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1. Introduction

With the continuing increase of the power of computers, the past decades have seen
a rapid increase in the number, performance and accuracy of theoretical computa-
tional methods in chemistry [1,2]. One can distinguish three major classes of methods
for the theoretical study of molecular properties, listed in order of decreasing com-
putational expenses: (i) ab initio molecular orbital methods [3]; (ii) semiempirical
molecular orbital methods [4,5]; and (iii) empirical classical force-field methods. The
computational expenses of ab initio methods are of order O(N{) (Hartree-Fock level)
or higher (configuration interaction, many-body perturbation theory), N, being the
number of basis functions used. Density functional approaches and semiempirical
methods scale as O(N?) or lower. The costs of empirical methods scale as O(N2) down
to nearly O(N,), where N, stands for the number of elementary particles (atoms or
groups of atoms). Independently of the scaling with the system size, the evaluation of

an empirical interaction function remains usually much cheaper than any other . *4 12 ; PR
method (size of the pre Germany 2013: (4.125*102) particles on Garching’s

fprtor ot ing) and currently allows for the simulation of
systems typically up to SuperMUC, 146,016 cores used to reach an actual

i "
1997: 105-10° atoms processing power of 591.2 teraFLOPS!!!!

In liquid form, 4.125 trillion molecules of the noble gas krypton would occupy the
volume of a cube whose edges are 6.3 micrometers long.Thus the simulation

computation pushes forward into a domain in which it should soon be possible to
directly compare the results of simulations with the results of measurements — an
important advance on the way to reliable insights into properties of matter.




Why simulation? Which choices?

eHiithnenberger + van Gunsteren 1997: HvG97
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Fig. 1. Schematic representation of the basic choices made while building a model of the molecular
system in order to simulate an observable of interest. The thick-line boxes represent the three

essential choices and the global scheme of the present text.



Choice of the explicit degrees of freedom of the model

The choice of the elementary unit is the first step in the design of an
empirical force field. This choice affects:

e the computational effort

« the extent of conformational space that can be searched (timescale)
e maximum resolution in terms of particles and processes

e the energetical accuracy in the interactions

» the type of observables that can be accessible



Hierarchy of explicit degrees of freedom

Table | Hierarchy of explicit degrees of freedom included in the model

Elementary unit Phase Type of interaction Degrees of Reference
(operator/function) freedom
averaged out
Electrons and nuclei Gas phase Ab initio, density functional: None 3]
First-principles quantum mechanical
Hamiltonian, Born-Oppenheimer surface
Semiempirical: None [4,5]
Approximated Hamiltonian
Explicit solvent  Idem, supermolecule methods None [14]
Implicit solvent  Idem, additional reaction field contribution  Solvent [15-19]
United atoms Gas phase
All atoms Classical empirical interaction function Electronic [64, 77]
United atom (aliphatic groups only) Idem Aliphatic H [64, 77]
United atom (all CH,, groups) Idem AllH bound to C  [64, 77]
United atoms (all) Idem All H [64, 77]
Idem Explicit solvent  Idem, including explicit solvent terms Idem [12]
Idem Implicit solvent  Idem, possible corrections in the functional  Solvent [12]
form, parameters, by additional terms
or in the equations of motion
Atom groups as ‘bead(s)’ Implicit solvent  Statistics-based interaction function Side chain [25]
E.g. amino acids in proteins (or crystal)
represented by one or a few beads
Molecules
Represented by a sphere, Liquid phase Average intermolecular interaction Intramolecular [257]

a rod or a disk

(or crystal)

function




Kind of force fields

e Gas-phase force fields

e Condensed-phase force fields:
A. Molecules
B. Polymers
C. Solids

@ Mean-solvent force fields

e Low-resolution force fields

e Hybrid force fields



Need of a classical approximation

Conformations of a peptide during an MD run

M-terminus \

/ M-terminus

MN-terminus

C-terminus

C-terminus "‘. “

: : C-terminus

Starting conformation After 500 pico-second MD After 1 nano-second MD

Length and time scale problems



Simulating nuclei+electrons

e Solving Schrodinger equation for several atoms (see next lectures for DFT)
e Dynamics: Discretizing the equation of motion with timesteps of the order
of fractions of femtosecond; expensive wavefunction optimizations at each

timestep

e Explicit solvent effects

More simply... classical approach

e Electrons are treated implicitely: only nuclei are considered

e Classical equations of motion govern the dynamics (e.g., Newton’s equation)
e No solution of the quantum electronic problem at each dynamics step

e Electron effect is embedded in the interaction: example, a C-C bond

e This is valid only under some assumptions



Possible interaction terms (from HvG97, p. 37)

Table 2 n-Body interaction terms found in common force fields

(n)  Subset Type Term
1 All atoms P Kinetic energy
Charged atoms P Interaction with an external electric field
Surface atoms P Stochastic/frictional force on a macromolecule
Listed or all atoms U Atomic positional restraining
2 All-atom pairs P Pairwise nonbonded interaction (point charges,
point charge/point dipole etc., van der Waals,
solvent accessible surface area interaction)
Bonded atoms P Covalent bond
H-bonded atoms P H-bonding interaction (acceptor—donor)
Listed atom pairs U Distance restraining
3 All-atom triples P Triple nonbonded interactions (expensive, seldom
used)
Atoms in bond angle P Covalent bond-angle bending
Pairs of bond P Bond-bond cross-term
Bond in angle P Bond-angle cross-term
R Atoms in dihedrals P Torsional interaction, improper dihedral interaction
H-bonded atoms P H-bonding (acceptor-antecedent, acceptor, hydro-
gen, donor)
Pairs of angle P Angle-angle cross-term (around one centre)
Atoms in dihedral P Bond-dihedral cross-term (central bond),
angle-angle-torsion cross-term
Atoms in dihedral U J-value restraining, local elevation
> 5 Covalent neighbours P Other cross-terms among bonds, angles and dihed-
' rals
N All atoms P Point polarizability
All atoms U Radius of gyration unfolding force

(n): order of the term, i.e. the number of particles involved in the interaction term, N indicates all
atoms; Subset: subset of atoms for which the term is calculated, either from a list or all atoms
(pairs, triples, respectively); Type: physical (P) or ‘unphysical’ (U) term.



Assumptions underlying empirical interaction functions

“The only justification of empirical force fields resides in their ability to reproduce
and predict a vast amount of experimental results... It is useful to try to understand
the reason of the agreement (or the cause of discrepancies) by considering the
relationship between the energy terms of the force field and the underlying QM
reality”Important assumptions are:

e Implicit degrees of freedom and the assumption of weak correlation
example: fluctuations of implicit electronic degrees of freedom can be neglected
at fixed nuclei

e Energy terms and the assumption of transferability
Functionally simple energy terms valid in several “physical situations” and not
around a given stable configuration of a molecule

® Coordinate redundancy and the assumption of transferability
There are more than 3N-6 energy terms...

o Choices made in the averaging process
A certain energy term is resulting on averaging different molecular situation (all,
for example, with a C-C single bond)



Preparing the model for a molecule

1. Getting the coordinates from some database (e.g., o T

P oo oo o
P o oo
oMNXxT T

6.274 2.318 -2.248
db fil ATOM 2 (T1 5.273  1.875 -2.288
P 1 E) ATOM 3 HC1 5.339 8.863 -1.872
ATOM 4 HC1 4.958 1.814 -3.324
ATOM 5C 4.257 2.782 -1.481
ATOM 60 3.131  2.238 -1.298
[FS .77 . T Y 4 can 2 _noc 1_nac
21 !NBOND
2 3 2 4 1 2 11
11 13 11 14 9 18 7
19 20 19 21 19 22 17
5 6 5 7 2 5 15
15 17 9 11 9 15 7
17 19
36 !NTHETA
5 7 8 4 2 5 3
3 2 5 1 2 3 1
1 2 5 15 17 18 13
s : 12 11 13 12 11 14 10
2. Defining the topology b i e i N u -
9 11 14 8 7 9 7
21 19 2 28 19 21 20
18 17 19 17 19 20 17
17 19 22 6 5 7 5
2 5 6 2 5 7 16
15 17 19 11 9 15 9
9 15 17 7 9 11 7
45 INPHI
6 5 7 8 5 7 9
4 2 5 6 4 2 5
3 2 5 6 3 2 5
2 5 7 8 1 2 5
BONDS 1 2 5 7 16 15 17
1 15 17 19 20 15 17 19
'V(bond) = Kb(b - bB)sx2 5 " n i b h .
! 18 9 1 12 18 9 1
'Kb: kcal/mole/As=2 10 g 11 14 10 g 15
1 .
;ha. A alanine dipeptide 13 2 13 i; 3 1? 1;
'atom type Kb b8 8 7 9 15 7 9 11
) ody 7 9 11 13 7 9 11
1 HC 348.000000000  1.096080000 18 i b . b u Y
73 HC2 348.000008000  1.090800000 " n 5 2 . : ;
(T2 Hll 340.000000000  1.890000000 : 7 9 1 c 3 9
- 434.000000000  1.010000000 3 5 2 9 1 15 17
T4 H12 340.000000000 1.08900080080 11 g 15 16 11 g 15
C 0 570.000000000  1.229000000 ¢=61.21 y=-53.27 ¢=-73.30  y=65.71 9 15 17 19 7 9 15
C N 490.000000000  1.335000000 initial configuration final configuration 7 9 15 17 2 7 5
M1 ¢ 317.000000008  1.522000000 9 17 15 16
T2 (T3 310.000000008  1.526000000
m 317.000000008  1.522000000 . . .
T2 337.000000080  1.449000880 3. Defining the interaction parameters

(T4 337.000000000 1.449000000




The first step is always the atom type

Atom Atom
No. type Description No. type Description
1 c sp® carbon in C=0, C=S 2 cl sp' carbon
3 c2 sp” carbon, aliphatic - c3 sp* carbon
5 ca sp” carbon, aromatic 6 n sp” nitrogen in amides
7 nl sp' nitrogen 8 n2 sp” nitrogen with 2 subst., real double bonds
El n3 sp” nitrogen with 3 subst. 10 nd sp” nitrogen with 4 subst.
11 na sp” nitrogen with 3 subst. 12 nh amine nitrogen
connected to aromatic rings
13 no Nitrogen in nitro groups 14 o sp? oxygen in C=0, COO~
15 oh sp’ oxygen in hydroxyl groups 16 0s sp” oxygen in ethers and esters
17 s2 sp” sulfur (p=S, C=S, etc.) 18 sh sp” sulfur in thiol groups
19 sS sp® sulfur in —SR and S—S§ 20 s4 hypervalent sulfur, 3 subst.
21 s6 hypervalent sulfur, 4 subst. 22 p2 sp” phosphorus (C=P, etc.)
23 p3 sp® phosphorus, 3 subst. 24 pd hypervalent phosphorus, 3 subst.
25 p5 hypervalent phosphorus, 4 subst. 26 he hydrogen on aliphatic carbon
27 ha hydrogen on aromatic carbon 28 hn hydrogen on nitrogen
29 ho hydrogen on oxygen 30 hs hydrogen on sulfur
31 hp hydrogen on phosphorus 32 f any fluorine
33 cl any chlorine 34 br any bromine
35 i any iodine
36 cc(ed) inner sp” carbon in conjugated ring 37 ce(cf) inner sp” carbon in conjugated chain
systems systems
38 cplcq) bridge aromatic carbon in biphenyl 39 cu sp” carbon in three-membered rings
systems
40 cv sp* carbon in four-membered rings 41 cxX sp” carbon in three-membered rings
42 cy sp® carbon in four-membered rings 43 nb aromatic nitrogen
44 nc(nd) inner sp” nitrogen in conjugated ring 45 ne(nf) inner sp” nitrogen in conjugated chain
systems, 2 subst. systems, 2 subst.
46 pb aromatic phosphorus 47 pe(pd) inner sp” phosphorus in conjugated ring
systems, 2 subst.
48 pe(pf) inner sp” phosphorus in conjugated chain 49 px conjugated phosphorus, 3 subst.
systems, 2 subst.
50 py conjugated phosphorus, 4 subst. 51 sX conjugated sulfur, 3 subst.
52 sy conjugated sulfur, 4 subst. 53 hil hydrogen on aliphatic carbon with 1
electron-withdrawal group
54 h2 hydrogen on aliphatic carbon with 2 55 h3 hydrogen on aliphatic carbon with 3
electron-withdrawal groups electron-withdrawal groups
56 h4 hydrogen on aromatic carbon with 1 57 hS hydrogen on aromatic carbon with 2

electron-withdrawal group

electron-withdrawal groups

Nos. 1-35 are the basic atom types and Nos. 3655 are the special atom types.



Hybridization

Trigonal T_rigonal_
Linear planar Tetrahedral bipyramidal Octahedral

Atomic orbitals one s one s ones ones one s

mixed one p two p three p three p three p
Hybrid orbitals oned two d

formed two sp three sp? four sp® five sp3d six sp°d?
Unhybridized

orbitals remaining twop one p four d three d

Y

ZPx Py 2pz h

ttp://www.education.com/study-help/article/valence-bond-
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sp2-sp2 overlap

\ i ethylene: double bond

acetvlene: trinle bond

o bonds Two = bonds http://
A B chemwiki.ucdavis.edu/



Strength of interactions (1 Ha=627.5 kcal/mol ; 1eV= 23 kcal/

e Hydrophobic: < 10 kcal/mol
e Electrostatic: 1-20 kcal/mol

e Hydrogen bond: 2-30 kcal/mol NON-COVALENT

e Stacking of aromatic molecules (pi-pi): 0-10 kcal/
mol

evan der Waals: 0.1-1 kcal/mol

o C-0 bond: 81 kcal/mol 1.43 Angstrom

o C-C bond: 86 kcal/mol 1.54 Angstrom COVALENT

o C-H bond: 103 kcal/mol 1.11 Angstrom

o C=C bond: 143 kcal/mol 1.33 Angstrom




The classical Hamiltonian: AMBER force field

V(T) — Ebonded + Enonbonded

= ZKb(b bo)” + Z Ky(0 — 90)
“bonds | angles

Y (Va/2)1+ coslnp—3])
dihedrals

-+ Z (Al]/r ) (B,]/r )+

nonby

(4:9/75)




A visual summary from a commercial software (from Accelery:

Table 24. Common potential terms in major forcefields supported by Accelrys

Gaccelrys’
MATERIALS

STUDIO

illustrated

form of the term

forcefield1

quadratic bond-stretching

quartic bond-stretching

Morse bond-stretching

;

k(r =rg)? AMBER, CHARMm, UFF
t:(r_ro,l:+k)fr_r°,\’+('J(r_.-o)" CFF
o _,--«'»',-"i“-]' CVFF, ESFF

quadratic angle-bending £(8 - 8y)° AMBER, CHARMm, CVFF
:'I'Y!\\.'
quartic angle-bending ' E5(8 = 80)7 4 k(8 -80)7 +£,(8 -8,)* CFF
cosine angle-bending various ESFF, UFF
single-cosine torsion Ell+cos(ng =do)) o similar AMBER, CHARMm, CVFF
k[l =cosip =gy 0] + £5[1 = cosi2¢ —¢,4)]
three-term cosine torsion +‘ k[ - cosf 3¢°_' don)) o CFF
cosine-Fourier torsion % k(1 cosng) UFF
{sin’0 sin"®,  sin“8, sin’6, )
sin-cos torsion o oot U —— Scostndl| || ESFF
\sin=8 sin- 8, sin"6 sin® 6, /
improper cosine out-of-plane 3 4 K1+ cosimg =%0)] o similar AMBER, CVFF, UFF
’¢
o* 5
improper quadratic out-of-plane B =2g)" CHARMmM
improper square out-of-plane, imprope kx? CVFF
ky? CFF, ESFF, UFF

Wilson (or umbrella) out-of-plane

k(cosy = cosxo):

UFF

pyrimid-height out-of-plane

not used

none




6-9 van der Waals

6-12 van der Waals

33
r'). 1‘9. orE[:..r*:;,.)o_u‘.t/‘.)e]

CFF, ESFF, UFF

electrostatic

[44-4
r"}-- 5l or E[h‘*!r)':—l(l"/r)"]

AMBER, CHARMm, CVFF

a4;
“"ii or similar

AMBER, CFF, CHARMm,CVFF, ESFF, UFF

quadratic bond-bond k(r=ro)r =r'g) CFF, CVFF2
quadratic bond-angle k(r =rg)(® = 8,) CFF, CVFF
angle-angle K(8 = 8g)(8"= &) CFF, CVFF
end bond-torsion (b =bg)[k cosd + kycos2¢ + kycos3) CFF

center bond-torsion (6" = by )& cosd +kocos2¢ +kycos3g) CFF
angle-torsion (8= 8y)[k, cosd + kycos2¢ + kycos3d] CEE
angle-angle-torsion keos(8 -80)(6" -8 ) CFF, CVFF
improper out-of-plane--out-of-plane, improper E[L—cos2y) 31 — cos2y)1? CVFF




Bond energy terms H

e Assuming that the system will not deviate “too much” from équilibrium,

a quadratic expansion is valid

ealthough a Morse expansion would be more faithful to the exact result.

Energy [kJ/mol]

Up(r) = K (1 — reg)

2
U(d) = D, |1~ e~ed=h)

Representation of bond energy terms
C-H bond

100
— Morse
80 L ——— Quadratic
Cubic
----- Quartic
Quadratic in b’
60 3
40 L
20
kT T=300K
0 i S——® i
0.08 0.10 0.12 0.14 0.16

Interatomic distance [nm)

r,




Typical bond parameter values

Atompair | reqinA K‘&igffé;iﬂ/
€c=0 1.229 570
C -C2 1.522 317
C-N 1335 490
C2-N 1.449 337

N -H 1.01 434
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Hamilton’s equations

e In Hamiltionian mechanics, a classical physical system is described by a set of
canonical coordinates (q,p) and a function (Hamiltonian) that represents the total
energy of the system. All possible pairs of (q,p) represent the phase space.

e In a simple onedimensional case,

p2

p=mv: H(p,q)=T(p)+Ulq) = - +Ulq)

Hamilton's equations are a system of two first-order differential equations governing motion.

N
N | S

=% " m I
. OH oU :
N = —_—— = = (
! 9a 9q f(q) o) )

The motion of a point in phase
space is confined to a shell
with constant energy.

The area of a phase space
element is conserved.



Ensembles

*Microcanonical ensemble (NVE)

P(p, q)dpdq o 6(H (p, q) — Ho)dpdq
* Canonical ensemble (NVT)

P(p, q)dpdq < exp <—

*|sothermal-isobaric (NPT)

H(p,q)
kT

) dpdq

H(p: (]) + Pe:r:tV
kT

P(p,q,V)dpdqdV o exp (— ) dpdqdV

Goal of MD: obtaining ensemble averages from trajectory

(4) = / dpdqP(p, t) A(p, q) = / dA(p(E), g (t))



Hamilton's principle

@ The starting point is “Hamilton’s principle” in classical mechanics. Such principle
considers the entire motion of a system between times t; and tz.

e The motion of the system from time ¢; to time ¢ is such that the line integral
(called the action or the action integral)

to y

1= cadt

t1

where L=T-V, has a stationary value for the actual path of the motion.

@ This corresponds to say that the variation of the line integral I for fixed t1 and t2 is
Zero:

12
(5]25/ ﬁ(ql,...,qn,q.l,...,qn,t)dt:O.

t1



Derivation of Lagrange’s equations

Let us consider a function f of many independent variables yi and their derivatives
yi, all function of the parametric variable x. Then a variation of the integral J,

5“’:5/1 P @) ya(@)s s i (@) (@), .., ) da

is obtained by considering J as a function of parameter a that labels a possible set
of curves yi(x, ). Thus, we may introduce a by setting:

yl(xao) + 04771(90)7
y2($70) + 05772(37)7

NN
N =
- 8 R
GRS
|

the variation functions vanishing at the endpoints. The variation becomes:

d of
6J—5/ Z((‘?yl dxayl)@,dx

and since the y variables are 1ndependent the variations are also independent. Hence,
the only possibility to set to zero the variation of / is that the coefficients of dy;
separately vanish.

In the language of Hamilton’s principle, this leads to Lagrange’s equations:

d OL 0L - ]
Y =0, 1=1,....,n
dr 0¢;  Og;

and it can be shown that if IV does not depend on ¢, the total energy of a system T+V is
conserved.



Molecular dynamics

e Lagrange equation of motion can be written under some conditions in the more
familiar (Newton’s law)

-V, V = F; = m,a;
eIn classical molecular dynamics we thus follow the laws of classical mechanics.

e Given an initial set of positions and velocities, the subsequent time evolution is in
principle completely determined.

e The trajectory is a way to obtain a set of configurations distributed according to
some statistical distribution function, or statistical ensemble.

e Example microcanonical: in the HAMILTONIAN formulation (trivially, H=E) we
sample the ensemble where the total energy is a constant Hy.

2 OL
Y Vg, .. an), with p; = 9.




Lagrangian vs. Hamiltonian

e Summarizing and bringing everything together: Lagrangian equations:

d OL 0L , |
— — =0, 1=1,...,n
dx 8qi , aQi ]

e With the usual definitions of T and V, these equations lead to

=V, V = fi = m;r;

ewe can then transform the problem into a system of equations of first order,
introducing canonical momenta and the Hamiltonian:

91 ) OH

) P = — 7—

P = =— H=Y prix — L(q,q) Iqi
gy, %: ) OH
Gk =5—
apk;

eand in cartesian coordinates and simple cases this means that velocities are the
momenta divided by the mass and the time derivative of the momentum is the force.



Conserved quantities (1)

e In certain circumstances, a particular generalized momentum p can be conserved, i.e.
its time derivative is 0. The requirement is that the Hamiltonian is independent of the
corresponding (generalized) coordinate g.

e If potential and T do not depend explicitly on time, H is conserved (total energy is
conserved)

e For any set of particle, it is possible to choose six generalised coordinates that
correspond to translations of the center of mass and rotations about the center of

mass for the system as the whole. CHANGES IN THE REMAINING 3N-6 coordinates
involve relative motion of the particles.

e If the potential depends only on the MAGNITUDE of the distances and without
external field, then H and L are independent of these six coordinates. The
corresponding conserved conjugate momenta are:

TOTAL LINEAR MOMENTUM P = Zﬁi

TOTAL ANGULAR MOMENTUM L =) 7 X pi =Y mifi X7

()



Time integration algorithm

e The engine of a molecular dynamics program is its time integration algorithm,
required to integrate the equation of motion of interacting particles and follow
their trajectory.

e Time integration algorithms are based on finite difference methods, where time is
discretized on a finite grid, the time step A beign the distance between consecutive
points on the grid.

e ] know positions, velocities... at time t, and the scheme gives the same quantities
at time t+A.

e All that is connected with truncation errors (Taylor’s expansion, etc.) and round-
off errors (precision of the machine, implementation).

e Decreasing 4 improves truncation errors, and round-off errors dominate for
small A.

o One of the most popular algorithms: Verlet algorithm



Derivation of Verlet from discretization of least action principle

We start from the discretization of the action integral:

I= / Ldt ~ A Z T(q"™,4"™) = V(g"™)

t1

(n+1) _ ,(n)
a3 (1Y v

and we note that the variation becomes a standard derivation in this case.

oI k k—1 m
0= 5, = (0% —q* )~ 5

k+1 k k—1 k A2

(k+1) q(k:)) B 8V((z’;)
dq

This algorithm has an error of 0(4%) and does not include explicit calculation of the
velocities.



Velocity Verlet algorithm

An alternative implementation is the so-called velocity Verlet. Positions, velocities and accelerations at
time t+1 are obtained from the same quantities at time t in the following way:

1
a**D = g® 4o A+ ——F(g®)A?

1 1
Update forces ' 2m
1
2m
-0.8 —]
1.21 _ 04
ek
Both Verlet form have nice properties: 2 _
£ std.dev. 10
2176
e Conserve the total energy 5 _],77W
[0]
(& 5
std.dev. 10
e Conserve phase space area -1.77 ‘
7 L sld‘.dlcv. 0’
@ Are time reversible 1772 250 500 750 1000
Time [ps]

e Satisfy symplectic condition

4 trajectories of 64 H,O
molecules at 330K, with TIP3P,

different deviation of the forces
(in Hartree/Bohr) from the
correct values.

(Marcella lannuzzi)



Predictor-corrector algorithms

e Another important class of methods to integrate the equations of motion

® The most common of these algorithms are due to Gear, and consist of three
steps:

@ Predictor. From the positions and their time derivatives up to a certain
order g, all known at time t, one “predicts” the same quantities at time t+4¢,
by means of a Taylor expansion. Among these quantities are, of course
accelerations a.

@ Force evaluation. The force is computed taking the gradient of the potential
at the predicted positions. The resulting acceleration = f/m will be in general
different from the “predicted acceleration”. The difference is an “error
signal”

@ Corrector. This error signal is used to “correct” positions and their
derivatives. All corrections are proportional to the error signal, with a
coefficient of proportionality being a “magic number” determined to
maximize the stability of the algorithm.

rP(t+6t)=r()+otv(t)+46t2a(t)+363b()+ . ..
V(+dt) =v(t)+ota(t)+362b(@)+ . ..
ac(t+4ot)=a(t)+oth()+ ...

bP(t+6t)=b@E)+ ... .

Aa(t+01) = a°(¢t +t)—a®(t +4t)

r’(t+9t) =r°(t+0t)+coAa(t + ot)
Ve(t+0t) = v (t+dt)+c, Aa(t +5¢)
a(t+dt) =a"(t+6t)+c,Aa(t+41)
be(t+6¢t) = b’(t+5t)+c3Aa(t+6t)



(Almost) no algorithm will save us from divergence of trajectories

@A tiny error in the initial coordinate will soon lead to mutual divergence of two trajectories, which in turn will
probably both differ from the exact solution of Newton'’s equation

e This should not disturb since the goal of MD is to have exact solutions for times comparable with the correlation
times of interest (time correlation functions) and to generate states sampled from a certain statistical ensemble
(example: microcanonical). So energy conservation is important.

eEnergy conservation experiences degradation as the time step is increased

e Shorter time-steps at high temperatures and for rugged PES.

10°r ® 9 e
0.4% 107
0 time steps ® time steps
10 500 1000
107 107 Fig. 3.1 The divergence of trajectories in molecular dynamics. Atoms interacting through the

potential vRY (), eqn (1.10a), were used, and a dense fluid state was simulated (p* = 0.6,
T* = 1.05,6t* = 0.005). The curves are labelled with the initial displacement in units of 6. (a) Ar
is the phase space separation between perturbed and reference trajectories. (b} AX /X is the
percentage difference in kinetic energies.

time steps

time steps

10* 500 1000

107k



Shifted potentials

® The truncation of the intermolecular potential at a cutoff introduces some
difficulties in defining a consistent potential and force in the MD method

e The function V(rjj) used in a simulation contains a discontinuity at rj=r :

whenever a pair of atoms/molecules cross this boundary, the total energy will not
be conserved. One can shift the potential function by an amount ve=V(r)

S _ U(rij)—’vc r,'j \<~ rc
v3(ry;) = '
0 rj>re

o Still, the force is discontinuous at rj=r¢ : one can modify this shift for having also the
force continuous. In this second modification, the form of the potential is modified, and
the averages have to be corrected at the end of simulation (Stoddard and Ford 1973)

do(r;)
v(ri')—vc_(_i) (rij—ro)
Usp(rij) = { J dr Tj="e ! ry ST

0 ry>r.

v(r) or f(r)
v(r) or f(r)

Fig.5.3 Magnitude of the pair poténtial (solid line) and force (dashed line) for (a) the Lennard-
Jones potential and (b) its shifted-force modification.



Periodic boundary conditions
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® A box is replicated throughout space to form an infinite lattice

® As a molecule moves in the original box, its periodic image in each of the
neighbouring boxes moves in exactly the same way

@ Thus, as a molecule leaves the central box, one of its images will enter through the
opposite face

e® There are no surface molecules in the periodic directions

e Only the coordinates of the central box must be stored



Minimum image convention

eIn principle, one must include interactions between all images in the
periodic boxes (periodic boundary conditions).

eIn case of short range forces, the minimum image convention (m.i.c.)
can be used:

e Consider molecule 1 to rest at the centre of a region which has the same
shape/size of the simulation box

@ m.i.c. assumes that molecule 1 interacts only with all the molecules
whose centres lie within this region: 1/2 N(N-1) interaction terms

elf now we suppose that we use a potential with a finite range R. : when
separated by a distance d> R., molecules do not interact

®To be consistent with the m.i.c., the box must have size larger than 2R,
along each direction

e This gives a reduction by a factor 41 R./3L? in the number of
neighbours.

e Then, particle 1 in the box can interact with images of particle 4, or
with particle 4 itself

@ We choose the closest image of particle 4 to particle 1 since at most
one 1-4 pair (formed by 1 and all possible images of 4) will interact

e Only the closest image is candidate to interact: the others certainly
do not.

OO

OO @@




Applying periodic boundary conditions

@ We check whether the coordinates are within the box (-Lx/2,Lx/2) ,(-Ly/2,Ly/2) ,(-Lz/2,L2/2)
and we “refold” them (ANINT:nearest integer):

IF (X(D)>LX/2) X(D)=X(I)-LX
IF (X(I)<-LX/2) X(I)=X(I)+LX X(D)=X(I)-LX*ANINT(X(D) /LX)
IF (Y(I)>LY/2) Y(D)=Y(I)-LY
IF (Y(I)<-LY/2) Y(I)=Y(I)+LY
IF (z(D)>Lz/2) z(1)=z(1)-LZ
IF (z(I)<-Lz/2) z(1)=z(1)+LZ

Y(I)=Y(I)-LY*ANINT(Y(I)/LY)

OR 7(1)=z(I)-LZ*ANINT(Z(I) /LZ)

e Similar procedure for the distance between two particles, using the minimum image convention:

XIJ=X(I)-X(3)
YIJ=Y(I)-Y(I)
ZI1J=7(1)-z2(3)

IF (YIJ<-LY/2) YIJ=YIJ+LY
IF (zIJ>LZ/2) ZIJ=ZI]-LZ
IF (ZIJ<-LZ/2) ZIJ=ZIJ+LZ

IF (XIJ>LX/2) XIJ=XIJ-LX XIJ=X(I)-X(I)-LX*ANINT((X(I)-X(3)) /LX)
IF (XIJ<-LX/2) XIJ=XIJ+LX OR |YIJ=Y(I)-Y(I)-LY*ANINT((Y(D)-Y(I))/LY)
IF (YIJ>LY/2) YIJ=YIJ-LY Z13=2(1)-Z(3)-LZ*ANINT((Z2(T1)-2(3))/LZ)

® Then the square of the distance is computed and compared with the square of cutoff of the potential:

RIJSQ=XIJ*XIJ+YIJ*YIJ+ZIJ*ZI]
IF (RIJSQ < RCUTSQ)THEN

COMPUTE FORCES
END IF




Initialization of a simulation

e In a crystal, small random displacements are added to the lattice position, a few
percent of the lattice spacing is adequate

e Initial velocities are assigned taking them from a Maxwell distribution at a certain
temperature T. The linear momentum (and angular as well for molecules) is usually
subtracted to have a conserved zero total momentum in the simulation.

e For the rest of the simulation, it depends on the kind of example we want to
simulate.

@ A trivial way is through a “modified Velocity Verlet algorithm”, a simple method that
is only used to reach equilibration:

To iy L A

(k+3) —
Y T®) 2

® Any physical quantity will approach its equilibrium value exponentially with time
with a certain relaxation time.



How to find the neighbours of an atom

VERLET LIST: scales like O(N?)
combined with cell list: O(N)
careful skin value: update every several steps

CELL LIST: scales like C*O(N)
only about 16% of the atoms interact

Cell lists structure Verlet (neighbor) list structure

The selected atom is interacting only with atoms laying in its own cell and The selected atom is interacting only with atoms laying close enough to it.
its closest neighbors. These cells are marked using red and yellow colors. Atoms included in its Verlet list lay on the red and yellow areas.

(From: Piotr Janik, Next-Generation Molecular Workbench, http:




Verlet neighbour lists

Table 5.1 Time saving using a Verlet neighbour list
[Thompson 1983].

Time®
List Update®
Radius interval N =256 N =500
no list — 3.33 10.00
2.60 5.78 224 493
2.70 12.50 2.17 4.55
290 26.32 2.28 451
3.10 4348 247 4.79
343 83.33 2.89 —
3.50 100.00 — 5.86

*Update interval is the average number of steps between updates.
It is essentially independent of system size.

*Time is CPU time per step, in seconds. The runs were
performed on a PDP 11/70.

eIn the inner loops of the MD programs, we consider a molecule i and loop over all molecules to calculate the
minimum image separations.

oIf the separation is greater than cutoff, the neighbor is not considered. This method has a scaling of O(N?)
e Verlet (1967) suggested a technique to have list of neighbors updated only every several steps. Namely:
e Choose a sphere with radius r;>r. (skin);

o Build an array LIST with all neighbors of all atoms, and a indexing array POINT

e Use the list in the force/energy evaluation routine

e The list is reconstructed when the atom with the maximum velocity can in principle cross the whole skin

e Compromise between thick skin (less updates, more neighbors) and thin skin (more updates, less neighbors)



MDBENCH

® A benchmark for MD simulations developed by Furio Ercolessi in the 80’s and
maintained until 2000.

MACHINE, COMPILER, COMPILATION OPTIONS TIME DATE

FPS164, apftnb6d, OPL=3 ..uiceessssnessssssssssssssnnnssnsnnnsss 668 8 Julg9
FPS164, apftné4, opt=2 . ... BB8 s Julsg9
DEC DS20 (EV6,4MB), OSF1 4.0, £90 V5.2-705 ["] seeeeesssncsasss &.318 26May99 L. ,
DEC DS20 (EV6,4MB), OSF1 4.0, £77 V5.2=705 [*] seseeeessseeeess 4.355 26May99 Vax 6410, VMS, Vax Fortran 5.4-79, OPL suueeeeeccsssnnnsssssss 048 8 06Feb91
DEC DS20 6/500(EV6,4MB),£90 V5.2-705, -05 -tune host -arch host &.56s- 16Apr99
[*] -05 -arch host -tune host -fast Vax 8800, VMS, Vax Fortran 5.4, OPL .cescesccsscssssssssaesass 854 85 14Mar9o0
SGI Octane R12000 (300MHz/2MB SC), £77 7.2.1.3 ["] weveenneasss 4.91s+ 14Apr99 Vax 6310, VMS, Vax Fortran 5.4, OPt .s.csesescscssssssssssssss 1326 8 13Mar90
["] -64 -03 -mips4 -r10000 -LNO:fis=0:pref=0:cs2=2M: 2
-0PT:01=0:IEEE o=3:pad=on VaxStation 3100/38, VMS, Vax Fortran 5.4, OPL ...seseesssssss 1378 8 13Mar9o0
=0N:preempt -TARG:pl=ip30
Gould 32/97, Unix, EPCL fOXt, OPL sueceesssscccsssssscssssasss 1418 8 21Dec88

DEC 21164 (EV56)/600MHZ/4MB,Unix V4.0 878, £77 V5.0-138-3678F ["] 5.52s 27Apr99

["] -05 -fast -unroll 0 -assume noaccuracy sensitive vax 6210, VMS, Vax FOXrtran 4.7, OPL seeeessccssscsssscassssas 1873 8
-speculate all -tune host

VaxStation 3500, VMS, Vax Fortran 4.7, OpPt...... .. 2017 s
VaxStation 3500, Ultrix, Berkeley £77 1.0, OPLt cuieevcescesas 2275 8 13Mar90

SGI Origin 2000 R10000 (250MHZ/4MB SC), £77 7.1 ["] seeeeeessss 5.828+ 19Feb98
["] -64&4 -03 -mips4 -r10000 -LNO:fis=0:pref=0:cs2=4M:fus=2

-0PT:01=0: =3:pad=on . _—
X:preempt -TARG:pl=ip27 Microvax II, VMS, Vax Fortran 5.4, OPL .eeeecccccccssssssssss 6941 8 14Mar9o
DEC 21164 (EV56)/533MHz, Unix V4.0 878, £77 V5.0-138-3678F [] . 6.06s 27Apr99 Vax 750, VMS, Vax Fortran 4.7, OPL ......uvvvvvnnnnnnnnnna.. 6973 8
["] -05 -fast -unrell 0 -assume noaccuracy sensitive
-speculate all -tune host VaxStation 2000, VMS, Vax Fortran 5.4, opt ... . .. 7255 8 14Mar9o
VaxStation 2000, Ultrix, £77, OPL sueeesssncsssssnnnnnssnaass 8306 8 23Dec8s
DEC 500au (EV56/2MB), Unix 4.0C, £90 V5.0-492, [1] .. wees.. 6.38s 11Feb98
DEC 500au (EV56/2MB), Unix 4.0C, £90 V5.0-492, as [1] w/o -g3 . 6.44s 11Feb98 MacIntosh ClassicII, 16Mhz 68030/25Mhz 68882, Absoft 3.2, -0 8590 s 04Jun96
DEC 500au (EV56/2MB), Unix 4.0C, £90 V5.0-492, [2] secsesssesas 6.525 11Feb98 MacIntosh ClassicII, 16Mhz 68030/25Mhz 68882, Absoft 3.2 ... 10234 s 04Jun96
DEC 500au (EV56/2MB), Unix 4.0C, £90 V5.0-492, as [2] w/o -g3 . 6.66s 11Feb98
DEC 500au (EV56/2MB), Unix 4.0C, £90 V5.0-492, [3] ............ 7.17s 11Feb98 Apple PowerBook 520, 68LC040, AbSOEt £77 2.4, =M -H ......... 8664 s 127un96

. 8.28s 11Feb98
9.01s 11Feb98

DEC 500au (EV56/2MB), Unix 4.0C, £90 Vv5.0-492, -05 .
DEC 500au (EV56/2MB), Unix 4.0C, £90 V5.0-492 ...

Apple PowerBook 520, 68LC040, Absoft £77 2.4, -M -C -B -Q -H 8981 12Jun9%6

o On my Macbook pro (without any tweaking) about 0.8 s, on a Nehalem core 0.5 s



Long range forces

Fig. 5.7 Building up the sphere of simulation boxes. We illustrate a very small system of two ion

pairs for simplicity. The shaded region represents the external dielectric continuum of relative
permittivity &,

We need a technique for efficiently summing the interaction between a charged ion
and all its periodic images.

Ion 1 in the figure interacts with ion 2, ion 24, 2B, 2C... and all other images.
The potential energy can be written as

iz
VCoulomb § E E |7“ n n‘ )
1

=1 j=1

where the sum runs over all lattice points n=(nx L, ny L, n; L), the prime indicate that
we omit i=j in the same cell for n=0.""

For long-range potentials, this sum is conditionally convergent: it depends on
the order by which we perform the sum over images. Next lecture: Ewald.



Simple statistical quantities to measure

We can consider the instantaneous value of a physical property A:

Trivial properties to be averaged are potential energy, Kinetic energy, total
energy, temperature, caloric curve (see next lecture about melting).




Next time...



Mean square displacement

® The mean square displacement of atoms in a simulation can be easily computed
by its definition:

MSD = (|7(t) — 7(0)[*)

e with average over all atoms; be careful about refolding.

e In particular this can be used to compute the diffusion coefficient D (in 3D)

D= lim — (17() — 7(0) )

t—oo OF



Pressure

@ Measurement of pressure in an MD simulation is based on the Clausius virial
function

e and an external force (from the container) and an internal one (from interatomic
interactions) can be calculated.

@ The final formula allows to estimate pressure from MD (virial equation):

N
1 -
PV = NksT + 7 <Z7~F>

=1



