User Tools

Site Tools


howto:cdft

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
howto:cdft [2018/11/02 12:45] – [Defining CDFT SCF parameters] nholmberhowto:cdft [2018/11/02 12:51] – [Example: Configuration interaction calculations with CDFT (CDFT-CI): The case of $\mathrm{H}_2^+$] nholmber
Line 321: Line 321:
 <note important>This simulation requires CP2K version 7.0 or later.</note> <note important>This simulation requires CP2K version 7.0 or later.</note>
  
-This tutorial is exactly the same as the Zn dimer example above but using Hirshfeld partitioning based constraints instead of Becke constraints. You can find the input files here. +This tutorial is exactly the same as the Zn dimer example above but using Hirshfeld partitioning based constraints instead of Becke constraints. You can find the input files {{:howto:cdft-tutorial-hirshfeld.zip|here}}
  
 It might be instructive to visualize how the Becke and Hirshfeld weight function schemes differ, in particular, how the methods assign a volume to each atom in the system. You can activate the section [[inp>FORCE_EVAL/DFT/QS/CDFT/PROGRAM_RUN_INFO/WEIGHT_FUNCTION|WEIGHT_FUNCTION]] to output the weight function as a cube file which you can visualize with e.g. VMD. Feel free to modify the water tutorial above to look at the differences between Becke and Hirshfeld constraints in a system with different chemical elements. It might be instructive to visualize how the Becke and Hirshfeld weight function schemes differ, in particular, how the methods assign a volume to each atom in the system. You can activate the section [[inp>FORCE_EVAL/DFT/QS/CDFT/PROGRAM_RUN_INFO/WEIGHT_FUNCTION|WEIGHT_FUNCTION]] to output the weight function as a cube file which you can visualize with e.g. VMD. Feel free to modify the water tutorial above to look at the differences between Becke and Hirshfeld constraints in a system with different chemical elements.
Line 496: Line 496:
 We can use CDFT states as the basis of a configuration interaction (CI) simulation to correct for SIE in this system. As the figure above shows, CDFT-CI using the PBE functional is able to reproduce the exact dissociation profile. You can read up on the theory behind CDFT-CI simulations from the references given at the start of this tutorial. Very briefly, CDFT-CI simulations involve representing the system's wavefunction as a linear combination of multiple CDFT states where the charge/spin density is constrained differently in different states. The CI expansion coefficients and energies are then obtained by solving a generalized eigenvalue equation where the effective Hamiltonian matrix describes how the CDFT states interact with each other.  We can use CDFT states as the basis of a configuration interaction (CI) simulation to correct for SIE in this system. As the figure above shows, CDFT-CI using the PBE functional is able to reproduce the exact dissociation profile. You can read up on the theory behind CDFT-CI simulations from the references given at the start of this tutorial. Very briefly, CDFT-CI simulations involve representing the system's wavefunction as a linear combination of multiple CDFT states where the charge/spin density is constrained differently in different states. The CI expansion coefficients and energies are then obtained by solving a generalized eigenvalue equation where the effective Hamiltonian matrix describes how the CDFT states interact with each other. 
  
-In this tutorial, you will reproduce the DFT and CDFT results from the figure above. You can find the input files here. The reference data used to plot Figure 4 are also included in the zip-folder. Please note that the reference results were obtained with a larger basis set and planewave cutoff as well as tighter convergence criteria than the settings you will be using in this tutorial.+In this tutorial, you will reproduce the DFT and CDFT results from the figure above. You can find the input files {{:howto:cdft-tutorial-h2.zip|here}}. The reference data used to plot Figure 4 are also included in the zip-folder. Please note that the reference results were obtained with a larger basis set and planewave cutoff as well as tighter convergence criteria than the settings you will be using in this tutorial.
  
   - Start by examining the simulation script ''energy.bash''. This tutorial involves a rather large number of simulations so running them will take a while. You can use the flag ''-x'' to separately run the different types of simulations (DFT, CDFT, CDFT-CI) needed in this tutorial.   - Start by examining the simulation script ''energy.bash''. This tutorial involves a rather large number of simulations so running them will take a while. You can use the flag ''-x'' to separately run the different types of simulations (DFT, CDFT, CDFT-CI) needed in this tutorial.
howto/cdft.txt · Last modified: 2024/01/03 13:20 by oschuett