User Tools

Site Tools


science

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
science [2020/01/21 14:52] tmuellerscience [2024/03/21 19:56] (current) – [HCOOH-Saturated TiO2] jglan
Line 1: Line 1:
 ~~NOTOC~~ ~~NOTOC~~
 +
 +
 +
 +===== Charge Transfer to Solvent  =====
 +
 +{{::ctts.png?800|}}
 +Jinggang Lan, Majed Chergui, Alfredo Pasquarello;
 +Dynamics of the charge transfer to solvent process in aqueous iodide
 + [[doi>10.1038/s41467-024-46772-0|Nature Communications 2024]]
 +
 +===== Core-hole Clock Spectroscopy  =====
 +
 +{{:science:core-hole-clock.png?900|}}
 +[[ doi>10.1039/d3cp04303g| PCCP 2024]].
 +
 +===== HCOOH-Saturated TiO$_2$  =====
 +
 +{{:science:hcooh_abstract_2023.png?900|}}
 +Fernanda Brandalise Nunes, Nicolò Comini, J. Trey Diulus, Thomas Huthwelker, Marcella Iannuzzi, Jürg Osterwalder, and Zbynek Novotny; Dynamic Equilibrium at the HCOOH-Saturated TiO2(110)−Water Interface [[ doi>10.1021/acs.jpclett.2c03788| JPCL 2023]].
 +
 +===== Nanoconfined Water  =====
 +
 +{{::nature_gr_water.png?800|}}
 +Venkat Kapil, Christoph Schran, Andrea Zen, Ji Chen, Chris J. Pickard & Angelos Michaelides;
 +The first-principles phase diagram of monolayer nanoconfined water [[doi>10.1038/s41586-022-05036-x| Nature 2022]].
 +
 +
 +
 +===== Solvated Electron  =====
 +
 +{{:angew.png?800|}}
 +Jinggang Lan, Vladimir V. Rybkin and Alfredo Pasquarello;
 +Temperature Dependent Propertiesof the Aqueous Electron [[doi>10.1002/anie.202209398 | Angewandte Chemie 2022]].
 +
 +
 +
 +===== Electrochemical Interfaces  =====
 +
 +{{:pnas.png?800|}}
 +Feng Shao, Jun Kit Wong, Qi Hang Low, Marcella Iannuzzi, Jingguo Li, & Jinggang Lan; 2022;
 +In situ spectroelectrochemical probing of CO redox landscape [[doi>10.1073/pnas.2118166119 | PNAS 2022]].
 +
 +
 +===== Single Atom Electrocatalyst  =====
 +
 +{{:sac.png?800|}}
 +Jie-Wei Chen, Zisheng Zhang, Hui-Min Yan, Guang-Jie Xia, Hao Cao & Yang-Gang Wang; 2022;
 +Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst [[doi>10.1038/s41467-022-29357-7|Nature Communications 2022]]
 +
 +===== Solvated Electron in Methanol  =====
 +
 +{{:chem_sci_methanol.png?800|}}
 +Jinggang Lan, Yo-ichi Yamamoto, Toshinori Suzuki and Vladimir V. Rybkin; 2022;
 +Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics [[doi>10.1039/d1sc06666h|Chemical Science 2022]]
 +
 +
 +===== Osmotic Transport in Nanofluidics  =====
 +
 +{{:science:acs_nano_osm_paper.png?800|}}
 +
 +Laurent Joly, Robert H. Meissner, Marcella Iannuzzi, Gabriele Tocci; 2021; Osmotic Transport at the Aqueous Graphene and hBN Interfaces: Scaling Laws from a Unified, First-Principles Description
 +[[ doi>10.1021/acsnano.1c05931 | ACS Nano 2021]]
 +
 +===== Solvated Electrons  =====
 +
 +{{::wx20210428-192213.png?800|}}
 +
 +
 +Jinggang Lan, Venkat Kapil, Piero Gasparotto, Michele Ceriotti, Marcella Iannuzzi, and Vladimir V. Rybkin; 2021; Simulating the ghost: quantum dynamics of the solvated electron.
 +[[ doi>10.1038/s41467-021-20914-0 | Nature Comm. 2021, 12, 766]]
 +
 +
 +===== Nuclear Quantum Efffects at Metal Interfaces =====
 +
 +{{::jpcl_nqe_int.png|}}
 +
 +Jinggang Lan, Vladimir V. Rybkin, and Marcella Iannuzzi; 2020; Ionization of water as an effect of quantum delocalization at aqueous electrode interfaces.
 +[[ doi>10.1021/acs.jpclett.0c01025 | J. Phys. Chem. Lett. 2020, 11, 9, 3724-3730 ]]
  
 ===== C.U.R.A.T.E.D. COFs ===== ===== C.U.R.A.T.E.D. COFs =====
Line 63: Line 141:
 {{:cp2k_science_ca.png|}} {{:cp2k_science_ca.png|}}
  
-Katja Henzler, Evgenii O. Fetisov, Mirza Galib, Marcel D. Baer, Benjamin A. Legg, Camelia Borca, Jacinta M. Xto, Sonia Pin, John L. Fulton, Gregory K. Shenter, Niranjan Govind, J. Ilja Siepmann, Christopher J. Mundy, Thomas Huthwelker, James. J. De Yoreo; 2018; Supersaturated calcium carbonate solutions are classical [[ doi>10.1126/sciadv.aao6283 | Science Advances 4,eaao6283(2018) ]]+Katja Henzler, Evgenii O. Fetisov, Mirza Galib, Marcel D. Baer, Benjamin A. Legg, Camelia Borca, Jacinta M. Xto, Sonia Pin, John L. Fulton, Gregory K. Shenter, Niranjan Govind, J. Ilja Siepmann, Christopher J. Mundy, Thomas Huthwelker, James. J. De Yoreo; 2018; Supersaturated calcium carbonate solutions are classical [[doi>10.1126/sciadv.aao6283|Science Advances 4,eaao6283(2018)]]
  
  
Line 89: Line 167:
  
 Vladimir Rybkin and Joost VandeVondele  Vladimir Rybkin and Joost VandeVondele 
-[[http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b00386]]+[[ doi>10.1021/acs.jpclett.7b00386]]
 ===== AIMD on radioactive Technetium in glass waste form ===== ===== AIMD on radioactive Technetium in glass waste form =====
 {{ :science:doi_10_1038_ncomms_12067_pub.png?direct&800 | Impeding 99Tc(IV) mobility in novel waste forms}} {{ :science:doi_10_1038_ncomms_12067_pub.png?direct&800 | Impeding 99Tc(IV) mobility in novel waste forms}}
Line 445: Line 523:
 Watkins M; Pan D; Wang EG; Michaelides A; VandeVondele J; Slater B; 2011; Watkins M; Pan D; Wang EG; Michaelides A; VandeVondele J; Slater B; 2011;
 Large variation in vacancy formation energies in the surface of crystalline ice. Large variation in vacancy formation energies in the surface of crystalline ice.
-[[ http://www.nature.com/nmat/journal/v10/n10/full/nmat3096.html | Nat. Mater. 10: 794-798 ]]+[[ doi>10.1038/nmat3096 | Nat. Mater. 10: 794-798 ]]
  
 ---- ----
Line 461: Line 539:
 James T. A. Jones,Tom Hasell, Xiaofeng Wu, John Bacsa, Kim E. Jelfs, Marc Schmidtmann, Samantha Y. Chong, Dave J. Adams, Abbie Trewin, Florian Schiffmann, Furio Cora, Ben Slater, Alexander Steiner, Graeme M. Day & Andrew I. Cooper; 2011; James T. A. Jones,Tom Hasell, Xiaofeng Wu, John Bacsa, Kim E. Jelfs, Marc Schmidtmann, Samantha Y. Chong, Dave J. Adams, Abbie Trewin, Florian Schiffmann, Furio Cora, Ben Slater, Alexander Steiner, Graeme M. Day & Andrew I. Cooper; 2011;
 Modular and predictable assembly of porous organic molecular crystals Modular and predictable assembly of porous organic molecular crystals
-[[ http://www.nature.com/nature/journal/v474/n7351/full/nature10125.html  Nature 474, 367–371 ]]+[[doi>10.1038/nature10125|Nature 474, 367–371]]
  
 ---- ----
science.1579618330.txt.gz · Last modified: 2020/08/21 10:15 (external edit)