User Tools

Site Tools


science

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
science [2022/04/04 11:58] jglanscience [2024/03/21 19:56] (current) – [HCOOH-Saturated TiO2] jglan
Line 1: Line 1:
 ~~NOTOC~~ ~~NOTOC~~
 +
 +
 +
 +===== Charge Transfer to Solvent  =====
 +
 +{{::ctts.png?800|}}
 +Jinggang Lan, Majed Chergui, Alfredo Pasquarello;
 +Dynamics of the charge transfer to solvent process in aqueous iodide
 + [[doi>10.1038/s41467-024-46772-0|Nature Communications 2024]]
 +
 +===== Core-hole Clock Spectroscopy  =====
 +
 +{{:science:core-hole-clock.png?900|}}
 +[[ doi>10.1039/d3cp04303g| PCCP 2024]].
 +
 +===== HCOOH-Saturated TiO$_2$  =====
 +
 +{{:science:hcooh_abstract_2023.png?900|}}
 +Fernanda Brandalise Nunes, Nicolò Comini, J. Trey Diulus, Thomas Huthwelker, Marcella Iannuzzi, Jürg Osterwalder, and Zbynek Novotny; Dynamic Equilibrium at the HCOOH-Saturated TiO2(110)−Water Interface [[ doi>10.1021/acs.jpclett.2c03788| JPCL 2023]].
 +
 +===== Nanoconfined Water  =====
 +
 +{{::nature_gr_water.png?800|}}
 +Venkat Kapil, Christoph Schran, Andrea Zen, Ji Chen, Chris J. Pickard & Angelos Michaelides;
 +The first-principles phase diagram of monolayer nanoconfined water [[doi>10.1038/s41586-022-05036-x| Nature 2022]].
 +
 +
 +
 +===== Solvated Electron  =====
 +
 +{{:angew.png?800|}}
 +Jinggang Lan, Vladimir V. Rybkin and Alfredo Pasquarello;
 +Temperature Dependent Propertiesof the Aqueous Electron [[doi>10.1002/anie.202209398 | Angewandte Chemie 2022]].
 +
 +
 +
 +===== Electrochemical Interfaces  =====
 +
 +{{:pnas.png?800|}}
 +Feng Shao, Jun Kit Wong, Qi Hang Low, Marcella Iannuzzi, Jingguo Li, & Jinggang Lan; 2022;
 +In situ spectroelectrochemical probing of CO redox landscape [[doi>10.1073/pnas.2118166119 | PNAS 2022]].
  
  
Line 6: Line 47:
 {{:sac.png?800|}} {{:sac.png?800|}}
 Jie-Wei Chen, Zisheng Zhang, Hui-Min Yan, Guang-Jie Xia, Hao Cao & Yang-Gang Wang; 2022; Jie-Wei Chen, Zisheng Zhang, Hui-Min Yan, Guang-Jie Xia, Hao Cao & Yang-Gang Wang; 2022;
-Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst[[ https://www.nature.com/articles/s41467-022-29357-7h | Nature Communications 2022]]+Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst [[doi>10.1038/s41467-022-29357-7|Nature Communications 2022]]
  
 ===== Solvated Electron in Methanol  ===== ===== Solvated Electron in Methanol  =====
Line 12: Line 53:
 {{:chem_sci_methanol.png?800|}} {{:chem_sci_methanol.png?800|}}
 Jinggang Lan, Yo-ichi Yamamoto, Toshinori Suzuki and Vladimir V. Rybkin; 2022; Jinggang Lan, Yo-ichi Yamamoto, Toshinori Suzuki and Vladimir V. Rybkin; 2022;
-Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics [[ doi>10.1039/d1sc06666h | Chemical Science 2022]]+Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics [[doi>10.1039/d1sc06666h|Chemical Science 2022]]
  
  
Line 30: Line 71:
 [[ doi>10.1038/s41467-021-20914-0 | Nature Comm. 2021, 12, 766]] [[ doi>10.1038/s41467-021-20914-0 | Nature Comm. 2021, 12, 766]]
  
-===== Condensed Phase Infrared Spectroscopy of Organic Phosphates ===== 
- 
-{{ science:molecules_ir_spectroscopy.png?direct&800|}} 
- 
-Prasanth B. Ganta, Oliver Kühn, and Ashour A. Ahmed; 2021; Ab Initio Molecular Dynamics Simulations of the Interaction between Organic Phosphates and Goethite.  
-[[ doi>10.3390/molecules26010160 | Molecules 2021, 26, 1, 160 ]] 
  
 ===== Nuclear Quantum Efffects at Metal Interfaces ===== ===== Nuclear Quantum Efffects at Metal Interfaces =====
Line 106: Line 141:
 {{:cp2k_science_ca.png|}} {{:cp2k_science_ca.png|}}
  
-Katja Henzler, Evgenii O. Fetisov, Mirza Galib, Marcel D. Baer, Benjamin A. Legg, Camelia Borca, Jacinta M. Xto, Sonia Pin, John L. Fulton, Gregory K. Shenter, Niranjan Govind, J. Ilja Siepmann, Christopher J. Mundy, Thomas Huthwelker, James. J. De Yoreo; 2018; Supersaturated calcium carbonate solutions are classical [[ doi>10.1126/sciadv.aao6283 | Science Advances 4,eaao6283(2018) ]]+Katja Henzler, Evgenii O. Fetisov, Mirza Galib, Marcel D. Baer, Benjamin A. Legg, Camelia Borca, Jacinta M. Xto, Sonia Pin, John L. Fulton, Gregory K. Shenter, Niranjan Govind, J. Ilja Siepmann, Christopher J. Mundy, Thomas Huthwelker, James. J. De Yoreo; 2018; Supersaturated calcium carbonate solutions are classical [[doi>10.1126/sciadv.aao6283|Science Advances 4,eaao6283(2018)]]
  
  
Line 504: Line 539:
 James T. A. Jones,Tom Hasell, Xiaofeng Wu, John Bacsa, Kim E. Jelfs, Marc Schmidtmann, Samantha Y. Chong, Dave J. Adams, Abbie Trewin, Florian Schiffmann, Furio Cora, Ben Slater, Alexander Steiner, Graeme M. Day & Andrew I. Cooper; 2011; James T. A. Jones,Tom Hasell, Xiaofeng Wu, John Bacsa, Kim E. Jelfs, Marc Schmidtmann, Samantha Y. Chong, Dave J. Adams, Abbie Trewin, Florian Schiffmann, Furio Cora, Ben Slater, Alexander Steiner, Graeme M. Day & Andrew I. Cooper; 2011;
 Modular and predictable assembly of porous organic molecular crystals Modular and predictable assembly of porous organic molecular crystals
-[[ doi>10.1038/nature10125 |  Nature 474, 367–371 ]]+[[doi>10.1038/nature10125|Nature 474, 367–371]]
  
 ---- ----
science.1649073513.txt.gz · Last modified: 2022/04/04 11:58 by jglan