User Tools

Site Tools


exercises:2017_uzh_acpc2:prot_fol

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
exercises:2017_uzh_acpc2:prot_fol [2017/05/17 12:41] – [Task 3: Evaluate the free energy difference] vrybkinexercises:2017_uzh_acpc2:prot_fol [2020/08/21 10:15] (current) – external edit 127.0.0.1
Line 3: Line 3:
  
 ===== Background ===== ===== Background =====
-A model protein you will have to deal with is the alanine decapeptide. The folding/unfolding will be achieved by fixing the distance between the end carbon atoms in the chain: atoms 7 and 98. This distance is called a collective variable. At each distance one runs the MD simulation (constrained MD) to extract the time-averaged forces acting on the collective variable, $F(x)$. Then, a free energy difference can be calculated via thermodynamic integration (TI):+A model protein you will have to deal with is the alanine decapeptide. The folding/unfolding will be achieved by stretching/compressing the chain and fixing the distance between the end carbon atoms in it: atoms 7 and 98. This distance is called a collective variable. At each distance one runs the MD simulation (constrained MD) to extract the time-averaged forces acting on the collective variable, $F(x)$. Then, a free energy difference can be calculated via thermodynamic integration (TI):
  
 \begin{equation} \begin{equation}
Line 77: Line 77:
  
 <note tip> <note tip>
-  * Calculate +  * Calculate $\Delta A$ numerically using the trapezoidal rule (or equivalent) with EXCEL, ORIGIN or any scripting language.
 </note> </note>
  
  
exercises/2017_uzh_acpc2/prot_fol.1495024898.txt.gz · Last modified: 2020/08/21 10:15 (external edit)