User Tools

Site Tools


howto:gfn1xtb

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
howto:gfn1xtb [2022/07/19 10:27] ahehnhowto:gfn1xtb [2023/11/22 11:02] oschuett
Line 1: Line 1:
-====== How to run a GFN1-xTB calculation ====== +This page has been moved to: https://manual.cp2k.org/trunk/methods/xtb.html
- +
-This is a short tutorial on how to run GFN1-XTB computations. The details on the theory and the original implementation by Grimme can be found in [[https://pubs.acs.org/doi/full/10.1021/acs.jctc.7b00118]]. +
-Please cite this paper if you were to use the GFN1-XTB module. +
- +
-===== Brief theory recap ===== +
- +
-The semi-empirical GFN1-xTB energy expression comprises contributions due to electronic (el), atom-pairwise repulsion (rep), dispersion (disp), and halogen-bonding (XB) terms, +
- +
-\begin{equation}\label{gfnxtb1_energy_expression} +
-\begin{aligned} +
-E_{\rm{\tiny{GFN1-xTB}}} = E_{\rm{\tiny{EL}}} + E_{\rm{\tiny{REP}}} + E_{\rm{\tiny{DISP}}} + E_{\rm{\tiny{XB}}} + E_{\rm{\tiny{NONBOND}}}\,+
-\end{aligned} +
-\end{equation} +
- +
-1. The electronic energy contribution, +
- +
-\begin{equation}\label{electronic_energy} +
-\begin{aligned} +
-E_{\rm{\tiny{el}}} =  \sum_i^{\rm{\tiny{occ}}} n_i \langle \Psi_i | h_0 | \Psi_i \rangle + \frac{1}{2} \sum_{A,B} \sum_{{l}^A}\sum_{{l'}^B} p_l^A p_{{l'}^B} \gamma_{AB,ll'} + \frac{1}{3}\sum_{A} \Gamma_A q_A^3 - T_{\rm{\tiny{el}}} S_{\rm{\tiny{el}}} \, , +
-\end{aligned} +
-\end{equation} +
- +
-contains zeroth-order contributions based on a zeroth-order Hamiltonian $h_0$, the valence molecular orbitals $\Psi_i$, occupation numbers $n_i$ as well as second-order contributions which are optimized self-consistently as well as third-order diagonal contributions. +
-The second order contributions are described using the semi-empirical electron repulsion operator $\gamma_{AB,ll'}$ which depends on the interatomic distance of atoms $A$ and $B$ as well as further empirical parameters that are specific for different angular momenta $l$ and $l'$. The monopole charges of the second-order expression are optimized self-consistently, +
- +
-\begin{equation}\label{scc_charges} +
-\begin{aligned} +
-p_l^A = p_l^{A_0} - \sum_{\nu}^{N_{\rm{\tiny{AO}}}} \sum_{\mu \in A, \mu \in l} S_{\mu \nu } P_{\mu \nu} \, , +
-\end{aligned} +
-\end{equation} +
- +
-referring to the atomic orbital overlap matrix $\mathbf{S}$ and the density matrix $\mathbf{P}$. +
- +
-The remaining diagonal terms represent a cubic charge correction based on the Mulliken charge $q_A$ of atom $A$ and the charge derivative $\Gamma_A$ of the atomic Hubbard parameter $\eta_A$. +
-Furthermore, the electronic temperature times entropy term $T_{\rm{\tiny{el}}}S_{\rm{\tiny{el}}}$ enables fractional orbital occupations. +
-  +
-2. Repulsion is described via an atom-pairwise potential, +
- +
-\begin{equation}\label{repulsion} +
-\begin{aligned} +
-E_{\rm{\tiny{rep}}} = \sum_{AB} \frac{Z_A^{\rm{\tiny{eff}}} Z_B^{\rm{\tiny{eff}}} }{R_{AB}} \exp^{- (\alpha_A \alpha_B)^{1/2} (R_{AB})^{k_f}} \, , +
-\end{aligned} +
-\end{equation} +
-with the effective nuclear charge $\mathbf{Z}^{\rm{\tiny{eff}}}$ as well as the global or element-specific parameters $k_f$ and $\alpha$. +
- +
-3. Dispersion is included by the well-established D3 method in the BJ-damping scheme[[https://aip.scitation.org/doi/10.1063/1.3382344]]. +
- +
-4. Corrections for element-specific interactions are possible using either a halogen-bonding correction term (XB) or a generic nonbonding potential correction (NONBOND). +
- +
- +
-===== The GFN1-xTB input section ===== +
- +
-The most important keywords and subsections of section ''xTB'' are: +
-  * ''DO_EWALD'': keyword to activate Ewald summation for periodic boundary conditions (PBC); has to be switched to true in case of PBC +
-  * ''USE_HALOGEN_INTERACTION'': keyword to switch off contribution $E_{\rm{\tiny{XB}}}$ to correct halogen interactions, default is to include this correction +
-  * ''CHECK_ATOMIC_CHARGES'': the cubic charge diagonal contribution is checked to be numerically stable by switching the keyword to true.  +
-  * ''DO_NONBONDED'': add a generic correction potential to correct bond- or atomic-specific interactions +
- +
-The additional keywords ''COULOMB_INTERACTION'', ''COULOMB_LR'' and ''TB3_INTERACTION'' are for debugging purposes only and it is recommended to use the default options here. +
- +
- +
-===== Simple examples ===== +
- +
-==== GFN1-xTB ground-state energy for  ==== +
- +
- +
-==== Adding a generic correction potential ====+
howto/gfn1xtb.txt · Last modified: 2024/01/03 13:22 by oschuett