LCOV - code coverage report
Current view: top level - src/common - lebedev.F (source / functions) Coverage Total Hit
Test: CP2K Regtests (git:936074a) Lines: 98.5 % 459 452
Test Date: 2025-12-04 06:27:48 Functions: 80.0 % 5 4

            Line data    Source code
       1              : !--------------------------------------------------------------------------------------------------!
       2              : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3              : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4              : !                                                                                                  !
       5              : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6              : !--------------------------------------------------------------------------------------------------!
       7              : 
       8              : ! **************************************************************************************************
       9              : !> \brief   Generation of the spherical Lebedev grids.
      10              : !>          All Lebedev grids were generated with a precision of at least
      11              : !>          33 digits (Mathematica). Thus the Lebedev abscissas and weights
      12              : !>          are accurate to 32 digits (quadruple precision).
      13              : !> \version 1.0
      14              : !>
      15              : !> \par Literature
      16              : !>          - V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz. 15, 48 (1975)
      17              : !>          - V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz. 16, 293 (1976)
      18              : !>          - V. I. Lebedev, Sibirsk Mat. Zh. 18, 132 (1977)
      19              : !>          - V. I. Lebedev and A. L. Skorokhodov, Russ. Acad. Sci. Dokl.
      20              : !>            Math. 45, 587 (1992)
      21              : !>          - V. I. Lebedev, Russ. Acad. Sci. Dokl. Math. 50, 283 (1995)
      22              : !> \par Notes
      23              : !>          Implemented Lebedev grids:
      24              : !>            No.    l    n(nonred.)    n(total)
      25              : !>             1     3         1             6
      26              : !>             2     5         2            14
      27              : !>             3     7         3            26
      28              : !>             4     9         3            38
      29              : !>             5    11         4            50
      30              : !>             6    15         5            86
      31              : !>             7    17         6           110
      32              : !>             8    19         7           146
      33              : !>             9    23         9           194
      34              : !>            10    29        12           302
      35              : !>            11    35        16           434
      36              : !>            12    41        20           590
      37              : !>            13    47        25           770
      38              : !>            14    53        30           974
      39              : !> \par Variables:
      40              : !>        - lebedev_grid: Lebedev grids.
      41              : !>                        l: Angular momentum quantum number l.
      42              : !>                        n: Number of grid points.
      43              : !>                        w: Grid point weights.
      44              : !>                        r: Abscissas (grid point coordinates)
      45              : !>        - max_np      : Maximum number of nonredundant grid points.
      46              : !>        - na1         : Number of point for subsystem A1.
      47              : !>        - na2         : Number of point for subsystem A2.
      48              : !>        - na3         : Number of point for subsystem A3.
      49              : !>        - nb          : Number of point for subsystem B.
      50              : !>        - nc          : Number of point for subsystem C.
      51              : !>        - nd          : Number of point for subsystem D.
      52              : !>        - nlg         : Number of implemented Lebedev grids.
      53              : !>        - nlgp        : Grid point counter.
      54              : !>        - r           : Working storage (grid point coordinates).
      55              : !>        - w           : Working storage (grid point weights).
      56              : ! **************************************************************************************************
      57              : MODULE lebedev
      58              : 
      59              :    USE kinds,                           ONLY: dp
      60              : #include "../base/base_uses.f90"
      61              : 
      62              :    IMPLICIT NONE
      63              : 
      64              :    SAVE
      65              : 
      66              :    PRIVATE
      67              :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'lebedev'
      68              : 
      69              :    INTEGER, PARAMETER  :: na1 = 6, &
      70              :                           na2 = 12, &
      71              :                           na3 = 8, &
      72              :                           nb = 24, &
      73              :                           nc = 24, &
      74              :                           nd = 48, &
      75              :                           nlg = 14, &
      76              :                           max_np = 36
      77              : 
      78              : ! **************************************************************************************************
      79              :    TYPE oh_grid
      80              :       INTEGER                           :: l = -1, n = -1
      81              :       REAL(KIND=dp), DIMENSION(:), POINTER   :: w => NULL()
      82              :       REAL(KIND=dp), DIMENSION(:, :), POINTER :: r => NULL()
      83              :    END TYPE oh_grid
      84              : 
      85              :    TYPE(oh_grid), DIMENSION(nlg), TARGET :: lebedev_grid = oh_grid()
      86              : 
      87              :    REAL(KIND=dp), PARAMETER :: one = 1.0_dp, rs2 = one/SQRT(2.0_dp), rs3 = one/SQRT(3.0_dp), zero = 0.0_dp
      88              :    INTEGER  :: nlgp = -1
      89              :    LOGICAL  :: init_lebedev_grids_done = .FALSE.
      90              : 
      91              :    REAL(KIND=dp), DIMENSION(max_np/3) :: w = 0.0_dp
      92              :    REAL(KIND=dp), DIMENSION(max_np)   :: r = 0.0_dp
      93              : 
      94              :    PUBLIC :: lebedev_grid
      95              : 
      96              :    PUBLIC :: deallocate_lebedev_grids, get_number_of_lebedev_grid, init_lebedev_grids
      97              : 
      98              : CONTAINS
      99              : 
     100              : ! **************************************************************************************************
     101              : !> \brief  Get the number of the Lebedev grid, which has the requested
     102              : !>          angular momentum quantnum number l or size n.
     103              : !> \param l ...
     104              : !> \param n ...
     105              : !> \return ...
     106              : !> \date   05.05.99
     107              : !> \par Variables
     108              : !> \author Matthias Krack
     109              : !> \version 1.0
     110              : !> \note         - l : Minimal angular momentum quantum number of the requested Lebedev grid.
     111              : !> \note         - n : Minimal size of the requested Lebedev grid.
     112              : ! **************************************************************************************************
     113         2185 :    FUNCTION get_number_of_lebedev_grid(l, n) RESULT(number_of_lebedev_grid)
     114              : 
     115              :       INTEGER, INTENT(IN), OPTIONAL                      :: l, n
     116              :       INTEGER                                            :: number_of_lebedev_grid
     117              : 
     118              :       INTEGER                                            :: i
     119         2185 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: ll, nn
     120              :       INTEGER, DIMENSION(1)                              :: lgnum
     121              : 
     122         2185 :       IF (.NOT. init_lebedev_grids_done) CALL init_lebedev_grids
     123              : 
     124         2185 :       lgnum(1) = 0
     125         2185 :       ALLOCATE (nn(SIZE(lebedev_grid, 1)), ll(SIZE(lebedev_grid, 1)))
     126        32775 :       DO i = 1, SIZE(nn, 1)
     127        30590 :          nn(i) = lebedev_grid(i)%n
     128        32775 :          ll(i) = lebedev_grid(i)%l
     129              :       END DO
     130         2185 :       IF (PRESENT(l)) THEN
     131              : !      lgnum(:) = MINLOC(lebedev_grid(:)%n,MASK=(lebedev_grid(:)%l >= l))
     132            0 :          lgnum(:) = MINLOC(nn(:), MASK=(ll(:) >= l))
     133         2185 :       ELSE IF (PRESENT(n)) THEN
     134              : !      lgnum(:) = MINLOC(lebedev_grid(:)%n,MASK=(lebedev_grid(:)%n >= n))
     135        37145 :          lgnum(:) = MINLOC(nn(:), MASK=(nn(:) >= n))
     136              :       ELSE
     137            0 :          CPABORT("*** ERROR in FUNCTION get_number_of_lebedev_grid ***")
     138              :       END IF
     139              : 
     140         2185 :       IF (lgnum(1) == 0) THEN
     141            0 :          CPABORT("*** ERROR in FUNCTION get_number_of_lebedev_grid ***")
     142              :       ELSE
     143              :          number_of_lebedev_grid = lgnum(1)
     144              :       END IF
     145         2185 :       DEALLOCATE (nn, ll)
     146         2185 :    END FUNCTION get_number_of_lebedev_grid
     147              : 
     148              : ! **************************************************************************************************
     149              : !> \brief  Load the Lebedev grid points of a subsystem.
     150              : !> \param subsystem ...
     151              : !> \param lgnum ...
     152              : !> \param np ...
     153              : !> \date    06.05.99
     154              : !> \par Variables
     155              : !>       - subsystem: String, which specifies the selected subsystem.
     156              : !>       - lgnum    : Number of the current Lebedev grid.
     157              : !>       - np       : Number of the nonredundant grid points.
     158              : !> \author  Matthias Krack
     159              : !> \version 1.0
     160              : ! **************************************************************************************************
     161        68971 :    SUBROUTINE load_sub_grid(subsystem, lgnum, np)
     162              :       CHARACTER(*), INTENT(IN)                           :: subsystem
     163              :       INTEGER, INTENT(IN)                                :: lgnum, np
     164              : 
     165              :       INTEGER                                            :: i, j
     166              :       REAL(KIND=dp)                                      :: x, y, z
     167              : 
     168              : !   *** Check argument values ***
     169              : 
     170        68971 :       IF ((lgnum < 1) .OR. (lgnum > nlg)) THEN
     171            0 :          CPABORT("Argument value #2 (lgnum) is out of range")
     172              :       END IF
     173              : 
     174        68971 :       IF ((np < 0) .OR. (np > max_np)) THEN
     175            0 :          CPABORT("Argument value #3 (np) is out of range")
     176              :       END IF
     177              : 
     178        16366 :       SELECT CASE (subsystem)
     179              :       CASE ("A1")
     180       114562 :          lebedev_grid(lgnum)%w(1:na1) = w(1)
     181              :          lebedev_grid(lgnum)%r(1:3, 1:na1) = &
     182              :             RESHAPE([zero, zero, one, &
     183              :                      zero, zero, -one, &
     184              :                      zero, one, zero, &
     185              :                      zero, -one, zero, &
     186              :                      one, zero, zero, &
     187       409150 :                      -one, zero, zero], [3, na1])
     188        16366 :          nlgp = na1
     189              :       CASE ("A2")
     190        91182 :          lebedev_grid(lgnum)%w(nlgp + 1:nlgp + na2) = w(1)
     191              :          lebedev_grid(lgnum)%r(1:3, nlgp + 1:nlgp + na2) = &
     192              :             RESHAPE([zero, rs2, rs2, &
     193              :                      zero, rs2, -rs2, &
     194              :                      zero, -rs2, rs2, &
     195              :                      zero, -rs2, -rs2, &
     196              :                      rs2, zero, rs2, &
     197              :                      rs2, zero, -rs2, &
     198              :                      -rs2, zero, rs2, &
     199              :                      -rs2, zero, -rs2, &
     200              :                      rs2, rs2, zero, &
     201              :                      rs2, -rs2, zero, &
     202              :                      -rs2, rs2, zero, &
     203       343686 :                      -rs2, -rs2, zero], [3, na2])
     204         7014 :          nlgp = nlgp + na2
     205              :       CASE ("A3")
     206       136773 :          lebedev_grid(lgnum)%w(nlgp + 1:nlgp + na3) = w(1)
     207              :          lebedev_grid(lgnum)%r(1:3, nlgp + 1:nlgp + na3) = &
     208              :             RESHAPE([rs3, rs3, rs3, &
     209              :                      rs3, rs3, -rs3, &
     210              :                      rs3, -rs3, rs3, &
     211              :                      -rs3, rs3, rs3, &
     212              :                      rs3, -rs3, -rs3, &
     213              :                      -rs3, rs3, -rs3, &
     214              :                      -rs3, -rs3, rs3, &
     215       501501 :                      -rs3, -rs3, -rs3], [3, na3])
     216        15197 :          nlgp = nlgp + na3
     217              :       CASE ("B")
     218        78323 :          DO i = 1, np
     219        66633 :             x = r(i)
     220        66633 :             y = rs2*SQRT(one - x**2)
     221      1665825 :             lebedev_grid(lgnum)%w(nlgp + nb*(i - 1) + 1:nlgp + nb*i) = w(i)
     222              :             lebedev_grid(lgnum)%r(1:3, nlgp + nb*(i - 1) + 1:nlgp + nb*i) = &
     223              :                RESHAPE([x, y, y, &
     224              :                         x, y, -y, &
     225              :                         x, -y, y, &
     226              :                         x, -y, -y, &
     227              :                         -x, y, y, &
     228              :                         -x, y, -y, &
     229              :                         -x, -y, y, &
     230              :                         -x, -y, -y, &
     231              :                         y, x, y, &
     232              :                         y, x, -y, &
     233              :                         -y, x, y, &
     234              :                         -y, x, -y, &
     235              :                         y, -x, y, &
     236              :                         y, -x, -y, &
     237              :                         -y, -x, y, &
     238              :                         -y, -x, -y, &
     239              :                         y, y, x, &
     240              :                         y, -y, x, &
     241              :                         -y, y, x, &
     242              :                         -y, -y, x, &
     243              :                         y, y, -x, &
     244              :                         y, -y, -x, &
     245              :                         -y, y, -x, &
     246     11272667 :                         -y, -y, -x], [3, nb])
     247              :          END DO
     248        11690 :          nlgp = nlgp + nb*np
     249              :       CASE ("C")
     250        31563 :          DO i = 1, np
     251        21042 :             x = r(i)
     252        21042 :             y = SQRT(one - x**2)
     253       526050 :             lebedev_grid(lgnum)%w(nlgp + nc*(i - 1) + 1:nlgp + nc*i) = w(i)
     254              :             lebedev_grid(lgnum)%r(1:3, nlgp + nc*(i - 1) + 1:nlgp + nc*i) = &
     255              :                RESHAPE([x, y, zero, &
     256              :                         x, -y, zero, &
     257              :                         -x, y, zero, &
     258              :                         -x, -y, zero, &
     259              :                         y, x, zero, &
     260              :                         y, -x, zero, &
     261              :                         -y, x, zero, &
     262              :                         -y, -x, zero, &
     263              :                         x, zero, y, &
     264              :                         x, zero, -y, &
     265              :                         -x, zero, y, &
     266              :                         -x, zero, -y, &
     267              :                         y, zero, x, &
     268              :                         y, zero, -x, &
     269              :                         -y, zero, x, &
     270              :                         -y, zero, -x, &
     271              :                         zero, x, y, &
     272              :                         zero, x, -y, &
     273              :                         zero, -x, y, &
     274              :                         zero, -x, -y, &
     275              :                         zero, y, x, &
     276              :                         zero, y, -x, &
     277              :                         zero, -y, x, &
     278      3566619 :                         zero, -y, -x], [3, nc])
     279              :          END DO
     280        10521 :          nlgp = nlgp + nc*np
     281              :       CASE ("D")
     282         8183 :          IF (MODULO(np, 3) == 0) THEN
     283        49098 :             DO i = 1, np, 3
     284        40915 :                j = (i + 2)/3
     285        40915 :                x = r(i)
     286        40915 :                y = r(i + 1)
     287        40915 :                z = r(i + 2)
     288      2004835 :                lebedev_grid(lgnum)%w(nlgp + nd*(j - 1) + 1:nlgp + nd*j) = w(j)
     289              :                lebedev_grid(lgnum)%r(1:3, nlgp + nd*(j - 1) + 1:nlgp + nd*j) = &
     290              :                   RESHAPE([x, y, z, x, y, -z, x, -y, z, -x, y, z, &
     291              :                            x, -y, -z, -x, y, -z, -x, -y, z, -x, -y, -z, &
     292              :                            x, z, y, x, z, -y, x, -z, y, -x, z, y, &
     293              :                            x, -z, -y, -x, z, -y, -x, -z, y, -x, -z, -y, &
     294              :                            y, x, z, y, x, -z, y, -x, z, -y, x, z, &
     295              :                            y, -x, -z, -y, x, -z, -y, -x, z, -y, -x, -z, &
     296              :                            y, z, x, y, z, -x, y, -z, x, -y, z, x, &
     297              :                            y, -z, -x, -y, z, -x, -y, -z, x, -y, -z, -x, &
     298              :                            z, x, y, z, x, -y, z, -x, y, -z, x, y, &
     299              :                            z, -x, -y, -z, x, -y, -z, -x, y, -z, -x, -y, &
     300              :                            z, y, x, z, y, -x, z, -y, x, -z, y, x, &
     301     13796538 :                            z, -y, -x, -z, y, -x, -z, -y, x, -z, -y, -x], [3, nd])
     302              :             END DO
     303              :          ELSE
     304            0 :             CPABORT("Subsytem D: np is not modulo 3 (check argument #3)")
     305              :          END IF
     306         8183 :          nlgp = nlgp + nd*np/3
     307              :       CASE DEFAULT
     308              :          CALL cp_abort(__LOCATION__, &
     309              :                        "The invalid subsystem <"//TRIM(subsystem)//"> was "// &
     310        68971 :                        "specified (check argument #1)")
     311              :       END SELECT
     312              : 
     313              : !   *** Reinitialize working storage ***
     314              : 
     315        68971 :       w(:) = zero
     316        68971 :       r(:) = zero
     317              : 
     318        68971 :    END SUBROUTINE load_sub_grid
     319              : 
     320              : ! **************************************************************************************************
     321              : !> \brief ...
     322              : ! **************************************************************************************************
     323         1167 :    SUBROUTINE deallocate_lebedev_grids()
     324              : 
     325              :       INTEGER                                            :: ilg
     326              : 
     327         1167 :       CPASSERT(init_lebedev_grids_done)
     328         1167 :       init_lebedev_grids_done = .FALSE.
     329              : 
     330        17505 :       DO ilg = 1, nlg
     331        17505 :          DEALLOCATE (lebedev_grid(ilg)%r, lebedev_grid(ilg)%w)
     332              :       END DO
     333              : 
     334         1167 :    END SUBROUTINE deallocate_lebedev_grids
     335              : 
     336              : ! **************************************************************************************************
     337              : !> \brief Load the coordinates and weights of the nonredundant Lebedev grid
     338              : !>         points.
     339              : !> \date    04.05.99
     340              : !> \author  Matthias Krack
     341              : !> \version 1.0
     342              : ! **************************************************************************************************
     343         1169 :    SUBROUTINE init_lebedev_grids()
     344              : 
     345              :       CHARACTER(len=*), PARAMETER :: routineN = 'init_lebedev_grids'
     346              : 
     347              :       INTEGER                                            :: handle, ilg
     348              : 
     349         1169 :       CALL timeset(routineN, handle)
     350              : 
     351        17535 :       DO ilg = 1, nlg
     352        16366 :          IF (ASSOCIATED(lebedev_grid(ilg)%r)) DEALLOCATE (lebedev_grid(ilg)%r)
     353        17535 :          IF (ASSOCIATED(lebedev_grid(ilg)%w)) DEALLOCATE (lebedev_grid(ilg)%w)
     354              :       END DO
     355              : 
     356              : !   *** Load the angular momentum quantum numbers l of the Lebedev grids ***
     357              : 
     358        17535 :       lebedev_grid(1:nlg)%l = [3, 5, 7, 9, 11, 15, 17, 19, 23, 29, 35, 41, 47, 53]
     359              : 
     360              : !   *** Load the total number of grid points for each Lebedev grid ***
     361              : 
     362              :       lebedev_grid(1:nlg)%n = [6, 14, 26, 38, 50, 86, 110, 146, 194, 302, 434, 590, 770, &
     363        17535 :                                974]
     364              : 
     365              : !   *** Allocate storage for the Lebedev grids ***
     366              : 
     367        17535 :       DO ilg = 1, nlg
     368              :          ALLOCATE (lebedev_grid(ilg)%r(3, lebedev_grid(ilg)%n), &
     369        82999 :                    lebedev_grid(ilg)%w(lebedev_grid(ilg)%n))
     370              :       END DO
     371              : 
     372              : !   *** Load the coordinates and weights of the Lebedev grid points ***
     373              : 
     374              : !   *** 1. l = 3 (6 points, octahedron) ***
     375              : 
     376         1169 :       w(1) = 1.0_dp/6.0_dp
     377         1169 :       CALL load_sub_grid("A1", 1, 0)
     378              : 
     379              : !   *** 2. l = 5 (14 points, capped octahedron) ***
     380              : 
     381         1169 :       w(1) = 1.0_dp/15.0_dp
     382         1169 :       CALL load_sub_grid("A1", 2, 0)
     383              : 
     384         1169 :       w(1) = 3.0_dp/40.0_dp
     385         1169 :       CALL load_sub_grid("A3", 2, 0)
     386              : 
     387              : !   *** 3. l = 7 (26 points) ***
     388              : 
     389         1169 :       w(1) = 1.0_dp/21.0_dp
     390         1169 :       CALL load_sub_grid("A1", 3, 0)
     391              : 
     392         1169 :       w(1) = 4.0_dp/105.0_dp
     393         1169 :       CALL load_sub_grid("A2", 3, 0)
     394              : 
     395         1169 :       w(1) = 9.0_dp/280.0_dp
     396         1169 :       CALL load_sub_grid("A3", 3, 0)
     397              : 
     398              : !   *** 4. l = 9 (38 points) ***
     399              : 
     400         1169 :       w(1) = 1.0_dp/105.0_dp
     401         1169 :       CALL load_sub_grid("A1", 4, 0)
     402              : 
     403         1169 :       w(1) = 9.0_dp/280.0_dp
     404         1169 :       CALL load_sub_grid("A3", 4, 0)
     405              : 
     406         1169 :       w(1) = 1.0_dp/35.0_dp
     407         1169 :       r(1) = rs2*SQRT(1.0_dp + rs3)
     408         1169 :       CALL load_sub_grid("C", 4, 1)
     409              : 
     410              : !   *** 5. l = 11 (50 points) ***
     411              : 
     412         1169 :       w(1) = 4.0_dp/315.0_dp
     413         1169 :       CALL load_sub_grid("A1", 5, 0)
     414              : 
     415         1169 :       w(1) = 64.0_dp/2835.0_dp
     416         1169 :       CALL load_sub_grid("A2", 5, 0)
     417              : 
     418         1169 :       w(1) = 27.0_dp/1280.0_dp
     419         1169 :       CALL load_sub_grid("A3", 5, 0)
     420              : 
     421         1169 :       w(1) = 14641.0_dp/725760.0_dp
     422         1169 :       r(1) = 3.0_dp/SQRT(11.0_dp)
     423         1169 :       CALL load_sub_grid("B", 5, 1)
     424              : 
     425              : !   *** 6. l = 15 (86 points) ***
     426              : 
     427         1169 :       w(1) = 1.15440115440115440115440115440115E-2_dp
     428         1169 :       CALL load_sub_grid("A1", 6, 0)
     429              : 
     430         1169 :       w(1) = 1.19439090858562823236989259736470E-2_dp
     431         1169 :       CALL load_sub_grid("A3", 6, 0)
     432              : 
     433         1169 :       w(1) = 1.11105557106034025109468482160140E-2_dp
     434         1169 :       r(1) = 8.52518311701267605338736780155357E-1_dp
     435         1169 :       w(2) = 1.18765012945371420137882805994025E-2_dp
     436         1169 :       r(2) = 1.89063552885395482707075847005288E-1_dp
     437         1169 :       CALL load_sub_grid("B", 6, 2)
     438              : 
     439         1169 :       w(1) = 1.18123037469044753644792263073650E-2_dp
     440         1169 :       r(1) = 9.27330657151172465678969739310097E-1_dp
     441         1169 :       CALL load_sub_grid("C", 6, 1)
     442              : 
     443              : !   *** 7. l = 17 (110 points) ***
     444              : 
     445         1169 :       w(1) = 3.82827049493716160382827049493716E-3_dp
     446         1169 :       CALL load_sub_grid("A1", 7, 0)
     447              : 
     448         1169 :       w(1) = 9.79373751248751248751248751248751E-3_dp
     449         1169 :       CALL load_sub_grid("A3", 7, 0)
     450              : 
     451         1169 :       w(1) = 8.21173728319111097598993405227308E-3_dp
     452         1169 :       r(1) = 9.65124035086594105655529546158531E-1_dp
     453         1169 :       w(2) = 9.59547133607096284945318117290259E-3_dp
     454         1169 :       r(2) = 8.28769981252592210694031500711749E-1_dp
     455         1169 :       w(3) = 9.94281489117810328140065828526450E-3_dp
     456         1169 :       r(3) = 2.15957291845848832354930328945946E-1_dp
     457         1169 :       CALL load_sub_grid("B", 7, 3)
     458              : 
     459         1169 :       w(1) = 9.69499636166302832969499636166303E-3_dp
     460         1169 :       r(1) = 8.78158910604066133449110592671618E-1_dp
     461         1169 :       CALL load_sub_grid("C", 7, 1)
     462              : 
     463              : !   *** 8. l = 19 (146 points) ***
     464              : 
     465         1169 :       w(1) = 5.99631368862138092907323676554446E-4_dp
     466         1169 :       CALL load_sub_grid("A1", 8, 0)
     467              : 
     468         1169 :       w(1) = 7.37299971862075642305743268410561E-3_dp
     469         1169 :       CALL load_sub_grid("A2", 8, 0)
     470              : 
     471         1169 :       w(1) = 7.21051536014448777763305996834282E-3_dp
     472         1169 :       CALL load_sub_grid("A3", 8, 0)
     473              : 
     474         1169 :       w(1) = 7.57439415905403372268748574713806E-3_dp
     475         1169 :       r(1) = 9.74888643677173235480043489928723E-1_dp
     476         1169 :       w(2) = 6.75382948631447744073541732486459E-3_dp
     477         1169 :       r(2) = 8.07089818359582501629574989264033E-1_dp
     478         1169 :       w(3) = 7.11635549311755538760089284953968E-3_dp
     479         1169 :       r(3) = 2.91298882209526746288335878313128E-1_dp
     480         1169 :       CALL load_sub_grid("B", 8, 3)
     481              : 
     482         1169 :       w(1) = 6.99108735330326239417148508057599E-3_dp
     483         1169 :       r(1) = 1.40355381171318328571556780746292E-1_dp
     484         1169 :       r(2) = 4.49332832326955734884695382705101E-1_dp
     485         1169 :       r(3) = 8.82270011260322631916665753046583E-1_dp
     486         1169 :       CALL load_sub_grid("D", 8, 3)
     487              : 
     488              : !   *** 9. l = 23 (194 points) ***
     489              : 
     490         1169 :       w(1) = 1.78234044724461115736727104869868E-3_dp
     491         1169 :       CALL load_sub_grid("A1", 9, 0)
     492              : 
     493         1169 :       w(1) = 5.71690594997710189299212838832099E-3_dp
     494         1169 :       CALL load_sub_grid("A2", 9, 0)
     495              : 
     496         1169 :       w(1) = 5.57338317884873796836784958446647E-3_dp
     497         1169 :       CALL load_sub_grid("A3", 9, 0)
     498              : 
     499         1169 :       w(1) = 5.51877146727361369172768460119380E-3_dp
     500         1169 :       r(1) = 7.77493219314767127213777704028801E-1_dp
     501         1169 :       w(2) = 5.15823771180538310324916154718792E-3_dp
     502         1169 :       r(2) = 9.12509096867473692992168387555434E-1_dp
     503         1169 :       w(3) = 5.60870408258799684374936673855184E-3_dp
     504         1169 :       r(3) = 3.14196994182586079225390955831946E-1_dp
     505         1169 :       w(4) = 4.10677702816939409072861128564582E-3_dp
     506         1169 :       r(4) = 9.82972302707253296863729593965148E-1_dp
     507         1169 :       CALL load_sub_grid("B", 9, 4)
     508              : 
     509         1169 :       w(1) = 5.05184606461480847598931196006390E-3_dp
     510         1169 :       r(1) = 9.38319218137591520905616389195671E-1_dp
     511         1169 :       CALL load_sub_grid("C", 9, 1)
     512              : 
     513         1169 :       w(1) = 5.53024891623309370129768269143303E-3_dp
     514         1169 :       r(1) = 1.59041710538352952424263581362096E-1_dp
     515         1169 :       r(2) = 5.25118572443642024905268207753317E-1_dp
     516         1169 :       r(3) = 8.36036015482458885943746377793309E-1_dp
     517         1169 :       CALL load_sub_grid("D", 9, 3)
     518              : 
     519              : !   *** 10. l = 29 (302 points) ***
     520              : 
     521         1169 :       w(1) = 8.54591172512814813423121032618880E-4_dp
     522         1169 :       CALL load_sub_grid("A1", 10, 0)
     523              : 
     524         1169 :       w(1) = 3.59911928502557145886397858961119E-3_dp
     525         1169 :       CALL load_sub_grid("A3", 10, 0)
     526              : 
     527         1169 :       w(1) = 3.65004580767725542865433220112651E-3_dp
     528         1169 :       r(1) = 1.29238672710514925339493976600550E-1_dp
     529         1169 :       w(2) = 3.60482260141988171131480913104353E-3_dp
     530         1169 :       r(2) = 3.71034178384821189405344300671593E-1_dp
     531         1169 :       w(3) = 3.57672966174336707556208137560857E-3_dp
     532         1169 :       r(3) = 7.43452042987555751133204566760209E-1_dp
     533         1169 :       w(4) = 3.44978842430588331001302771048283E-3_dp
     534         1169 :       r(4) = 8.67643624544083327473890295837421E-1_dp
     535         1169 :       w(5) = 3.10895312241367525484587698082774E-3_dp
     536         1169 :       r(5) = 9.49454317226443084214869821724903E-1_dp
     537         1169 :       w(6) = 2.35210141368916437879217118337424E-3_dp
     538         1169 :       r(6) = 9.90705621379408123821774729602922E-1_dp
     539         1169 :       CALL load_sub_grid("B", 10, 6)
     540              : 
     541         1169 :       w(1) = 3.60082093221646027279920634177099E-3_dp
     542         1169 :       r(1) = 8.20326419827759303328870367500864E-1_dp
     543         1169 :       w(2) = 2.98234496317180385195111046924520E-3_dp
     544         1169 :       r(2) = 9.64408914879206014987053264857406E-1_dp
     545         1169 :       CALL load_sub_grid("C", 10, 2)
     546              : 
     547         1169 :       w(1) = 3.57154055427338708123297920312395E-3_dp
     548         1169 :       r(1) = 2.51003475177046506904110494820777E-1_dp
     549         1169 :       r(2) = 5.44867737258077380269062623720797E-1_dp
     550         1169 :       r(3) = 8.00072749407395172686232883863933E-1_dp
     551         1169 :       w(2) = 3.39231220500617018197882653945702E-3_dp
     552         1169 :       r(4) = 1.23354853258332742165467555277499E-1_dp
     553         1169 :       r(5) = 4.12772408316853095996383989497138E-1_dp
     554         1169 :       r(6) = 9.02442529533000401095678759353334E-1_dp
     555         1169 :       CALL load_sub_grid("D", 10, 6)
     556              : 
     557              : !   *** 11. l = 35 (434 points) ***
     558              : 
     559         1169 :       w(1) = 5.26589796822443623921598397444095E-4_dp
     560         1169 :       CALL load_sub_grid("A1", 11, 0)
     561              : 
     562         1169 :       w(1) = 2.54821997200260718024899528063707E-3_dp
     563         1169 :       CALL load_sub_grid("A2", 11, 0)
     564              : 
     565         1169 :       w(1) = 2.51231741892730716751285677008112E-3_dp
     566         1169 :       CALL load_sub_grid("A3", 11, 0)
     567              : 
     568         1169 :       w(1) = 1.46249562159461384222611198788353E-3_dp
     569         1169 :       r(1) = 9.94255912631277812357804047239411E-1_dp
     570         1169 :       w(2) = 2.01427902091852819554717351102614E-3_dp
     571         1169 :       r(2) = 9.67987158791472796844440561853288E-1_dp
     572         1169 :       w(3) = 2.30269478222741577118243755624539E-3_dp
     573         1169 :       r(3) = 9.14472801120872429366691177286487E-1_dp
     574         1169 :       w(4) = 2.44537343731298000188170923067793E-3_dp
     575         1169 :       r(4) = 8.31584400419232294499745594669204E-1_dp
     576         1169 :       w(5) = 2.50172516840293614549327311336461E-3_dp
     577         1169 :       r(5) = 7.19016501040843432905788800294849E-1_dp
     578         1169 :       w(6) = 2.51326717459756436118956600426018E-3_dp
     579         1169 :       r(6) = 4.07712664897769512483055658274718E-1_dp
     580         1169 :       w(7) = 2.53040380118635500209853222454729E-3_dp
     581         1169 :       r(7) = 2.12646824707552073524018894972799E-1_dp
     582         1169 :       CALL load_sub_grid("B", 11, 7)
     583              : 
     584         1169 :       w(1) = 1.91095128217953227363116198076372E-3_dp
     585         1169 :       r(1) = 9.77642811118264871364737333213224E-1_dp
     586         1169 :       w(2) = 2.41744237563898077608784837021936E-3_dp
     587         1169 :       r(2) = 8.81813287779428812899447039158355E-1_dp
     588         1169 :       CALL load_sub_grid("C", 11, 2)
     589              : 
     590         1169 :       w(1) = 2.23660776043784866397235325901501E-3_dp
     591         1169 :       r(1) = 9.92176963642923726861469072682696E-2_dp
     592         1169 :       r(2) = 3.34436314534345491435541212141297E-1_dp
     593         1169 :       r(3) = 9.37180985855372235789161206437430E-1_dp
     594         1169 :       w(2) = 2.41693004432477530950382860647420E-3_dp
     595         1169 :       r(4) = 2.05482369640304370826435780923978E-1_dp
     596         1169 :       r(5) = 4.50233038258262537898138529993494E-1_dp
     597         1169 :       r(6) = 8.68946032287241197946412945028781E-1_dp
     598         1169 :       w(3) = 2.51223685456349510228853571762152E-3_dp
     599         1169 :       r(7) = 1.06801826075804827808519981079378E-1_dp
     600         1169 :       r(8) = 5.90515704892527108597639202779953E-1_dp
     601         1169 :       r(9) = 7.99927854385728570494616568630393E-1_dp
     602         1169 :       w(4) = 2.49664405455308596359511734587523E-3_dp
     603         1169 :       r(10) = 3.10428403516654146818973681387686E-1_dp
     604         1169 :       r(11) = 5.55015236107680716116395510647568E-1_dp
     605         1169 :       r(12) = 7.71746262691590088133470564383333E-1_dp
     606         1169 :       CALL load_sub_grid("D", 11, 12)
     607              : 
     608              : !   *** 12. l = 41 (590 points) ***
     609              : 
     610         1169 :       w(1) = 3.09512129530618734224885916984167E-4_dp
     611         1169 :       CALL load_sub_grid("A1", 12, 0)
     612              : 
     613         1169 :       w(1) = 1.85237969859748902097779927120955E-3_dp
     614         1169 :       CALL load_sub_grid("A3", 12, 0)
     615              : 
     616         1169 :       w(1) = 9.76433116505105003063946798281256E-4_dp
     617         1169 :       r(1) = 9.96278129754016372294779397439010E-1_dp
     618         1169 :       w(2) = 1.38473723485169190049558481046633E-3_dp
     619         1169 :       r(2) = 9.78480583762693839428807199465825E-1_dp
     620         1169 :       w(3) = 1.61721064725441119207240564027320E-3_dp
     621         1169 :       r(3) = 9.41414158220402542954812123169147E-1_dp
     622         1169 :       w(4) = 1.74956465728115411858337657547711E-3_dp
     623         1169 :       r(4) = 8.83078727934132546639472279693012E-1_dp
     624         1169 :       w(5) = 1.81847177816276877817839645350131E-3_dp
     625         1169 :       r(5) = 8.02836877335273789544708232847842E-1_dp
     626         1169 :       w(6) = 1.84671595615124182496431643927999E-3_dp
     627         1169 :       r(6) = 7.00768575373572920755474238992223E-1_dp
     628         1169 :       w(7) = 1.85202882829621309713188574624172E-3_dp
     629         1169 :       r(7) = 4.33373868777154278470427918169993E-1_dp
     630         1169 :       w(8) = 1.85881258543831701688713685607976E-3_dp
     631         1169 :       r(8) = 2.70356088359165054450644840302674E-1_dp
     632         1169 :       w(9) = 1.87179063927774375088198703268059E-3_dp
     633         1169 :       r(9) = 9.21904070768989460773325829762845E-2_dp
     634         1169 :       CALL load_sub_grid("B", 12, 9)
     635              : 
     636         1169 :       w(1) = 1.30032168588604773254689500223665E-3_dp
     637         1169 :       r(1) = 9.85013335028001910431569760301413E-1_dp
     638         1169 :       w(2) = 1.70515399639586401999426890257133E-3_dp
     639         1169 :       r(2) = 9.18045287711453949033261544688478E-1_dp
     640         1169 :       w(3) = 1.85716119677407798248150549753942E-3_dp
     641         1169 :       r(3) = 7.91101929626901988791072435283520E-1_dp
     642         1169 :       CALL load_sub_grid("C", 12, 3)
     643              : 
     644         1169 :       w(1) = 1.55521360339680849695800543399046E-3_dp
     645         1169 :       r(1) = 8.21302158193251139256011433978433E-2_dp
     646         1169 :       r(2) = 2.77867319058624428710339115104831E-1_dp
     647         1169 :       r(3) = 9.57102074310072578548507660672158E-1_dp
     648         1169 :       w(2) = 1.80223912800852549116687840059028E-3_dp
     649         1169 :       r(4) = 8.99920584207487492736600381248490E-2_dp
     650         1169 :       r(5) = 5.03356427107511721798695016575784E-1_dp
     651         1169 :       r(6) = 8.59379855890721226547417613471625E-1_dp
     652         1169 :       w(3) = 1.84983056044366016523678105066982E-3_dp
     653         1169 :       r(7) = 1.81664084036020946133369276322890E-1_dp
     654         1169 :       r(8) = 5.98412649788537962548021778158698E-1_dp
     655         1169 :       r(9) = 7.80320742479920327279647082439668E-1_dp
     656         1169 :       w(4) = 1.71390450710670866804340083221112E-3_dp
     657         1169 :       r(10) = 1.72079522565687812382959749101837E-1_dp
     658         1169 :       r(11) = 3.79103540769556328153581995776882E-1_dp
     659         1169 :       r(12) = 9.09213475092373607255560905376387E-1_dp
     660         1169 :       w(5) = 1.80265893437745115894760427403985E-3_dp
     661         1169 :       r(13) = 2.63471665593794963182134911777324E-1_dp
     662         1169 :       r(14) = 4.74239284255198024276965888711084E-1_dp
     663         1169 :       r(15) = 8.40047488359050429417090817376105E-1_dp
     664         1169 :       w(6) = 1.84286647290528563239873317969286E-3_dp
     665         1169 :       r(16) = 3.51828092773351899746468433493901E-1_dp
     666         1169 :       r(17) = 5.61026380862206018993247924039616E-1_dp
     667         1169 :       r(18) = 7.49310611904115932021924350883623E-1_dp
     668         1169 :       CALL load_sub_grid("D", 12, 18)
     669              : 
     670              : !   *** 13. l = 47 (770 points) ***
     671              : 
     672         1169 :       w(1) = 2.19294208818118413191132531546907E-4_dp
     673         1169 :       CALL load_sub_grid("A1", 13, 0)
     674              : 
     675         1169 :       w(1) = 1.43643361731907982089311290725143E-3_dp
     676         1169 :       CALL load_sub_grid("A2", 13, 0)
     677              : 
     678         1169 :       w(1) = 1.42194034433587736471699229343586E-3_dp
     679         1169 :       CALL load_sub_grid("A3", 13, 0)
     680              : 
     681         1169 :       w(1) = 6.79812351105050201620332392505941E-4_dp
     682         1169 :       r(1) = 9.97408677652823043744886496130338E-1_dp
     683         1169 :       w(2) = 9.91318423529491220896771270468706E-4_dp
     684         1169 :       r(2) = 9.84799753572301179668683394920869E-1_dp
     685         1169 :       w(3) = 1.18020783323894879580204544917243E-3_dp
     686         1169 :       r(3) = 9.58036675983391439732458619060098E-1_dp
     687         1169 :       w(4) = 1.29659960208092067423594734151509E-3_dp
     688         1169 :       r(4) = 9.15317950483154831654282453968846E-1_dp
     689         1169 :       w(5) = 1.36587142742831640181200652406724E-3_dp
     690         1169 :       r(5) = 8.55901928697886435270454067917142E-1_dp
     691         1169 :       w(6) = 1.40298860477532526267417750582642E-3_dp
     692         1169 :       r(6) = 7.79621319527635171330859492071650E-1_dp
     693         1169 :       w(7) = 1.41864556359560936142032713234525E-3_dp
     694         1169 :       r(7) = 6.86644447264154195285405155618666E-1_dp
     695         1169 :       w(8) = 1.42137674185166176103362636565150E-3_dp
     696         1169 :       r(8) = 4.52311920313658441442123883818590E-1_dp
     697         1169 :       w(9) = 1.42399647549096162940277119054908E-3_dp
     698         1169 :       r(9) = 3.12521305001653125265256223110153E-1_dp
     699         1169 :       w(10) = 1.43155404217856675285551659613462E-3_dp
     700         1169 :       r(10) = 1.60155803498828974610387120985563E-1_dp
     701         1169 :       CALL load_sub_grid("B", 13, 10)
     702              : 
     703         1169 :       w(1) = 9.25440149986536789398468419487000E-4_dp
     704         1169 :       r(1) = 9.89477537495598496934466234590453E-1_dp
     705         1169 :       w(2) = 1.25023999505350931588903916766368E-3_dp
     706         1169 :       r(2) = 9.40776878793758755393692765525837E-1_dp
     707         1169 :       w(3) = 1.39436584332923012313782491233921E-3_dp
     708         1169 :       r(3) = 8.45749305193653306776973233373898E-1_dp
     709         1169 :       CALL load_sub_grid("C", 13, 3)
     710              : 
     711         1169 :       w(1) = 1.12708909467174883469499826293069E-3_dp
     712         1169 :       r(1) = 6.94402439334941301856132689108761E-2_dp
     713         1169 :       r(2) = 2.35518789424232641745294975361896E-1_dp
     714         1169 :       r(3) = 9.69385863498432080572651262482050E-1_dp
     715         1169 :       w(2) = 1.34575376091067007284708159178371E-3_dp
     716         1169 :       r(4) = 2.26900410952945985812144550510454E-1_dp
     717         1169 :       r(5) = 4.10218247404573022502091360294078E-1_dp
     718         1169 :       r(6) = 8.83310360522112719095559130461882E-1_dp
     719         1169 :       w(3) = 1.42495728331678280442457616193820E-3_dp
     720         1169 :       r(7) = 8.02557460777533890494192154117455E-2_dp
     721         1169 :       r(8) = 6.21430241748160458082227723944198E-1_dp
     722         1169 :       r(9) = 7.79348105702660973885784203335648E-1_dp
     723         1169 :       w(4) = 1.26152334123774998512114871120604E-3_dp
     724         1169 :       r(10) = 1.46799952789657197013820141783396E-1_dp
     725         1169 :       r(11) = 3.24528434571739443574137218155171E-1_dp
     726         1169 :       r(12) = 9.34414827052402165196138643907493E-1_dp
     727         1169 :       w(5) = 1.39254710605269594012443620424449E-3_dp
     728         1169 :       r(13) = 1.57150776982472710564392240262888E-1_dp
     729         1169 :       r(14) = 5.22448218969662967424959711591943E-1_dp
     730         1169 :       r(15) = 8.38064133458312497889043403162912E-1_dp
     731         1169 :       w(6) = 1.41876167787765638610216672064623E-3_dp
     732         1169 :       r(16) = 2.36570299315724563080851921006450E-1_dp
     733         1169 :       r(17) = 6.01754663408955808458505175650313E-1_dp
     734         1169 :       r(18) = 7.62840624604669826410820436887813E-1_dp
     735         1169 :       w(7) = 1.33836668447955413932118842030907E-3_dp
     736         1169 :       r(19) = 7.71481586676573204146393256189282E-2_dp
     737         1169 :       r(20) = 4.34657551614116278920169057936696E-1_dp
     738         1169 :       r(21) = 8.97285336132833396499244991766618E-1_dp
     739         1169 :       w(8) = 1.39370086267613137196129133534721E-3_dp
     740         1169 :       r(22) = 3.06293666621073020830889612421600E-1_dp
     741         1169 :       r(23) = 4.90882658903761621546950183900134E-1_dp
     742         1169 :       r(24) = 8.15609223203975422051589658409773E-1_dp
     743         1169 :       w(9) = 1.41591475746693200265535028223575E-3_dp
     744         1169 :       r(25) = 3.82247737952478700050265491776632E-1_dp
     745         1169 :       r(26) = 5.64876814909950046651375249432877E-1_dp
     746         1169 :       r(27) = 7.31300793659765701947278263710234E-1_dp
     747         1169 :       CALL load_sub_grid("D", 13, 27)
     748              : 
     749              : !   *** 14. l = 53 (974 points) ***
     750              : 
     751         1169 :       w(1) = 1.43829419052743111472634384792800E-4_dp
     752         1169 :       CALL load_sub_grid("A1", 14, 0)
     753              : 
     754         1169 :       w(1) = 1.12577228828700411922446003897444E-3_dp
     755         1169 :       CALL load_sub_grid("A3", 14, 0)
     756              : 
     757         1169 :       w(1) = 4.94802934194924095056628951683154E-4_dp
     758         1169 :       r(1) = 9.98155345023846501191494527575073E-1_dp
     759         1169 :       w(2) = 7.35799010912547049057334785150092E-4_dp
     760         1169 :       r(2) = 9.88883224354685545466876075112182E-1_dp
     761         1169 :       w(3) = 8.88913277130438430936840534873175E-4_dp
     762         1169 :       r(3) = 9.68890220434707404463853311788372E-1_dp
     763         1169 :       w(4) = 9.88834783892143487490379018339493E-4_dp
     764         1169 :       r(4) = 9.36602730407163187902332491169310E-1_dp
     765         1169 :       w(5) = 1.05329968170947064968554154238842E-3_dp
     766         1169 :       r(5) = 8.91267942647606054508357503868536E-1_dp
     767         1169 :       w(6) = 1.09277880701457848752501645357106E-3_dp
     768         1169 :       r(6) = 8.32596723702351872809065001851482E-1_dp
     769         1169 :       w(7) = 1.11438939406322716311544826926779E-3_dp
     770         1169 :       r(7) = 7.60582905315251495676259855686005E-1_dp
     771         1169 :       w(8) = 1.12372478805155528926212353749792E-3_dp
     772         1169 :       r(8) = 6.75400969108414309734349145075511E-1_dp
     773         1169 :       w(9) = 1.12523932524381359890224350348300E-3_dp
     774         1169 :       r(9) = 4.66858905695743283152769352096062E-1_dp
     775         1169 :       w(10) = 1.12615327181590500171763113615557E-3_dp
     776         1169 :       r(10) = 3.44613654237438223690005816795002E-1_dp
     777         1169 :       w(11) = 1.13028693112384079609639852411886E-3_dp
     778         1169 :       r(11) = 2.11954151850184645694140401473565E-1_dp
     779         1169 :       w(12) = 1.13498653436395488643714589963293E-3_dp
     780         1169 :       r(12) = 7.16244014499556615845369803814026E-2_dp
     781         1169 :       CALL load_sub_grid("B", 14, 12)
     782              : 
     783         1169 :       w(1) = 6.82336792710993096637138363442284E-4_dp
     784         1169 :       r(1) = 9.92323565431490196070394244122238E-1_dp
     785         1169 :       w(2) = 9.45415816044709583567874030695969E-4_dp
     786         1169 :       r(2) = 9.55781512496548488574596747552425E-1_dp
     787         1169 :       w(3) = 1.07442997538567914061819358161104E-3_dp
     788         1169 :       r(3) = 8.82785980701181710576015026411856E-1_dp
     789         1169 :       w(4) = 1.12930008656913165822354345410170E-3_dp
     790         1169 :       r(4) = 7.73778447257374736807517446423091E-1_dp
     791         1169 :       CALL load_sub_grid("C", 14, 4)
     792              : 
     793         1169 :       w(1) = 8.43688450090195438498026316671055E-4_dp
     794         1169 :       r(1) = 5.97404861418134181366741615801962E-2_dp
     795         1169 :       r(2) = 2.02912875277752280821562682821390E-1_dp
     796         1169 :       r(3) = 9.77372722845309994986723236843860E-1_dp
     797         1169 :       w(2) = 1.07525572044888463296011392358171E-3_dp
     798         1169 :       r(4) = 1.37576040847363647998707229269443E-1_dp
     799         1169 :       r(5) = 4.60262194248405393969672054729315E-1_dp
     800         1169 :       r(6) = 8.77058461865802689033970747916718E-1_dp
     801         1169 :       w(3) = 1.10857723686446203483870096411918E-3_dp
     802         1169 :       r(7) = 3.39101652633628571879780724877562E-1_dp
     803         1169 :       r(8) = 5.03067399966203571325278413235681E-1_dp
     804         1169 :       r(9) = 7.94942299964208514029117644252761E-1_dp
     805         1169 :       w(4) = 9.56647532378335729987022997768218E-4_dp
     806         1169 :       r(10) = 1.27167519143981950887694563391455E-1_dp
     807         1169 :       r(11) = 2.81760642244213432084049569237994E-1_dp
     808         1169 :       r(12) = 9.51020169374389952612600596224493E-1_dp
     809         1169 :       w(5) = 1.08066325071739071464463316273343E-3_dp
     810         1169 :       r(13) = 2.69312074041351249441688496163892E-1_dp
     811         1169 :       r(14) = 4.33156129172015739916409763707103E-1_dp
     812         1169 :       r(15) = 8.60143461601761963548074094490711E-1_dp
     813         1169 :       w(6) = 1.12679713119629459182839576027292E-3_dp
     814         1169 :       r(16) = 1.41978645260191825726693154370171E-1_dp
     815         1169 :       r(17) = 6.25616735858081415467234398457286E-1_dp
     816         1169 :       r(18) = 7.67102186220558360145428572382623E-1_dp
     817         1169 :       w(7) = 1.02256871535806121135514702022316E-3_dp
     818         1169 :       r(19) = 6.70928460073825495111114896527700E-2_dp
     819         1169 :       r(20) = 3.79839521685915669705644712365302E-1_dp
     820         1169 :       r(21) = 9.22616110730809020138255560099254E-1_dp
     821         1169 :       w(8) = 1.10896026771310753764243318312336E-3_dp
     822         1169 :       r(22) = 7.05773818325617225225155364651637E-2_dp
     823         1169 :       r(23) = 5.51750542142352049132113965320893E-1_dp
     824         1169 :       r(24) = 8.31017552413474225750006298786621E-1_dp
     825         1169 :       w(9) = 1.12279065343576582686387381292198E-3_dp
     826         1169 :       r(25) = 2.78388847788215460217462722823059E-1_dp
     827         1169 :       r(26) = 6.02961915615918685584436745852250E-1_dp
     828         1169 :       r(27) = 7.47620610834085792324588316104014E-1_dp
     829         1169 :       w(10) = 1.03240184711745983700951101978720E-3_dp
     830         1169 :       r(28) = 1.97957893891740690574322079335028E-1_dp
     831         1169 :       r(29) = 3.58960632958909578333772677316348E-1_dp
     832         1169 :       r(30) = 9.12118378409121483660044157731511E-1_dp
     833         1169 :       w(11) = 1.10724938228385393683388780275631E-3_dp
     834         1169 :       r(31) = 2.08730706110327399856945819943227E-1_dp
     835         1169 :       r(32) = 5.34866643813547649971323458627733E-1_dp
     836         1169 :       r(33) = 8.18748536281021806431067610000242E-1_dp
     837         1169 :       w(12) = 1.12178004851997205823535727177375E-3_dp
     838         1169 :       r(34) = 4.05512213787283588596898056051174E-1_dp
     839         1169 :       r(35) = 5.67499754607437348401393912269671E-1_dp
     840         1169 :       r(36) = 7.16591845467023718833743633176626E-1_dp
     841         1169 :       CALL load_sub_grid("D", 14, 36)
     842              : 
     843         1169 :       init_lebedev_grids_done = .TRUE.
     844              : 
     845         1169 :       CALL timestop(handle)
     846              : 
     847         1169 :    END SUBROUTINE init_lebedev_grids
     848              : 
     849            0 : END MODULE lebedev
        

Generated by: LCOV version 2.0-1