

Linear-Response Time-Dependent Density Functional Theory for X-Ray Absorption Spectroscopy in CP2K (LR-TDDFT for XAS in CP2K)

Augustin Bussy

University of Zurich

CONEXS Summer School 2019

Presentation Outline

Theory

- Basics of LR-TDDFT
- Restriction to XAS
- Making it affordable

Using XAS_TDP in CP2K

- Setting up an appropriate ground state calculation
- Selecting the donor core orbitals
- Defining the Kernel
- Other keywords
- Typical workflow
- Tuning the precision
- Performance tricks

A. Bussy (UZH)

Basics of LR-TDDFT Standard DFT:

$$H_{KS}^{\sigma}[n_{\alpha}, n_{\beta}](\mathbf{r}) \ \phi_{j\sigma}(\mathbf{r}) = \varepsilon_{j\sigma}\phi_{j\sigma}(\mathbf{r})$$

$$H^{\sigma}_{KS}[n_{\alpha}, n_{\beta}](\mathbf{r}) = -\frac{1}{2}\boldsymbol{\nabla}^{2} + v^{\sigma}_{eff}[n_{\alpha}, n_{\beta}](\mathbf{r})$$

$$v_{eff}^{\sigma}[n_{\alpha}, n_{\beta}](\mathbf{r}) = v_{ext}(\mathbf{r}) + v_{H}[n](\mathbf{r}) + v_{xc}^{\sigma}[n_{\alpha}, n_{\beta}](\mathbf{r})$$
$$= v_{ext}(\mathbf{r}) + \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \frac{\delta E_{xc}[n_{\alpha}, n_{\beta}]}{\delta n_{\sigma}(\mathbf{r})}$$

$$n_{\sigma}(\mathbf{r}) = \sum_{j=1}^{N_{\sigma}} \phi_{j\sigma}^{*}(\mathbf{r}) \phi_{j\sigma}(\mathbf{r})$$

CONEXS

イロト イヨト イヨト イヨト

Time-dependent DFT:

$$i\frac{\partial}{\partial t}\phi_{j\sigma}(t,\mathbf{r}) = H^{\sigma}[n_{\alpha},n_{\beta}](t,\mathbf{r})\phi_{j\sigma}(t,\mathbf{r})$$

$$\begin{aligned} H^{\sigma}[n_{\alpha},n_{\beta}](t,\mathbf{r}) &= -\frac{1}{2}\boldsymbol{\nabla}^{2} + v_{eff}^{\sigma}[n_{\alpha},n_{\beta}](t,\mathbf{r}) \\ &= -\frac{1}{2}\boldsymbol{\nabla}^{2} + v_{ext}(t,\mathbf{r}) + v_{H}[n](t,\mathbf{r}) + v_{xc}^{\sigma}[n_{\alpha},n_{\beta}](t,\mathbf{r}) \end{aligned}$$

$$n_{\sigma}(t, \mathbf{r}) = \sum_{j=1}^{N_{\sigma}} \phi_{j\sigma}^{*}(t, \mathbf{r}) \phi_{j\sigma}(t, \mathbf{r})$$

イロト イ団ト イヨト イヨト 二日

Assume incoming photon of frequency $\omega \Rightarrow$ harmonic perturbation

$$v_{ext}(t, \mathbf{r}) = v_{ext}^0(\mathbf{r}) + v^-(\mathbf{r})e^{-i\omega t} + v^+(\mathbf{r})e^{i\omega t}$$

This leads to a harmonic perturbation in the density:

$$n_{\sigma}(t,\mathbf{r}) = n_{\sigma}^{0}(\mathbf{r}) + n_{\sigma}^{-}(\mathbf{r})e^{-i\omega t} + n_{\sigma}^{+}(\mathbf{r})e^{i\omega t}$$

And to the Kohn-Sham orbitals:

$$\phi_{j\sigma}(t,\mathbf{r}) = \phi_{j\sigma}^0(t,\mathbf{r}) + \phi_{j\sigma}^+(\mathbf{r})e^{i\omega t} + \phi_{j\sigma}^-(\mathbf{r})e^{-i\omega t}$$

Basis set expansion:

$$\left|\phi_{j\sigma}^{0}\right\rangle = \sum_{q=1}^{M} c_{qj\sigma}^{0} \left|\varphi_{q}\right\rangle \qquad \left|\phi_{j\sigma}^{\pm}\right\rangle = \sum_{q=1}^{M} c_{qj\sigma}^{\pm} \left|\varphi_{q}\right\rangle \qquad S_{pq} = \left\langle\varphi_{p}\right|\varphi_{q}\right\rangle$$

Matrix formulation:

$$\omega \begin{pmatrix} -\mathbf{G} & 0\\ 0 & \mathbf{G} \end{pmatrix} \begin{pmatrix} \mathbf{C}^+\\ \mathbf{C}^- \end{pmatrix} = \begin{pmatrix} \mathbf{A} + \mathbf{B} & \mathbf{B}\\ \mathbf{B} & \mathbf{A} + \mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{C}^+\\ \mathbf{C}^- \end{pmatrix}$$

$$A_{pi\sigma,qj\tau} = \left(F_{pq}^{\tau} - \varepsilon_{j\tau}S_{pq}\right)\delta_{ij}\delta_{\sigma\tau} \qquad G_{pi\sigma,qj\tau} = S_{pq}\delta_{ij}\delta_{\sigma\tau}$$

$$B_{pi\sigma,qj\tau} = \sum_{stuv} Q_{ps}^{\sigma} c_{ti\sigma}^{0} K_{st\sigma,uv\tau}^{Hxc} c_{uj\tau}^{0} Q_{vq}^{\tau}$$

A. Bussy (UZH)

CONEXS

(日) (同) (三) (三)

- Huge matrices. Size: $2 \times N_{MO} \times N_{sgf} \times N_{spin}$ \rightarrow Iterative solvers
- Many integrals to compute, $\mathcal{O}(N_{sgf}^4)$ \rightarrow Exploit symmetry and locality
- The kernel is frequency-dependent \rightarrow Adiabatic approximation: $f^{Hxc} = f^{Hxc}_{\sigma,\tau}(\mathbf{r}, \mathbf{r}')$
- Non-hermitian eigenvalue problem \rightarrow Tamm-Dancoff approximation, $c^+_{qj\tau} = 0$:

$$\omega \mathbf{G} \mathbf{C}^{-} = (\mathbf{A} + 2\mathbf{B}) \mathbf{C}^{-}$$

Restriction to XAS

Source: Wikipedia A. Bussy (UZH) ▲ ■ ● ■ つへで 11.09.2019 8 / 31

・ロト ・聞ト ・ヨト ・ヨト

Restriction to XAS

Weak coupling between core and valence excitations

- $\rightarrow~\mbox{Only}$ consider MOs below a given energy^1
- \to Drastically reduces the size of the matrix to diagonalize: indices i,j of $A_{pi\sigma,qj\tau}$ only span a small subset of core MOs

Very localized core orbitals

- \rightarrow Sudden approximation^2: total absorption is the sum of single electron excitations contributions
- $\rightarrow\,$ In TDDFT³, reduction to a single donor state. Reduces the matrix size to that of the KS one

- ²J. Rehr, E. Stern, R. Martin & E. Davidson, Phys. Rev. B 17, 560 (1978)
- ³S. DeBeer George, T. Petrenko & F. Neese, Inorg. Chim. Acta **361**, 965-972 (2008)

A. Bussy (UZH)

¹M. Stener, G. Fronzoni & M. de Simone, Chem. Phys. Let. **373**, 115-123 (2003)

Making it affordable

The kernel matrix involve 4-center 2-electrons integrals ($\mathcal{O}(N^4)$):

$$K_{pI\sigma,qJ\tau}^{Hxc} = \int d\mathbf{r} \int d\mathbf{r}' \varphi_p(\mathbf{r}) \phi_{I\sigma}(\mathbf{r}) f_{\sigma,\tau}^{Hxc}(\mathbf{r},\mathbf{r}',\pm\omega) \varphi_q(\mathbf{r}') \phi_{J\tau}(\mathbf{r}')$$
$$= (pI_{\sigma}|f_{\sigma,\tau}^{Hxc}|qJ_{\tau})$$

where (adiabatic approximation)

$$f_{\sigma,\tau}^{Hxc}(\mathbf{r},\mathbf{r}') = \frac{1}{\mathbf{r}-\mathbf{r}'} + \left. \frac{\delta^2 E_{xc}[n_{\alpha},n_{\beta}]}{\delta n_{\sigma}(\mathbf{r})\delta n_{\tau}(\mathbf{r}')} \right|_{n^0(\mathbf{r})}$$

< ∃ > <

Making it affordable: Coulomb kernel

Make use of a resolution of the identity (RI) in the V-approximation⁴:

$$(qI|pJ) \approx \sum_{\mu\nu} (pI|\mu) \ (\mu|\nu)^{-1}(\nu|qJ) = \sum_{\mu\nu} (qI|\mu) \ V_{\mu\nu}^{-1} \ (\nu|qJ)$$

 $|\mu\rangle$ form a RI basis that should span the $|pI\rangle$ product.

ightarrow |pI) is local, can take a small RI basis centered on excited atom.

 $\rightarrow\,$ Drastically reduce the number of 3-center integrals to compute !

 $\rightarrow V_{pq}^{-1}$ is precomputed for each excited kind.

Α.	Buss	<i>i</i> (U7	۲H

Making it affordable: exchange-correlation kernel

Use the V-approximation twice:

$$(pI|f^{xc}|qJ) \approx \sum_{\mu\nu\xi\chi} (pI|\mu) \ V_{\mu\nu}^{-1} \ (\nu|f^{xc}|\xi) \ V_{\xi\chi}^{-1} \ (\chi|qJ)$$

ightarrow 3-centers integrals $(pI|\mu)$ and $V^{-1}_{\mu
u}$ already computed

 $\rightarrow (\nu | f^{xc} | \xi)$ is a simple 2-centers integral. Only need $f^{xc}[n]$ in the vicinity of the excited atom. Numerical integration on small radial grid.

Making it affordable: exchange-correlation kernel

Need to evaluate the density at each atomic grid point.

Projection of $n(\mathbf{r})$ on the local RI basis ({ χ_{μ} }):

$$n(\mathbf{r}) = \sum_{pq} P_{pq} \varphi_p(\mathbf{r})\varphi_q(\mathbf{r})$$
$$\approx \sum_{pq} \sum_{\mu\nu} P_{pq} \left(\varphi_p \varphi_q \chi_\mu\right) S_{\mu\nu}^{-1} \chi_\nu(\mathbf{r})$$
$$= \sum_{\nu} d_{\nu} \chi_\nu(\mathbf{r})$$

 $(\varphi_p \varphi_q \chi_\mu)$ is a 3-center overlap between the orbital and RI basis functions and $S_{\mu\nu}^{-1} = (\chi_\mu \chi_\nu)^{-1}$ is the inverse overlap between two RI basis functions.

Making it affordable: exact exchange kernel

Necessary for high quality hybrid functionals. Use the same RI as for Coulomb:

$$(pq|IJ) \approx \sum_{\mu\nu} (pq|\mu) V_{\mu\nu}^{-1} (\nu|IJ)$$

- \rightarrow Despite locality of μ,ν,I,J all overlapping p,q of the system must be considered
- \to This is impossible in periodic boundary conditions. One must resort to short range potentials such as truncated Coulomb or ${\rm erfc}(\omega r)/r$
- $\rightarrow\,$ Usually the bottleneck in large-scale simulations

(人間) システン ステン・ ラ

Using XAS_TDP in CP2K

A. Bussy (UZH)

▲ 重 ト 重 少 Q へ 11.09.2019 15 / 31

イロト イヨト イヨト イヨト

Using XAS_TDP in CP2K

All examples will refer to Trimethylaluminium, aka $AI_2(CH_3)_6$:

< ∃ >

Setting up the ground state calculation

The following keywords should be set outside of the &XAS_TDP section:

- In &GLOBAL, set RUN_TYPE to ENERGY
- In &FORCE_EVAL, &DFT:
 - Set AUTO_BASIS RI_XAS to SMALL, MEDIUM or LARGE To automatically generate a RI basis set based on the orbital one
 - In &QS, set METHOD to GAPW This allows for all-electron treatment of excited atoms
 - In &SCF, set SCF_GUESS to RESTART In case the XAS_TDP calculation is done separately, the ground state is readily available
- In &FORCE_EVAL, &SUBSYS:

Make sure to use all-electron basis sets and to set POTENTIAL to ALL when defining an atomic $\& {\sf KIND}$

Setting up the ground state calculation

Input snippets for XAS_TDP compatible ground state calculation:

&GLOBAL PROJECT trimethylAl RUN_TYPE ENERGY &END GLOBAL

&FORCE_EVAL &DFT AUTO_BASIS RI_XAS MEDIUM

> &QS METHOD GAPW &END QS

&SCF SCF_GUESS RESTART &END SCF

!+ functional, cutoff, poisson, etc.

&END DFT

&SUBSYS &KIND AI BASIS_SET 6-31G* POTENTIAL ALL &END KIND

&KIND C BASIS_SET 6-31G* POTENTIAL ALL &END KIND

!+ hydrogen, cell, coordinates, etc. &END SUBSYS &END FORCE_EVAL

イロト イヨト イヨト イヨト

CONEXS

Selecting the donor core orbitals

XAS calculations are triggered by the &XAS_TDP subsection of &DFT

The first step is to define which are the core donor MOs.

&XAS_TDP &DONOR_STATES DEFINE_EXCITED BY_KIND KIND_LIST AI STATE_TYPES 1s N_SEARCH 2 LOCALIZE &END DONOR_STATES

!+ kernel, grid size, etc. &END XAS_TDP

The above snippet will look for Aluminium 1s orbitals among the 2 lowest eigenvalue MOs. The donor orbitals will be localized, which is a necessary step if different excited atoms are equivalent under symmetry. &XAS_TDP &DONOR_STATES DEFINE_EXCITED BY_INDEX ATOM_LIST 1 2 STATE_TYPES 1s 1s N_SEARCH 2 LOCALIZE &END DONOR_STATES

!+ kernel, grid size, etc. &END XAS_TDP

Here the code looks for the 1s orbital of atoms 1 and 2. This works assuming the Aluminiums are listed before other atoms in the coordinates definition.

Defining the kernel

The &KERNEL subsection defines which functionals are used. It entirely relies on the LIBXC library⁵ for the xc part:

&XAS_TDP &KERNEL &XC_FUNCTIONAL &LIBXC FUNCTIONAL GGA_C_PBE &END LIBXC &LIBXC FUNCTIONAL GGA_X_PBE &END LIBXC &END XC_FUNCTIONAL &END KERNEL

!+ donor_states, grid size, etc. &END XAS_TDP

The very popular GGA functional PBE for the kernel. It is explicitly made of a correlation and an exchange part &XAS_TDP &KERNEL &XC_FUNCTIONAL &LIBXC FUNCTIONAL HYB_GGA_XC_B3LYP &END LIBXC &END XC_FUNCTIONAL &EXACT_EXCHANGE OPERATOR COULOMB SCALE 0.2 &END EXACT_EXCHANGE &END KERNEL

!+ donor_states, grid size, etc. &END XAS_TDP

The B3LYP hybrid functional with 20% of exact exchange. Note: never use the Coulomb operator in periodic boundary conditions, but TRUN-CATED or SHORTRANGE instead

⁵M. Marques, M. Oliveira & T. Burnus, Comp. Phys. Comm. **183**, 2272-2281 (2012).

A.	Buss	v (UZ	н
	Du35	yι	02	

Other keywords

Some other stand alone keywords define XAS_TDP:

- CHECK_ONLY this keyword triggers a trial run to check the quality of the donor core MOs. None of the heavy computation is done.
- TAMM_DANCOFF enables the Tamm-Dancoff approximation (cheaper, still high quality). It is on by default.
- GRID defines the density of the integration grid of a given kind for the XC kernel. For our molecule: **GRID AI 100 150** \Rightarrow for kind AI, the angular grid has a 100 points and the radial one has 150

There are other keywords, but the default are in principle good enough

Typical workflow

- Get the structure(s): from geometry optimization, MD trajectory snapshots, experimental data, etc.
- Make a compatible ground state calculation (GAPW, all electron potential and basis set, etc.)
- Add the &XAS_TDP section in the input with the CHECK_ONLY keyword. Make sure you set SCF_GUESS RESTART to avoid recomputing the ground state. In the ouput, check that the donor MOs have a well defined type (1s, 2s, 2p) and are local in space
- Remove the CHECK_ONLY keyword and rerun. The spectral data (energies and dipole oscilaltor strengths) is in the *.spectrum file

Note: steps 2 and 3 can be combined

Typical workflow

Checking the donor MOs quality in the *.out file:

Typical workflow

Getting the spectrum (*.spectrum file):

XAS TDP sing from EXCITED	let excitations (no SOC) ATOM: 1, of KIND (iu	for DONOR STATE: 1s, ndex/symbol): 1/Al
Index	Excitation energy (eV)	fosc dipole (a.u.)
1	1526.770467	0.004640
2	1526.986501	0.002163
3	1527.262972	0.002232
4	1527.611562	0.000805
5	1527.691835	0.000313
6	1528.124279	0.001084
7	1528.992356	0.000094
8	1529.254595	0.000167
9	1529.698447	0.000027
10	1529.783112	0.000401
11	1530.265039	0.000392
12	1530.457520	0.000671
13	1530.806057	0.000147
14	1530.895715	0.001086
15	1531.388507	0.000510
16	1531.672528	0.000102
17	1531.739339	0.000321
18	1531.863481	0.000367
19	1532.154992	0.000824
20	1532.418933	0.000126

▶ < E ▶ E ∽ < < 11.09.2019 24 / 31

< ロ > < 同 > < 三 > < 三

Tuning the precision

- Changing the **GRID** density, *e.g.* GRID AI 300 300 for a very fine integration
- Using **higher quality RI basis**, setting AUTO_BASIS RI_XAS to LARGE or HUGE
- Using the **RI_RADIUS** keyword of the &KERNEL section. RI basis elements of all atoms within the sphere of radius RI_RADIUS centered on the excited atom contribute to the density description.

Very useful for **hybrid functionals**, which are very sensitive to the quality of the XC kernel. Including nearest neighbors is usually enough.

A B M A B M

Performance tricks: exploiting symmetry

In many molecules and solids, some atoms are **equivalent under symmetry**, *i.e.* they see and feel the same environment. In this case, there is **no need to compute excitations from all of them** as they should all be the same.

For $Al_2(CH_3)_6$:

The Aluminiums are the same under symmetry. It is hence necessary to LOCALIZE to donor MOs, but only 1 atom can be treated under XAS_TDP &XAS_TDP &DONOR_STATES DEFINE_EXCITED BY_INDEX ATOM_LIST 1 STATE_TYPES 1s N_SEARCH 2 LOCALIZE &END DONOR_STATES

!+ kernel, grid size, etc. &END XAS_TDP

Performance tricks: distributing the workload

By default, the integration grids for the XC kernel are distributed over the processors with **one grid per processor**. If there are more processor being used than excited atoms, some of them will be idling. The keyword NPROCS_GRID allows to distribute integration grids over batches of processors for **improved speed and load balance**.

&XAS_TDP NPROCS_GRID 2

> &XC_FUNCTIONAL &LIBXC FUNCTIONAL GGA_C_PBE &END LIBXC &LIBXC FUNCTIONAL GGA_X_PBE &END LIBXC &END XC_FUNCTIONAL

!+ donor₋states, grid size, etc. &END XAS_TDP Assuming we simulate both Aluminiums of $Al_2(CH_3)_6$ on **4** processors:

- With NPROCS_GRID 2, grids are split over 2 processors, integration is simultaneous for both atoms
- With NPROCS_GRID 4, grids are split over 4 processors and atoms are treated in a row

The denser the grid, the greater the benefits of increasing NPROCS_GRID

イロト 不得下 イヨト イヨト 二日

Showcase: Zn-MOF-5

- $(C_{48}H_{24}O_{26}Zn_8)_4$
- 424 atoms in the unit cell
- 25.8 Å× 25.8 Å× 25.8 Å
- Periodic boundary conditions

→ ∃ →

Showcase: Zn-MOF-5⁶

- BHandHLYP hybrid functional
- TZP-DKH basis set on 8 Zn from which excitations occur

- DZVP-MOLOPT-SR-GTH + pseudo potential
- DKH2 relativistic corrections

⁶J. Hafizovic et. al., J. Am. Chem. Soc, **129**, 3612-3620 (2007)

A. Bussy (UZH)

CONEXS

11.09.2019 29 / 31

Summary

Remember that:

- LR-TDDFT is a perturbative treatment of a ground state DFT calculation
- No good will come out of a XAS_TDP calculation if the ground state is not well converged
- The quality of the calculation can be controlled by using finer integration grids and/or better orbital and RI basis sets
- You can exploit symmetry and parallelism for faster calculations
- Hybrid functionals are usually the way to go in LR-TDDFT XAS simulations
- Absolute energies are usually not predictive, but spectral features are well reproduced
- Only the first few absorption peaks of a LR-TDDFT generated spectrum are physically meaningful

Questions

A. Bussy (UZH)

 Image: 11.09.2019
 Image: 31 / 31

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト