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WHAT ARE WE CALCULATING ?

P(~p,~q) is the probability distribution at a given thermodynamic
condition.

〈A(~q)〉 =

∫
d~q d~p A(~q) P(~p,~q)∫

d~q d~p P(~p,~q)
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WHAT ARE WE CALCULATING ?

6N dimensional integral !

Figure : Integral by quadrature
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WHAT ARE WE CALCULATING ?

6N dimensional integral !

Figure : Integral by importance sampling
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IS MY SIMULATION TIME LONG ENOUGH ?

cAA(∆) = 〈A(t) ·A(∆ + t)〉t

Figure : Auto correlation function for the potential and kinetic energy

4 venkat kapil MD



IS MY SIMULATION TIME LONG ENOUGH ?

cAA(∆) = 〈A(t) ·A(∆ + t)〉t

Figure : Auto correlation function for the potential and kinetic energy

4 venkat kapil MD



WHY NOT MARKOV CHAIN MONTE CARLO ?

Probability of acceptance in MCMC :

a(q→ q′) = min(1, e−β[V(q′)−V(q)])

1 High acceptance vs “making things happen”.
2 Curse of large system size.
3 Generalized “smart moves”.
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MOLECULAR DYNAMICS

H =
3N∑
i=0

pi
2

2mi

+ V(q1, .., q3N); ~̇p = −∂V
∂~q

& ~̇q =
~p

~m

Figure : Dynamics conserves energy
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HOW TO INTEGRATE EQUATIONS OF MOTION?

~̇x =
d

dt
~x

= [~̇q · ∂
∂~q

+ ~̇p · ∂
∂~p

] ~x

= [
~p

~m
· ∂
∂~q
− ∂V

∂~q
· ∂
∂~p

] ~x

= iLH ~x

~̇x = iLH ~x =⇒ ~x(t) = eiLHt ~x(0)

iLH =
~p

~m
· ∂
∂~q
− ∂V

∂~q
· ∂
∂~p

= iLq + iLp
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HOW TO INTEGRATE EQUATIONS OF MOTION?

Phase space vector :
~x = (p1, ..,p3N, q1, .., q3N).

How to evolve ~p & ~q ?

~x(t) = eiLHt ~x(0)

The classical propagator!

~x(t) = eiLHt ~x(0)

= [eiLH
t
M ]M ~x(0)

= [eiLq∆t+iLp∆t]M ~x(0)

≈ [eiLp∆t/2 · eiLq∆t · eiLp∆t/2]M ~x(0)

eτ(A+B) = [e∆τ/2A · e∆τB · e∆τ/2A]M +O(∆τ−3) ∆τ = τ/M
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Tuckerman et al. JCP (1992), Trotter PAMS (1959)



HOW TO INTEGRATE EQUATIONS OF MOTION?

~x(∆t) = [eiLp∆t/2 · eiLq∆t · eiLp∆t/2] ~x(0) = ?

Given that:

eiLq∆t = e+ ~p
~m∆t· ∂∂~q

eiLp∆t = e−
∂V
∂~q ∆t· ∂∂~p

ec
∂
∂x f(x, y) = f(x + c, y)


~p→ ~p− ∂V

∂~q ∆t/2

~q→ ~q + ~p
~m∆t

~p→ ~p− ∂V
∂~q ∆t/2

The Velocity Verlet algorithm!
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HOW TO CHOOSE THE TIME STEP?

Figure : Presence of multiple time scales in a system
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HOW TO INTEGRATE WITH MULTIPLE TIME STEPS

Figure : Separation of time scales

H =
3N∑
i=0

pi
2

2mi

+ Vlr(q1, .., q3N) + Vsr(q1, .., q3N)

iLH =
~p

~m
· ∂
∂~q
− ∂Vlr

∂~q
· ∂
∂~p
− ∂Vsr

∂~q
· ∂
∂~p

= iLq + iLlr
p + iLsr

p
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HOW TO INTEGRATE WITH MULTIPLE TIME STEPS

Figure : Separation of time scales

~x(∆t) = eiLH∆t ~x(0)

= ei[iLq+iLsr
p +iLlr

p ]∆t ~x(0)

≈ eiL
lr
p ∆t/2[eiL

sr
p ∆t+iLq∆t]eiL

lr
p ∆t/2 ~x(0)
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Tuckerman et al. JCP (1992)



HOW TO INTEGRATE WITH MULTIPLE TIME STEPS

Figure : Separation of time scales


p→ p− ∂Vlr

∂~q
∆t
2

Velocity Verlet for M steps with “short range” forces with ∆t/M.
p→ p− ∂Vlr

∂~q
∆t
2
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Tuckerman et al. JCP (1992)



MTS: THE REALITY

Figure : Range separation is trivial

[http://www.omnia.md/blog/2014/11/6/how-to-train-your-force-field]
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MTS: THE REALITY

What about the ab inito framework ?

[−−}
2

2m
∇2 + V(r̂)] ψ(r) = E ψ(r)
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MTS: THE REALITY

Figure : Separation of time scales

H =
3N∑
i=0

pi
2

2mi

+ Vsr(q1, .., q3N) + (V(q1, .., q3N)−Vsr(q1, .., q3N))
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Kapil et al. JCP (2016), Marsalek et al. JCP (2016), John et al. PRE (2016)



MTS: THE REALITY

Figure : How to choose the “cheap potential”?
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Kapil et al. JCP (2016), Marsalek et al. JCP (2016), John et al. PRE (2016)



HOW TO INTEGRATE EQUATIONS OF MOTION: WRAPPING
UP

1 Velocity Verlet comes from the classical propagator.

2 Error decreases systematically as (∆t)−2.
3 Further decomposition leads to a MTS integrator.
4 Time-reversible and symplectic.
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

How to sample a NVT ensemble for system given by the Hamiltonian ?

H(~p,~q) =
3N∑
i=0

pi
2

2mi

+ V(q1, .., q3N)
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

Generate (~p,~q) such that:

P(~p,~q) =
e−βH(~p,~q)∫

d~pd~qe−βH(~p,~q)

Do Hamilton’s equations of motion conserve P(~p,~q) ?

iLH P(~p,~q) = 0
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

Figure : A problem of ergodicity
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

Figure : Andersen’s thermostat
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DETERMINISTIC THERMOSTATS

Nose-́ Hoover thermostat:

~̇q =
~p

~m
; ~̇p = −∂V

∂~q
− ~pps

Q
; ṗs = ~p · ~p

~m
; ṡ =

ps

Q

1 Not ergodic. Must use chains.
2 Not rotationally invariant.
3 Integrating equations of motion is not pretty.
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STOCHASTIC THERMOSTATS

Figure : A white noise Langevin thermostat

Langevin thermostat:

~̇q =
~p

~m
; ~̇p = −∂V

∂~q
− γ~p + ~m1/2

√
2γβ−1~ξ; 〈~ξ(t) · ~ξ(0)〉 = δ(t)

1 Ergodic
2 Linear equations
3 Integration very stable and easy.

iL = iLγ + iLH; iLγ P(~p,~q) = 0

eiL∆t ≈ eiLγ∆t/2 eiLH∆t eiLγ∆t/2

H̃ = ∆H + ∆K

∆H = Change in total energy during the Hamiltonian step

∆K = Change in kinetic energy during the thermostat step

17 venkat kapil MD

Schneider et al. PRB (1978), Bussi et al. JCP (1992)
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SAMPLING EFFICIENCY

Can we measure how efficient a Langevin thermostat is ?

Figure : Under damped, optimally damped and over damed regimes
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A GENERALIZED LANGEVIN EQUATION

~̇q =
~p

~m

~̇p = −∂V
∂~q
−
∫

ds K(s) ~p(t− s) + ~m1/2
√
2β−1~ξ; 〈~ξ(t) · ~ξ(0)〉 = H(t)

Figure : A generalized Langevin equation (GLE)thermostat

19 venkat kapil MD

Zwanzig, Nonequilibrium statistical mechanics (2001)



A GENERALIZED LANGEVIN EQUATION

q̇ =p(
ṗ

ṡ

)
=

(
−V′(q)

0

)
−
(
app aTp
āp A

)(
p

s

)
+

(
bpp bTp
b̄p B

)(
ξ

)

K(t) and H(t) can be expressed in terms of the drift and the
diffusion matrix.
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Zwanzig, Nonequilibrium statistical mechanics (2001)



A GENERALIZED LANGEVIN EQUATION

Sampling efficiency over a wide frequency range?

Figure : Optimizing a merit function of sampling efficiency

20 venkat kapil MD

Ceriotti et al. JCTC (2010)



A GENERALIZED LANGEVIN EQUATION

Sampling efficiency over a wide frequency range?

Figure : Optimizing a merit function of sampling efficiency

20 venkat kapil MD

Ceriotti et al. JCTC (2010)



A GENERALIZED LANGEVIN EQUATION

Sampling efficiency over a wide frequency range?

Figure : Optimizing a merit function of sampling efficiency

20 venkat kapil MD

Ceriotti et al. JCTC (2010)



A GENERALIZED LANGEVIN EQUATION

Sampling efficiency over a wide frequency range?

Figure : Optimizing a merit function of sampling efficiency

20 venkat kapil MD

Ceriotti et al. JCTC (2010)



A GENERALIZED LANGEVIN EQUATION

Exciting a narrow range of frequencies?
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WRAPPING UP

1 System + bath gives canonical sampling.

2 Stochastic modelling of a bath.
3 Propagation, ergodicity and conserved quantity X.
4 GLE gives both optimal and selective sampling.
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MOLECULAR DYNAMICS : AT CONSTANT PRESSURE

Figure : Sampling at constant volume
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MOLECULAR DYNAMICS : AT CONSTANT PRESSURE

Figure : Sampling at constant pressure
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MOLECULAR DYNAMICS : AT CONSTANT PRESSURE

~̇q =
~p

~m
+ α~q

~̇p = −∂V
∂~q
− α~p

V̇ = 3Vα
α̇ = 3[V (Pint − Pext) + 2β−1]µ−1
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MOLECULAR DYNAMICS : AT CONSTANT PRESSURE

iL = iLγ + iLH̃; iLγ PNPT(~p,~q) = 0; iLH̃ PNPT(~p,~q) = 0
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Andersen JCP (1980), Parinello et al. JAP (1981), Martyna JCP (1994), Bussi JCP (2009)



TAKE HOME

1 Molecular Dynamics vs Monte Carlo.

2 Louiville formulation gives robust integrators.
3 Canonical sampling can be achieved by stochastic modelling.
4 Density fluctuations, changes in cell, isotherms, stress-strain

curves can be computed by sampling the NPT ensemble.
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