User Tools

Site Tools


howto:kg

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
howto:kg [2018/12/07 13:20] mpaulettihowto:kg [2019/05/08 17:26] mpauletti
Line 16: Line 16:
 $\displaystyle E_{ext}^{HK}[\rho_{tot}] = \sum_{A}E_{ext}^{HK}[\rho_{A}]$. $\displaystyle E_{ext}^{HK}[\rho_{tot}] = \sum_{A}E_{ext}^{HK}[\rho_{A}]$.
  
-Now, calling the classical Coulomb term $E_{hxc}[\rho]$ and defining the non-additive kinetic energy as $T_{nadd}[\rho,{\rho_{A}}] = T_{HK}[\rho]−\sum_{A}T_{HK}[\rho_{A}]$, the obtained equation would be:+Now, calling the classical Coulomb term $E_{hxc}[\rho]$ and defining the non-additive kinetic energy as $T_{nadd}[\rho,{\rho_{A}}] = T_{HK}[\rho]−\sum_{A}T_{HK}[\rho_{A}]$, the obtained equation is:
  
 $\displaystyle E_{tot}[{P_{A}}] =\sum_{A}(T_{S}[P_{A}] + E_{ext}[P_{A}]) + E_{hxc}[\rho] + T_{nadd}[{P_{A}}]$. $\displaystyle E_{tot}[{P_{A}}] =\sum_{A}(T_{S}[P_{A}] + E_{ext}[P_{A}]) + E_{hxc}[\rho] + T_{nadd}[{P_{A}}]$.
Line 26: Line 26:
 $\displaystyle \sum_{a}\int\rho_{A}(\mu[\rho]-\mu[\rho_{A}])dr$ $\displaystyle \sum_{a}\int\rho_{A}(\mu[\rho]-\mu[\rho_{A}])dr$
  
-Making a linearization approximation for the functional $\mu[\rho]$+Doing a linearization approximation for the functional $\mu[\rho]$
  
 $\displaystyle \mu[\rho]-\mu[\rho_{A}] \sim \sum_{B\neq A} \frac{\partial \mu[\rho_{A}]}{\partial \rho} \rho_{B} = \mu'[\rho_{A}]$\\ $\displaystyle \mu[\rho]-\mu[\rho_{A}] \sim \sum_{B\neq A} \frac{\partial \mu[\rho_{A}]}{\partial \rho} \rho_{B} = \mu'[\rho_{A}]$\\
howto/kg.txt · Last modified: 2024/01/03 13:20 by oschuett