User Tools

Site Tools


howto:tddft

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
howto:tddft [2022/07/19 12:04] ahehnhowto:tddft [2022/07/19 13:17] ahehn
Line 3: Line 3:
 This is a short tutorial on how to run linear-response time-dependent density functional theory (LR-TDDFT) computations for absorption and emission spectroscopy. The TDDFT module enables a description of excitation energies and excited-state computations within the Tamm-Dancoff approximation (TDA) featuring GGA and hybrid functionals as well as semi-empirical simplified TDA kernels. The details of the implementation can be found in [[https://aip.scitation.org/doi/full/10.1063/1.5078682]] [1] and in [[https://pubs.acs.org/doi/10.1021/acs.jctc.2c00144]] [2] for corresponding excited-state gradients.  This is a short tutorial on how to run linear-response time-dependent density functional theory (LR-TDDFT) computations for absorption and emission spectroscopy. The TDDFT module enables a description of excitation energies and excited-state computations within the Tamm-Dancoff approximation (TDA) featuring GGA and hybrid functionals as well as semi-empirical simplified TDA kernels. The details of the implementation can be found in [[https://aip.scitation.org/doi/full/10.1063/1.5078682]] [1] and in [[https://pubs.acs.org/doi/10.1021/acs.jctc.2c00144]] [2] for corresponding excited-state gradients. 
 Note that the current module is based on an earlier TDDFT implementation [[https://chimia.ch/chimia/article/view/2005_499]] [3]. Note that the current module is based on an earlier TDDFT implementation [[https://chimia.ch/chimia/article/view/2005_499]] [3].
-Please cite these papers if you were to use the TDDFT module for the computation of excitation energies [1,2] or excited-state gradients [3].+Please cite these papers if you were to use the TDDFT module for the computation of excitation energies [1,3] or excited-state gradients [2].
  
 ===== Brief theory recap ===== ===== Brief theory recap =====
Line 11: Line 11:
 \begin{equation} \label{tda_equation} \begin{equation} \label{tda_equation}
 \begin{aligned} \begin{aligned}
-      \mathbf{A} \mathbf{X}^p &= \Omega^p \mathbf{X}^p \, , \\+      \mathbf{A} \mathbf{X}^p &= \Omega^p \mathbf{S} \mathbf{X}^p \, , \\
       \sum_{\kappa k} [ F_{\mu \kappa \sigma} \delta_{ik} - F_{ik \sigma} S_{\mu \kappa} ] X^p_{\kappa k \sigma} + \sum_{\lambda} K_{\mu \lambda \sigma} [\mathbf{D}^{{\rm{\tiny{X}}}p}] C_{\lambda i \sigma} & \sum_{\kappa} \Omega^p S_{\mu \kappa} X^p_{\kappa i \sigma} \, .        \sum_{\kappa k} [ F_{\mu \kappa \sigma} \delta_{ik} - F_{ik \sigma} S_{\mu \kappa} ] X^p_{\kappa k \sigma} + \sum_{\lambda} K_{\mu \lambda \sigma} [\mathbf{D}^{{\rm{\tiny{X}}}p}] C_{\lambda i \sigma} & \sum_{\kappa} \Omega^p S_{\mu \kappa} X^p_{\kappa i \sigma} \, . 
     \end{aligned}     \end{aligned}
howto/tddft.txt · Last modified: 2024/02/24 10:01 by oschuett