User Tools

Site Tools


exercises:2018_ethz_mmm:lennard_jones_cluster_2018

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
exercises:2018_ethz_mmm:lennard_jones_cluster_2018 [2018/02/22 14:33] โ€“ dpasseroneexercises:2018_ethz_mmm:lennard_jones_cluster_2018 [2018/02/23 08:48] โ€“ dpasserone
Line 6: Line 6:
  
  
 +<note tip>
 +All files of this exercise be downloaded directly from the wiki: {{exercise_1.1.zip|}} 
 +</note>
 +
 +Download the 1.1 exercise into your **EXERCISES** folder and unzip it. 
 +
 +<code>
 +max@qmobile:~$ cd ; cd EXERCISES
 +max@qmobile:~$ wget http://www.cp2k.org/_media/exercises:2018_ethz_mmm:exercise_1.1.zip
 +max@qmobile:~$ unzip exercises:2018_ethz_mmm:exercise_1.1.zip
 +max@qmobile:~$ cd exercise_1.1
 +</code>
 +
 +
 +
 +In this exercise you will test the Lennard-Jones potential. In particular, we will focus on the system described in the following paper about the energy landscape of the 38 atom Lennard-Jones cluster:
 +<note tip>{{ :exercises:2017_ethz_mmm:1999_the_double-funnel_energy_landscape_of_the_38-atom_lennard-jones_cluster.pdf |}}
 +</note>
 +
 +The command to run cp2k is the following (with a generic **file.inp** input file):
  
 <code> <code>
 max@qmobile:~$ cp2k.ssmp -i file.inp -o file.out max@qmobile:~$ cp2k.ssmp -i file.inp -o file.out
 </code>  </code> 
 +
 +
 +===== Geometry optimization  =====
 +In this first part you will perform a simple energy optimization, to find the two lowest lying minima in the potential energy surface. 
 +
 +The input file structure of the template is the following:
 +
 +<code - geo_opt.inp>
 +&GLOBAL
 + FLUSH_SHOULD_FLUSH
 + PRINT_LEVEL low
 + PROJECT geo_opt_bfgs
 + RUN_TYPE geo_opt
 + WALLTIME 600
 +&END GLOBAL
 +
 +&MOTION
 + &GEO_OPT
 +  OPTIMIZER BFGS
 +  MAX_ITER  200
 +  MAX_DR    0.001
 +  RMS_DR    0.0003
 +  MAX_FORCE 0.0001
 +  RMS_FORCE 0.00003
 +  &BFGS
 +   USE_MODEL_HESSIAN yes
 +  &END BFGS
 + &END GEO_OPT
 + &PRINT
 +  &TRAJECTORY on
 +   FORMAT xyz
 +   &EACH
 +    GEO_OPT 1
 +   &END EACH
 +  &END TRAJECTORY
 + &END PRINT
 +&END MOTION
 +
 +&FORCE_EVAL
 + METHOD Fist
 + STRESS_TENSOR ANALYTICAL
 + &MM
 +    &FORCEFIELD
 +      &CHARGE
 +        ATOM Ar
 +        CHARGE 0.0
 +      &END
 +      &NONBONDED
 +        &LENNARD-JONES
 +          atoms Ar Ar
 +          EPSILON 119.8
 +          SIGMA 3.405
 +          RCUT 8.4
 +        &END LENNARD-JONES
 +      &END NONBONDED
 +      &CHARGE
 +        ATOM Kr
 +        CHARGE 0.0
 +      &END CHARGE
 +    &END FORCEFIELD
 +  &POISSON
 +   PERIODIC NONE
 +   &EWALD
 +    EWALD_TYPE none
 +   &END EWALD
 +  &END POISSON
 +  &PRINT
 +   &FF_INFO OFF
 +    SPLINE_DATA
 +    SPLINE_INFO
 +   &END FF_INFO
 +  &END PRINT
 + &END MM
 + &PRINT
 +  &FORCES off
 +  &END FORCES
 +  &GRID_INFORMATION
 +  &END GRID_INFORMATION
 +  &PROGRAM_RUN_INFO
 +   &EACH
 +    GEO_OPT 1
 +   &END EACH
 +  &END PROGRAM_RUN_INFO
 +  &STRESS_TENSOR
 +   &EACH
 +    GEO_OPT 1
 +   &END EACH
 +  &END STRESS_TENSOR
 + &END PRINT
 + &SUBSYS
 +  &CELL
 +        100 0 0
 +        0   100 0
 +        0 0 100
 +   PERIODIC NONE
 +  &END CELL
 +  &TOPOLOGY
 +      COORD_FILE_NAME in.xyz
 +      COORDINATE xyz
 +  &END
 +  &PRINT
 +   &CELL
 +   &END CELL
 +   &KINDS
 +   &END KINDS
 +   &MOLECULES OFF
 +   &END MOLECULES
 +   &SYMMETRY
 +   &END SYMMETRY
 +  &END PRINT
 + &END SUBSYS
 +&END FORCE_EVAL
 +                                                                                                                                                                                            
 +</code>
 +<note important>NOTE ON THE UNITS: CP2K USES SO CALLED "atomic units". Meaning that the resulting energies are expressed in Hartree, 
 +**1 Hartree=27.2114 eV**. 
 +In the input file, the epsilon value (depth of the well) is expressed in KT units, namely, in "temperature" units (there is a Boltzmann constant K_b to make units work...). <code>1 Kelvin*K_b=3.2E-6 Hartree</code>. Using this conversion factor you can transform the epsilon value into Hartree, and the total energy can be expressed in units of epsilon.  **The sigma value is in Angstrom.**
 +</note>
 +<note tip>
 +  - randomize the coordinate files **fcc.xyz** (which represents the "cubic" structure) <code>m_xyzrand 1.0 < fcc.xyz > fcc_rand.xyz</code>Do the same with **ico.xyz** which represents the icosahedral structure. You can look at all files with **vmd**.
 +  - extract the q4 order parameter from **fcc.xyz** and from **fcc_rand.xyz** and compare the values.
 +  - <code> python stein.py file.xyz </code>You will be asked the cutoff radius for the neighbors, it is **1.391** in sigma units. **You should input it in Angstrom**. You will also be asked **"value of l"** This means the symmetry of the order parameter, which is **l=4** in this case.
 +  - before running the simulation, copy the input coordinate file into in.xyz <code>cp fcc_rand.xyz in.xyz</code>
 +  - Before running cp2k, check if the file **OPT-pos-1.xyz** is already present from a previous run. In that case remove or delete it accordingly. It contains the trajectory of the optimization.
 +  - run cp2k  <code>cp2k.ssmp -i geo_opt.inp | tee geo_opt.out </code> (to see the output on the screen as well), or **AS AN ALTERNATIVE** <code>cp2k.ssmp -i geo_opt.inp > geo_opt.out </code> (to retain the output in the geo_opt.out file only) 
 +  - in the output file, grep the final energy <code>grep "ENERGY|โ€œ geo_opt.out</code> and transform it in the unit of the paper (epsilon units)
 +  - Open vmd and play with the optimization trajectory <code>vmd OPT-pos-1.xyz</code> (ask the teacher)
 +  - apply the script **myq4** to the optimization trajectory: this generates a list of q4 and energies for the whole trajectory. <code>./myq4 OPT-pos-1.xyz > fcc.ene.q4</code> 
 +  - plot q4 and energies with **gnuplot** (ask the teacher)
 +  - have a look at the myq4 script <code>nano myq4</code>
 +  - repeat for the ico.xyz starting point, don't forget to first copy/remove the files appropriately. For example: <code>mkdir FCC ; mv OPT* FCC ; mv geo_opt.out FCC</code>
 +  - Run the bash script <code>./curve</code>Look inside, and try to understand what you get. 
 +  - create a FCC_OUT subdirectory (**mkdir FCC_OUT ; cd FCC_OUT**) and copy there the files you want to keep; then go back one dir (**cd ..**), delete all the OPT* files (**rm OPT* **) and repeat the exercise with ico.xyz
 +
 +</note>
 +
 +
 +
 +
  
  
Line 21: Line 180:
 <note tip>Assignment:  <note tip>Assignment: 
   - Report the energy of the minima, compare it with the ones of the initial configurations.    - Report the energy of the minima, compare it with the ones of the initial configurations. 
 +  - After converting the energy into "epsilon" units, estimate the number of bonds in the cluster, assuming a pairwise interaction.
   - Plot q4 vs. energy and q4 vs. optimization steps, for the two cases. Discuss the results. Are the minima in two separate basins?   - Plot q4 vs. energy and q4 vs. optimization steps, for the two cases. Discuss the results. Are the minima in two separate basins?
   - Report the value of the order parameter of the minumum, and discuss what you see   - Report the value of the order parameter of the minumum, and discuss what you see
   - Use "gnuplot" to make the output of "./curve" understandable, discuss the results.   - Use "gnuplot" to make the output of "./curve" understandable, discuss the results.
 </note> </note>
--->+
exercises/2018_ethz_mmm/lennard_jones_cluster_2018.txt ยท Last modified: 2020/08/21 10:15 by 127.0.0.1