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Quasiparticle energies in GW : Theory
Definition:
A quasiparticle energy εn is defined as energy which

is needed to remove an electron from the system to the vacuum or
is gained if one places an electron from the vacuum to the system

In DFT and Hartree-Fock, there is no theoretical foundation that
the eigenvalues εn from an SCF,(

−∇
2

2
+ vel-core(r) + vH(r) + vxc(r)

)
ψn(r) = εn ψn(r)

have anything to do with quasiparticle energies.

Theorem:
A self-energy Σ(r, r′, ε) (non-local, energy-dependent) containing
exchange and correlation effects exists, such that the solution of(
−∇2

2
+ vel-core(r) + vH(r)

)
ψn(r) +

∫
dr′ Σ(r, r′, εn)ψn(r′) = εn ψn(r)

gives the correct quasiparticle energies εn of the interacting
many-electron system.

In the GW approximation, the self-energy reads

ΣGW (r, r′, ε) =
i

2π

∞∫
−∞

dε′ G(r, r′, ε−ε′, {εn}, {ψn}) W (r, r′, ε′, {εn}, {ψn})

εHOMO

εLUMO

Energy

εLUMO+1

εvac=0

εHOMO-1

Single-electron
(quasiparticle) levels of
a closed shell molecule
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Quasiparticle energies in GW : G0W0 formalism in practice

G0W0: Start from DFT MOs ψDFT
n (r) and compute first-order correction to DFT eigenvalues:

1 Converge DFT SCF (e.g. PBE functional for solids "G0W0@PBE", PBE0 for molecules)(
− ∇

2

2
+ vel-core(r) + vHartree(r) + vxc(r)

)
ψDFT

n (r) = εDFT
n ψDFT

n (r) .

2 Compute density response (most expensive step):

χ(r, r′, iω) = 2
occ∑

i

virt∑
a
ψDFT

a (r′)ψDFT
i (r′)ψDFT

i (r)ψDFT
a (r)

εDFT
i − εDFT

a

ω2 +
(
εDFT

i − εDFT
a
)2 . (O(N4))

3 Compute dielectric function with v(r, r′)=1/|r− r′|

ε(r, r′, iω) = δ(r, r′)−
∫

dr′′v(r, r′′)χ(r′′, r′, iω) . (O(N3))

4 Compute screened Coulomb interaction

W0(r, r′, iω) =

∫
dr′′ε−1(r, r′′, iω)v(r′′, r′) . (O(N3))

5 Compute the self-energy

Σ(r, r′, iω) = −
∞∫
−∞

dω′

2π
G0(r, r′, iω−iω′)W0(r, r′, iω′) , G0(r, r′, iω) =

all∑
m

ψDFT
m (r′)ψDFT

m (r)

iω + εF − εDFT
m

. (O(N3))

6 Compute G0W0 quasiparticle energies (replace wrong XC from DFT by better XC from GW )

ε
G0W0
n = εDFT

n + 〈ψDFT
n |Re Σ(ε

G0W0
n )− vxc|ψDFT

n 〉 (O(N3))
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Historical sketch of GW

1965: Proposition of the GW method
Lars Hedin: New Method for Calculating the One-Particle Green’s Function with Application to the
Electron-Gas Problem, Phys. Rev. 139, A796 (1965), ∼ 3700 citations

1986: First G0W0@LDA calculation for diamond, Si, Ge, and LiCl
M. S. Hybertsen and S. G. Louie: Electron correlation in semiconductors and insulators: Band gaps and
quasiparticle energies, Phys. Rev. B 34, 5390 (1986), ∼ 2700 citations

2005 – now: GW for solids in publicly available plane-waves codes
Abinit: X. Gonze et al., Z. Kristallogr. 220, 558 – 562 (2005)
VASP: M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006)
Yambo: A. Marini, C. Hogan, M. Grüning, D. Varsano, Comput. Phys. Commun. 180, 1392 – 1403 (2009)
BerkeleyGW: J. Deslippe et al., Comput. Phys. Commun. 183, 1269 – 1289 (2012)
GPAW: F. Hüser, T. Olsen, and K. S. Thygesen, Phys. Rev. B 87, 235132 (2013)
WEST: M. Govoni and G. Galli, J. Chem. Theory Comput. 11, 2680 –2696 (2015)

2011 – now: GW with localized basis in publicly available codes
FHI-aims: X. Ren et al., New J. Phys. 14, 053020 (2012)
Turbomole: M. van Setten, F. Weigend, and F. Evers, J. Chem. Theory Comput. 9, 232 – 246 (2012)
molgw: F. Bruneval et al., Comput. Phys. Commun. 208, 149 – 161 (2016)
CP2K: J. Wilhelm, M. Del Ben, and J. Hutter, J. Chem. Theory Comput. 12, 3623 – 3635 (2016)

Recent trend: Numerically converged results and agreement between codes
J. Klimeš, M. Kaltak, and G. Kresse: Predictive GW calculations using plane waves and pseudopotentials,
Phys. Rev. B 90, 075125 (2014)
M. van Setten et al.: GW100: Benchmarking G0W0 for Molecular Systems, JCTC 11, 5665 – 5687 (2015)
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Hedin’s equations

Hedin’s equation: Complicated self-consistent equations which give the exact self-energy.

Notation: (1) = (r1, t1), G0: non-interacting Green’s function, e.g. from DFT

Self-energy: Σ(1, 2) = i
∫

d(34)G(1, 3)Γ(3, 2, 4)W (4, 1+)

Green’s function: G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2)

Screened interaction: W (1, 2) = V (1, 2) +

∫
d(34)V (1, 3)P(3, 4)W (4, 2)

Bare interaction: V (1, 2) = δ(t1 − t2)/|r1 − r2|

Polarization: P(1, 2) = −i
∫

d(34)G(1, 3)G(4, 1+)Γ(3, 4, 2)

Vertex function: Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

∂Σ(1, 2)

∂G(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)

It can be shown that Σ(r1, t1, r2, t2)=Σ(r1, r2, t2 − t1). After a Fourier transform of Σ from
time t ≡ t2 − t1 to frequency (= energy), the self-energy Σ(r, r′, ω) can be used to compute
the quasiparticle levels εn using(

−∇2

2
+ vel-core(r) + vH(r)

)
ψn(r) +

∫
dr′ Σ(r, r′, εn)ψn(r′) = εn ψn(r)
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Hedin’s equations: Hartree-Fock

Hartree-Fock is GV :

Self-energy: Σ(1, 2) = i
∫

d(34)G(1, 3)Γ(3, 2, 4)W (4, 1+) = G(1, 2)V (2, 1)

Green’s function: G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2)

Screened interaction: W (1, 2) = V (1, 2) +

∫
d(34)V (1, 3)���XXXP(3, 4) →0W (4, 2) = V (1, 2)

Bare interaction: V (1, 2) = δ(t1 − t2)/|r1 − r2|

Polarization: P(1, 2) =
((((

((((
((((

((hhhhhhhhhhhhhh
−i
∫

d(34)G(1, 3)G(4, 1+)Γ(3, 4, 2) = 0

Vertex function: Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

((((
((((

(((
((((

(hhhhhhhhhhhhhhhh

∫
d(4567)

∂Σ(1, 2)

∂G(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)
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Hedin’s equations: GW

Self-energy: Σ(1, 2) = i
∫

d(34)G(1, 3)Γ(3, 2, 4)W (4, 1+) = iG(1, 2)W (2, 1+)

Green’s function: G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2)

Screened interaction: W (1, 2) = V (1, 2) +

∫
d(34)V (1, 3)P(3, 4)W (4, 2)

Bare interaction: V (1, 2) = δ(t1 − t2)/|r1 − r2|

Polarization: P(1, 2) = −i
∫

d(34)G(1, 3)G(4, 1+)���
�XXXXΓ(3, 4, 2) = G(1, 2)G(2, 1+)

Vertex function: Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

((((
((((

(((
((((

(hhhhhhhhhhhhhhhh

∫
d(4567)

∂Σ(1, 2)

∂G(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)

Jan Wilhelm GW calculations for molecules and solids 13 July 2017 10 / 41



Screening

In GW , the screened Coulomb interaction is appearing:

W (r, r′, iω) =

∫
dr′′ε−1(r, r′′, iω)v(r′′, r′)

Compare to screened Coulomb potential with spatially constant, static (ω=0) dielectric
constant εr in SI units:

W (r, r′) =
1

4πε0εr

1
|r− r′|

screening

charge which has been added to the system

internal mobile charge carriers (e.g. electrons) which adapt due to the + charge

screening: adaption of electrons due to additional charge, key ingredient in GW (next slide)
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V in Hartree-Fock versus W in GW

Gedankenexperiment: Ionization which leads to a hole (marked by "+")

εHOMO

εLUMO

Energy

εLUMO+1

εvac=0

εHOMO-1

Hartree-Fock: Σ=GV GW : Σ=GW

screening ("W ")no screening ("V ")

HF does not account for relaxation of electrons after adding an electron to an unoccupied MO
or removing an electron from an occupied MO (only V in HF, no W or ε)
⇒ occupied levels are too low, unoccupied levels are too high⇒ HOMO-LUMO gap too large
In DFT, εn (besides εHOMO) do not have any physical meaning. Self-interaction error (SIE) in
common GGA functionals⇒ HOMO far too high in DFT⇒ HOMO-LUMO gap too low in DFT
Mixing HF and DFT (hybrids) can give accurate HOMO-LUMO gaps since two errors (SIE in
DFT vs. absence of screening in HF) may compensate
GW accounts for screening (since W is included) after adding an electron to an unoccupied
MO or removing an electron from an occupied MO⇒ accurate εGW

n
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Physics beyond GW

GW does not account for the exact adaption of other electrons
⇒ εGW

n can be improved by higher level of theory ("adding more diagrams")

Analogy: Full CI contains all determinants (= diagrams), but is untractable for large systems.
Way out: neglect unnecessary determinants leading to e.g. CCSD, CCSD(T), RPA, MP2

Exact expansion of the self-energy:

Σ(1, 2) = iG(1, 2)W (2, 1+)−
∫

d(34) G(1, 3)W (1, 4)G(4, 2)W (3, 2)G(3, 4) + . . .

⇒ GW approximation is good if W is small, otherwise higher order terms in W important

Screening is high in systems with small bandgap (since MOs in occupied orbitals can scatter
into unoccupied orbitals with low loss of energy)

⇒ ε is large in systems with small bandgap

⇒W is small in systems with small bandgap

⇒ The GW approximation is good for systems with small bandgaps
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Accuracy of G0W0

Benchmark for solids (VASP)

Bandgap = HOMO-LUMO gap

Liu et al., PRB 94, 165109 (2016)

Benchmark for molecules (FHI-aims)

MAE = Mean absolute error
IP = Ionization potential = |εHOMO|

EA = Electron affinity = |εLUMO|
Knight et al., JCTC 12, 615 (2016)
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Application of G0W0 to periodic graphene nanoribbons

AGNR7

AGNR4

AGNR5

AGNR6

L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 186801 (2007)
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Application of G0W0 to novel graphene nanoribbons

S. Wang, L. Talirz, C. A. Pignedoli, X. Feng, K. Müllen, R. Fasel, P. Ruffieux,
Nat. Commun. 7, 11507 (2016)

Jan Wilhelm GW calculations for molecules and solids 13 July 2017 17 / 41



Application of G0W0 to novel perovskite solar cells

M. R. Filip, G. E. Eperon, H. J. Snaith, and F. Giustino, Nat. Commun. 5, 5757 (2014)
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Resolution of the identity (RI) [Chem. Phys. Lett. 213, 514-518 (1993)]

In post-DFT methods as GW , four-index Coulomb integrals are appearing:

(nm|kl) =

∫
d3r d3r′ψn(r)ψm(r)

1
|r− r′| ψk (r′)ψl (r′)

RI with overlap metric

Id =
∑
PQ

|P〉S−1
PQ 〈Q|

(nm|kl) =
∑

PQRT

(nmP)S−1
PQ VQRS−1

RT (Tkl)

(nmP) =

∫
d3rψn(r)ψm(r)ϕP(r)

Resolution of the identity basis {ϕP} with

Overlap matrix

SPQ =
∫

d3r ϕP(r)ϕQ(r)

Coulomb matrix

VPQ =
∫

d3r d3r′ ϕP(r)ϕQ(r′)/|r− r′|

RI with Coulomb metric

Id =
∑
PQ

|P〉V−1
PQ 〈Q|

1
r̂

(nm|kl) =
∑

PQRT

(nm|P)V−1
PQ VQRV−1

RT (T |kl)

=
∑
PQ

(nm|P)V−1
PQ (Q|kl)

=
∑
PQR

(nm|P)V−1/2
PQ︸ ︷︷ ︸

= Bnm
Q

V−1/2
QR (R|kl)︸ ︷︷ ︸

= Bkl
Q

=
∑

Q

Bnm
Q Bkl

Q

(nm|P) =

∫
d3r d3r′ψn(r)ψm(r)

1
|r− r′| ϕP(r′)
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G0W0 in real space versus GW with RI

G0W0 in real space

1 Compute density response [O(N4)]

χ(r, r′, iω)=
∑

ia

ψa(r′)ψi (r′)ψi (r)ψa(r)
2(εi − εa)

ω2 + (εi − εa)2

2 Compute dielectric function

ε(r, r′, iω) = δ(r, r′)−
∫

dr′′v(r, r′′)χ(r′′, r′, iω)

3 Compute screened Coulomb interaction

W0(r, r′, iω) =

∫
dr′′ε−1(r, r′′, iω)v(r′′, r′)

4 Compute self-energy (SE)

Σ(r, r′, iω) = −
∞∫
−∞

dω′

2π
G0(r, r′, iω−iω′)W0(r, r′, iω′)

5 Compute G0W0 quasiparticle energies

ε
G0W0
n = εn + 〈ψn|Re Σ(ε

G0W0
n )− vxc|ψn〉

G0W0 with RI
1 Compute ΠPQ matrix [Π equivalent to

v1/2χv1/2, O(N4) operations]

ΠPQ(iω) =
∑

ia

Bia
P

2(εi − εa)

ω2 + (εi − εa)2 Bia
Q

2 Compute symmetrized dielectric function

εPQ(iω) = δPQ − ΠPQ(iω)

3 Compute SE Σn(iω) ≡ 〈ψn|Σ(iω)|ψn〉

Σn(iω) =−
∞∫
−∞

dω′

2π

all∑
m

1
i(ω − ω′) + εF − εm

×
∑
PQ

Bnm
P ε−1

PQ (iω′)Bmn
Q

4 Compute G0W0 quasiparticle energies

ε
G0W0
n = εn + 〈ψn|Re Σ(ε

G0W0
n )− vxc|ψn〉
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Exchange and correlation self-energy

The self-energy Σn(iω) from the last slide,

Σn(iω) =−
∞∫
−∞

dω′

2π

all∑
m

1
i(ω − ω′) + εF − εm

∑
PQ

Bnm
P ε−1

PQ (iω′)Bmn
Q ,

is split into an exchange part Σx
n [= (n, n)-diagonal element of the Fock matrix]

Σx
n = −

occ∑
m

∑
P

Bnm
P Bmn

P ,

and a correlation part

Σc
n(iω) =−

∞∫
−∞

dω′

2π

all∑
m

1
i(ω − ω′) + εF − εm

∑
PQ

Bnm
P [ε−1

PQ (iω′)−δPQ ]Bmn
Q ,

such that Σn(iω) = Σx
n + Σc

n(iω). This procedure guarantees numerical stability.
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Analytic continuation

The self-energy Σc
n(iω) is computed for imaginary frequency and needed for real frequency

(= energy) for solving the quasiparticle equation:

ε
G0W0
n = εn + Re Σn(ε

G0W0
n )− vxc

n

where vxc
n =

∫
d3rψn(r)vxc(r)ψn(r).

Σn(ω) for a real-valued ω is obtained from Σn(iω) by fitting an N-point Padé approximant

P(iω) =

N−1∑
j=0

aj · (iω)j

1 +
N∑

k=0
bk · (iω)k

to Σn(iω) to determine the complex numbers aj and bk . Then, Σn(ω) is obtained by evaluating P:

Σn(ω) =

N−1∑
j=0

aj · (ω − εF)j

1 +
N∑

k=0
bk · (ω − εF)k

where the Fermi level εF appears to obtain the correct offset.
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Input for G0W0@PBE for the H2O molecule I

DFT calculation to get the molecular orbitals ψn from a PBE calculation:

&FORCE_EVAL
METHOD Quickstep
&DFT
BASIS_SET_FILE_NAME BASIS_def2_QZVP_RI_ALL
POTENTIAL_FILE_NAME POTENTIAL
&MGRID

CUTOFF 400
REL_CUTOFF 50

&END MGRID
&QS

! all electron calculation since GW100
! is all-electron test
METHOD GAPW

&END QS
&POISSON

PERIODIC NONE
PSOLVER MT

&END
&SCF

EPS_SCF 1.0E-6
SCF_GUESS ATOMIC
MAX_SCF 200

&END SCF
&XC

&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL
! GW is part of the WF_CORRELATION section
&WF_CORRELATION

...
&END

&END XC
&END DFT ...

&SUBSYS
&CELL
ABC 10.0 10.0 10.0
PERIODIC NONE

&END CELL
&COORD
O 0.0000 0.0000 0.0000
H 0.7571 0.0000 0.5861
H -0.7571 0.0000 0.5861

&END COORD
&TOPOLOGY
&CENTER_COORDINATES
&END

&END TOPOLOGY
&KIND H
! def2-QZVP: basis of GW100
BASIS_SET def2-QZVP
! just very large RI basis to ensure good
! convergence in RI basis
RI_AUX_BASIS RI-5Z
POTENTIAL ALL

&END KIND
&KIND O
BASIS_SET def2-QZVP
RI_AUX_BASIS RI-5Z
POTENTIAL ALL

&END KIND
&END SUBSYS

&END FORCE_EVAL
&GLOBAL
RUN_TYPE ENERGY
PROJECT ALL_ELEC
PRINT_LEVEL MEDIUM

&END GLOBAL
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Input for G0W0@PBE for the H2O molecule II

Parameters for the GW calculation:

&XC

&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL

! GW is part of the WF_CORRELATION section
&WF_CORRELATION

! RPA is used to compute the density response function
METHOD RI_RPA_GPW

! Use Obara-Saika integrals instead of GPW integrals
! since OS is much faster
ERI_METHOD OS

&RI_RPA

! use 100 quadrature points to perform the
! frequency integration in GW
RPA_NUM_QUAD_POINTS 100

! SIZE_FREQ_INTEG_GROUP is a group size for
! parallelization and should be increased for
! large calculations to prevent out of memory.
! maximum for SIZE_FREQ_INTEG_GROUP
! is the number of MPI tasks
SIZE_FREQ_INTEG_GROUP 1

GW

...

&RI_G0W0

! compute the G0W0@PBE energy of HOMO-9,
! HOMO-8, ... , HOMO-1, HOMO
CORR_OCC 10

! compute the G0W0@PBE energy of LUMO,
! LUMO+1, ... , LUMO+20
CORR_VIRT 20

! Pade approximant
ANALYTIC_CONTINUATION PADE

! for solving the quasiparticle equation,
! the Newton method is used as in GW100
CROSSING_SEARCH NEWTON

! use RI for the exchange self-energy
RI_SIGMA_X

&END RI_G0W0

&END RI_RPA

! NUMBER_PROC is a group size for
! parallelization and should be increased
! for large calculations
NUMBER_PROC 1

&END WF_CORRELATION

&END XC
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Basis set convergence for benzene: HOMO level

1
∞
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Basis set extrapolation
G0W0@PBE0 HOMO

linear fit

au
g-

5Z
V

P

au
g-

Q
ZV

P

au
g-

TZ
V

P

aug-DZVP

Slow basis set convergence for the HOMO level

Basis set extrapolation necessary
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Basis set convergence for benzene: HOMO-LUMO gap

0 500 1000 1500
10.4

10.6

10.8

11.0

11.2

cc-DZVP

cc-TZVP
cc-QZVP cc-5ZVP

aug-DZVP aug-TZVP aug-QZVP aug-5ZVP

Nprimary basis functions

G
0W

0
@

P
B

E
0

ga
p

(e
V

)
Basis set convergence
G0W0@PBE0 gap

Slow basis set convergence for the HOMO-LUMO gap in a correlation-consistent (cc) basis

Fast basis set convergence for the HOMO-LUMO gap in an augmented (aug) basis
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Computational cost for water in a cc-TZVP basis

32 64 96 128 160
100

101

102

103

104

Number of water molecules

E
xe

cu
tio

n
tim

e
(c

or
e

ho
ur

s) overall G0W 0 calc.
computing ΠPQ(iω)

fit (exponent: 3.93)

O(N4) computational cost as expected

massively parallel implementation
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Literature: J. Wilhelm and J. Hutter, Phys. Rev. B 95, 235123 (2017)
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Motivation: Slow convergence of GW with the cell size
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LiH unit cell
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Very slow convergence of the G0W0 HOMO-LUMO gap as function of the cell size

The extrapolation (blue line) can be done with 1/N1/3
atoms per cell

Comparison: Convergence of DFT gap with exp(−Natoms per cell) for non-metallic systems
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1/L convergence of the HOMO-LUMO gap
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Benchmark calculations for solids
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Input for periodic G0W0@PBE for solid LiH

...
&XC

&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL

&WF_CORRELATION

METHOD RI_RPA_GPW

&RI_RPA

RPA_NUM_QUAD_POINTS 100

GW

&RI_G0W0

CORR_OCC 5
CORR_VIRT 5

! activate the periodic correction
PERIODIC

ANALYTIC_CONTINUATION PADE

CROSSING_SEARCH NEWTON

&END RI_G0W0

...

! HF calculation for the exchange self-energy
! Here, the truncation of the Coulomb operator works
&HF

&SCREENING
EPS_SCHWARZ 1.0E-6
SCREEN_ON_INITIAL_P TRUE

&END

&INTERACTION_POTENTIAL
POTENTIAL_TYPE TRUNCATED
! the truncation radius is half the cell size
CUTOFF_RADIUS 2.00
T_C_G_DATA t_c_g.dat

&END

&MEMORY
MAX_MEMORY 0

&END

&END

&END RI_RPA

NUMBER_PROC 1

&END

&END XC

...
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7 Summary

Literature: J. Wilhelm, D. Golze, C. A. Pignedoli, and J. Hutter, in preparation
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O(N3) GW space-time method [Rojas et al., PRL 74, 1827 (1995)]

Canonical O(N4) G0W0

1 Compute density response in O(N4)

χ(r, r′, iω)=
∑

ia

ψa(r′)ψi (r′)ψi (r)ψa(r)
2(εi − εa)

ω2 + (εi − εa)2

2 Compute dielectric function

ε(r, r′, iω) = δ(r, r′)−
∫

dr′′v(r, r′′)χ(r′′, r′, iω)

3 Compute screened Coulomb interaction

W0(r, r′, iω) =

∫
dr′′ε−1(r, r′′, iω)v(r′′, r′)

4 Compute self-energy

Σ(r, r′, iω) = −
∞∫
−∞

dω′

2π
G0(r, r′, iω−iω′)W0(r, r′, iω′)

5 Compute G0W0 quasiparticle energies

ε
G0W0
n = εn + 〈ψn|Re Σ(ε

G0W0
n )− vxc|ψn〉

O(N3) G0W0 space-time method

1 Compute density response in O(N3)

χ(r, r′, iτ)=
∑

ia

ψa(r′)ψi (r′)ψi (r)ψa(r)e−(εa−εi )τ

=
occ∑

i
ψi (r′)ψi (r)e−|(εi−εF)τ| virt∑

a
ψa(r′)ψa(r)e−|(εa−εF)τ|

2 Compute dielectric function

ε(r, r′, iτ) = δ(r, r′)−
∫

dr′′v(r, r′′)χ(r′′, r′, iτ)

3 Compute screened Coulomb interaction

W0(r, r′, iω) =

∫
dr′′ε−1(r, r′′, iω)v(r′′, r′)

4 Compute self-energy

Σ(r, r′, iτ) = −G0(r, r′, iτ)W0(r, r′, iτ)

5 Compute G0W0 quasiparticle energies

ε
G0W0
n = εn + 〈ψn|Re Σ(ε

G0W0
n )− vxc|ψn〉
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Resolution of the identity (RI) II

RI with overlap metric

(µν|λσ) =
∑

PQRT

(µνP)S−1
PQ VQRS−1

RT (Tλσ)

(µνP) =

∫
d3rφµ(r)φν(r)ϕP(r)

(νµP) = 0 if one of φµ, φν , ϕP far-off

slightly larger RI basis as for RI-Coulomb

RI with Coulomb metric

(µν|λσ) =
∑
PQ

(µν|P)V−1
PQ (Q|λσ)

(µν|P) =

∫
d3r d3r′φµ(r)φν(r)

1
|r− r′| ϕP(r′)

(νµ|P) = 0 if φµ, φν far-off

No sparsity of (νµ|P) if ϕP far-off

ϕQ(r)

φν(r)φµ(r)

l
(µνP) =

∫
d3rφµ(r)φν(r)ϕP(r) ≈ 0 (µν|P) =

∫
d3r d3r′φµ(r)φν(r)

1
|r− r′| ϕP(r′) ≈ 1
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Cubic-scaling GW in a Gaussian basis with overlap-metric RI

Gµν(iτ) =

{ ∑
i Cµi Cν i e−|(εi−εF)τ | , if τ < 0

−∑a CµaCνae−|(εa−εF)τ | , if τ > 0

χ̃PQ(iτ) =
∑
µσ

∑
λ

(λσP)Gµλ(iτ)

×∑
ν

(µνQ)Gνσ(−iτ)

O(N2), JW, P. Seewald, M. Del Ben,
J. Hutter, JCTC 12, 5851 – 5859 (2016)

χ(iτ) = S−1χ̃(iτ)S−1

χ(iω)

ε(iω) = 1− Vχ(iω)

W(iω) = ε−1(iω)V

W̃(iω) = S−1W(iω)S−1

W̃(iτ)

Σn(iτ) = − ∑
µνPQ

Gµν(iτ)(nµP)

×W̃PQ(iτ)(Qνn)

O(N2NGW )

Σn(iω)

Σn(ε)

ε
G0W0
n = εn + Re Σn(ε

G0W0
n )− vxc

n

RI with overlap metric: (µν|λσ) =
∑

PQRT
(µνP)S−1

PQ VQRS−1
RT (Tλσ)
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Computational scaling of cubic-scaling GW
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s) O(N4) G0W0 total fit: O(N 3.80)
O(N3) G0W0 total fit: O(N 2.13)
O(N 3) steps fit: O(N 2.84)

Cubic-scaling GW particularly efficient for systems with
low dimensionality (best: one-dimensional chain, worst: spherical molecule, periodic system)
local electronic structure (best: solution of small molecules, worst: extended π system)

(7,12) GNR (7,24) GNR
AGNR7
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Input for cubic-scaling G0W0

G0W0@PBE for the (7,192) GNR (1734 atoms, aug-DZVP basis)

400 Piz Daint MC nodes (4 OMP threads)

&WF_CORRELATION

METHOD RI_RPA_GPW

! cubic-scaling GW only works with overlap metric RI
RI OVERLAP

ERI_METHOD OS

&WFC_GPW

! EPS_FILTER should be tuned, computational cost
! strongly depends on EPS_FILTER
EPS_FILTER 1.0E-9

! EPS_GRID may be tuned since memory is weakly
! dependent on it
EPS_GRID 1.0E-6

&END

&RI_RPA

! cubic-scaling GW only works with the minimax grid
! in imag. time and frequency
MINIMAX

! number of time and frequency points, at most 20
RPA_NUM_QUAD_POINTS 12

IM_TIME

...

! parameters for computing chi(it)
&IM_TIME

! EPS_FILTER_IM_TIME should be tuned
EPS_FILTER_IM_TIME 1.0E-11

! for large systems, increase GROUP_SIZE_3C
! to prevent out of memory (OOM)
GROUP_SIZE_3C 9

! for large systems, increase GROUP_SIZE_3C
! to prevent out of memory (OOM)
GROUP_SIZE_P 1

! for larger systems, MEMORY_CUT must be
! increased to prevent out of memory (OOM)
MEMORY_CUT 12

GW

&END

&RI_G0W0
CORR_OCC 15
CORR_VIRT 15
CROSSING_SEARCH NEWTON
OMEGA_MAX_FIT 1.0
ANALYTIC_CONTINUATION PADE
RI OVERLAP
RI_SIGMA_X

&END RI_G0W0
&END RI_RPA

&END
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Summary

GW : method to compute quasiparticle energies
from first principles

Accuracy of G0W0@PBE for solids, G0W0@PBE0
for molecules in the order of few hundreds of meV

High O(N4) computational cost

Hundreds of atoms can be treated on
supercomputers by G0W0 in CP2K

Slow basis set convergence

Correction scheme for periodic G0W0 calculations

O(N3) G0W0 method for big systems

εHOMO

εLUMO

Energy

εLUMO+1

εvac=0

εHOMO-1

Quasiparticle energies of a
closed shell molecule
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