User Tools

Site Tools


exercises:2015_ethz_mmm:mo_ethene

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
exercises:2015_ethz_mmm:mo_ethene [2015/04/17 09:34]
oschuett
exercises:2015_ethz_mmm:mo_ethene [2015/04/17 15:33]
oschuett
Line 1: Line 1:
-====== Molecular orbitals of Ethene ====== +======= Molecular orbitals of Ethene ​======= 
-In this exercise, you will perform an electronic structure calculation to obtain the ethene molecular orbitals (MOs). If performed correctly, your calculations will produce a list of occupied and non occupied MOs and a series of *.cube files, that allow the visualization of the orbitals ​with VMD. +In this exercise, you will perform an electronic structure calculation to obtain the ethene molecular orbitals (MOs). If performed correctly, your calculations will produce a list of occupied and non occupied MOs and a series of *.cube files, that allow the visualization of the oribital ​with VMD. 
  
- ==== 1. Step ====+===== 1. Step: Run the calculation =====
 Run a calculation with the following (commented) input file. \\ Run a calculation with the following (commented) input file. \\
 Note that the file contains explicit basis sets and potential for all-electron calculations. An explanation of the basis set formats is given here: [[basis_sets|Basis Sets]] Note that the file contains explicit basis sets and potential for all-electron calculations. An explanation of the basis set formats is given here: [[basis_sets|Basis Sets]]
  
 <code - ethene.inp > <code - ethene.inp >
 +
 + 
 &GLOBAL &GLOBAL
   PROJECT ethene   PROJECT ethene
Line 17: Line 19:
   &DFT   &DFT
     &PRINT     &PRINT
-      &​MO_CUBES ​                ! Controls ​the printing of the MOs in the output and in the *.cube files +      &​MO_CUBES ​                ! Controls ​which MOs are written to cube-files. 
-      NHOMO 5                   ! Number of HOMOs to be printed (count starts from the highest occupied orbital. -1 = all). Here 5. +        NHOMO 5 
-      NLUMO 5                   ! Number of LUMOs to be printed (count starts from the lowest unoccupied orbital). Here 5. +        NLUMO 5
       &END MO_CUBES       &END MO_CUBES
 +      &​PDOS ​                    ! Controls which MOs are included in the pdos-files.
 +         NLUMO 5
 +      &END
     &END PRINT     &END PRINT
     &​POISSON ​                   ! Solver requested for non periodic calculations     &​POISSON ​                   ! Solver requested for non periodic calculations
Line 117: Line 122:
  
  
- ==== 2. Step ====+===== 2. Step =====
  
-If the calculation was performed correctly, a list of ALL the occupied MOs and 3 (as specified in the input) unoccupied MOs eigenvalues are printed in the output. \\ +If the calculation was performed correctly, a number ​of new files should have been written:
-The ethene band gap (energy difference between HOMO and LUMO) is also printed. ​+
 <​code>​ <​code>​
- +$ ls *.pdos *.cube 
-  ​**** **** ****** ​ **  PROGRAM STARTED AT                +ethene-k1-1.pdos ​ ethene-WFN_00004_1-1_0.cube ​ ethene-WFN_00006_1-1_0.cube ​ ethene-WFN_00008_1-1_0.cube ​ ethene-WFN_00010_1-1_0.cube ​ ethene-WFN_00012_1-1_0.cube 
- ***** ** ***  *** **   ​PROGRAM STARTED ON                    +ethene-k2-1.pdos ​ ethene-WFN_00005_1-1_0.cube ​ ethene-WFN_00007_1-1_0.cube ​ ethene-WFN_00009_1-1_0.cube ​ ethene-WFN_00011_1-1_0.cube  ethene-WFN_00013_1-1_0.cube
- ​** ​   ****   ​****** ​   PROGRAM STARTED BY                                +
- ***** **    ** ** **   ​PROGRAM PROCESS ID                                  +
-  **** **  ******* ​ **  PROGRAM STARTED IN                     +
- +
-..... +
-  Eigenvalues of the occupied subspace spin            1 +
- ​--------------------------------------------- +
-list of eigenvalues +
-.... +
- +
-  Lowest Eigenvalues of the unoccupied subspace spin            1 +
- ----------------------------------------------------- +
-list of eigenvalues +
-..... +
- +
- HOMO - LUMO gap [eV] :    +
-...... +
- +
- +
-  **** **** ****** ​ **  PROGRAM ENDED AT                  +
- ***** ** ***  *** **   ​PROGRAM RAN ON                        +
- ​** ​   ****   ​****** ​   PROGRAM RAN BY                                   +
- ***** **    ** ** **   ​PROGRAM PROCESS ID                                  +
-  **** **  ******* ​ **  PROGRAM STOPPED IN                    +
 </​code>​ </​code>​
  
-<note important>​ Note that the eigenvalues are given in Eh while the Band gap is given in eV</​note>​+First have a look at the *.pdos files. PDOS stands for Projected Density of States. These files list the energies and occupation of the MOs. Furthermorethey show how the MOs are compose from basis-functions of different atoms (one pdos-file for each atomic kind) and angular momentum (s,p,d). Hence, these numbers always sum up to 1.0.
  
 +===== 3. Step =====
  
- ==== 3Step ====+Now look at the *.cube files.  
 +Each cube-file contains the electronic density of one MO mapped onto a regular 3D-grid. Not all MOs were written to a cube-file, this is controlled by the PRINT_MO section. Their filenames tell you to which MO a cube-file belongs. For example ''​ethene-WFN_00005_1-1_0.cube''​ contains the 5th orbital.
  
-In addition ​to the list of eigenvalues ( printed directly in the output file) a series of *.cube files is generated. \\ +Use VMD to visualize ​the cube-files: 
-The number of cubes strictly depends on what you have specified in the PRINT_MO section. No extra files are generated (while in the output a default list of all the occupied MOs eigenvalues is anyway produced.) ​ \\ +  ​To run ''​vmd ethene-WFN_00008_1-1_0.cube''​ 
-∗.cube files report the structure of a given MO and can be visualized with VMD: +  ​To visualize the molecule (sometimes ​it'​s ​not visible ​by default):\\    ​**Graphics > Representations > Draw style > Drawing Method=CPK** 
- +  ​- Add a second representation by clicking on **Create Rep** 
-  ​To run vmd: vmd ethene-WFN_00008_1-1_0.cube +  - In this second representation set **Drawing Method=Isosurfaces** and **Draw=Wireframe** 
-  ​To visualize the molecule (sometimes ​the default settings are not visible ​with VMD in Brutus):\\    Graphics > Representations > Draw style > Drawing MethodCPK +  ​- Finally ​set the **Isovalue** of to a reasonable value, eg. 0.1 . 
-  * To visualize the MO structure in VMD:​\\ ​   Graphics > Representations > Draw style > Drawing MethodIsosurfaces ​ +  ​To visualize the positive and the negative part of an orbital simultaneously, ​you will have to add a third representation with a negative **Isovalue**,​ e.g. -0.1 . 
-  ​In  Isosurfaces,​ set Draw to "Wireframe" (other formats may not be visible with VMD in Brutus) +  ​To give the two representations different colors, set their **Coloring Method=ColorID** and choose different ids.
-  ​* In Isosurfaces, ​set Isovalue to 0.1, 0.01 ..+
-  ​To visualize the positive and the negative part of an orbital simultaneously,​ add a second isosurface ​representation with isovalues ​-0.1, -0.01, ..+
-  ​To give the two representations different colors, set their "Coloring Method" to "ColorID" ​and choose different ids.+
  
 What you get should look similar to this: What you get should look similar to this:
 {{ ethene_pi_orbital.png |}} {{ ethene_pi_orbital.png |}}
-==== Questions ==== 
- 
-- Quickly sketch the energy distribution for the occupied MOs and the  five unoccupied MOs. \\ 
-- By using VMD, identify the shape and energy of the π and π* orbitals. ​ 
- 
  
 +===== Questions =====
 +  - Quickly sketch the energy distribution of the MOs.
 +  - What's the energy of the HOMO, LUMO, and the band-gap?
 +  - Use VMD to identify the shape and energy of the $\pi$ and $\pi^*$ orbitals. ​
   ​   ​
- 
exercises/2015_ethz_mmm/mo_ethene.txt · Last modified: 2015/04/17 15:36 by oschuett