

Simulating X-ray Spectroscopies with CP2K

Axel Erbing Department of Physics

CONEXS SUMMER SCHOOL 2019: Analysing X-ray Spectroscopy

Theoretical spectrum simulations - Why bother?

<u>Femtochemistry</u>: "Filming" chemical reactions using ultra-fast lasers. (Source: DESY Hamburg)

Theoretical spectrum simulations - Why bother?

Outline

Introduction

X-ray photo-electron spectroscopy (XPS)

- Example: XPS on H₂O(g,l,s)
- CP2K input

Molecular dynamics (MD)

- Basic theory
- Example: H-bond dynamics in H₂O(I)
- CP2K input

X-ray emission spectroscopy (XES)

- Example: XES on NH₃(aq)
- CP2K input

Bonus example: XPS on perovskite solar cells

Quantum Chemistry $H\Psi = E\Psi$

Hartree-Fock

Born-Oppenheimer
 Mean-field approx.

 $\Psi_{\mathsf{HF}} = \mathsf{det} \mid \phi_1, \phi_2, \dots \phi_{\mathsf{N}} \mid$

Momentary e⁻ - e⁻ correlation missing!

Correlation in

Post-HF Multi-determinant

Wave function correlated

 —	—		
 		—	
	_	<u> </u>	
 		_	_
	▲ ↓		

Ab initio Molecular dynamics

$$-\boldsymbol{\nabla}_I V = \boldsymbol{F}_I = m_I \boldsymbol{a}_I$$

$$\boldsymbol{F}_{I} = -\nabla_{I} \min_{\phi_{i}} \left\{ E_{\mathrm{KS}}(\{\phi_{i}\}; \boldsymbol{R}_{I}) \right\}$$

Quantum dynamics

$$i\hbar\frac{\partial}{\partial t}\Phi(\{\boldsymbol{r}_i\},\{\boldsymbol{R}_I\};t) = H\Phi(\{\boldsymbol{r}_i\},\{\boldsymbol{R}_I\};t)$$

QMD: Wave packet simulations

AIMD: CPMD CP2K

Quantum Chemistry $H\Psi = E\Psi$

Hartree-Fock

Born-Oppenheimer
 Mean-field approx.

 $\Psi_{\text{HF}} = \text{det} \mid \phi_1, \phi_2, \dots \phi_N \mid$

Momentary e⁻ - e⁻ correlation missing!

AIMD: CPMD CP2K

Singlet determinant

Correlation in H

Post-HF Multi-determinant

Wave function correlated

 	—		
 —		—	
 _	_	▲ ↓	
 ▲ ↓		_	_
 	▲ ↓		

Ab initio Molecular dynamics

$$-\boldsymbol{\nabla}_{I}V=\boldsymbol{F}_{I}=m_{I}\boldsymbol{a}_{I}$$

$$\boldsymbol{F}_{I} = -\nabla_{I} \min_{\phi_{i}} \left\{ E_{\mathrm{KS}}(\{\phi_{i}\}; \boldsymbol{R}_{I}) \right\}$$

Quantum dynamics

$$i\hbar\frac{\partial}{\partial t}\Phi(\{\boldsymbol{r}_i\},\{\boldsymbol{R}_I\};t) = H\Phi(\{\boldsymbol{r}_i\},\{\boldsymbol{R}_I\};t)$$

QMD: Wave packet simulations

Core-level spectroscopy

X-ray photo-electron spectroscopy

X-ray absorption spectroscopy

X-ray emission spectroscopy

Core-ionization (Valence-ionization)

Core-excitation

Fluorescence decay

XPS XAS XES

Spectrum simulations H $\Psi {=} {\rm E} \Psi$

Accurate methods Electronic states

Approximate methods Molecular orbitals

Orbital represention of the XPS and XES processes

Orbital represention of the XPS and XES processes

Spectrum simulations H $\Psi = E\Psi$

Broadening:

Core-hole life-time

Vibrational

Configurational

Experimental

Spectrum simulations H $\Psi = E\Psi$

Broadening:

How to simulate it?

Simplest approach: Convolution with Gaussian functions

$$I(E) = \sum_{i} f(\epsilon_i) e^{-(E - \epsilon_i)^2 / 2\sigma^2}$$

Width parameter $FWHM = 2\sqrt{2}\log(2)\sigma$

Other functions, e.g. Lorentzians

Molecular orbitals of $H_2O(g) - C_{2v}$ Point group

X-ray spectroscopy Case study: H₂O(g)

Koopman's theorem

HF orbital energies

approximate

Ionization binding energies

(However, we will cheat and also use DFT Kohn-Sham energies which require ad hoc shifts)

D. Nordlund et al CPL **460** 86 (2008)

Photo-electron spectroscopy of $H_2O(g,l,s)$

CPL 460 86 (2008)

D. Nordlund et al CPL **460** 86 (2008)

Notice: In C_{2v} symmetry only a_1 can have oxygen s-sym.

e.g. PDOS_H2O-k1-1.pdos

Molecular dynamics (MD)

Why bother with MD?

- Temperature
- Bond dynamics
- Reactions
- (Much more!)

D. Nordlund et al CPL **460** 86 (2008)

Molecular dynamics (MD)

Newton's equations of motion

 $\boldsymbol{F}_I = m_I \boldsymbol{a}_I$

Molecular dynamics (MD)

Newton's equations of motion

$$oldsymbol{F}_I=m_Ioldsymbol{a}_I$$
 , $oldsymbol{F}_I=-
abla_IV$

Two problems: <u>Calculating forces</u> and <u>integrating EoMs</u>

Velocity Verlet

$$\mathbf{R}(t + \delta t) = \mathbf{R}(t) + \mathbf{V}(t)\delta t + \frac{1}{2M}\mathbf{F}(t)\delta t^{2}$$

$$\mathbf{V}(t + \delta t) = \mathbf{V}(t) + \frac{1}{2M}\left[\mathbf{F}(t) + \mathbf{F}(t + \delta t)\right]\delta t$$

Molecular dynamics (MD)

Newton's equations of motion

$$oldsymbol{F}_I=m_Ioldsymbol{a}_I$$
 , $oldsymbol{F}_I=-
abla_IV$

Two problems: Calculating forces and integrating EoMs

Classical MD:

Force fields

Good for larger systems

$$V = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - 2\left(\frac{\sigma}{r}\right)^6 \right]$$

Molecular dynamics (MD)

Newton's equations of motion

$$oldsymbol{F}_I=m_Ioldsymbol{a}_I$$
 , $oldsymbol{F}_I=-
abla_IV$

Two problems: <u>Calculating forces</u> and <u>integrating EoMs</u>

Classical MD:

Force fields

- Less expensive
- Good for larger systems

Ab initio MD (AIMD):

Born-Oppenheimer MD

• In CP2K

Car-Parrinello MD

• In CPMD

Born-Oppenheimer MD

Parameter-free force expression

$$\boldsymbol{F}_{I} = -\nabla_{I} \min_{\phi_{i}} \left\{ E_{\mathrm{KS}}(\{\phi_{i}\}; \boldsymbol{R}_{I}) + \mathrm{constr.} \right\}$$

Electronic orbitals optimized at each step

Hydrogen bonding in water

CPL **460** 86 (2008)

Molecular Dynamics in CP2K

In CP2K:

Use MD as run type

&GLOBAL PROJECT liquid_water_md RUN_TYPE MD IOLEVEL LOW &END GLOBAL

MD Section

- Ensemble
- Time step
- Temperature
- Thermostat
- Printing

&MOTION &MD ENSEMBLE NVT **STEPS** 500 TIMESTEP 1 **TEMPERATURE 300.0** &THERMOSTAT **REGION** MASSIVE TYPE CSVR &CSVR TIMECON 20 &END CSVR & END THERMOSTAT &END MD &PRINT &TRAJECTORY &EACH MD 5 &END &END TRAJECTORY &VELOCITIES OFF &END &RESTART **&EACH** MD 10 &END ADD LAST NUMERIC &END &RESTART HISTORY OFF &END &END PRINT & END MOTION

Molecular Dynamics in CP2K

Time, temperature, and energies

	# Step Nr.	Time[fs]	Kin.[a.u.]	Temp[K]	Pot.[a.u.]	Cons Qty[a.u.]	UsedTime[s]
	0	0.00000	0.273612846	300.000000000	-1101.195048677	-1100.921435831	0.00000000
	1	1.000000	0.260788851	285.939262507	-1101.187798871	-1100.921315744	185.706952075
	2	2.000000	0.251300078	2/5.54203091/	-1101.180757000	-1100.920989497	74 024022441
	5	4 000000	0.243390724	209.030143732	-1101.180382929	-1100.921719091	74.024022441
		5 000000	0 244483398	268 061315781	-1101.180713807	-1100.922038801	81 450230681
	5	6 000000	0 248146396	272 077572772	-1101.170366895	-1100.921241134	80 918141057
UULDUL	7	7.000000	0.243194901	266.648556557	-1101.176391675	-1100.920844694	68,497354319
	8	8.000000	0.266614350	292.326571080	-1101.193920451	-1100.921755529	79.407844959
	9	9.000000	0.282143251	309.353075672	-1101.207672144	-1100.922823669	50.431842566
	10	10.000000	0.277957975	304.764172501	-1101.205146651	-1100.922196436	67.354678559
	11	11.000000	0.267186222	292.953594182	-1101.193865916	-1100.920825588	62.275034669
	12	12.000000	0.268798850	294.721743890	-1101.190595790	-1100.920813534	74.036419125
	13	13.000000	0.273868615	300.280435755	-1101.192085651	-1100.921504962	82.080369944
	14	14.000000	0.260863451	286.021057303	-1101.188315315	-1100.921489325	60.489270956
	15	15.000000	0.246732390	270.527199517	-1101.178095043	-1100.920685259	73.977594214
	16	16.000000	0.241390703	264.670361900	-1101.173192957	-1100.920360170	68.257580375
	17	17.000000	0.243886285	267.406617622	-1101.176766365	-1100.920488230	77.877416690
	18	18.000000	0.263436205	288.841926755	-1101.190322074	-1100.921032269	73.244974266
Trajaatam	19	19.000000	0.280008882	307.012868808	-1101.205372283	-1100.922310150	00.950812083
Indjectory	20	20.000000	0.278500222	301 1000607/1	-1101.203508851	-1100.921750588	12/ 051270055
	21	22.000000	0.274097140	307 492246630	-1101.198040242	-1100.920012143	101 725280184
	23	23.000000	0.290504788	318,520996969	-1101.202190249	-1100.921909393	92.342588647
	24	24.000000	0.293909603	322.254171119	-1101.217940920	-1100.922053166	79.395465549
	25	25.000000	0.293316279	321,603627108	-1101.213950635	-1100.921493397	81.616674579
¥	26	26.000000	0.287446640	315.167922262	-1101.207388779	-1100.920908335	72.550315438
	27	27.000000	0.284613311	312.061347630	-1101.204539539	-1100.920300885	63.716598709
See 19 19 19 19 19 19 19 19 19 19 19 19 19	28	28.000000	0.294791092	323.220671590	-1101.211853416	-1100.920806870	60.495320910
	29	29.000000	0.306880839	336.476350649	-1101.224396577	-1100.922196413	67.581873094
u T 😢 🎑	30	30.00000	0.311467278	341.505104356	-1101.224802819	-1100.922263794	76.707186854
	31	31.000000	0.296048848	324.599725054	-1101.210297945	-1100.921193445	63.403624347
🖤 🤘 🤟 🙆 _	32	32.000000	0.272354495	298.620293893	-1101.192294399	-1100.920210519	80.945801291
	33	33.000000	0.266102466	291.765321428	-1101.189084729	-1100.919903498	68.794831039
	34	34.000000	0.279966618	306.966528169	-1101.202928165	-1100.921652109	68.256335506
	35	35.000000	0.283080611	310.380834476	-1101.205777712	-1100.922353383	67.731184330
	30	30.000000	0.205191010	290.705904080	-1101.190904050	-1100.920029002	71 631931397
	37	37.000000	0.204772100	290.300033409	-1101.187044821	-1100.919955501	71.051821207 90.441292040
	30	39.000000	0.271314037	305 610871415	-1101.201293022	-1100.921043440	72 446101384
	40	40.000000	0.277284941	304.026231399	-1101.217693627	-1100.922515588	65.982694265
	41	41.000000	0.266674230	292.392225474	-1101.209732017	-1100.921575999	96,955513053
	42	42.000000	0.265563288	291,174144961	-1101.203958115	-1100.920208762	97.002539299
	43	43.000000	0.278680121	305.555962096	-1101.217371396	-1100.921302690	73.838125673
	44	44.000000	0.295775609	324.300134456	-1101.232465712	-1100.922643814	69.464185646
	45	45.000000	0.293090207	321.355753173	-1101.227676679	-1100.921663414	77.113984438
	46	46.000000	0.271676677	297.877107791	-1101.215412194	-1100.919890371	100.363709472
	47	47.000000	0.280631093	307.695085597	-1101.223582008	-1100.921162812	56.928944765
	48	48.000000	0.284931900	312.410661506	-1101.235919778	-1100.921945724	75.435754369
	49	49.000000	0.282037030	309.236610536	-1101.239173849	-1100.921834984	69.919304038
	50	50.000000	0.284386775	311.812964849	-1101.236343611	-1100.921655594	73.850114970
				or liquid	1 opor		
8 V 9			⊑.y. wdl	cı_ııyulu	-T'GIIGI		
			•	-			

E.g. water_liquid-1.ener

Molecular Dynamics in CP2K

In CP2K:

Initial guess of wave function

- ASPC (recommended) for faster convergence in the SCFs while keeping stability
- USE_GUESS for the same initial guess for all steps

&FORCE_EVAL	
&DFT	
&QS	
METHOD	GPW
EPS_DEFAULT	1.0E-10
	USE_GUESS
EXTRAPOLATION	ASPC
EXTRAPOLATION_ORDER	4
&END DFT	
&END FORCE_EVAL	

Molecular Orbitals in CP2K

In CP2K:

Plotting molecular orbitals

- Cube-file format .cube
- Can be visualized in software like VMD, VESTA, or GaussView
- Be careful when writing and storing cube-files as they take up alot of space!

XES allows us to access N p-PDOS in NH₃(aq)

Aqueous ammonia: Energy mismatch in orbital mixing

O PDOS would dominate in valence XPS

N K-edge XES can cut-out N p-PDOS

M. Ekimova et al. DOI: 10.1021/jacs.7b07207 J. Am. Chem. Soc. 2017, 139, 12773–12783

Electronic structure of NH₃(g) and NH₃(aq)

X-ray emission spectroscopy of NH₃(g) and NH₃(aq)

Phys. Chem. Chem. Phys., 17, 27145 (2015)

XES in CP2K

In CP2K:

XAS section

- Choose method to compute transition moment
- Remember to use an all electron potential / basis set
- The optimal method might vary between systems

Output spectrum

Emission	spectrum for	atom 1, index	of excited core	MO is 1,	# of lines	5
1	0.00000000	0.0000000	0.00000000	-0.00000000	0.00000000	1.00000
2	485.71459420	-0.00563467	-0.22020527	-0.07102793	0.05356708	1.00000
3	497.86840667	-0.87279925	0.01937984	0.00882570	0.76223201	1.00000
4	501.75564296	-0.02221103	-0.87187036	-0.28115240	0.83969793	1.00000
5	504.10422332	-0.00300028	0.32795079	-1.01658135	1.14099837	1.00000
					▲ · · · · · · · · · · · · · · · · · · ·	

Photo-energy dependence in XPS

Binding energy (eV)

Photo-energy dependence in XPS

Understanding the valence band from orbitals

B. Philippe et al (2017) J. Phys. Chem. C **121** 48

Thank you for your attention!

Questions?