Introduction to Advanced Sampling in CP2K: multiple time-step MD

Vladimir Rybkin

University of Zurich, Department of Chemistry

13.07.2017

-Theory

Reference system propagator algorithm, RESPA

Liouville operator representation of Hamiltonian mechanics:

$$iL = \sum_{j=1}^{f} \left[\frac{\partial H}{\partial p_j} \frac{\partial}{\partial x_j} + \frac{\partial H}{\partial x_j} \frac{\partial}{\partial p_j} \right]$$

Classical propagator:

$$U(t) = e^{iLt}$$

Decomposition into several forces:

$$iL = \sum_{j=1}^{f} \left[\dot{x}_j \frac{\partial}{\partial x_j} + F_j^1 \frac{\partial}{\partial p_j} + F_j^2 \frac{\partial}{\partial p_j} \right]$$

D _v	blein		mn	ling
пy	UNII	1, 36	unp	шy

-Theory

The **multistep** propagator:

$$e^{iL\Delta t} =$$

$$e^{(\Delta t/2)F^{2}(\frac{\partial}{\partial p})} \left[e^{(\delta t/2)F^{1}(\frac{\partial}{\partial p})} e^{\delta t \dot{x}_{j}} e^{(\delta t/2)F^{1}(\frac{\partial}{\partial p})} \right]^{n} e^{(\Delta t/2)F^{2}(\frac{\partial}{\partial p})}$$

 δt is not equal to $\Delta t!$

$$F^1 = F^{cheap}$$

 $F^2 = F^{expensive} - F^{cheap}$

Possible methods:

- Cheap: GGA DFT, small basis sets etc.
- Expensive: hybrid DFT, MP2, large basis sets etc.

Rybkin, Samplin

Input: RESPA

Motion section:

&MD

&RESPA FREQUENCY 6 &END RESPA ENSEMBLE NVE STEPS 1000 TIMESTEP 1.5 &END MD

Core section:

&MULTIPLE_FORCE_EVALS

- ! 1 is the cheap one
- ! 2 is the expensive FORCE_EVAL_ORDER 2 1 MULTIPLE_SUBSYS &END

- Cheap forces every 1.5 fs
- Expensive forces every 0.25 fs 6 substeps inbetween

Rv	hkin	Samp	lina
•••	O 1 11 1	, oamp	

-CP2K input

Multiple times-step integration stability

(H₂O)₆ cluster with PBE (cheap) and HSE06 (expensive)

 $\delta t = 0.5$ fs, $\Delta t = n * \delta t$: stable until 4 fs between expensive forces evaluation!

Dybkin	Same	alina
туркін	, Jain	uniy

-CP2K input

IR spectrum of liquid water from MP2 MD

- Dynamic property: requires dipole moment time-autocorrelation function (need for MD)
- Bulk water with 64 H₂O cell
- $\delta t = 0.25$ fs, $\Delta t = 6 * \delta t = 1.5$ fs; PBE and MP2
- Total of 10 ps: ca. 3 times cheaper than pure MP2 (with 0.5 fs step)

CP2K input

Cavity formation in the bulk hydrated electron

Figure: **0 ps**: delocalized

Figure: **0.5 ps**: irregular cavity

Figure: **1 ps**: regular cavity

Rybkin,	Sampling
0.00	

Conclusions

- Multiple time-step MD (RESPA in CP2K) significantly accelerates integration with expensive methods (hybrid DFT, MP2)
- Available for NVE ensembles
- Can be extended to accelerated path-integral MD (lectures tomorrow!)

Literature:

- General: D. Frenkel and B. Smit, Understanding Molecular Simulation
- RESPA in CP2K: M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele, JCP 128, 214104 (2008).
- Liquid water: M. Del Ben, J. Hutter, and J. VandeVondele, JCP 143, 054506 (2015).