User Tools

Site Tools


exercises:2015_ethz_mmm:md_ala

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
exercises:2015_ethz_mmm:md_ala [2015/03/11 09:44] yakutovichexercises:2015_ethz_mmm:md_ala [2020/08/21 10:15] (current) – external edit 127.0.0.1
Line 3: Line 3:
 <note warning> <note warning>
 TO USE THE FUNCTION LIBRARY (VERSION UP TO DATE) IN THE INTERACTIVE SHELL: TO USE THE FUNCTION LIBRARY (VERSION UP TO DATE) IN THE INTERACTIVE SHELL:
-you@eulerX ~$ module load courses mmm vmd mmm-init+ 
 +you@eulerX ~$ module load courses mmm vmd 
 +  
 +you@eulerX ~$ mmm-init
 </note> </note>
  
Line 35: Line 38:
  
 You will start from a configuration already computed in the second lecture (**inp.a.pdb**) which is included in the repository of this exercise as well. You will start from a configuration already computed in the second lecture (**inp.a.pdb**) which is included in the repository of this exercise as well.
-Use the file **inp.nve** for the first simulation, which is a constant energy simulation. +Update the following part of the file **inp.nve** for the first simulation
 + 
 <code - md_part.inp.nve> <code - md_part.inp.nve>
 &MD                                           ! This section defines the whole set of parameters needed perform an MD run. &MD                                           ! This section defines the whole set of parameters needed perform an MD run.
-  ???????? ???                                ! Please chose the appropriete ensemble for you MD simulation +  ???????? ???                                ! Please specify the appropriete ensemble for you MD simulation 
-  ????? ??????                                ! Please chose the number of MD steps to perform +  ????? ??????                                ! Please specify the number of MD steps to perform 
-  ???????? ???? ???                           ! Please chose the length of an integration step +  ???????? ???? ???                           ! Please specify the length of an integration step 
-  ??????????? ?????                           ! Please chose the initial temperature+  ??????????? ?????                           ! Please specify the initial temperature
 &END MD &END MD
- 
 </code> </code>
  
-  * Perform a constant energy simulation, 100000 time steps, with a time step of 1 fs. +<note tip> 
 +To get more information, please visit **cp2k reference manual**, section **Molecular Dynamics**: 
 +http://manual.cp2k.org/trunk/CP2K_INPUT/MOTION/MD.html 
 +</note> 
 + 
 +  * Perform a constant energy simulation, 100000 time steps, with a time step of 1 fs. Use 100 K as an initial temperature! 
 <code bash> <code bash>
 you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.nve -o out.nve you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.nve -o out.nve
 </code> </code>
-  * Using different input file, modify the time step and the name of the project. Do it for 0.1, 2, 3, 4 fs. +<note tip> 
 +Assignments: 
 +  - We are performing MD at constant energy, but why we still have to define the temperature? 
 +</note> 
 + 
 +  * Make four copies of the previous input file (say inp.nve_0.1inp.nve_2.0, inp.nve_3.0, inp.nve_4.0), in each input file modify the **time step** (use 0.1, 2, 3, 4 fs respectively)  and the **name** of the project 
 +  * Perform the simulations with all these input files:  
 +<code bash> 
 +you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.nve_0.1 -o out.nve_0.1 
 +you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.nve_2.0 -o out.nve_2.0 
 +you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.nve_3.0 -o out.nve_3.0 
 +you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.nve_4.0 -o out.nve_4.0 
 +</code>
   * Have a look at the corresponding *.ener files (we suggest you to use gnuplot).   * Have a look at the corresponding *.ener files (we suggest you to use gnuplot).
 <note tip> <note tip>
 Assignments Assignments
   - Do you see the energy conservation? Give comments on your observations.   - Do you see the energy conservation? Give comments on your observations.
-  - Describe the behavior of potential and kinetic energy, and the temperature.+  - Analyse the behavior of potential and kinetic energy, and the temperature.
 </note> </note>
  
Line 83: Line 105:
 </note> </note>
  
-In cp2k input file it can be specified as follows:+In cp2k input files you should again have a look at the following section:
 <code - md_part.inp.300> <code - md_part.inp.300>
   &MD                                           ! This section defines the whole set of parameters needed perform an MD run.   &MD                                           ! This section defines the whole set of parameters needed perform an MD run.
-    ENSEMBLE NVT                                The ensemble/integrator that you want to use for MD propagation +    ???????? ???                                Please specify the appropriete ensemble for you MD simulation 
-    STEPS 100000                                The number of MD steps to perform +    ????? ??????                                Please specify the number of MD steps to perform 
-    TIMESTEP 1.0                                The length of an integration step +    ???????? ???                                Please specify the length of an integration step 
-    TEMPERATURE 300.0                           The temperature in K used to initialize the velocities with init and pos restart velocities +    ??????????? ???                             Please specify the temperature of the simulation 
-    &THERMOSTAT                                 ! This section specifies thermostat type and parameters controlling the thermostat +    &??????????                                 ! Please specify a thermostat section here 
-      &NOSE                                     ! This section specifies paramameters of the Nose Hoover thermostat chain+      &????                                     ! Please put here a section which specfies Nose-Hoover thermostat chain
         TIMECON 50                              ! Timeconstant of the thermostat chain         TIMECON 50                              ! Timeconstant of the thermostat chain
-      &END NOSE +        LENGTH 3                                ! Length of the Nose-Hoover chain  
-    &END+        YOSHIDA 3                               ! Order of the yoshida integretor used for the thermostat 
 +      &???  
 +    &???
   &END MD   &END MD
 </code> </code>
  
-The first simulation is done at 100 K: +Edit the inp.100 file (Put there: NVT ensemble, 100000 steps of simulation, 100 K, Nose-Hoover thermostat and 1.0 fs of timestep). The first simulation is done at 100 K: 
 <code bash> <code bash>
 you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.100 -o out.100 you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.100 -o out.100
 </code> </code>
-  * Then, perform simulation at 300 K, using the restart file from the previous simulation: **inp.300**. +  * Then, perform another simulation, using the restart file from the previous simulation: **inp.300**. But first you have to edit it exactly like in the previous case, but **put 300 K** instead of 100 K
 <code bash> <code bash>
 you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.300 -o out.300 you@eulerX exercise_4.1$ bsub cp2k.popt -i inp.300 -o out.300
Line 123: Line 147:
  
 <code tcl> <code tcl>
-source "dihedrals.vmd"+vmd> source "dihedrals.vmd"
 </code> </code>
  
 You can also pick from the extensions the "RMSD trajectory tool" and use it to align the molecule along the trajectory (Extensions>Analysis>RMSC Trajectory Tool). Replace the word "protein" with "all" in the selection, and then use "align". You will see that now the molecule is well aligned along the path. You can also pick from the extensions the "RMSD trajectory tool" and use it to align the molecule along the trajectory (Extensions>Analysis>RMSC Trajectory Tool). Replace the word "protein" with "all" in the selection, and then use "align". You will see that now the molecule is well aligned along the path.
  
-  * Now using "Labels" menu, plot the graph of two dihedral angles.+  * Now using "Labels" menu, plot the graph of two dihedral angles
 +  - Go to Graphics > Labels 
 +  - In the drop-down list chose Dihedrals 
 +  - Chose both dihedrals in the list 
 +  - Go to the "Graph" section 
 +  - Press on the "Graph..." button 
 +  - (Optional) save these graps in a text file (File > Export to ASCII matrix...)
  
 <note tip> <note tip>
exercises/2015_ethz_mmm/md_ala.1426067067.txt.gz · Last modified: 2020/08/21 10:14 (external edit)