User Tools

Site Tools


howto:gfn1xtb

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
howto:gfn1xtb [2022/07/19 10:09] ahehnhowto:gfn1xtb [2024/01/03 13:22] (current) oschuett
Line 1: Line 1:
-====== How to run a GFN1-xTB calculation ====== +This page has been moved tohttps://manual.cp2k.org/trunk/methods/semiempiricals/xtb.html
- +
-This is a short tutorial on how to run GFN1-XTB computations. The details on the theory and the original implementation by Grimme can be found in [[https://pubs.acs.org/doi/full/10.1021/acs.jctc.7b00118]]. +
-Please cite this paper if you were to use the GFN1-XTB module. +
- +
-===== Brief theory recap ===== +
- +
-The semi-empirical GFN1-xTB energy expression comprises contributions due to electronic (el), atom-pairwise repulsion (rep), dispersion (disp), and halogen-bonding (XB) terms, +
- +
-\begin{equation}\label{gfnxtb1_energy_expression} +
-\begin{aligned} +
-E_{\rm{\tiny{GFN1-xTB}}} = E_{\rm{\tiny{EL}}} + E_{\rm{\tiny{REP}}} + E_{\rm{\tiny{DISP}}} + E_{\rm{\tiny{XB}}} + E_{\rm{\tiny{NONBOND}}}\,+
-\end{aligned} +
-\end{equation} +
- +
-1. The electronic energy contribution, +
- +
-\begin{equation}\label{gfnxtb1_energy_expression} +
-\begin{aligned} +
-E_{\rm{\tiny{el}}} = \sum_i^{\rm{\tiny{occ}}} n_i \langle \Psi_i | H_O | \Psi_i \rangle + \frac{1}{2} \sum_{A,B} \sum_{l(A)}\sum_{l'(B)} p_l^A p_{l'}^B \gamma_{AB,ll'} + \frac{1}{3}\sum_{A} \Gamma_A q_A^3 - T_{\rm{\tiny{el}}} S_{\rm{\tiny{el}}} \, , +
-\end{aligned} +
-\end{equation} +
- +
-contains zeroth-order contributions based on a zeroth-order Hamiltonian $H_0$, the valence molecular orbitals $\Psi_i$, occupation numbers $n_i$ as well as second-order contributions which are optimized self-consistently as well as third-order diagonal contributions. +
-The second order contributions are described using the semi-empirical electron repulsion operator $\gamma_{AB,ll'}$ which depends on the interatomic distance of atoms $A$ and $B$ as well as further empirical parameters that are specific for different angular momenta $l$ and $l'$. The monopole charges of the second-order expression are optimized self-consistently, +
- +
-\begin{equation}\label{gfnxtb1_energy_expression} +
-\begin{aligned} +
-p_l^A = p_l^{A_0} - \sum_{\nu}^{N_{\rm{\tiny{AO}}}} \sum_{\mu \in A, \mu \in l} S_{\mu \nu } P_{\mu \nu} \, , +
-\end{aligned} +
-\end{equation} +
- +
-referring to the atomic orbital overlap matrix $\mathbf{S}$ and the density matrix $\mathbf{P}$. +
- +
-The remaining diagonal terms represent a cubic charge correction based on the Mulliken charge $q_A$ of atom $A$ and the charge derivative $\Gamma_A$ of the atomic Hubbard parameter $\eta_A$. +
-Furthermore, the electronic temperature times entropy term $T_{\rm{\tiny{el}}}S_{\rm{\tiny{el}}}$ enables fractional orbital occupations. +
-  +
-2. Repulsion is described via an atom-pairwise potential, +
- +
-\begin{equation}\label{gfnxtb1_energy_expression} +
-\begin{aligned} +
-E_{\rm{\tiny{rep}}} = \sum_{AB} \frac{Z_A^{\rm{\tiny{eff}}} Z_B^{\rm{\tiny{eff}}} }{R_{AB}} \exp^{- (\alpha_A \alpha_B)^{1/2} (R_{AB})^{k_f}} \, , +
-\end{aligned} +
-\end{equation} +
-with the effective nuclear charge $\mathbf{Z}^{\rm{\tiny{eff}}}$ as well as the global or element-specific parameters $k_f$ and $\alpha$. +
- +
-3. Dispersion is included by the well-established D3 method in the BJ-damping scheme[[https://aip.scitation.org/doi/10.1063/1.3382344]]. +
- +
-4. Corrections for element-specific interactions are possible using either a halogen-bonding correction term (XB) or a generic nonbonding potential correction (NONBOND). +
- +
- +
-===== The GFN1-xTB input section ===== +
- +
-The most important keywords and subsections of section ''xTB'' are: +
-  * ''DO_EWALD'': keyword to activate Ewald summation for periodic boundary conditions (PBC); has to be switched to true in case of PBC +
-  * ''USE_HALOGEN_INTERACTION'': keyword to switch off contribution $E_{\rm{\tiny{XB}}}$ to correct halogen interactions, default is to include this correction +
-  * ''CHECK_ATOMIC_CHARGES'': the cubic charge diagonal contribution is checked to be numerically stable by switching the keyword to true.  +
-  * ''DO_NONBONDED'': add a generic correction potential to correct bond- or atomic-specific interactions +
- +
-The additional keywords ''COULOMB_INTERACTION'', ''COULOMB_LR'' and ''TB3_INTERACTION'' are for debugging purposes only and it is recommended to use the default options here. +
- +
- +
-===== Simple examples ===== +
- +
-==== GFN1-xTB ground-state energy for  ==== +
- +
- +
-==== Adding a generic correction potential ====+
howto/gfn1xtb.1658225387.txt.gz · Last modified: 2022/07/19 10:09 by ahehn