
• Global optimization of all parameters to fit atomic orbital

energies of occupied and virtual orbitals.



Non-Linear Core Correction (NLCC)

For many atoms (e.g. alkali atoms, transition metals) core
states overlap with valence states. Linearization assumption for
XC energy breaks down.

• Add additional states to valence (semi-core)

• adds more electrons

• needs higher cutoff

• Add core charge to valence charge in XC energy⇒
non–linear core correction (NLCC)
S.G. Louie et al., Phys. Rev. B, 26 1738 (1982)



Non-Linear Core Correction (NLCC)

Exc = Exc(n + ñcore) where ñcore(r) = ncore(r) if r > r0

Valence Density

Core Density

Modified Core Density



Basis Sets

Molecular Optimized Basis Sets (MOLOPT)

Goals

• Suitable for gas and condensed phase, interfaces

• Systematic increase in accuracy

• Suitable for large scale simulations
Optimal for small number of functions
Well conditioned

• Low BSSE for weak interactions



MOLOPT Basic idea

Use generally contracted Gaussian basis sets, including diffuse
primitives, fully optimized on molecular calculations.

• generally contracted −→ no lone diffuse functions, well
conditioned

• diffuse primitives −→ reduced BSSE

• molecularly optimized −→ small but accurate



MOLOPT

• generally contracted family basis, all exponents used for all
angular momenta (including polarization)

• 6/7 primitive functions (pseudopotentials, valence only)
• larger sets extend smaller sets
• currently available for H-Rn

basis 1st/2nd row Hydrogen
m-SZV 1s1p 1s
m-DZVP 2s2p1d 2s1p
m-TZVP 3s3p1d 3s1p
m-TZV2P 3s3p2d 3s2p
m-TZV2PX 3s3p2d1f 3s2p1d



Condition Numbers (Liquids)

SZV DZVP TZV2P QZV3P
water 1.00 2.97 4.46 5.64
BQ/MeOH 1.30 5.11 6.89 8.66
acetonitrile 1.34 4.15 5.69 7.46

aug-DZVP aug-TZV2P aug-QZV3P
water 10.11 12.54 15.11
BQ/MeOH 11.00 13.52 13.94
acetonitrile 9.89 14.58 14.23

m-SZV m-DZVP m-TZV2P m-TZV2PX
water 0.83 3.20 4.18 4.27
BQ/MeOH 1.04 3.34 4.46 4.66
acetonitrile 1.11 3.23 4.18 4.36

log κ = log σmax/σmin



Solving the KS Equations

Fix Point Methods

1. initial guess nin(r)

2. calculate potential V (r)

3. diagonalize KS matrix, get cout

4. calculate new density nout

5. if | nin − nout |≤ ε stop

6. calculate new density from nin and nout (mixing)

7. go back to 2



Direct Minimization Methods

Minimum [EKS(c)] with the constraint
∑
α

c?αicαj = δij

Lagrange function

ẼKS[c,Λ] = EKS(c)− Tr
{

Λ(c†c − 1)
}

Gradient

∂ẼKS

∂c?αn
=
∑
β

Fαβcβn −
∑

m

cαm

∑
βγ

c?βmFβγcγn





Orbital Transformation (OT) Method

J. VandeVondele and J. Hutter, JCP 118 4365 (2003)

• Direct optimization technique

• Similar to orbital rotation method

• Constraint is only linear

•
Memory MN M Number of basis functions

Scaling MN2 N Number of occupied orbitals



• Set of reference occupied orbitals: C0

• New variables X

C(X ) = C0 cos U + XU−1 sin U

U =
(

X T SX
)1/2

• Linear constraint X T SC0 = 0

• Standard optimization with line serach and preconditioning





Direct Inversion in Iterative Subspace (DIIS)

DIIS: Acceleration method for iterative sequences.

Basic idea : From a series of steps in an optimization
procedure, try to guess a better trial vector.

In DIIS we solve exactly (by direct inversion) an optimality
condition within the subspace of the parameter vectors
generated by the iterations.
Assume we have generated a sequence of M parameter
vectors {xm}M1 and that we are able to guess for each of the
vectors its difference em to the stationary point.

Ansatz: Find the best linear combination of vectors
xM+1 =

∑M
i=1 cixi with the constraint

∑M
i=1 ci = 1.



DIIS

Ansatz

Min

< M∑
i=1

ciei|
M∑

j=1

cjej >

 with
M∑

i=1

ci = 1

where < .|. > is a suitably defined scalar product. This leads to
a system of linear equations with bij =< ei|ej >

b11 b12 . . . b1m −1
b21 b22 . . . b2m −1

...
...

. . .
...

...
bm1 bm2 . . . bmm −1
−1 −1 . . . −1 0




c1
c2
...

cm
λ

 =


0
0
...
0
−1





What to take for the error vectors?

Any measure for the distance from the stationary point.

AO basis sets
Hartree–Fock and Kohn–Sham Methods (Pulay)

{e}ij =
∑

kl

(
FikPklSlj − SikPklFlj

)
GDIIS (based on Newton–Raphson)

ei = −Pg(xi) Preconditioner P



Preconditioner

• Preconditioner is essential for good convergence in direct
minimization

• Predonditioner matrix P = M−1 is applied to gradient:
Pg(xi)

• Predonditioner is state dependent (FULL_ALL), single
state approximations are better in memory usage and CPU
time

• Predonditioner depends on Hamiltonian and should not be
updated during optimizations.

• Restart of optimization is needed if Precodnitioner is too
bad (outer SCF procedure in CP2K)



Scaling of GPW Calculations

• N: Number of occupied orbitals, number of electrons

• M: Number of basis functions

Kohn-Sham matrix O(MlogN)

Density matrix (incomplete sparse) O(MN)

OT optimization O(MN2)



System Size Scaling



Efficiency: GGA Functionals

10 ps/day

50 ps/day

1 ps/day



Linear Scaling KS-DFT

Avoid Matrix Diagonalization

P = sign
(

S−1H − µI
)

S−1

Calculate S−1 and sign(A) using Newton-Schultz iterations

Ai+1 =
1
2

Ai

(
3I − A2

i

)

Only matrix multiplications required.

DBCSR: Sparse matrix-matrix multiplication library



Linear Scaling



Linear Scaling



PAO-ML

O. Schütt, J. VandeVondele, J. Chem. Theory Comput. 2018, 14, 4168



www.cp2k.org


