GW calculations for molecules and solids: Theory and implementation in CP2K

Jan Wilhelm

jan.wilhelm@chem.uzh.ch

13 July 2017

Overview

Theory and practical G_0W_0 scheme

- Physics of the GW approximation
 - 3 Benchmarks and applications of $G_0 W_0$
- Canonical G₀W₀: Implementation in CP2K and input
- Periodic G_0W_0 calculations: Correction scheme and input
- **(6)** Cubic-scaling G_0W_0 : Formalism, implementation and input

O Summary

- Physics of the GW approximation
- 3 Benchmarks and applications of $G_0 W_0$
- Canonical G₀W₀: Implementation in CP2K and input
- Periodic G_0W_0 calculations: Correction scheme and input
- Cubic-scaling G₀W₀: Formalism, implementation and input

🕖 Summary

Quasiparticle energies in GW: Theory

Definition:

A quasiparticle energy ε_n is defined as energy which

- is needed to remove an electron from the system to the vacuum or
- is gained if one places an electron from the vacuum to the system
- In DFT and Hartree-Fock, there is no theoretical foundation that the eigenvalues ε_n from an SCF,

$$\left(-\frac{\nabla^2}{2} + v_{\text{el-core}}(\mathbf{r}) + v_{\text{H}}(\mathbf{r}) + v_{\text{xc}}(\mathbf{r})\right)\psi_n(\mathbf{r}) = \varepsilon_n \psi_n(\mathbf{r})$$

have anything to do with quasiparticle energies.

Theorem:

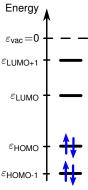
A self-energy $\Sigma(\mathbf{r}, \mathbf{r}', \varepsilon)$ (non-local, energy-dependent) containing exchange and correlation effects exists, such that the solution of

$$\left(\frac{-\nabla^2}{2} + v_{\text{el-core}}(\mathbf{r}) + v_{\text{H}}(\mathbf{r})\right)\psi_n(\mathbf{r}) + \int d\mathbf{r}' \ \Sigma(\mathbf{r}, \mathbf{r}', \varepsilon_n)\psi_n(\mathbf{r}') = \varepsilon_n \ \psi_n(\mathbf{r})$$

gives the correct quasiparticle energies ε_n of the interacting many-electron system.

• In the GW approximation, the self-energy reads

$$\Sigma^{GW}(\mathbf{r},\mathbf{r}',\varepsilon) = \frac{i}{2\pi} \int_{-\infty}^{\infty} d\varepsilon' \, G(\mathbf{r},\mathbf{r}',\varepsilon-\varepsilon',\{\varepsilon_n\},\{\psi_n\}) \, W(\mathbf{r},\mathbf{r}',\varepsilon',\{\varepsilon_n\},\{\psi_n\})$$



Single-electron (quasiparticle) levels of a closed shell molecule

Quasiparticle energies in GW: G_0W_0 formalism in practice

 G_0W_0 : Start from DFT MOs $\psi_n^{\text{DFT}}(\mathbf{r})$ and compute first-order correction to DFT eigenvalues:

Converge DFT SCF (e.g. PBE functional for solids "G₀W₀@PBE", PBE0 for molecules)

$$\left(-\frac{\nabla^2}{2} + v_{\text{el-core}}(\mathbf{r}) + v_{\text{Hartree}}(\mathbf{r}) + v_{\text{xc}}(\mathbf{r})\right)\psi_n^{\text{DFT}}(\mathbf{r}) = \varepsilon_n^{\text{DFT}}\psi_n^{\text{DFT}}(\mathbf{r}) \,.$$

Occupie Compute density response (most expensive step):

$$\chi(\mathbf{r},\mathbf{r}',i\omega) = 2\sum_{i}^{\text{occ}} \sum_{a}^{\text{virt}} \psi_{a}^{\text{DFT}}(\mathbf{r}')\psi_{i}^{\text{DFT}}(\mathbf{r}')\psi_{a}^{\text{DFT}}(\mathbf{r}) \frac{\varepsilon_{i}^{\text{DFT}} - \varepsilon_{a}^{\text{DFT}}}{\omega^{2} + (\varepsilon_{i}^{\text{DFT}} - \varepsilon_{a}^{\text{DFT}})^{2}} . \quad (\mathcal{O}(N^{4}))$$

Sompute dielectric function with $v(\mathbf{r}, \mathbf{r}') = 1/|\mathbf{r} - \mathbf{r}'|$

$$\epsilon(\mathbf{r},\mathbf{r}',i\omega) = \delta(\mathbf{r},\mathbf{r}') - \int d\mathbf{r}'' v(\mathbf{r},\mathbf{r}'')\chi(\mathbf{r}'',\mathbf{r}',i\omega) \,. \tag{O}(N^3)$$

Ompute screened Coulomb interaction

$$W_0(\mathbf{r},\mathbf{r}',i\omega) = \int d\mathbf{r}'' \epsilon^{-1}(\mathbf{r},\mathbf{r}'',i\omega) v(\mathbf{r}'',\mathbf{r}'). \qquad (\mathcal{O}(N^3))$$

Compute the self-energy

$$\Sigma(\mathbf{r},\mathbf{r}',i\omega) = -\int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} G_0(\mathbf{r},\mathbf{r}',i\omega-i\omega') W_0(\mathbf{r},\mathbf{r}',i\omega'), \ G_0(\mathbf{r},\mathbf{r}',i\omega) = \sum_m^{\text{all}} \frac{\psi_m^{\text{DFT}}(\mathbf{r}')\psi_m^{\text{DFT}}(\mathbf{r})}{i\omega+\varepsilon_{\text{F}}-\varepsilon_m^{\text{DFT}}}. \ (\mathcal{O}(N^3))$$

Sompute G_0W_0 quasiparticle energies (replace wrong XC from DFT by better XC from GW)

$$\varepsilon_n^{G_0W_0} = \varepsilon_n^{\mathsf{DFT}} + \langle \psi_n^{\mathsf{DFT}} | \mathsf{Re}\, \Sigma(\varepsilon_n^{G_0W_0}) - v^{\mathsf{xc}} | \psi_n^{\mathsf{DFT}} \rangle \tag{$\mathcal{O}(N^3)$}$$

Historical sketch of GW

• 1965: Proposition of the GW method

Lars Hedin: New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Phys. Rev. **139**, A796 (1965), \sim 3700 citations

- 1986: First G₀W₀@LDA calculation for diamond, Si, Ge, and LiCl
 M. S. Hybertsen and S. G. Louie: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986), ~ 2700 citations
- 2005 now: *GW* for solids in publicly available plane-waves codes Abinit: X. Gonze *et al.*, Z. Kristallogr. 220, 558–562 (2005) VASP: M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006) Yambo: A. Marini, C. Hogan, M. Grüning, D. Varsano, Comput. Phys. Commun. 180, 1392–1403 (2009) BerkeleyGW: J. Deslippe *et al.*, Comput. Phys. Commun. 183, 1269–1289 (2012) GPAW: F. Hüser, T. Olsen, and K. S. Thygesen, Phys. Rev. B 87, 235132 (2013) WEST: M. Govoni and G. Galli, J. Chem. Theory Comput. 11, 2680–2696 (2015)
- 2011 now: *GW* with localized basis in publicly available codes FHI-aims: X. Ren *et al.*, New J. Phys. **14**, 053020 (2012) Turbomole: M. van Setten, F. Weigend, and F. Evers, J. Chem. Theory Comput. **9**, 232–246 (2012) molgw: F. Bruneval *et al.*, Comput. Phys. Commun. **208**, 149–161 (2016) CP2K: J. Wilhelm, M. Del Ben, and J. Hutter, J. Chem. Theory Comput. **12**, 3623–3635 (2016)
- Recent trend: Numerically converged results and agreement between codes
 J. Klimeš, M. Kaltak, and G. Kresse: Predictive *GW* calculations using plane waves and pseudopotentials, Phys. Rev. B 90, 075125 (2014)

M. van Setten et al.: GW100: Benchmarking G₀W₀ for Molecular Systems, JCTC 11, 5665-5687 (2015)

1) Theory and practical G_0W_0 scheme

2 Physics of the *GW* approximation

- Benchmarks and applications of G₀W₀
- Canonical G₀W₀: Implementation in CP2K and input
- 5) Periodic G_0W_0 calculations: Correction scheme and input
- Cubic-scaling G₀W₀: Formalism, implementation and input

7 Summary

Hedin's equations

• Hedin's equation: Complicated self-consistent equations which give the exact self-energy. Notation: $(1) = (\mathbf{r}_1, t_1), G_0$: non-interacting Green's function, e.g. from DFT

Self-energy: $\Sigma(1,2) = i \int d(34)G(1,3)\Gamma(3,2,4)W(4,1^+)$ Green's function: $G(1,2) = G_0(1,2) + \int d(34)G_0(1,3)\Sigma(3,4)G(4,2)$

Screened interaction: $W(1,2) = V(1,2) + \int d(34)V(1,3)P(3,4)W(4,2)$

Bare interaction: $V(1,2) = \delta(t_1 - t_2)/|\mathbf{r}_1 - \mathbf{r}_2|$

Polarization: $P(1,2) = -i \int d(34)G(1,3)G(4,1^+)\Gamma(3,4,2)$

Vertex function: $\Gamma(1,2,3) = \delta(1,2)\delta(1,3) + \int d(4567) \frac{\partial \Sigma(1,2)}{\partial G(4,5)} G(4,6)G(7,5)\Gamma(6,7,3)$

• It can be shown that $\Sigma(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = \Sigma(\mathbf{r}_1, \mathbf{r}_2, t_2 - t_1)$. After a Fourier transform of Σ from time $t \equiv t_2 - t_1$ to frequency (= energy), the self-energy $\Sigma(\mathbf{r}, \mathbf{r}', \omega)$ can be used to compute the quasiparticle levels ε_n using

$$\left(\frac{-\nabla^2}{2} + v_{\text{el-core}}(\mathbf{r}) + v_{\text{H}}(\mathbf{r})\right)\psi_n(\mathbf{r}) + \int d\mathbf{r}' \ \Sigma(\mathbf{r}, \mathbf{r}', \varepsilon_n)\psi_n(\mathbf{r}') = \varepsilon_n \ \psi_n(\mathbf{r})$$

Hartree-Fock is GV:

Self-energy:
$$\Sigma(1,2) = i \int d(34)G(1,3)\Gamma(3,2,4)W(4,1^+) = G(1,2)V(2,1)$$

Green's function: $G(1,2) = G_0(1,2) + \int d(34)G_0(1,3)\Sigma(3,4)G(4,2)$
Screened interaction: $W(1,2) = V(1,2) + \int d(34)V(1,3)\mathcal{P}(3,4) \xrightarrow{\to 0} W(4,2) = V(1,2)$
Bare interaction: $V(1,2) = \delta(t_1 - t_2)/|\mathbf{r}_1 - \mathbf{r}_2|$
Polarization: $P(1,2) = -i \int d(34)G(1,3)G(4,1^+)\Gamma(3,4,2) = 0$
Vertex function: $\Gamma(1,2,3) = \delta(1,2)\delta(1,3) + \int d(4567) \frac{\partial \Sigma(1,2)}{\partial G(4,5)}G(4,6)G(7,5)\Gamma(6,7,3)$

 $\Sigma(1,2) = i \int d(34)G(1,3)\Gamma(3,2,4)W(4,1^+) = iG(1,2)W(2,1^+)$ Self-energy: $G(1,2) = G_0(1,2) + \int d(34)G_0(1,3)\Sigma(3,4)G(4,2)$ Green's function: Screened interaction: $W(1,2) = V(1,2) + \int d(34)V(1,3)P(3,4)W(4,2)$ $V(1,2) = \delta(t_1 - t_2)/|\mathbf{r}_1 - \mathbf{r}_2|$ Bare interaction: $P(1,2) = -i \int d(34)G(1,3)G(4,1^+) \Box(3,4,2) = G(1,2)G(2,1^+)$ Polarization: $\Gamma(1,2,3) = \delta(1,2)\delta(1,3) + \int d(4567) \frac{\partial \Sigma(1,2)}{\partial G(4,5)} G(7,5)\Gamma(6,7,3)$ Vertex function:

Screening

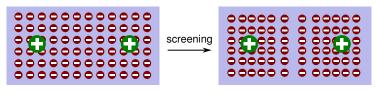
• In GW, the screened Coulomb interaction is appearing:

$$W(\mathbf{r},\mathbf{r}',\omega) = \int d\mathbf{r}'' \epsilon^{-1}(\mathbf{r},\mathbf{r}'',\omega) v(\mathbf{r}'',\mathbf{r}')$$

where $v(\mathbf{r}, \mathbf{r}') = 1/|\mathbf{r} - \mathbf{r}'|$.

• Compare to screened Coulomb potential with local and static $[\epsilon(\mathbf{r}, \mathbf{r}', \omega) = \epsilon_r \delta(\mathbf{r} - \mathbf{r}')]$ dielectric function using the dielectric constant ϵ_r (in SI units):

$$W(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{1}{|\mathbf{r}-\mathbf{r}'|}$$

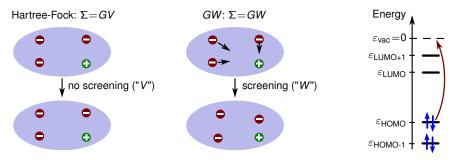


charge which has been added to the system
 internal mobile charge carriers (e.g. electrons) which adapt due to the + charge

• screening: adaption of electrons due to additional charge, key ingredient in GW (next slide)

V in Hartree-Fock versus W in GW

• Gedankenexperiment: Ionization which leads to a hole (marked by "+")



- HF does not account for relaxation of electrons after adding an electron to an unoccupied MO or removing an electron from an occupied MO (only V in HF, no W or ϵ)
 ⇒ occupied levels are too low, unoccupied levels are too high ⇒ HOMO-LUMO gap too large
- In DFT, ε_n (besides ε_{HOMO}) do not have any physical meaning. Self-interaction error (SIE) in common GGA functionals ⇒ HOMO far too high in DFT ⇒ HOMO-LUMO gap too low in DFT
- Mixing HF and DFT (hybrids) can give accurate HOMO-LUMO gaps since two errors (SIE in DFT vs. absence of screening in HF) may compensate
- *GW* accounts for screening (since *W* is included) after adding an electron to an unoccupied MO or removing an electron from an occupied MO \Rightarrow accurate ε_n^{GW}

- *GW* does not account for the exact adaption of other electrons $\Rightarrow c_n^{GW}$ can be improved by higher level of theory ("adding more diagrams")
- Analogy: Full CI contains all determinants (= diagrams), but is untractable for large systems. Way out: neglect unnecessary determinants leading to e.g. CCSD, CCSD(T), RPA, MP2
- Exact expansion of the self-energy:

$$\Sigma(1,2) = iG(1,2)W(2,1^+) - \int d(34) G(1,3)W(1,4)G(4,2)W(3,2)G(3,4) + \dots$$

 \Rightarrow GW approximation is good if W is small, otherwise higher order terms in W important

- Screening is high in systems with small bandgap (since MOs in occupied orbitals can scatter into unoccupied orbitals with low loss of energy)
 - $\Rightarrow \epsilon$ is large in systems with small bandgap
 - \Rightarrow W is small in systems with small bandgap
 - \Rightarrow The *GW* approximation is good for systems with small bandgaps

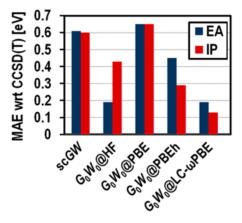
1) Theory and practical G_0W_0 scheme

- Physics of the GW approximation
- 3 Benchmarks and applications of $G_0 W_0$
- Canonical G₀W₀: Implementation in CP2K and input
- 5) Periodic G_0W_0 calculations: Correction scheme and input
- Cubic-scaling G₀W₀: Formalism, implementation and input

7 Summary

	Band gap	
	$G_0 W_0$ @PBE	Expt.
Si	1.16	1.17
GaAs	1.34	1.52
SiC	2.31	2.40
С	5.50	5.48
BN	6.17	6.1-6.4
MgO	7.27	7.83
LiF	13.68	14.20

Benchmark for solids (VASP) Bandgap = HOMO-LUMO gap Liu *et al.*, PRB **94**, 165109 (2016)



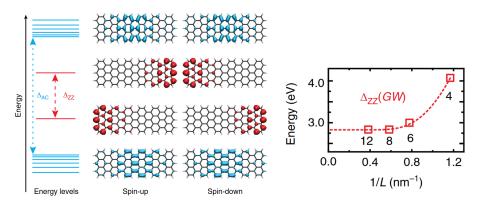
Benchmark for molecules (FHI-aims)

 $\begin{array}{l} \mathsf{MAE} = \mathsf{Mean} \ \mathsf{absolute} \ \mathsf{error} \\ \mathsf{IP} = \mathsf{Ionization} \ \mathsf{potential} = |\varepsilon_{\mathsf{HOMO}}| \\ \mathsf{EA} = \mathsf{Electron} \ \mathsf{affinity} = |\varepsilon_{\mathsf{LUMO}}| \end{array}$

Knight et al., JCTC 12, 615 (2016)

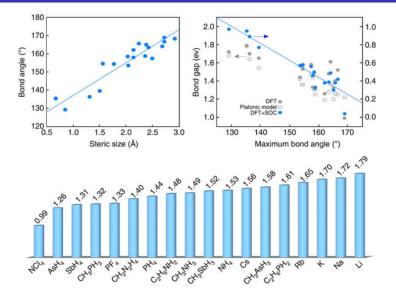


L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 186801 (2007)



S. Wang, L. Talirz, C. A. Pignedoli, X. Feng, K. Müllen, R. Fasel, P. Ruffieux, Nat. Commun. 7, 11507 (2016)

Application of G_0W_0 to novel perovskite solar cells



M. R. Filip, G. E. Eperon, H. J. Snaith, and F. Giustino, Nat. Commun. 5, 5757 (2014)

- 1) Theory and practical G_0W_0 scheme
- 2 Physics of the GW approximation
- 3 Benchmarks and applications of $G_0 W_0$
- Canonical G₀W₀: Implementation in CP2K and input
- Periodic G₀W₀ calculations: Correction scheme and input
- Cubic-scaling G₀W₀: Formalism, implementation and input

O Summary

Literature: J. Wilhelm, M. Del Ben, and J. Hutter, J. Chem. Theory Comput. 12, 3623-3635 (2016)

Resolution of the identity (RI) [Chem. Phys. Lett. 213, 514-518 (1993)]

In post-DFT methods as GW, four-index Coulomb integrals are appearing:

$$(nm|kl) = \int d^3\mathbf{r} \, d^3\mathbf{r}' \psi_n(\mathbf{r}) \psi_m(\mathbf{r}) \frac{1}{|\mathbf{r} - \mathbf{r}'|} \, \psi_k(\mathbf{r}') \psi_l(\mathbf{r}')$$

RI with overlap metric

$$\mathsf{Id} = \sum_{PQ} \ket{P} S_{PQ}^{-1} ra{Q}$$

$$(nm|kl) = \sum_{PQRT} (nmP) S_{PQ}^{-1} V_{QR} S_{RT}^{-1} (Tkl)$$

$$(nmP) = \int d^3\mathbf{r} \,\psi_n(\mathbf{r})\psi_m(\mathbf{r})\varphi_P(\mathbf{r})$$

Resolution of the identity basis $\{\varphi_P\}$ with

Overlap matrix

$$S_{PQ} = \int d^3 \mathbf{r} \, \varphi_P(\mathbf{r}) \varphi_Q(\mathbf{r})$$

Coulomb matrix

$$V_{PQ} = \int d^3 \mathbf{r} \, d^3 \mathbf{r}' \, \varphi_P(\mathbf{r}) \varphi_Q(\mathbf{r}') / |\mathbf{r} - \mathbf{r}'|$$

RI with Coulomb metric

$$\mathsf{Id} = \sum_{PQ} \ket{P} V_{PQ}^{-1} ra{Q} rac{1}{\hat{r}}$$

$$(nm|kl) = \sum_{PQRT} (nm|P) V_{PQ}^{-1} V_{QR} V_{RT}^{-1} (T|kl)$$

$$= \sum_{PQ} (nm|P) V_{PQ}^{-1}(Q|kl)$$

$$= \sum_{PQR} \underbrace{(nm|P) V_{PQ}^{-1/2}}_{= B_Q^{nm}} \underbrace{V_{QR}^{-1/2}(R|kl)}_{= B_Q^{kl}}$$

$$=\sum_{Q}B_{Q}^{nm}B_{Q}^{kl}$$

$$(nm|P) = \int d^3\mathbf{r} \, d^3\mathbf{r}' \psi_n(\mathbf{r}) \psi_m(\mathbf{r}) \, \frac{1}{|\mathbf{r} - \mathbf{r}'|} \, \varphi_P(\mathbf{r}')$$

G_0W_0 in real space versus GW with RI

G_0W_0 in real space

Compute density response [O(N⁴)]

$$\chi(\mathbf{r},\mathbf{r}',i\omega) = \sum_{ia} \psi_a(\mathbf{r}')\psi_i(\mathbf{r}')\psi_i(\mathbf{r})\psi_a(\mathbf{r}) \frac{2(\varepsilon_i - \varepsilon_a)}{\omega^2 + (\varepsilon_i - \varepsilon_a)^2}$$

2 Compute dielectric function

$$\epsilon(\mathbf{r},\mathbf{r}',i\omega) = \delta(\mathbf{r},\mathbf{r}') - \int d\mathbf{r}'' v(\mathbf{r},\mathbf{r}'')\chi(\mathbf{r}'',\mathbf{r}',i\omega)$$

Compute screened Coulomb interaction

$$W_0(\mathbf{r},\mathbf{r}',i\omega) = \int d\mathbf{r}'' \epsilon^{-1}(\mathbf{r},\mathbf{r}'',i\omega) v(\mathbf{r}'',\mathbf{r}')$$

Compute self-energy (SE)

$$\Sigma(\mathbf{r},\mathbf{r}',i\omega) = -\int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} G_0(\mathbf{r},\mathbf{r}',i\omega-i\omega') W_0(\mathbf{r},\mathbf{r}',i\omega')$$

Sompute $G_0 W_0$ quasiparticle energies

$$\varepsilon_n^{G_0W_0} = \varepsilon_n + \langle \psi_n | \operatorname{\mathsf{Re}} \Sigma(\varepsilon_n^{G_0W_0}) - v^{\operatorname{xc}} | \psi_n \rangle$$

G_0W_0 with RI

• Compute Π_{PQ} matrix [Π equivalent to $v^{1/2}\chi v^{1/2}$, $\mathcal{O}(N^4)$ operations]

$$\Pi_{PQ}(i\omega) = \sum_{ia} B_P^{ia} \frac{2(\varepsilon_i - \varepsilon_a)}{\omega^2 + (\varepsilon_i - \varepsilon_a)^2} B_Q^{ia}$$

Compute symmetrized dielectric function

$$\epsilon_{PQ}(i\omega) = \delta_{PQ} - \Pi_{PQ}(i\omega)$$

3 Compute SE $\Sigma_n(i\omega) \equiv \langle \psi_n | \Sigma(i\omega) | \psi_n \rangle$

$$\Sigma_n(i\omega) = -\int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \sum_m^{\text{all}} \frac{1}{i(\omega - \omega') + \varepsilon_{\mathsf{F}} - \varepsilon_m}$$

$$imes \sum_{PQ} B_P^{nm} \epsilon_{PQ}^{-1}(i\omega') B_Q^{mn}$$

• Compute $G_0 W_0$ quasiparticle energies

$$\varepsilon_n^{G_0W_0} = \varepsilon_n + \langle \psi_n | \operatorname{\mathsf{Re}} \Sigma(\varepsilon_n^{G_0W_0}) - v^{\operatorname{xc}} | \psi_n \rangle$$

The self-energy $\Sigma_n(i\omega)$ from the last slide,

$$\Sigma_n(i\omega) = -\int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \sum_m^{\text{all}} \frac{1}{i(\omega-\omega')+\varepsilon_{\mathsf{F}}-\varepsilon_m} \sum_{PQ} B_P^{nm} \epsilon_{PQ}^{-1}(i\omega') B_Q^{mn},$$

is split into an exchange part Σ_n^x [= (n, n)-diagonal element of the Fock matrix]

$$\Sigma_n^{\rm x} = -\sum_m^{\rm occ} \sum_P B_P^{nm} B_P^{mn} \,,$$

and a correlation part

$$\Sigma_{n}^{c}(i\omega) = -\int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \sum_{m}^{\text{all}} \frac{1}{i(\omega - \omega') + \varepsilon_{\mathsf{F}} - \varepsilon_{m}} \sum_{PQ} B_{P}^{nm} [\epsilon_{PQ}^{-1}(i\omega') - \delta_{PQ}] B_{Q}^{mn} ,$$

such that $\Sigma_n(i\omega) = \Sigma_n^x + \Sigma_n^c(i\omega)$. This procedure guarantees numerical stability.

Analytic continuation

The self-energy $\sum_{n=1}^{n} (i\omega)$ is computed for imaginary frequency and needed for real frequency (= energy) for solving the quasiparticle equation:

$$\varepsilon_n^{G_0W_0} = \varepsilon_n + \operatorname{\mathsf{Re}} \Sigma_n(\varepsilon_n^{G_0W_0}) - v_n^{\operatorname{xc}}$$

where $v_n^{\text{xc}} = \int d^3 \mathbf{r} \, \psi_n(\mathbf{r}) v_{\text{xc}}(\mathbf{r}) \psi_n(\mathbf{r})$.

 $\Sigma_n(\omega)$ for a real-valued ω is obtained from $\Sigma_n(i\omega)$ by fitting an *N*-point Padé approximant

$$P(i\omega) = \frac{\sum\limits_{j=0}^{N-1} a_j \cdot (i\omega)^j}{1 + \sum\limits_{k=0}^{N} b_k \cdot (i\omega)^k}$$

to $\Sigma_n(i\omega)$ to determine the complex numbers a_i and b_k . Then, $\Sigma_n(\omega)$ is obtained by evaluating *P*:

$$\Sigma_n(\omega) = \frac{\sum\limits_{j=0}^{N-1} a_j \cdot (\omega - \varepsilon_{\mathsf{F}})^j}{1 + \sum\limits_{k=0}^{N} b_k \cdot (\omega - \varepsilon_{\mathsf{F}})^k}$$

where the Fermi level $\varepsilon_{\rm F}$ appears to obtain the correct offset.

Jan Wilhelm

DFT calculation to get the molecular orbitals ψ_n from a PBE calculation:

SFORCE EVAL METHOD Quickstep &DFT BASIS SET FILE NAME BASIS def2 QZVP RI ALL POTENTIAL FILE NAME POTENTIAL **&MGRID** CUTOFF 400 **REL CUTOFF 50** SEND MGRID &OS ! all electron calculation since GW100 ! is all-electron test METHOD GAPW &END QS &POISSON PERIODIC NONE PSOLVER MT **SEND** ASCE EPS SCF 1.0E-6 SCF GUESS ATOMIC MAX SCF 200 &END SCF exc. **&XC FUNCTIONAL PBE** SEND XC FUNCTIONAL ! GW is part of the WF CORRELATION section **&WF CORRELATION SEND** SEND XC SEND DET .

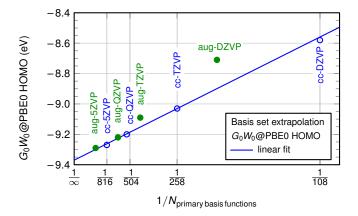
& SUBSYS SCELL. ABC 10.0 10.0 10.0 PERIODIC NONE SEND CELL &COORD 0 0.0000 0.0000 0.0000 H 0.7571 0.0000 0.5861 H -0.7571 0.0000 0.5861 &END COORD & TOPOLOGY &CENTER COORDINATES SEND. SEND TOPOLOGY SKIND H ! def2-QZVP: basis of GW100 BASIS SET def2-QZVP ! just very large RI basis to ensure good ! convergence in RI basis RI AUX BASIS RI-5Z POTENTIAL ALL SEND KIND &KIND O BASIS SET def2-OZVP RI AUX BASIS RI-5Z POTENTIAL ALL SEND KIND &END SUBSYS SEND FORCE EVAL &GLOBAL RUN TYPE ENERGY PROJECT ALL ELEC PRINT LEVEL MEDIUM &END GLOBAL

Input for G_0W_0 @PBE for the H₂O molecule II

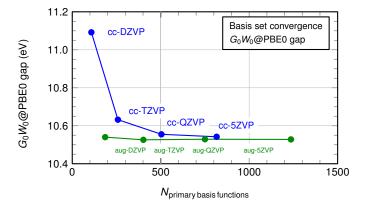
Parameters for the GW calculation:

&XC &RI GOWO **&XC FUNCTIONAL PBE** ! compute the GOWO@PBE energy of HOMO-9, SEND XC FUNCTIONAL ! HOMO-8, ..., HOMO-1, HOMO CORR OCC 10 ! GW is part of the WF CORRELATION section **&WF CORRELATION** ! compute the GOWO@PBE energy of LUMO, ! LUMO+1, ..., LUMO+20 ! RPA is used to compute the density response function CORR VIRT 20 METHOD RI RPA GPW ! Pade approximant ! Use Obara-Saika integrals instead of GPW integrals ANALYTIC CONTINUATION PADE ! since OS is much faster ERI METHOD OS ! for solving the guasiparticle equation, ! the Newton method is used as in GW100 &RI RPA CROSSING SEARCH NEWTON ! use 100 guadrature points to perform the ! use RI for the exchange self-energy ! frequency integration in GW RI SIGMA X RPA NUM OUAD POINTS 100 &END RI GOWO ! SIZE FREQ INTEG GROUP is a group size for ! parallelization and should be increased for SEND RI RPA ! large calculations to prevent out of memory. ! maximum for SIZE FREQ INTEG GROUP ! NUMBER PROC is a group size for ! is the number of MPI tasks ! parallelization and should be increased SIZE FREQ INTEG GROUP 1 ! for large calculations NUMBER PROC 1 GW &END WF CORRELATION . SEND XC

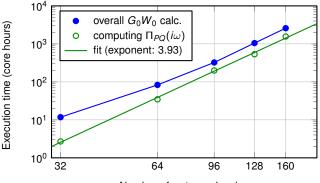
Basis set convergence for benzene: HOMO level



- Slow basis set convergence for the HOMO level
- Basis set extrapolation necessary



- Slow basis set convergence for the HOMO-LUMO gap in a correlation-consistent (cc) basis
- Fast basis set convergence for the HOMO-LUMO gap in an augmented (aug) basis



Number of water molecules

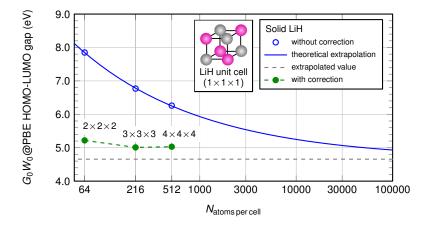
- $\mathcal{O}(N^4)$ computational cost as expected
- massively parallel implementation

- 1 Theory and practical G_0W_0 scheme
- 2 Physics of the GW approximation
- Benchmarks and applications of G₀W₀
- Canonical G₀W₀: Implementation in CP2K and input
- Periodic G_0W_0 calculations: Correction scheme and input
- Cubic-scaling G₀W₀: Formalism, implementation and input

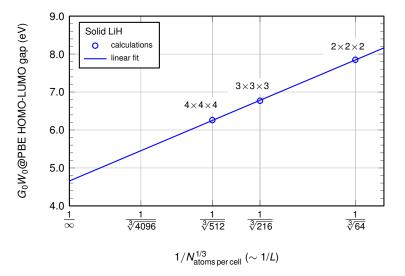
Summary

Literature: J. Wilhelm and J. Hutter, Phys. Rev. B 95, 235123 (2017)

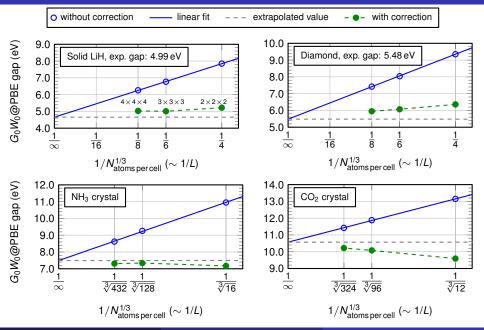
Motivation: Slow convergence of GW with the cell size



- Very slow convergence of the G₀W₀ HOMO-LUMO gap as function of the cell size
- The extrapolation (blue line) can be done with $1/N_{\text{atoms per cell}}^{1/3}$
- Comparison: Convergence of DFT gap with exp(-N_{atoms per cell}) for non-metallic systems



Benchmark calculations for solids



Jan Wilhelm

. ! HF calculation for the exchange self-energy ! Here, the truncation of the Coulomb operator works &XC & HF **&XC FUNCTIONAL PBE** & SCREENING SEND XC FUNCTIONAL EPS SCHWARZ 1.0E-6 SCREEN ON INITIAL P TRUE SWF CORRELATION &END METHOD RI RPA GPW &INTERACTION POTENTIAL POTENTIAL TYPE TRUNCATED &RI RPA ! the truncation radius is half the cell size CUTOFF RADIUS 2.00 RPA NUM QUAD POINTS 100 T C G DATA t c q.dat &END GW **EMEMORY** &RI GOWO MAX MEMORY 0 **SEND** CORR OCC 5 CORR VIRT 5 \$END ! activate the periodic correction &END RI RPA PERTODIC NUMBER PROC 1 ANALYTIC CONTINUATION PADE &END CROSSING SEARCH NEWTON &END XC &END RI GOWO .

.

- 1 Theory and practical G_0W_0 scheme
- 2 Physics of the GW approximation
- Benchmarks and applications of G₀W₀
- Canonical G₀W₀: Implementation in CP2K and input
- Periodic G₀W₀ calculations: Correction scheme and input
- Cubic-scaling G_0W_0 : Formalism, implementation and input

Summary

Literature: J. Wilhelm, D. Golze, C. A. Pignedoli, and J. Hutter, in preparation

O(*N*³) *GW* space-time method [Rojas *et al.*, PRL **74**, 1827 (1995)]

Canonical $\mathcal{O}(N^4)$ G_0W_0

• Compute density response in $\mathcal{O}(N^4)$

$$\chi(\mathbf{r},\mathbf{r}',i\omega) = \sum_{ia} \psi_a(\mathbf{r}')\psi_i(\mathbf{r}')\psi_i(\mathbf{r})\psi_a(\mathbf{r}) \frac{2(\varepsilon_i - \varepsilon_a)}{\omega^2 + (\varepsilon_i - \varepsilon_a)^2}$$

Compute dielectric function

$$\epsilon(\mathbf{r},\mathbf{r}',i\omega) = \delta(\mathbf{r},\mathbf{r}') - \int d\mathbf{r}'' v(\mathbf{r},\mathbf{r}'')\chi(\mathbf{r}'',\mathbf{r}',i\omega)$$

- Compute screened Coulomb interaction $W_0(\mathbf{r}, \mathbf{r}', i\omega) = \int d\mathbf{r}'' \epsilon^{-1}(\mathbf{r}, \mathbf{r}'', i\omega) v(\mathbf{r}'', \mathbf{r}')$
- Compute self-energy

$$\Sigma(\mathbf{r},\mathbf{r}',i\omega) = -\int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} G_0(\mathbf{r},\mathbf{r}',i\omega-i\omega') W_0(\mathbf{r},\mathbf{r}',i\omega')$$

• Compute $G_0 W_0$ quasiparticle energies

 $\varepsilon_n^{G_0W_0} = \varepsilon_n + \langle \psi_n | \mathsf{Re}\, \Sigma(\varepsilon_n^{G_0W_0}) - v^{\mathsf{xc}} | \psi_n \rangle$

$\mathcal{O}(N^3)$ G_0W_0 space-time method

• Compute density response in $\mathcal{O}(N^3)$ $\chi(\mathbf{r},\mathbf{r}',i\tau) = \sum \psi_a(\mathbf{r}')\psi_i(\mathbf{r}')\psi_i(\mathbf{r})\psi_a(\mathbf{r})e^{-(\varepsilon_a-\varepsilon_i)\tau}$ $= \sum_{i=1}^{\infty} \psi_i(\mathbf{r}') \psi_i(\mathbf{r}) e^{-|(\varepsilon_i - \varepsilon_{\mathsf{F}})\tau|} \sum_{i=1}^{\text{virt}} \psi_a(\mathbf{r}') \psi_a(\mathbf{r}) e^{-|(\varepsilon_a - \varepsilon_{\mathsf{F}})\tau|}$ 2 Compute dielectric function $\epsilon(\mathbf{r},\mathbf{r}',i\tau) = \delta(\mathbf{r},\mathbf{r}') - \int d\mathbf{r}'' v(\mathbf{r},\mathbf{r}'')\chi(\mathbf{r}'',\mathbf{r}',i\tau)$ Compute screened Coulomb interaction $W_0(\mathbf{r},\mathbf{r}',i\omega) = \int d\mathbf{r}'' \epsilon^{-1}(\mathbf{r},\mathbf{r}'',i\omega) v(\mathbf{r}'',\mathbf{r}')$ Compute self-energy $\Sigma(\mathbf{r},\mathbf{r}',i\tau) = -G_0(\mathbf{r},\mathbf{r}',i\tau)W_0(\mathbf{r},\mathbf{r}',i\tau)$ Compute G₀W₀ quasiparticle energies

$$\varepsilon_n^{G_0W_0} = \varepsilon_n + \langle \psi_n | \operatorname{\mathsf{Re}} \Sigma(\varepsilon_n^{G_0W_0}) - v^{\operatorname{xc}} | \psi_n \rangle$$

Resolution of the identity (RI) II

RI with overlap metric

$$(\mu\nu|\lambda\sigma) = \sum_{PQRT} (\mu\nu P) S_{PQ}^{-1} V_{QR} S_{RT}^{-1} (T\lambda\sigma)$$

$$(\mu\nu P) = \int d^3 \mathbf{r} \, \phi_\mu(\mathbf{r}) \phi_\nu(\mathbf{r}) \varphi_P(\mathbf{r})$$

(
$$\nu\mu P$$
) = 0 if one of $\phi_{\mu}, \phi_{\nu}, \varphi_{P}$ far-off

Slightly larger RI basis as for RI-Coulomb

RI with Coulomb metric

$$\mu\nu|\lambda\sigma) = \sum_{PQ} (\mu\nu|P) V_{PQ}^{-1}(Q|\lambda\sigma)$$

$$(\mu\nu|P) = \int d^{3}\mathbf{r} \, d^{3}\mathbf{r}' \phi_{\mu}(\mathbf{r}) \phi_{\nu}(\mathbf{r}) \frac{1}{|\mathbf{r} - \mathbf{r}'|} \varphi_{P}(\mathbf{r}')$$

$$\checkmark (\nu\mu|P) = 0 \text{ if } \phi_{\mu}, \phi_{\nu} \text{ far-off}$$

No sparsity of
$$(\nu \mu | P)$$
 if φ_P far-off

 $\phi_{\mu}(\mathbf{r})$

$$(\mu\nu P) = \int d^3\mathbf{r} \,\phi_{\mu}(\mathbf{r})\phi_{\nu}(\mathbf{r})\varphi_{P}(\mathbf{r}) \approx \mathbf{0} \qquad (\mu\nu|P) = \int d^3\mathbf{r} \,d^3\mathbf{r}'\phi_{\mu}(\mathbf{r})\phi_{\nu}(\mathbf{r}) \,\frac{1}{|\mathbf{r}-\mathbf{r}'|} \,\varphi_{P}(\mathbf{r}') \approx \mathbf{1}$$

Cubic-scaling GW in a Gaussian basis with overlap-metric RI

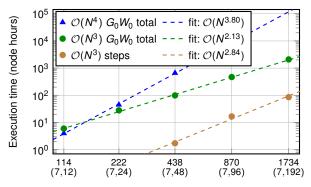
$$G_{\mu\nu}(i\tau) = \begin{cases} \sum_{i} C_{\mu i} C_{\nu i} e^{-|(\varepsilon_{i} - \varepsilon_{\mathsf{F}})\tau|}, & \text{if } \tau < 0\\ -\sum_{a} C_{\mu a} C_{\nu a} e^{-|(\varepsilon_{a} - \varepsilon_{\mathsf{F}})\tau|}, & \text{if } \tau > 0 \end{cases} \xrightarrow{\chi} \sum_{\nu} (\mu\nu Q) G_{\mu\nu}(i\tau) \\ \times \sum_{\nu} (\mu\nu Q) G_{\nu\sigma}(-i\tau) \\ \times \sum_{\nu} (\mu\nu Q) G_{\nu\sigma}(-i\tau) \\ \otimes \sum_{\nu} (\mu\nu Q) G_{\nu}(-i\tau) \\ \otimes \sum_{\nu} (\mu\nu Q) \\ \otimes \sum_{\nu} (\mu\nu Q) G_{\nu}(-i\tau) \\ \otimes \sum_{\nu} (\mu\nu Q) \\ \otimes \sum_{\nu}$$

RI with overlap metric:

$$(\mu\nu|\lambda\sigma) = \sum_{PQRT} (\mu\nu P) S_{PQ}^{-1} V_{QR} S_{RT}^{-1} (T\lambda\sigma)$$

Jan Wilhelm

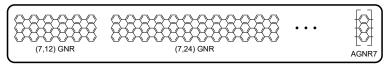
Computational scaling of cubic-scaling GW



Number of atoms (Name of the GNR)

Cubic-scaling GW particularly efficient for systems with

- low dimensionality (best: one-dimensional chain, worst: spherical molecule, periodic system)
- local electronic structure (best: solution of small molecules, worst: extended π system)



Input for cubic-scaling $G_0 W_0$

- $G_0 W_0$ @PBE for the (7,192) GNR (1734 atoms, aug-DZVP basis)
- 400 Piz Daint MC nodes (4 OMP threads)

SWF CORRELATION METHOD RI_RPA GPW ! cubic-scaling GW only works with overlap metric RI RT OVERLAP ERI METHOD OS &WFC GPW ! EPS FILTER should be tuned, computational cost ! strongly depends on EPS FILTER EPS FILTER 1.0E-9 ! EPS GRID may be tuned since memory is weakly ! dependent on it EPS GRID 1.0E-6 SEND &RI RPA ! cubic-scaling GW only works with the minimax grid ! in imag. time and frequency MINIMAX ! number of time and frequency points, at most 20 RPA NUM OUAD POINTS 12 IM TIME

! parameters for computing chi(it) &IM TIME

! EPS FILTER IM TIME should be tuned EPS FILTER IM TIME 1.0E-11

! for large systems, increase GROUP_SIZE_3C ! to prevent out of memory (OOM) GROUP SIZE 3C 9

! for large systems, increase GROUP SIZE 3C ! to prevent out of memory (OOM) GROUP SIZE P 1

! for larger systems, MEMORY CUT must be ! increased to prevent out of memory (OOM) MEMORY CUT 12

GW

SEND

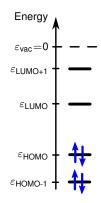
&RI GOWO CORR OCC 15 CORR VIRT 15 CROSSING SEARCH NEWTON OMEGA MAX FIT 1.0 ANALYTIC CONTINUATION PADE RI OVERLAP RI SIGMA X &END RI GOWO &END RI RPA

SEND.

1) Theory and practical G_0W_0 scheme

- 2 Physics of the GW approximation
- Benchmarks and applications of G₀W₀
- Canonical G₀W₀: Implementation in CP2K and input
- 5) Periodic G_0W_0 calculations: Correction scheme and input
- Cubic-scaling G₀W₀: Formalism, implementation and input

- *GW*: method to compute quasiparticle energies from first principles
- Accuracy of G₀W₀@PBE for solids, G₀W₀@PBE0 for molecules in the order of few hundreds of meV
- High $\mathcal{O}(N^4)$ computational cost
- Hundreds of atoms can be treated on supercomputers by G₀W₀ in CP2K
- Slow basis set convergence
- Correction scheme for periodic G_0W_0 calculations
- $\mathcal{O}(N^3)$ G_0W_0 method for big systems



Quasiparticle energies of a closed shell molecule