User Tools

Site Tools


howto:xas_tdp

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revisionBoth sides next revision
howto:xas_tdp [2021/08/02 15:36] – [Brief theory recap] abussyhowto:xas_tdp [2021/08/02 15:39] – [Simple examples] abussy
Line 653: Line 653:
 The only difference between the above input file and that of a standard XAS LR-TDDFT calculation is the addition of the ''&GW2X'' subsection. In this case, only default parameters are used, which corresponds to the original GW2X scheme with a convergence threshold of 0.01 eV. Note that the core specific all-electron aug-pcX-2 basis set is used (triple zeta quality). This inputs corresponds to an entry of table II in the [[https://doi.org/10.1063/5.0058124|reference paper]], although slacker parameters are used here (in order to make this tutorial cheap and easy to run, this particular calculations takes ~2 minutes on 4 cores). The only difference between the above input file and that of a standard XAS LR-TDDFT calculation is the addition of the ''&GW2X'' subsection. In this case, only default parameters are used, which corresponds to the original GW2X scheme with a convergence threshold of 0.01 eV. Note that the core specific all-electron aug-pcX-2 basis set is used (triple zeta quality). This inputs corresponds to an entry of table II in the [[https://doi.org/10.1063/5.0058124|reference paper]], although slacker parameters are used here (in order to make this tutorial cheap and easy to run, this particular calculations takes ~2 minutes on 4 cores).
  
-In the output file, the correction for each S $2p$ is displayed. Note that the correction amounts to a shift of 1.9 eV compared to standard XAS LR-TDDFT, leading to a first singlet excitation energy of 164.4 eV (at the L$_3$ edge). This fits [[https://doi.org/10.1016/s0301-0104(97)00111-0|experimental results]] within 0.1 eV. thus clearly improving the XAS LR-TDDFT result. Note that the core IPs, including spin-orbit coupling effects, are also provided. These can be directly used to produce a XPS spectrum. The content of the OCS.spectrum yields the corrected spectrum directly.+In the output file, the correction for each S $2p$ is displayed. Note that the correction amounts to a shift of 1.9 eV compared to standard XAS LR-TDDFT, leading to a first singlet excitation energy of 164.4 eV (at the L$_3$ edge). This fits [[https://doi.org/10.1016/s0301-0104(97)00111-0|experimental results]] within 0.1 eV. thus clearly improving the XAS LR-TDDFT result. Note that the core IPs, including spin-orbit coupling effects, are also provided. These can be directly used to produce a XPS spectrum. The content of the ''OCS.spectrum'' file yields the corrected spectrum directly.
  
 <code> <code>
howto/xas_tdp.txt · Last modified: 2024/02/24 10:01 by oschuett