LCOV - code coverage report
Current view: top level - src - cp_control_utils.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:133b8a2) Lines: 1302 1474 88.3 %
Date: 2025-05-13 08:10:50 Functions: 12 12 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Utilities to set up the control types
      10             : ! **************************************************************************************************
      11             : MODULE cp_control_utils
      12             :    USE bibliography,                    ONLY: &
      13             :         Andreussi2012, Dewar1977, Dewar1985, Elstner1998, Fattebert2002, Grimme2017, Hu2007, &
      14             :         Krack2000, Lippert1997, Lippert1999, Porezag1995, Pracht2019, Repasky2002, Rocha2006, &
      15             :         Schenter2008, Seifert1996, Souza2002, Stengel2009, Stewart1989, Stewart2007, Thiel1992, &
      16             :         Umari2002, VanVoorhis2015, VandeVondele2005a, VandeVondele2005b, Yin2017, Zhechkov2005, &
      17             :         cite_reference
      18             :    USE cp_control_types,                ONLY: &
      19             :         admm_control_create, admm_control_type, ddapc_control_create, ddapc_restraint_type, &
      20             :         dft_control_create, dft_control_type, efield_type, expot_control_create, &
      21             :         maxwell_control_create, qs_control_type, tddfpt2_control_type, xtb_control_type
      22             :    USE cp_files,                        ONLY: close_file,&
      23             :                                               open_file
      24             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      25             :                                               cp_logger_type
      26             :    USE cp_output_handling,              ONLY: cp_print_key_finished_output,&
      27             :                                               cp_print_key_unit_nr
      28             :    USE cp_parser_methods,               ONLY: parser_read_line
      29             :    USE cp_parser_types,                 ONLY: cp_parser_type,&
      30             :                                               parser_create,&
      31             :                                               parser_release,&
      32             :                                               parser_reset
      33             :    USE cp_units,                        ONLY: cp_unit_from_cp2k,&
      34             :                                               cp_unit_to_cp2k
      35             :    USE eeq_input,                       ONLY: read_eeq_param
      36             :    USE force_fields_input,              ONLY: read_gp_section
      37             :    USE input_constants,                 ONLY: &
      38             :         admm1_type, admm2_type, admmp_type, admmq_type, admms_type, constant_env, custom_env, &
      39             :         do_admm_aux_exch_func_bee, do_admm_aux_exch_func_bee_libxc, do_admm_aux_exch_func_default, &
      40             :         do_admm_aux_exch_func_default_libxc, do_admm_aux_exch_func_none, &
      41             :         do_admm_aux_exch_func_opt, do_admm_aux_exch_func_opt_libxc, do_admm_aux_exch_func_pbex, &
      42             :         do_admm_aux_exch_func_pbex_libxc, do_admm_aux_exch_func_sx_libxc, &
      43             :         do_admm_basis_projection, do_admm_blocked_projection, do_admm_blocking_purify_full, &
      44             :         do_admm_charge_constrained_projection, do_admm_exch_scaling_merlot, &
      45             :         do_admm_exch_scaling_none, do_admm_purify_cauchy, do_admm_purify_cauchy_subspace, &
      46             :         do_admm_purify_mcweeny, do_admm_purify_mo_diag, do_admm_purify_mo_no_diag, &
      47             :         do_admm_purify_none, do_admm_purify_none_dm, do_ddapc_constraint, do_ddapc_restraint, &
      48             :         do_method_am1, do_method_dftb, do_method_gapw, do_method_gapw_xc, do_method_gpw, &
      49             :         do_method_lrigpw, do_method_mndo, do_method_mndod, do_method_ofgpw, do_method_pdg, &
      50             :         do_method_pm3, do_method_pm6, do_method_pm6fm, do_method_pnnl, do_method_rigpw, &
      51             :         do_method_rm1, do_method_xtb, do_pwgrid_ns_fullspace, do_pwgrid_ns_halfspace, &
      52             :         do_pwgrid_spherical, do_s2_constraint, do_s2_restraint, do_se_is_kdso, do_se_is_kdso_d, &
      53             :         do_se_is_slater, do_se_lr_ewald, do_se_lr_ewald_gks, do_se_lr_ewald_r3, do_se_lr_none, &
      54             :         gapw_1c_large, gapw_1c_medium, gapw_1c_orb, gapw_1c_small, gapw_1c_very_large, &
      55             :         gaussian_env, no_admm_type, numerical, ramp_env, real_time_propagation, sccs_andreussi, &
      56             :         sccs_derivative_cd3, sccs_derivative_cd5, sccs_derivative_cd7, sccs_derivative_fft, &
      57             :         sccs_fattebert_gygi, sic_ad, sic_eo, sic_list_all, sic_list_unpaired, sic_mauri_spz, &
      58             :         sic_mauri_us, sic_none, slater, tddfpt_dipole_length, tddfpt_kernel_stda, &
      59             :         use_mom_ref_user, xtb_vdw_type_d3, xtb_vdw_type_d4, xtb_vdw_type_none
      60             :    USE input_cp2k_check,                ONLY: xc_functionals_expand
      61             :    USE input_cp2k_dft,                  ONLY: create_dft_section
      62             :    USE input_enumeration_types,         ONLY: enum_i2c,&
      63             :                                               enumeration_type
      64             :    USE input_keyword_types,             ONLY: keyword_get,&
      65             :                                               keyword_type
      66             :    USE input_section_types,             ONLY: &
      67             :         section_get_ival, section_get_keyword, section_release, section_type, section_vals_get, &
      68             :         section_vals_get_subs_vals, section_vals_type, section_vals_val_get, section_vals_val_set
      69             :    USE kinds,                           ONLY: default_path_length,&
      70             :                                               default_string_length,&
      71             :                                               dp
      72             :    USE mathconstants,                   ONLY: fourpi
      73             :    USE pair_potential_types,            ONLY: pair_potential_reallocate
      74             :    USE periodic_table,                  ONLY: get_ptable_info
      75             :    USE qs_cdft_utils,                   ONLY: read_cdft_control_section
      76             :    USE smeagol_control_types,           ONLY: read_smeagol_control
      77             :    USE string_utilities,                ONLY: uppercase
      78             :    USE util,                            ONLY: sort
      79             :    USE xc,                              ONLY: xc_uses_kinetic_energy_density,&
      80             :                                               xc_uses_norm_drho
      81             :    USE xc_input_constants,              ONLY: xc_deriv_collocate
      82             :    USE xc_write_output,                 ONLY: xc_write
      83             : #include "./base/base_uses.f90"
      84             : 
      85             :    IMPLICIT NONE
      86             : 
      87             :    PRIVATE
      88             : 
      89             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'cp_control_utils'
      90             : 
      91             :    PUBLIC :: read_dft_control, &
      92             :              read_mgrid_section, &
      93             :              read_qs_section, &
      94             :              read_tddfpt2_control, &
      95             :              write_dft_control, &
      96             :              write_qs_control, &
      97             :              write_admm_control, &
      98             :              read_ddapc_section
      99             : CONTAINS
     100             : 
     101             : ! **************************************************************************************************
     102             : !> \brief ...
     103             : !> \param dft_control ...
     104             : !> \param dft_section ...
     105             : ! **************************************************************************************************
     106      102536 :    SUBROUTINE read_dft_control(dft_control, dft_section)
     107             :       TYPE(dft_control_type), POINTER                    :: dft_control
     108             :       TYPE(section_vals_type), POINTER                   :: dft_section
     109             : 
     110             :       CHARACTER(len=default_path_length)                 :: basis_set_file_name, &
     111             :                                                             intensities_file_name, &
     112             :                                                             potential_file_name
     113             :       CHARACTER(LEN=default_string_length), &
     114        7324 :          DIMENSION(:), POINTER                           :: tmpstringlist
     115             :       INTEGER                                            :: admmtype, irep, isize, method_id, nrep, &
     116             :                                                             xc_deriv_method_id
     117             :       LOGICAL                                            :: at_end, do_hfx, do_ot, do_rpa_admm, &
     118             :                                                             do_rtp, exopt1, exopt2, exopt3, &
     119             :                                                             explicit, is_present, l_param, not_SE, &
     120             :                                                             was_present
     121             :       REAL(KIND=dp)                                      :: density_cut, gradient_cut, tau_cut
     122        7324 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: pol
     123             :       TYPE(cp_logger_type), POINTER                      :: logger
     124             :       TYPE(cp_parser_type)                               :: parser
     125             :       TYPE(section_vals_type), POINTER                   :: hfx_section, maxwell_section, &
     126             :                                                             sccs_section, scf_section, &
     127             :                                                             tmp_section, xc_fun_section, xc_section
     128             : 
     129        7324 :       was_present = .FALSE.
     130             : 
     131        7324 :       logger => cp_get_default_logger()
     132             : 
     133        7324 :       NULLIFY (tmp_section, xc_fun_section, xc_section)
     134        7324 :       ALLOCATE (dft_control)
     135        7324 :       CALL dft_control_create(dft_control)
     136             :       ! determine wheather this is a semiempirical or DFTB run
     137             :       ! --> (no XC section needs to be provided)
     138        7324 :       not_SE = .TRUE.
     139        7324 :       CALL section_vals_val_get(dft_section, "QS%METHOD", i_val=method_id)
     140        2160 :       SELECT CASE (method_id)
     141             :       CASE (do_method_dftb, do_method_xtb, do_method_mndo, do_method_am1, do_method_pm3, do_method_pnnl, &
     142             :             do_method_pm6, do_method_pm6fm, do_method_pdg, do_method_rm1, do_method_mndod)
     143        7324 :          not_SE = .FALSE.
     144             :       END SELECT
     145             :       ! Check for XC section and XC_FUNCTIONAL section
     146        7324 :       xc_section => section_vals_get_subs_vals(dft_section, "XC")
     147        7324 :       CALL section_vals_get(xc_section, explicit=is_present)
     148        7324 :       IF (.NOT. is_present .AND. not_SE) THEN
     149           0 :          CPABORT("XC section missing.")
     150             :       END IF
     151        7324 :       IF (is_present) THEN
     152        5180 :          CALL section_vals_val_get(xc_section, "density_cutoff", r_val=density_cut)
     153        5180 :          CALL section_vals_val_get(xc_section, "gradient_cutoff", r_val=gradient_cut)
     154        5180 :          CALL section_vals_val_get(xc_section, "tau_cutoff", r_val=tau_cut)
     155             :          ! Perform numerical stability checks and possibly correct the issues
     156        5180 :          IF (density_cut <= EPSILON(0.0_dp)*100.0_dp) &
     157             :             CALL cp_warn(__LOCATION__, &
     158             :                          "DENSITY_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
     159           0 :                          "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
     160        5180 :          density_cut = MAX(EPSILON(0.0_dp)*100.0_dp, density_cut)
     161        5180 :          IF (gradient_cut <= EPSILON(0.0_dp)*100.0_dp) &
     162             :             CALL cp_warn(__LOCATION__, &
     163             :                          "GRADIENT_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
     164           0 :                          "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
     165        5180 :          gradient_cut = MAX(EPSILON(0.0_dp)*100.0_dp, gradient_cut)
     166        5180 :          IF (tau_cut <= EPSILON(0.0_dp)*100.0_dp) &
     167             :             CALL cp_warn(__LOCATION__, &
     168             :                          "TAU_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
     169           0 :                          "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
     170        5180 :          tau_cut = MAX(EPSILON(0.0_dp)*100.0_dp, tau_cut)
     171        5180 :          CALL section_vals_val_set(xc_section, "density_cutoff", r_val=density_cut)
     172        5180 :          CALL section_vals_val_set(xc_section, "gradient_cutoff", r_val=gradient_cut)
     173        5180 :          CALL section_vals_val_set(xc_section, "tau_cutoff", r_val=tau_cut)
     174             :       END IF
     175        7324 :       xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
     176        7324 :       CALL section_vals_get(xc_fun_section, explicit=is_present)
     177        7324 :       IF (.NOT. is_present .AND. not_SE) THEN
     178           0 :          CPABORT("XC_FUNCTIONAL section missing.")
     179             :       END IF
     180        7324 :       scf_section => section_vals_get_subs_vals(dft_section, "SCF")
     181        7324 :       CALL section_vals_val_get(dft_section, "UKS", l_val=dft_control%uks)
     182        7324 :       CALL section_vals_val_get(dft_section, "ROKS", l_val=dft_control%roks)
     183        7324 :       IF (dft_control%uks .OR. dft_control%roks) THEN
     184        1601 :          dft_control%nspins = 2
     185             :       ELSE
     186        5723 :          dft_control%nspins = 1
     187             :       END IF
     188             : 
     189        7324 :       dft_control%lsd = (dft_control%nspins > 1)
     190        7324 :       dft_control%use_kinetic_energy_density = xc_uses_kinetic_energy_density(xc_fun_section, dft_control%lsd)
     191             : 
     192        7324 :       xc_deriv_method_id = section_get_ival(xc_section, "XC_GRID%XC_DERIV")
     193             :       dft_control%drho_by_collocation = (xc_uses_norm_drho(xc_fun_section, dft_control%lsd) &
     194        7324 :                                          .AND. (xc_deriv_method_id == xc_deriv_collocate))
     195        7324 :       IF (dft_control%drho_by_collocation) THEN
     196           0 :          CPABORT("derivatives by collocation not implemented")
     197             :       END IF
     198             : 
     199             :       ! Automatic auxiliary basis set generation
     200        7324 :       CALL section_vals_val_get(dft_section, "AUTO_BASIS", n_rep_val=nrep)
     201       14648 :       DO irep = 1, nrep
     202        7324 :          CALL section_vals_val_get(dft_section, "AUTO_BASIS", i_rep_val=irep, c_vals=tmpstringlist)
     203       14648 :          IF (SIZE(tmpstringlist) == 2) THEN
     204        7324 :             CALL uppercase(tmpstringlist(2))
     205        7324 :             SELECT CASE (tmpstringlist(2))
     206             :             CASE ("X")
     207          78 :                isize = -1
     208             :             CASE ("SMALL")
     209          78 :                isize = 0
     210             :             CASE ("MEDIUM")
     211          48 :                isize = 1
     212             :             CASE ("LARGE")
     213           0 :                isize = 2
     214             :             CASE ("HUGE")
     215           2 :                isize = 3
     216             :             CASE DEFAULT
     217        7324 :                CPWARN("Unknown basis size in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
     218             :             END SELECT
     219             :             !
     220        7326 :             SELECT CASE (tmpstringlist(1))
     221             :             CASE ("X")
     222             :             CASE ("RI_AUX")
     223           2 :                dft_control%auto_basis_ri_aux = isize
     224             :             CASE ("AUX_FIT")
     225           0 :                dft_control%auto_basis_aux_fit = isize
     226             :             CASE ("LRI_AUX")
     227           0 :                dft_control%auto_basis_lri_aux = isize
     228             :             CASE ("P_LRI_AUX")
     229           0 :                dft_control%auto_basis_p_lri_aux = isize
     230             :             CASE ("RI_HXC")
     231           0 :                dft_control%auto_basis_ri_hxc = isize
     232             :             CASE ("RI_XAS")
     233          48 :                dft_control%auto_basis_ri_xas = isize
     234             :             CASE ("RI_HFX")
     235          78 :                dft_control%auto_basis_ri_hfx = isize
     236             :             CASE DEFAULT
     237        7324 :                CPWARN("Unknown basis type in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
     238             :             END SELECT
     239             :          ELSE
     240             :             CALL cp_abort(__LOCATION__, &
     241           0 :                           "AUTO_BASIS keyword in &DFT section has a wrong number of arguments.")
     242             :          END IF
     243             :       END DO
     244             : 
     245             :       !! check if we do wavefunction fitting
     246        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD")
     247        7324 :       CALL section_vals_get(tmp_section, explicit=is_present)
     248             :       !
     249        7324 :       hfx_section => section_vals_get_subs_vals(xc_section, "HF")
     250        7324 :       CALL section_vals_get(hfx_section, explicit=do_hfx)
     251        7324 :       CALL section_vals_val_get(xc_section, "WF_CORRELATION%RI_RPA%ADMM", l_val=do_rpa_admm)
     252        7324 :       is_present = is_present .AND. (do_hfx .OR. do_rpa_admm)
     253             :       !
     254        7324 :       dft_control%do_admm = is_present
     255        7324 :       dft_control%do_admm_mo = .FALSE.
     256        7324 :       dft_control%do_admm_dm = .FALSE.
     257        7324 :       IF (is_present) THEN
     258             :          do_ot = .FALSE.
     259         446 :          CALL section_vals_val_get(scf_section, "OT%_SECTION_PARAMETERS_", l_val=do_ot)
     260         446 :          CALL admm_control_create(dft_control%admm_control)
     261             : 
     262         446 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_TYPE", i_val=admmtype)
     263         446 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", explicit=exopt1)
     264         446 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%METHOD", explicit=exopt2)
     265         446 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_SCALING_MODEL", explicit=exopt3)
     266         446 :          dft_control%admm_control%admm_type = admmtype
     267         436 :          SELECT CASE (admmtype)
     268             :          CASE (no_admm_type)
     269         436 :             CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", i_val=method_id)
     270         436 :             dft_control%admm_control%purification_method = method_id
     271         436 :             CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%METHOD", i_val=method_id)
     272         436 :             dft_control%admm_control%method = method_id
     273         436 :             CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_SCALING_MODEL", i_val=method_id)
     274         436 :             dft_control%admm_control%scaling_model = method_id
     275             :          CASE (admm1_type)
     276             :             ! METHOD BASIS_PROJECTION
     277             :             ! ADMM_PURIFICATION_METHOD choose
     278             :             ! EXCH_SCALING_MODEL NONE
     279           2 :             CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", i_val=method_id)
     280           2 :             dft_control%admm_control%purification_method = method_id
     281           2 :             dft_control%admm_control%method = do_admm_basis_projection
     282           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
     283             :          CASE (admm2_type)
     284             :             ! METHOD BASIS_PROJECTION
     285             :             ! ADMM_PURIFICATION_METHOD NONE
     286             :             ! EXCH_SCALING_MODEL NONE
     287           2 :             dft_control%admm_control%purification_method = do_admm_purify_none
     288           2 :             dft_control%admm_control%method = do_admm_basis_projection
     289           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
     290             :          CASE (admms_type)
     291             :             ! ADMM_PURIFICATION_METHOD NONE
     292             :             ! METHOD CHARGE_CONSTRAINED_PROJECTION
     293             :             ! EXCH_SCALING_MODEL MERLOT
     294           2 :             dft_control%admm_control%purification_method = do_admm_purify_none
     295           2 :             dft_control%admm_control%method = do_admm_charge_constrained_projection
     296           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_merlot
     297             :          CASE (admmp_type)
     298             :             ! ADMM_PURIFICATION_METHOD NONE
     299             :             ! METHOD BASIS_PROJECTION
     300             :             ! EXCH_SCALING_MODEL MERLOT
     301           2 :             dft_control%admm_control%purification_method = do_admm_purify_none
     302           2 :             dft_control%admm_control%method = do_admm_basis_projection
     303           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_merlot
     304             :          CASE (admmq_type)
     305             :             ! ADMM_PURIFICATION_METHOD NONE
     306             :             ! METHOD CHARGE_CONSTRAINED_PROJECTION
     307             :             ! EXCH_SCALING_MODEL NONE
     308           2 :             dft_control%admm_control%purification_method = do_admm_purify_none
     309           2 :             dft_control%admm_control%method = do_admm_charge_constrained_projection
     310           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
     311             :          CASE DEFAULT
     312             :             CALL cp_abort(__LOCATION__, &
     313         446 :                           "ADMM_TYPE keyword in &AUXILIARY_DENSITY_MATRIX_METHOD section has a wrong value.")
     314             :          END SELECT
     315             : 
     316             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EPS_FILTER", &
     317         446 :                                    r_val=dft_control%admm_control%eps_filter)
     318             : 
     319         446 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_CORRECTION_FUNC", i_val=method_id)
     320         446 :          dft_control%admm_control%aux_exch_func = method_id
     321             : 
     322             :          ! parameters for X functional
     323         446 :          dft_control%admm_control%aux_exch_func_param = .FALSE.
     324             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_A1", explicit=explicit, &
     325         446 :                                    r_val=dft_control%admm_control%aux_x_param(1))
     326         446 :          IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
     327             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_A2", explicit=explicit, &
     328         446 :                                    r_val=dft_control%admm_control%aux_x_param(2))
     329         446 :          IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
     330             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_GAMMA", explicit=explicit, &
     331         446 :                                    r_val=dft_control%admm_control%aux_x_param(3))
     332         446 :          IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
     333             : 
     334         446 :          CALL read_admm_block_list(dft_control%admm_control, dft_section)
     335             : 
     336             :          ! check for double assignments
     337           2 :          SELECT CASE (admmtype)
     338             :          CASE (admm2_type)
     339           2 :             IF (exopt2) CALL cp_warn(__LOCATION__, &
     340           0 :                                      "Value of ADMM_PURIFICATION_METHOD keyword will be overwritten with ADMM_TYPE selections.")
     341           2 :             IF (exopt3) CALL cp_warn(__LOCATION__, &
     342           0 :                                      "Value of EXCH_SCALING_MODEL keyword will be overwritten with ADMM_TYPE selections.")
     343             :          CASE (admm1_type, admms_type, admmp_type, admmq_type)
     344           8 :             IF (exopt1) CALL cp_warn(__LOCATION__, &
     345           0 :                                      "Value of METHOD keyword will be overwritten with ADMM_TYPE selections.")
     346           8 :             IF (exopt2) CALL cp_warn(__LOCATION__, &
     347           0 :                                      "Value of METHOD keyword will be overwritten with ADMM_TYPE selections.")
     348           8 :             IF (exopt3) CALL cp_warn(__LOCATION__, &
     349         446 :                                      "Value of EXCH_SCALING_MODEL keyword will be overwritten with ADMM_TYPE selections.")
     350             :          END SELECT
     351             : 
     352             :          !    In the case of charge-constrained projection (e.g. according to Merlot),
     353             :          !    there is no purification needed and hence, do_admm_purify_none has to be set.
     354             : 
     355             :          IF ((dft_control%admm_control%method == do_admm_blocking_purify_full .OR. &
     356             :               dft_control%admm_control%method == do_admm_blocked_projection) &
     357         446 :              .AND. dft_control%admm_control%scaling_model == do_admm_exch_scaling_merlot) THEN
     358           0 :             CPABORT("ADMM: Blocking and Merlot scaling are mutually exclusive.")
     359             :          END IF
     360             : 
     361         446 :          IF (dft_control%admm_control%method == do_admm_charge_constrained_projection .AND. &
     362             :              dft_control%admm_control%purification_method /= do_admm_purify_none) THEN
     363             :             CALL cp_abort(__LOCATION__, &
     364             :                           "ADMM: In the case of METHOD=CHARGE_CONSTRAINED_PROJECTION, "// &
     365           0 :                           "ADMM_PURIFICATION_METHOD=NONE has to be set.")
     366             :          END IF
     367             : 
     368         446 :          IF (dft_control%admm_control%purification_method == do_admm_purify_mo_diag .OR. &
     369             :              dft_control%admm_control%purification_method == do_admm_purify_mo_no_diag) THEN
     370          60 :             IF (dft_control%admm_control%method /= do_admm_basis_projection) &
     371           0 :                CPABORT("ADMM: Chosen purification requires BASIS_PROJECTION")
     372             : 
     373          60 :             IF (.NOT. do_ot) CPABORT("ADMM: MO-based purification requires OT.")
     374             :          END IF
     375             : 
     376         446 :          IF (dft_control%admm_control%purification_method == do_admm_purify_none_dm .OR. &
     377             :              dft_control%admm_control%purification_method == do_admm_purify_mcweeny) THEN
     378          14 :             dft_control%do_admm_dm = .TRUE.
     379             :          ELSE
     380         432 :             dft_control%do_admm_mo = .TRUE.
     381             :          END IF
     382             :       END IF
     383             : 
     384             :       ! Set restricted to true, if both OT and ROKS are requested
     385             :       !MK in principle dft_control%restricted could be dropped completely like the
     386             :       !MK input key by using only dft_control%roks now
     387        7324 :       CALL section_vals_val_get(scf_section, "OT%_SECTION_PARAMETERS_", l_val=l_param)
     388        7324 :       dft_control%restricted = (dft_control%roks .AND. l_param)
     389             : 
     390        7324 :       CALL section_vals_val_get(dft_section, "CHARGE", i_val=dft_control%charge)
     391        7324 :       CALL section_vals_val_get(dft_section, "MULTIPLICITY", i_val=dft_control%multiplicity)
     392        7324 :       CALL section_vals_val_get(dft_section, "RELAX_MULTIPLICITY", r_val=dft_control%relax_multiplicity)
     393        7324 :       IF (dft_control%relax_multiplicity > 0.0_dp) THEN
     394           8 :          IF (.NOT. dft_control%uks) &
     395             :             CALL cp_abort(__LOCATION__, "The option RELAX_MULTIPLICITY is only valid for "// &
     396           0 :                           "unrestricted Kohn-Sham (UKS) calculations")
     397             :       END IF
     398             : 
     399             :       ! check for the presence of the low spin roks section
     400        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "LOW_SPIN_ROKS")
     401        7324 :       CALL section_vals_get(tmp_section, explicit=dft_control%low_spin_roks)
     402             : 
     403        7324 :       dft_control%sic_method_id = sic_none
     404        7324 :       dft_control%sic_scaling_a = 1.0_dp
     405        7324 :       dft_control%sic_scaling_b = 1.0_dp
     406             : 
     407             :       ! DFT+U
     408        7324 :       dft_control%dft_plus_u = .FALSE.
     409        7324 :       CALL section_vals_val_get(dft_section, "PLUS_U_METHOD", i_val=method_id)
     410        7324 :       dft_control%plus_u_method_id = method_id
     411             : 
     412             :       ! Smearing in use
     413        7324 :       dft_control%smear = .FALSE.
     414             : 
     415             :       ! Surface dipole correction
     416        7324 :       dft_control%correct_surf_dip = .FALSE.
     417        7324 :       CALL section_vals_val_get(dft_section, "SURFACE_DIPOLE_CORRECTION", l_val=dft_control%correct_surf_dip)
     418        7324 :       CALL section_vals_val_get(dft_section, "SURF_DIP_DIR", i_val=dft_control%dir_surf_dip)
     419        7324 :       dft_control%pos_dir_surf_dip = -1.0_dp
     420        7324 :       CALL section_vals_val_get(dft_section, "SURF_DIP_POS", r_val=dft_control%pos_dir_surf_dip)
     421             :       ! another logical variable, surf_dip_correct_switch, is introduced for
     422             :       ! implementation of "SURF_DIP_SWITCH" [SGh]
     423        7324 :       dft_control%switch_surf_dip = .FALSE.
     424        7324 :       dft_control%surf_dip_correct_switch = dft_control%correct_surf_dip
     425        7324 :       CALL section_vals_val_get(dft_section, "SURF_DIP_SWITCH", l_val=dft_control%switch_surf_dip)
     426        7324 :       dft_control%correct_el_density_dip = .FALSE.
     427        7324 :       CALL section_vals_val_get(dft_section, "CORE_CORR_DIP", l_val=dft_control%correct_el_density_dip)
     428        7324 :       IF (dft_control%correct_el_density_dip) THEN
     429           4 :          IF (dft_control%correct_surf_dip) THEN
     430             :             ! Do nothing, move on
     431             :          ELSE
     432           0 :             dft_control%correct_el_density_dip = .FALSE.
     433           0 :             CPWARN("CORE_CORR_DIP keyword is activated only if SURFACE_DIPOLE_CORRECTION is TRUE")
     434             :          END IF
     435             :       END IF
     436             : 
     437             :       CALL section_vals_val_get(dft_section, "BASIS_SET_FILE_NAME", &
     438        7324 :                                 c_val=basis_set_file_name)
     439             :       CALL section_vals_val_get(dft_section, "POTENTIAL_FILE_NAME", &
     440        7324 :                                 c_val=potential_file_name)
     441             : 
     442             :       ! Read the input section
     443        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "sic")
     444             :       CALL section_vals_val_get(tmp_section, "SIC_METHOD", &
     445        7324 :                                 i_val=dft_control%sic_method_id)
     446             :       CALL section_vals_val_get(tmp_section, "ORBITAL_SET", &
     447        7324 :                                 i_val=dft_control%sic_list_id)
     448             :       CALL section_vals_val_get(tmp_section, "SIC_SCALING_A", &
     449        7324 :                                 r_val=dft_control%sic_scaling_a)
     450             :       CALL section_vals_val_get(tmp_section, "SIC_SCALING_B", &
     451        7324 :                                 r_val=dft_control%sic_scaling_b)
     452             : 
     453        7324 :       do_rtp = .FALSE.
     454        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "REAL_TIME_PROPAGATION")
     455        7324 :       CALL section_vals_get(tmp_section, explicit=is_present)
     456        7324 :       IF (is_present) THEN
     457         248 :          CALL read_rtp_section(dft_control, tmp_section)
     458         248 :          do_rtp = .TRUE.
     459             :       END IF
     460             : 
     461             :       ! Read the input section
     462        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "XAS")
     463        7324 :       CALL section_vals_get(tmp_section, explicit=dft_control%do_xas_calculation)
     464        7324 :       IF (dft_control%do_xas_calculation) THEN
     465             :          ! Override with section parameter
     466             :          CALL section_vals_val_get(tmp_section, "_SECTION_PARAMETERS_", &
     467          42 :                                    l_val=dft_control%do_xas_calculation)
     468             :       END IF
     469             : 
     470        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "XAS_TDP")
     471        7324 :       CALL section_vals_get(tmp_section, explicit=dft_control%do_xas_tdp_calculation)
     472        7324 :       IF (dft_control%do_xas_tdp_calculation) THEN
     473             :          ! Override with section parameter
     474             :          CALL section_vals_val_get(tmp_section, "_SECTION_PARAMETERS_", &
     475          50 :                                    l_val=dft_control%do_xas_tdp_calculation)
     476             :       END IF
     477             : 
     478             :       ! Read the finite field input section
     479        7324 :       dft_control%apply_efield = .FALSE.
     480        7324 :       dft_control%apply_efield_field = .FALSE. !this is for RTP
     481        7324 :       dft_control%apply_vector_potential = .FALSE. !this is for RTP
     482        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "EFIELD")
     483        7324 :       CALL section_vals_get(tmp_section, n_repetition=nrep, explicit=is_present)
     484        7324 :       IF (is_present) THEN
     485        1048 :          ALLOCATE (dft_control%efield_fields(nrep))
     486         262 :          CALL read_efield_sections(dft_control, tmp_section)
     487         262 :          IF (do_rtp) THEN
     488          22 :             IF (.NOT. dft_control%rtp_control%velocity_gauge) THEN
     489          14 :                dft_control%apply_efield_field = .TRUE.
     490             :             ELSE
     491           8 :                dft_control%apply_vector_potential = .TRUE.
     492             :                ! Use this input value of vector potential to (re)start RTP
     493          32 :                dft_control%rtp_control%vec_pot = dft_control%efield_fields(1)%efield%vec_pot_initial
     494             :             END IF
     495             :          ELSE
     496         240 :             dft_control%apply_efield = .TRUE.
     497         240 :             CPASSERT(nrep == 1)
     498             :          END IF
     499             :       END IF
     500             : 
     501             :       ! Read the finite field input section for periodic fields
     502        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "PERIODIC_EFIELD")
     503        7324 :       CALL section_vals_get(tmp_section, explicit=dft_control%apply_period_efield)
     504        7324 :       IF (dft_control%apply_period_efield) THEN
     505         532 :          ALLOCATE (dft_control%period_efield)
     506          76 :          CALL section_vals_val_get(tmp_section, "POLARISATION", r_vals=pol)
     507         532 :          dft_control%period_efield%polarisation(1:3) = pol(1:3)
     508          76 :          CALL section_vals_val_get(tmp_section, "D_FILTER", r_vals=pol)
     509         532 :          dft_control%period_efield%d_filter(1:3) = pol(1:3)
     510             :          CALL section_vals_val_get(tmp_section, "INTENSITY", &
     511          76 :                                    r_val=dft_control%period_efield%strength)
     512          76 :          dft_control%period_efield%displacement_field = .FALSE.
     513             :          CALL section_vals_val_get(tmp_section, "DISPLACEMENT_FIELD", &
     514          76 :                                    l_val=dft_control%period_efield%displacement_field)
     515             : 
     516          76 :          CALL section_vals_val_get(tmp_section, "INTENSITY_LIST", r_vals=pol)
     517             : 
     518          76 :          CALL section_vals_val_get(tmp_section, "INTENSITIES_FILE_NAME", c_val=intensities_file_name)
     519             : 
     520          76 :          IF (SIZE(pol) > 1 .OR. pol(1) /= 0.0_dp) THEN
     521             :             ! if INTENSITY_LIST is present, INTENSITY and INTENSITIES_FILE_NAME must not be present
     522           2 :             IF (dft_control%period_efield%strength /= 0.0_dp .OR. intensities_file_name /= "") THEN
     523             :                CALL cp_abort(__LOCATION__, "[PERIODIC FIELD] Only one of INTENSITY, INTENSITY_LIST "// &
     524           0 :                              "or INTENSITIES_FILE_NAME can be specified.")
     525             :             END IF
     526             : 
     527           6 :             ALLOCATE (dft_control%period_efield%strength_list(SIZE(pol)))
     528          50 :             dft_control%period_efield%strength_list(1:SIZE(pol)) = pol(1:SIZE(pol))
     529             :          END IF
     530             : 
     531          76 :          IF (intensities_file_name /= "") THEN
     532             :             ! if INTENSITIES_FILE_NAME is present, INTENSITY must not be present
     533           2 :             IF (dft_control%period_efield%strength /= 0.0_dp) THEN
     534             :                CALL cp_abort(__LOCATION__, "[PERIODIC FIELD] Only one of INTENSITY, INTENSITY_LIST "// &
     535           0 :                              "or INTENSITIES_FILE_NAME can be specified.")
     536             :             END IF
     537             : 
     538           2 :             CALL parser_create(parser, intensities_file_name)
     539             : 
     540           2 :             nrep = 0
     541          24 :             DO WHILE (.TRUE.)
     542          26 :                CALL parser_read_line(parser, 1, at_end)
     543          26 :                IF (at_end) EXIT
     544          24 :                nrep = nrep + 1
     545             :             END DO
     546             : 
     547           2 :             IF (nrep == 0) THEN
     548           0 :                CPABORT("[PERIODIC FIELD] No intensities found in INTENSITIES_FILE_NAME")
     549             :             END IF
     550             : 
     551           6 :             ALLOCATE (dft_control%period_efield%strength_list(nrep))
     552             : 
     553           2 :             CALL parser_reset(parser)
     554          26 :             DO irep = 1, nrep
     555          24 :                CALL parser_read_line(parser, 1)
     556          26 :                READ (parser%input_line, *) dft_control%period_efield%strength_list(irep)
     557             :             END DO
     558             : 
     559           4 :             CALL parser_release(parser)
     560             :          END IF
     561             : 
     562             :          CALL section_vals_val_get(tmp_section, "START_FRAME", &
     563          76 :                                    i_val=dft_control%period_efield%start_frame)
     564             :          CALL section_vals_val_get(tmp_section, "END_FRAME", &
     565          76 :                                    i_val=dft_control%period_efield%end_frame)
     566             : 
     567          76 :          IF (dft_control%period_efield%end_frame /= -1) THEN
     568             :             ! check if valid bounds are given
     569             :             ! if an end frame is given, the number of active frames must be a
     570             :             ! multiple of the number of intensities
     571           4 :             IF (dft_control%period_efield%start_frame > dft_control%period_efield%end_frame) THEN
     572           0 :                CPABORT("[PERIODIC FIELD] START_FRAME > END_FRAME")
     573           4 :             ELSE IF (dft_control%period_efield%start_frame < 1) THEN
     574           0 :                CPABORT("[PERIODIC FIELD] START_FRAME < 1")
     575           4 :             ELSE IF (MOD(dft_control%period_efield%end_frame - &
     576             :                          dft_control%period_efield%start_frame + 1, SIZE(pol)) /= 0) THEN
     577             :                CALL cp_abort(__LOCATION__, &
     578           0 :                              "[PERIODIC FIELD] Number of active frames must be a multiple of the number of intensities")
     579             :             END IF
     580             :          END IF
     581             : 
     582             :          ! periodic fields don't work with RTP
     583          76 :          CPASSERT(.NOT. do_rtp)
     584          76 :          IF (dft_control%period_efield%displacement_field) THEN
     585          16 :             CALL cite_reference(Stengel2009)
     586             :          ELSE
     587          60 :             CALL cite_reference(Souza2002)
     588          60 :             CALL cite_reference(Umari2002)
     589             :          END IF
     590             :       END IF
     591             : 
     592             :       ! Read the external potential input section
     593        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_POTENTIAL")
     594        7324 :       CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_potential)
     595        7324 :       IF (dft_control%apply_external_potential) THEN
     596          16 :          CALL expot_control_create(dft_control%expot_control)
     597             :          CALL section_vals_val_get(tmp_section, "READ_FROM_CUBE", &
     598          16 :                                    l_val=dft_control%expot_control%read_from_cube)
     599             :          CALL section_vals_val_get(tmp_section, "STATIC", &
     600          16 :                                    l_val=dft_control%expot_control%static)
     601             :          CALL section_vals_val_get(tmp_section, "SCALING_FACTOR", &
     602          16 :                                    r_val=dft_control%expot_control%scaling_factor)
     603             :          ! External potential using Maxwell equation
     604          16 :          maxwell_section => section_vals_get_subs_vals(tmp_section, "MAXWELL")
     605          16 :          CALL section_vals_get(maxwell_section, explicit=is_present)
     606          16 :          IF (is_present) THEN
     607           0 :             dft_control%expot_control%maxwell_solver = .TRUE.
     608           0 :             CALL maxwell_control_create(dft_control%maxwell_control)
     609             :             ! read the input values from Maxwell section
     610             :             CALL section_vals_val_get(maxwell_section, "TEST_REAL", &
     611           0 :                                       r_val=dft_control%maxwell_control%real_test)
     612             :             CALL section_vals_val_get(maxwell_section, "TEST_INTEGER", &
     613           0 :                                       i_val=dft_control%maxwell_control%int_test)
     614             :             CALL section_vals_val_get(maxwell_section, "TEST_LOGICAL", &
     615           0 :                                       l_val=dft_control%maxwell_control%log_test)
     616             :          ELSE
     617          16 :             dft_control%expot_control%maxwell_solver = .FALSE.
     618             :          END IF
     619             :       END IF
     620             : 
     621             :       ! Read the SCCS input section if present
     622        7324 :       sccs_section => section_vals_get_subs_vals(dft_section, "SCCS")
     623        7324 :       CALL section_vals_get(sccs_section, explicit=is_present)
     624        7324 :       IF (is_present) THEN
     625             :          ! Check section parameter if SCCS is activated
     626             :          CALL section_vals_val_get(sccs_section, "_SECTION_PARAMETERS_", &
     627          10 :                                    l_val=dft_control%do_sccs)
     628          10 :          IF (dft_control%do_sccs) THEN
     629          10 :             ALLOCATE (dft_control%sccs_control)
     630             :             CALL section_vals_val_get(sccs_section, "RELATIVE_PERMITTIVITY", &
     631          10 :                                       r_val=dft_control%sccs_control%epsilon_solvent)
     632             :             CALL section_vals_val_get(sccs_section, "ALPHA", &
     633          10 :                                       r_val=dft_control%sccs_control%alpha_solvent)
     634             :             CALL section_vals_val_get(sccs_section, "BETA", &
     635          10 :                                       r_val=dft_control%sccs_control%beta_solvent)
     636             :             CALL section_vals_val_get(sccs_section, "DELTA_RHO", &
     637          10 :                                       r_val=dft_control%sccs_control%delta_rho)
     638             :             CALL section_vals_val_get(sccs_section, "DERIVATIVE_METHOD", &
     639          10 :                                       i_val=dft_control%sccs_control%derivative_method)
     640             :             CALL section_vals_val_get(sccs_section, "METHOD", &
     641          10 :                                       i_val=dft_control%sccs_control%method_id)
     642             :             CALL section_vals_val_get(sccs_section, "EPS_SCCS", &
     643          10 :                                       r_val=dft_control%sccs_control%eps_sccs)
     644             :             CALL section_vals_val_get(sccs_section, "EPS_SCF", &
     645          10 :                                       r_val=dft_control%sccs_control%eps_scf)
     646             :             CALL section_vals_val_get(sccs_section, "GAMMA", &
     647          10 :                                       r_val=dft_control%sccs_control%gamma_solvent)
     648             :             CALL section_vals_val_get(sccs_section, "MAX_ITER", &
     649          10 :                                       i_val=dft_control%sccs_control%max_iter)
     650             :             CALL section_vals_val_get(sccs_section, "MIXING", &
     651          10 :                                       r_val=dft_control%sccs_control%mixing)
     652          18 :             SELECT CASE (dft_control%sccs_control%method_id)
     653             :             CASE (sccs_andreussi)
     654           8 :                tmp_section => section_vals_get_subs_vals(sccs_section, "ANDREUSSI")
     655             :                CALL section_vals_val_get(tmp_section, "RHO_MAX", &
     656           8 :                                          r_val=dft_control%sccs_control%rho_max)
     657             :                CALL section_vals_val_get(tmp_section, "RHO_MIN", &
     658           8 :                                          r_val=dft_control%sccs_control%rho_min)
     659           8 :                IF (dft_control%sccs_control%rho_max < dft_control%sccs_control%rho_min) THEN
     660             :                   CALL cp_abort(__LOCATION__, &
     661             :                                 "The SCCS parameter RHO_MAX is smaller than RHO_MIN. "// &
     662           0 :                                 "Please, check your input!")
     663             :                END IF
     664           8 :                CALL cite_reference(Andreussi2012)
     665             :             CASE (sccs_fattebert_gygi)
     666           2 :                tmp_section => section_vals_get_subs_vals(sccs_section, "FATTEBERT-GYGI")
     667             :                CALL section_vals_val_get(tmp_section, "BETA", &
     668           2 :                                          r_val=dft_control%sccs_control%beta)
     669           2 :                IF (dft_control%sccs_control%beta < 0.5_dp) THEN
     670             :                   CALL cp_abort(__LOCATION__, &
     671             :                                 "A value smaller than 0.5 for the SCCS parameter beta "// &
     672           0 :                                 "causes numerical problems. Please, check your input!")
     673             :                END IF
     674             :                CALL section_vals_val_get(tmp_section, "RHO_ZERO", &
     675           2 :                                          r_val=dft_control%sccs_control%rho_zero)
     676           2 :                CALL cite_reference(Fattebert2002)
     677             :             CASE DEFAULT
     678          10 :                CPABORT("Invalid SCCS model specified. Please, check your input!")
     679             :             END SELECT
     680          10 :             CALL cite_reference(Yin2017)
     681             :          END IF
     682             :       END IF
     683             : 
     684             :       ! ZMP added input sections
     685             :       ! Read the external density input section
     686        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_DENSITY")
     687        7324 :       CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_density)
     688             : 
     689             :       ! Read the external vxc input section
     690        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_VXC")
     691        7324 :       CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_vxc)
     692             : 
     693             :       ! SMEAGOL interface
     694        7324 :       tmp_section => section_vals_get_subs_vals(dft_section, "SMEAGOL")
     695        7324 :       CALL read_smeagol_control(dft_control%smeagol_control, tmp_section)
     696             : 
     697       21972 :    END SUBROUTINE read_dft_control
     698             : 
     699             : ! **************************************************************************************************
     700             : !> \brief ...
     701             : !> \param qs_control ...
     702             : !> \param dft_section ...
     703             : ! **************************************************************************************************
     704        7324 :    SUBROUTINE read_mgrid_section(qs_control, dft_section)
     705             : 
     706             :       TYPE(qs_control_type), INTENT(INOUT)               :: qs_control
     707             :       TYPE(section_vals_type), POINTER                   :: dft_section
     708             : 
     709             :       CHARACTER(len=*), PARAMETER :: routineN = 'read_mgrid_section'
     710             : 
     711             :       INTEGER                                            :: handle, igrid_level, ngrid_level
     712             :       LOGICAL                                            :: explicit, multigrid_set
     713             :       REAL(dp)                                           :: cutoff
     714        7324 :       REAL(dp), DIMENSION(:), POINTER                    :: cutofflist
     715             :       TYPE(section_vals_type), POINTER                   :: mgrid_section
     716             : 
     717        7324 :       CALL timeset(routineN, handle)
     718             : 
     719        7324 :       NULLIFY (mgrid_section, cutofflist)
     720        7324 :       mgrid_section => section_vals_get_subs_vals(dft_section, "MGRID")
     721             : 
     722        7324 :       CALL section_vals_val_get(mgrid_section, "NGRIDS", i_val=ngrid_level)
     723        7324 :       CALL section_vals_val_get(mgrid_section, "MULTIGRID_SET", l_val=multigrid_set)
     724        7324 :       CALL section_vals_val_get(mgrid_section, "CUTOFF", r_val=cutoff)
     725        7324 :       CALL section_vals_val_get(mgrid_section, "PROGRESSION_FACTOR", r_val=qs_control%progression_factor)
     726        7324 :       CALL section_vals_val_get(mgrid_section, "COMMENSURATE", l_val=qs_control%commensurate_mgrids)
     727        7324 :       CALL section_vals_val_get(mgrid_section, "REALSPACE", l_val=qs_control%realspace_mgrids)
     728        7324 :       CALL section_vals_val_get(mgrid_section, "REL_CUTOFF", r_val=qs_control%relative_cutoff)
     729             :       CALL section_vals_val_get(mgrid_section, "SKIP_LOAD_BALANCE_DISTRIBUTED", &
     730        7324 :                                 l_val=qs_control%skip_load_balance_distributed)
     731             : 
     732             :       ! For SE and DFTB possibly override with new defaults
     733        7324 :       IF (qs_control%semi_empirical .OR. qs_control%dftb .OR. qs_control%xtb) THEN
     734        2160 :          ngrid_level = 1
     735        2160 :          multigrid_set = .FALSE.
     736             :          ! Override default cutoff value unless user specified an explicit argument..
     737        2160 :          CALL section_vals_val_get(mgrid_section, "CUTOFF", explicit=explicit, r_val=cutoff)
     738        2160 :          IF (.NOT. explicit) cutoff = 1.0_dp
     739             :       END IF
     740             : 
     741       21972 :       ALLOCATE (qs_control%e_cutoff(ngrid_level))
     742        7324 :       qs_control%cutoff = cutoff
     743             : 
     744        7324 :       IF (multigrid_set) THEN
     745             :          ! Read the values from input
     746           4 :          IF (qs_control%commensurate_mgrids) THEN
     747           0 :             CPABORT("Do not specify cutoffs for the commensurate grids (NYI)")
     748             :          END IF
     749             : 
     750           4 :          CALL section_vals_val_get(mgrid_section, "MULTIGRID_CUTOFF", r_vals=cutofflist)
     751           4 :          IF (ASSOCIATED(cutofflist)) THEN
     752           4 :             IF (SIZE(cutofflist, 1) /= ngrid_level) THEN
     753           0 :                CPABORT("Number of multi-grids requested and number of cutoff values do not match")
     754             :             END IF
     755          20 :             DO igrid_level = 1, ngrid_level
     756          20 :                qs_control%e_cutoff(igrid_level) = cutofflist(igrid_level)
     757             :             END DO
     758             :          END IF
     759             :          ! set cutoff to smallest value in multgrid available with >= cutoff
     760          20 :          DO igrid_level = ngrid_level, 1, -1
     761          16 :             IF (qs_control%cutoff <= qs_control%e_cutoff(igrid_level)) THEN
     762           0 :                qs_control%cutoff = qs_control%e_cutoff(igrid_level)
     763           0 :                EXIT
     764             :             END IF
     765             :             ! set largest grid value to cutoff
     766          20 :             IF (igrid_level == 1) THEN
     767           4 :                qs_control%cutoff = qs_control%e_cutoff(1)
     768             :             END IF
     769             :          END DO
     770             :       ELSE
     771        7320 :          IF (qs_control%commensurate_mgrids) qs_control%progression_factor = 4.0_dp
     772        7320 :          qs_control%e_cutoff(1) = qs_control%cutoff
     773       22670 :          DO igrid_level = 2, ngrid_level
     774             :             qs_control%e_cutoff(igrid_level) = qs_control%e_cutoff(igrid_level - 1)/ &
     775       22670 :                                                qs_control%progression_factor
     776             :          END DO
     777             :       END IF
     778             :       ! check that multigrids are ordered
     779       22686 :       DO igrid_level = 2, ngrid_level
     780       22686 :          IF (qs_control%e_cutoff(igrid_level) > qs_control%e_cutoff(igrid_level - 1)) THEN
     781           0 :             CPABORT("The cutoff values for the multi-grids are not ordered from large to small")
     782       15362 :          ELSE IF (qs_control%e_cutoff(igrid_level) == qs_control%e_cutoff(igrid_level - 1)) THEN
     783           0 :             CPABORT("The same cutoff value was specified for two multi-grids")
     784             :          END IF
     785             :       END DO
     786        7324 :       CALL timestop(handle)
     787       14648 :    END SUBROUTINE read_mgrid_section
     788             : 
     789             : ! **************************************************************************************************
     790             : !> \brief ...
     791             : !> \param qs_control ...
     792             : !> \param qs_section ...
     793             : ! **************************************************************************************************
     794      117184 :    SUBROUTINE read_qs_section(qs_control, qs_section)
     795             : 
     796             :       TYPE(qs_control_type), INTENT(INOUT)               :: qs_control
     797             :       TYPE(section_vals_type), POINTER                   :: qs_section
     798             : 
     799             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'read_qs_section'
     800             : 
     801             :       CHARACTER(LEN=default_string_length)               :: cval
     802             :       CHARACTER(LEN=default_string_length), &
     803        7324 :          DIMENSION(:), POINTER                           :: clist
     804             :       INTEGER                                            :: handle, itmp, j, jj, k, n_rep, n_var, &
     805             :                                                             ngauss, ngp, nrep
     806        7324 :       INTEGER, DIMENSION(:), POINTER                     :: tmplist
     807             :       LOGICAL                                            :: explicit, was_present
     808             :       REAL(dp)                                           :: tmp, tmpsqrt, value
     809        7324 :       REAL(dp), POINTER                                  :: scal(:)
     810             :       TYPE(section_vals_type), POINTER :: cdft_control_section, ddapc_restraint_section, &
     811             :          dftb_parameter, dftb_section, eeq_section, genpot_section, lri_optbas_section, &
     812             :          mull_section, nonbonded_section, s2_restraint_section, se_section, xtb_parameter, &
     813             :          xtb_section, xtb_tblite
     814             : 
     815        7324 :       CALL timeset(routineN, handle)
     816             : 
     817        7324 :       was_present = .FALSE.
     818        7324 :       NULLIFY (mull_section, ddapc_restraint_section, s2_restraint_section, &
     819        7324 :                se_section, dftb_section, xtb_section, dftb_parameter, xtb_parameter, lri_optbas_section, &
     820        7324 :                cdft_control_section, genpot_section, eeq_section)
     821             : 
     822        7324 :       mull_section => section_vals_get_subs_vals(qs_section, "MULLIKEN_RESTRAINT")
     823        7324 :       ddapc_restraint_section => section_vals_get_subs_vals(qs_section, "DDAPC_RESTRAINT")
     824        7324 :       s2_restraint_section => section_vals_get_subs_vals(qs_section, "S2_RESTRAINT")
     825        7324 :       se_section => section_vals_get_subs_vals(qs_section, "SE")
     826        7324 :       dftb_section => section_vals_get_subs_vals(qs_section, "DFTB")
     827        7324 :       xtb_section => section_vals_get_subs_vals(qs_section, "xTB")
     828        7324 :       dftb_parameter => section_vals_get_subs_vals(dftb_section, "PARAMETER")
     829        7324 :       xtb_parameter => section_vals_get_subs_vals(xtb_section, "PARAMETER")
     830        7324 :       eeq_section => section_vals_get_subs_vals(xtb_section, "EEQ")
     831        7324 :       lri_optbas_section => section_vals_get_subs_vals(qs_section, "OPTIMIZE_LRI_BASIS")
     832        7324 :       cdft_control_section => section_vals_get_subs_vals(qs_section, "CDFT")
     833        7324 :       nonbonded_section => section_vals_get_subs_vals(xtb_section, "NONBONDED")
     834        7324 :       genpot_section => section_vals_get_subs_vals(nonbonded_section, "GENPOT")
     835        7324 :       xtb_tblite => section_vals_get_subs_vals(xtb_section, "TBLITE")
     836             : 
     837             :       ! Setup all defaults values and overwrite input parameters
     838             :       ! EPS_DEFAULT should set the target accuracy in the total energy (~per electron) or a closely related value
     839        7324 :       CALL section_vals_val_get(qs_section, "EPS_DEFAULT", r_val=value)
     840        7324 :       tmpsqrt = SQRT(value) ! a trick to work around a NAG 5.1 optimizer bug
     841             : 
     842             :       ! random choice ?
     843        7324 :       qs_control%eps_core_charge = value/100.0_dp
     844             :       ! correct if all Gaussians would have the same radius (overlap will be smaller than eps_pgf_orb**2).
     845             :       ! Can be significantly in error if not... requires fully new screening/pairlist procedures
     846        7324 :       qs_control%eps_pgf_orb = tmpsqrt
     847        7324 :       qs_control%eps_kg_orb = qs_control%eps_pgf_orb
     848             :       ! consistent since also a kind of overlap
     849        7324 :       qs_control%eps_ppnl = qs_control%eps_pgf_orb/100.0_dp
     850             :       ! accuracy is basically set by the overlap, this sets an empirical shift
     851        7324 :       qs_control%eps_ppl = 1.0E-2_dp
     852             :       !
     853        7324 :       qs_control%gapw_control%eps_cpc = value
     854             :       ! expexted error in the density
     855        7324 :       qs_control%eps_rho_gspace = value
     856        7324 :       qs_control%eps_rho_rspace = value
     857             :       ! error in the gradient, can be the sqrt of the error in the energy, ignored if map_consistent
     858        7324 :       qs_control%eps_gvg_rspace = tmpsqrt
     859             :       !
     860        7324 :       CALL section_vals_val_get(qs_section, "EPS_CORE_CHARGE", n_rep_val=n_rep)
     861        7324 :       IF (n_rep /= 0) THEN
     862           0 :          CALL section_vals_val_get(qs_section, "EPS_CORE_CHARGE", r_val=qs_control%eps_core_charge)
     863             :       END IF
     864        7324 :       CALL section_vals_val_get(qs_section, "EPS_GVG_RSPACE", n_rep_val=n_rep)
     865        7324 :       IF (n_rep /= 0) THEN
     866         132 :          CALL section_vals_val_get(qs_section, "EPS_GVG_RSPACE", r_val=qs_control%eps_gvg_rspace)
     867             :       END IF
     868        7324 :       CALL section_vals_val_get(qs_section, "EPS_PGF_ORB", n_rep_val=n_rep)
     869        7324 :       IF (n_rep /= 0) THEN
     870         600 :          CALL section_vals_val_get(qs_section, "EPS_PGF_ORB", r_val=qs_control%eps_pgf_orb)
     871             :       END IF
     872        7324 :       CALL section_vals_val_get(qs_section, "EPS_KG_ORB", n_rep_val=n_rep)
     873        7324 :       IF (n_rep /= 0) THEN
     874          62 :          CALL section_vals_val_get(qs_section, "EPS_KG_ORB", r_val=tmp)
     875          62 :          qs_control%eps_kg_orb = SQRT(tmp)
     876             :       END IF
     877        7324 :       CALL section_vals_val_get(qs_section, "EPS_PPL", n_rep_val=n_rep)
     878        7324 :       IF (n_rep /= 0) THEN
     879        7324 :          CALL section_vals_val_get(qs_section, "EPS_PPL", r_val=qs_control%eps_ppl)
     880             :       END IF
     881        7324 :       CALL section_vals_val_get(qs_section, "EPS_PPNL", n_rep_val=n_rep)
     882        7324 :       IF (n_rep /= 0) THEN
     883           0 :          CALL section_vals_val_get(qs_section, "EPS_PPNL", r_val=qs_control%eps_ppnl)
     884             :       END IF
     885        7324 :       CALL section_vals_val_get(qs_section, "EPS_RHO", n_rep_val=n_rep)
     886        7324 :       IF (n_rep /= 0) THEN
     887          30 :          CALL section_vals_val_get(qs_section, "EPS_RHO", r_val=qs_control%eps_rho_gspace)
     888          30 :          qs_control%eps_rho_rspace = qs_control%eps_rho_gspace
     889             :       END IF
     890        7324 :       CALL section_vals_val_get(qs_section, "EPS_RHO_RSPACE", n_rep_val=n_rep)
     891        7324 :       IF (n_rep /= 0) THEN
     892           2 :          CALL section_vals_val_get(qs_section, "EPS_RHO_RSPACE", r_val=qs_control%eps_rho_rspace)
     893             :       END IF
     894        7324 :       CALL section_vals_val_get(qs_section, "EPS_RHO_GSPACE", n_rep_val=n_rep)
     895        7324 :       IF (n_rep /= 0) THEN
     896           2 :          CALL section_vals_val_get(qs_section, "EPS_RHO_GSPACE", r_val=qs_control%eps_rho_gspace)
     897             :       END IF
     898        7324 :       CALL section_vals_val_get(qs_section, "EPS_FILTER_MATRIX", n_rep_val=n_rep)
     899        7324 :       IF (n_rep /= 0) THEN
     900        7324 :          CALL section_vals_val_get(qs_section, "EPS_FILTER_MATRIX", r_val=qs_control%eps_filter_matrix)
     901             :       END IF
     902        7324 :       CALL section_vals_val_get(qs_section, "EPS_CPC", n_rep_val=n_rep)
     903        7324 :       IF (n_rep /= 0) THEN
     904           0 :          CALL section_vals_val_get(qs_section, "EPS_CPC", r_val=qs_control%gapw_control%eps_cpc)
     905             :       END IF
     906             : 
     907        7324 :       CALL section_vals_val_get(qs_section, "EPSFIT", r_val=qs_control%gapw_control%eps_fit)
     908        7324 :       CALL section_vals_val_get(qs_section, "EPSISO", r_val=qs_control%gapw_control%eps_iso)
     909        7324 :       CALL section_vals_val_get(qs_section, "EPSSVD", r_val=qs_control%gapw_control%eps_svd)
     910        7324 :       CALL section_vals_val_get(qs_section, "EPSRHO0", r_val=qs_control%gapw_control%eps_Vrho0)
     911        7324 :       CALL section_vals_val_get(qs_section, "ALPHA0_HARD", r_val=qs_control%gapw_control%alpha0_hard)
     912        7324 :       qs_control%gapw_control%lrho1_eq_lrho0 = .FALSE.
     913        7324 :       qs_control%gapw_control%alpha0_hard_from_input = .FALSE.
     914        7324 :       IF (qs_control%gapw_control%alpha0_hard /= 0.0_dp) qs_control%gapw_control%alpha0_hard_from_input = .TRUE.
     915        7324 :       CALL section_vals_val_get(qs_section, "FORCE_PAW", l_val=qs_control%gapw_control%force_paw)
     916        7324 :       CALL section_vals_val_get(qs_section, "MAX_RAD_LOCAL", r_val=qs_control%gapw_control%max_rad_local)
     917             : 
     918        7324 :       CALL section_vals_val_get(qs_section, "MIN_PAIR_LIST_RADIUS", r_val=qs_control%pairlist_radius)
     919             : 
     920        7324 :       CALL section_vals_val_get(qs_section, "LS_SCF", l_val=qs_control%do_ls_scf)
     921        7324 :       CALL section_vals_val_get(qs_section, "ALMO_SCF", l_val=qs_control%do_almo_scf)
     922        7324 :       CALL section_vals_val_get(qs_section, "KG_METHOD", l_val=qs_control%do_kg)
     923             : 
     924             :       ! Logicals
     925        7324 :       CALL section_vals_val_get(qs_section, "REF_EMBED_SUBSYS", l_val=qs_control%ref_embed_subsys)
     926        7324 :       CALL section_vals_val_get(qs_section, "CLUSTER_EMBED_SUBSYS", l_val=qs_control%cluster_embed_subsys)
     927        7324 :       CALL section_vals_val_get(qs_section, "HIGH_LEVEL_EMBED_SUBSYS", l_val=qs_control%high_level_embed_subsys)
     928        7324 :       CALL section_vals_val_get(qs_section, "DFET_EMBEDDED", l_val=qs_control%dfet_embedded)
     929        7324 :       CALL section_vals_val_get(qs_section, "DMFET_EMBEDDED", l_val=qs_control%dmfet_embedded)
     930             : 
     931             :       ! Integers gapw
     932        7324 :       CALL section_vals_val_get(qs_section, "LMAXN1", i_val=qs_control%gapw_control%lmax_sphere)
     933        7324 :       CALL section_vals_val_get(qs_section, "LMAXN0", i_val=qs_control%gapw_control%lmax_rho0)
     934        7324 :       CALL section_vals_val_get(qs_section, "LADDN0", i_val=qs_control%gapw_control%ladd_rho0)
     935        7324 :       CALL section_vals_val_get(qs_section, "QUADRATURE", i_val=qs_control%gapw_control%quadrature)
     936             :       ! GAPW 1c basis
     937        7324 :       CALL section_vals_val_get(qs_section, "GAPW_1C_BASIS", i_val=qs_control%gapw_control%basis_1c)
     938        7324 :       IF (qs_control%gapw_control%basis_1c /= gapw_1c_orb) THEN
     939          18 :          qs_control%gapw_control%eps_svd = MAX(qs_control%gapw_control%eps_svd, 1.E-12_dp)
     940             :       END IF
     941             : 
     942             :       ! Integers grids
     943        7324 :       CALL section_vals_val_get(qs_section, "PW_GRID", i_val=itmp)
     944           0 :       SELECT CASE (itmp)
     945             :       CASE (do_pwgrid_spherical)
     946           0 :          qs_control%pw_grid_opt%spherical = .TRUE.
     947           0 :          qs_control%pw_grid_opt%fullspace = .FALSE.
     948             :       CASE (do_pwgrid_ns_fullspace)
     949        7324 :          qs_control%pw_grid_opt%spherical = .FALSE.
     950        7324 :          qs_control%pw_grid_opt%fullspace = .TRUE.
     951             :       CASE (do_pwgrid_ns_halfspace)
     952           0 :          qs_control%pw_grid_opt%spherical = .FALSE.
     953        7324 :          qs_control%pw_grid_opt%fullspace = .FALSE.
     954             :       END SELECT
     955             : 
     956             :       !   Method for PPL calculation
     957        7324 :       CALL section_vals_val_get(qs_section, "CORE_PPL", i_val=itmp)
     958        7324 :       qs_control%do_ppl_method = itmp
     959             : 
     960        7324 :       CALL section_vals_val_get(qs_section, "PW_GRID_LAYOUT", i_vals=tmplist)
     961       21972 :       qs_control%pw_grid_opt%distribution_layout = tmplist
     962        7324 :       CALL section_vals_val_get(qs_section, "PW_GRID_BLOCKED", i_val=qs_control%pw_grid_opt%blocked)
     963             : 
     964             :       !Integers extrapolation
     965        7324 :       CALL section_vals_val_get(qs_section, "EXTRAPOLATION", i_val=qs_control%wf_interpolation_method_nr)
     966        7324 :       CALL section_vals_val_get(qs_section, "EXTRAPOLATION_ORDER", i_val=qs_control%wf_extrapolation_order)
     967             : 
     968             :       !Method
     969        7324 :       CALL section_vals_val_get(qs_section, "METHOD", i_val=qs_control%method_id)
     970        7324 :       qs_control%gapw = .FALSE.
     971        7324 :       qs_control%gapw_xc = .FALSE.
     972        7324 :       qs_control%gpw = .FALSE.
     973        7324 :       qs_control%pao = .FALSE.
     974        7324 :       qs_control%dftb = .FALSE.
     975        7324 :       qs_control%xtb = .FALSE.
     976        7324 :       qs_control%semi_empirical = .FALSE.
     977        7324 :       qs_control%ofgpw = .FALSE.
     978        7324 :       qs_control%lrigpw = .FALSE.
     979        7324 :       qs_control%rigpw = .FALSE.
     980        8132 :       SELECT CASE (qs_control%method_id)
     981             :       CASE (do_method_gapw)
     982         808 :          CALL cite_reference(Lippert1999)
     983         808 :          CALL cite_reference(Krack2000)
     984         808 :          qs_control%gapw = .TRUE.
     985             :       CASE (do_method_gapw_xc)
     986         110 :          qs_control%gapw_xc = .TRUE.
     987             :       CASE (do_method_gpw)
     988        4206 :          CALL cite_reference(Lippert1997)
     989        4206 :          CALL cite_reference(VandeVondele2005a)
     990        4206 :          qs_control%gpw = .TRUE.
     991             :       CASE (do_method_ofgpw)
     992           0 :          qs_control%ofgpw = .TRUE.
     993             :       CASE (do_method_lrigpw)
     994          40 :          qs_control%lrigpw = .TRUE.
     995             :       CASE (do_method_rigpw)
     996           0 :          qs_control%rigpw = .TRUE.
     997             :       CASE (do_method_dftb)
     998         222 :          qs_control%dftb = .TRUE.
     999         222 :          CALL cite_reference(Porezag1995)
    1000         222 :          CALL cite_reference(Seifert1996)
    1001             :       CASE (do_method_xtb)
    1002         940 :          qs_control%xtb = .TRUE.
    1003         940 :          CALL cite_reference(Grimme2017)
    1004         940 :          CALL cite_reference(Pracht2019)
    1005             :       CASE (do_method_mndo)
    1006          52 :          CALL cite_reference(Dewar1977)
    1007          52 :          qs_control%semi_empirical = .TRUE.
    1008             :       CASE (do_method_am1)
    1009         112 :          CALL cite_reference(Dewar1985)
    1010         112 :          qs_control%semi_empirical = .TRUE.
    1011             :       CASE (do_method_pm3)
    1012          46 :          CALL cite_reference(Stewart1989)
    1013          46 :          qs_control%semi_empirical = .TRUE.
    1014             :       CASE (do_method_pnnl)
    1015          14 :          CALL cite_reference(Schenter2008)
    1016          14 :          qs_control%semi_empirical = .TRUE.
    1017             :       CASE (do_method_pm6)
    1018         754 :          CALL cite_reference(Stewart2007)
    1019         754 :          qs_control%semi_empirical = .TRUE.
    1020             :       CASE (do_method_pm6fm)
    1021           0 :          CALL cite_reference(VanVoorhis2015)
    1022           0 :          qs_control%semi_empirical = .TRUE.
    1023             :       CASE (do_method_pdg)
    1024           2 :          CALL cite_reference(Repasky2002)
    1025           2 :          qs_control%semi_empirical = .TRUE.
    1026             :       CASE (do_method_rm1)
    1027           2 :          CALL cite_reference(Rocha2006)
    1028           2 :          qs_control%semi_empirical = .TRUE.
    1029             :       CASE (do_method_mndod)
    1030          16 :          CALL cite_reference(Dewar1977)
    1031          16 :          CALL cite_reference(Thiel1992)
    1032        7340 :          qs_control%semi_empirical = .TRUE.
    1033             :       END SELECT
    1034             : 
    1035        7324 :       CALL section_vals_get(mull_section, explicit=qs_control%mulliken_restraint)
    1036             : 
    1037        7324 :       IF (qs_control%mulliken_restraint) THEN
    1038           2 :          CALL section_vals_val_get(mull_section, "STRENGTH", r_val=qs_control%mulliken_restraint_control%strength)
    1039           2 :          CALL section_vals_val_get(mull_section, "TARGET", r_val=qs_control%mulliken_restraint_control%target)
    1040           2 :          CALL section_vals_val_get(mull_section, "ATOMS", n_rep_val=n_rep)
    1041           2 :          jj = 0
    1042           4 :          DO k = 1, n_rep
    1043           2 :             CALL section_vals_val_get(mull_section, "ATOMS", i_rep_val=k, i_vals=tmplist)
    1044           4 :             jj = jj + SIZE(tmplist)
    1045             :          END DO
    1046           2 :          qs_control%mulliken_restraint_control%natoms = jj
    1047           2 :          IF (qs_control%mulliken_restraint_control%natoms < 1) &
    1048           0 :             CPABORT("Need at least 1 atom to use mulliken constraints")
    1049           6 :          ALLOCATE (qs_control%mulliken_restraint_control%atoms(qs_control%mulliken_restraint_control%natoms))
    1050           2 :          jj = 0
    1051           6 :          DO k = 1, n_rep
    1052           2 :             CALL section_vals_val_get(mull_section, "ATOMS", i_rep_val=k, i_vals=tmplist)
    1053           6 :             DO j = 1, SIZE(tmplist)
    1054           2 :                jj = jj + 1
    1055           4 :                qs_control%mulliken_restraint_control%atoms(jj) = tmplist(j)
    1056             :             END DO
    1057             :          END DO
    1058             :       END IF
    1059        7324 :       CALL section_vals_get(ddapc_restraint_section, n_repetition=nrep, explicit=qs_control%ddapc_restraint)
    1060        7324 :       IF (qs_control%ddapc_restraint) THEN
    1061          60 :          ALLOCATE (qs_control%ddapc_restraint_control(nrep))
    1062          14 :          CALL read_ddapc_section(qs_control, qs_section=qs_section)
    1063          14 :          qs_control%ddapc_restraint_is_spin = .FALSE.
    1064          14 :          qs_control%ddapc_explicit_potential = .FALSE.
    1065             :       END IF
    1066             : 
    1067        7324 :       CALL section_vals_get(s2_restraint_section, explicit=qs_control%s2_restraint)
    1068        7324 :       IF (qs_control%s2_restraint) THEN
    1069             :          CALL section_vals_val_get(s2_restraint_section, "STRENGTH", &
    1070           0 :                                    r_val=qs_control%s2_restraint_control%strength)
    1071             :          CALL section_vals_val_get(s2_restraint_section, "TARGET", &
    1072           0 :                                    r_val=qs_control%s2_restraint_control%target)
    1073             :          CALL section_vals_val_get(s2_restraint_section, "FUNCTIONAL_FORM", &
    1074           0 :                                    i_val=qs_control%s2_restraint_control%functional_form)
    1075             :       END IF
    1076             : 
    1077        7324 :       CALL section_vals_get(cdft_control_section, explicit=qs_control%cdft)
    1078        7324 :       IF (qs_control%cdft) THEN
    1079         264 :          CALL read_cdft_control_section(qs_control, cdft_control_section)
    1080             :       END IF
    1081             : 
    1082             :       ! Semi-empirical code
    1083        7324 :       IF (qs_control%semi_empirical) THEN
    1084             :          CALL section_vals_val_get(se_section, "ORTHOGONAL_BASIS", &
    1085         998 :                                    l_val=qs_control%se_control%orthogonal_basis)
    1086             :          CALL section_vals_val_get(se_section, "DELTA", &
    1087         998 :                                    r_val=qs_control%se_control%delta)
    1088             :          CALL section_vals_val_get(se_section, "ANALYTICAL_GRADIENTS", &
    1089         998 :                                    l_val=qs_control%se_control%analytical_gradients)
    1090             :          CALL section_vals_val_get(se_section, "FORCE_KDSO-D_EXCHANGE", &
    1091         998 :                                    l_val=qs_control%se_control%force_kdsod_EX)
    1092             :          ! Integral Screening
    1093             :          CALL section_vals_val_get(se_section, "INTEGRAL_SCREENING", &
    1094         998 :                                    i_val=qs_control%se_control%integral_screening)
    1095         998 :          IF (qs_control%method_id == do_method_pnnl) THEN
    1096          14 :             IF (qs_control%se_control%integral_screening /= do_se_IS_slater) &
    1097             :                CALL cp_warn(__LOCATION__, &
    1098             :                             "PNNL semi-empirical parameterization supports only the Slater type "// &
    1099           0 :                             "integral scheme. Revert to Slater and continue the calculation.")
    1100          14 :             qs_control%se_control%integral_screening = do_se_IS_slater
    1101             :          END IF
    1102             :          ! Global Arrays variable
    1103             :          CALL section_vals_val_get(se_section, "GA%NCELLS", &
    1104         998 :                                    i_val=qs_control%se_control%ga_ncells)
    1105             :          ! Long-Range correction
    1106             :          CALL section_vals_val_get(se_section, "LR_CORRECTION%CUTOFF", &
    1107         998 :                                    r_val=qs_control%se_control%cutoff_lrc)
    1108         998 :          qs_control%se_control%taper_lrc = qs_control%se_control%cutoff_lrc
    1109             :          CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_TAPER", &
    1110         998 :                                    explicit=explicit)
    1111         998 :          IF (explicit) THEN
    1112             :             CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_TAPER", &
    1113           0 :                                       r_val=qs_control%se_control%taper_lrc)
    1114             :          END IF
    1115             :          CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_RANGE", &
    1116         998 :                                    r_val=qs_control%se_control%range_lrc)
    1117             :          ! Coulomb
    1118             :          CALL section_vals_val_get(se_section, "COULOMB%CUTOFF", &
    1119         998 :                                    r_val=qs_control%se_control%cutoff_cou)
    1120         998 :          qs_control%se_control%taper_cou = qs_control%se_control%cutoff_cou
    1121             :          CALL section_vals_val_get(se_section, "COULOMB%RC_TAPER", &
    1122         998 :                                    explicit=explicit)
    1123         998 :          IF (explicit) THEN
    1124             :             CALL section_vals_val_get(se_section, "COULOMB%RC_TAPER", &
    1125           0 :                                       r_val=qs_control%se_control%taper_cou)
    1126             :          END IF
    1127             :          CALL section_vals_val_get(se_section, "COULOMB%RC_RANGE", &
    1128         998 :                                    r_val=qs_control%se_control%range_cou)
    1129             :          ! Exchange
    1130             :          CALL section_vals_val_get(se_section, "EXCHANGE%CUTOFF", &
    1131         998 :                                    r_val=qs_control%se_control%cutoff_exc)
    1132         998 :          qs_control%se_control%taper_exc = qs_control%se_control%cutoff_exc
    1133             :          CALL section_vals_val_get(se_section, "EXCHANGE%RC_TAPER", &
    1134         998 :                                    explicit=explicit)
    1135         998 :          IF (explicit) THEN
    1136             :             CALL section_vals_val_get(se_section, "EXCHANGE%RC_TAPER", &
    1137          38 :                                       r_val=qs_control%se_control%taper_exc)
    1138             :          END IF
    1139             :          CALL section_vals_val_get(se_section, "EXCHANGE%RC_RANGE", &
    1140         998 :                                    r_val=qs_control%se_control%range_exc)
    1141             :          ! Screening (only if the integral scheme is of dumped type)
    1142         998 :          IF (qs_control%se_control%integral_screening == do_se_IS_kdso_d) THEN
    1143             :             CALL section_vals_val_get(se_section, "SCREENING%RC_TAPER", &
    1144          14 :                                       r_val=qs_control%se_control%taper_scr)
    1145             :             CALL section_vals_val_get(se_section, "SCREENING%RC_RANGE", &
    1146          14 :                                       r_val=qs_control%se_control%range_scr)
    1147             :          END IF
    1148             :          ! Periodic Type Calculation
    1149             :          CALL section_vals_val_get(se_section, "PERIODIC", &
    1150         998 :                                    i_val=qs_control%se_control%periodic_type)
    1151        1964 :          SELECT CASE (qs_control%se_control%periodic_type)
    1152             :          CASE (do_se_lr_none)
    1153         966 :             qs_control%se_control%do_ewald = .FALSE.
    1154         966 :             qs_control%se_control%do_ewald_r3 = .FALSE.
    1155         966 :             qs_control%se_control%do_ewald_gks = .FALSE.
    1156             :          CASE (do_se_lr_ewald)
    1157          30 :             qs_control%se_control%do_ewald = .TRUE.
    1158          30 :             qs_control%se_control%do_ewald_r3 = .FALSE.
    1159          30 :             qs_control%se_control%do_ewald_gks = .FALSE.
    1160             :          CASE (do_se_lr_ewald_gks)
    1161           2 :             qs_control%se_control%do_ewald = .FALSE.
    1162           2 :             qs_control%se_control%do_ewald_r3 = .FALSE.
    1163           2 :             qs_control%se_control%do_ewald_gks = .TRUE.
    1164           2 :             IF (qs_control%method_id /= do_method_pnnl) &
    1165             :                CALL cp_abort(__LOCATION__, &
    1166             :                              "A periodic semi-empirical calculation was requested with a long-range  "// &
    1167             :                              "summation on the single integral evaluation. This scheme is supported  "// &
    1168           0 :                              "only by the PNNL parameterization.")
    1169             :          CASE (do_se_lr_ewald_r3)
    1170           0 :             qs_control%se_control%do_ewald = .TRUE.
    1171           0 :             qs_control%se_control%do_ewald_r3 = .TRUE.
    1172           0 :             qs_control%se_control%do_ewald_gks = .FALSE.
    1173           0 :             IF (qs_control%se_control%integral_screening /= do_se_IS_kdso) &
    1174             :                CALL cp_abort(__LOCATION__, &
    1175             :                              "A periodic semi-empirical calculation was requested with a long-range  "// &
    1176             :                              "summation for the slowly convergent part 1/R^3, which is not congruent "// &
    1177             :                              "with the integral screening chosen. The only integral screening supported "// &
    1178         998 :                              "by this periodic type calculation is the standard Klopman-Dewar-Sabelli-Ohno.")
    1179             :          END SELECT
    1180             : 
    1181             :          ! dispersion pair potentials
    1182             :          CALL section_vals_val_get(se_section, "DISPERSION", &
    1183         998 :                                    l_val=qs_control%se_control%dispersion)
    1184             :          CALL section_vals_val_get(se_section, "DISPERSION_RADIUS", &
    1185         998 :                                    r_val=qs_control%se_control%rcdisp)
    1186             :          CALL section_vals_val_get(se_section, "COORDINATION_CUTOFF", &
    1187         998 :                                    r_val=qs_control%se_control%epscn)
    1188         998 :          CALL section_vals_val_get(se_section, "D3_SCALING", r_vals=scal)
    1189         998 :          qs_control%se_control%sd3(1) = scal(1)
    1190         998 :          qs_control%se_control%sd3(2) = scal(2)
    1191         998 :          qs_control%se_control%sd3(3) = scal(3)
    1192             :          CALL section_vals_val_get(se_section, "DISPERSION_PARAMETER_FILE", &
    1193         998 :                                    c_val=qs_control%se_control%dispersion_parameter_file)
    1194             : 
    1195             :          ! Stop the execution for non-implemented features
    1196         998 :          IF (qs_control%se_control%periodic_type == do_se_lr_ewald_r3) THEN
    1197           0 :             CPABORT("EWALD_R3 not implemented yet!")
    1198             :          END IF
    1199             : 
    1200             :          IF (qs_control%method_id == do_method_mndo .OR. &
    1201             :              qs_control%method_id == do_method_am1 .OR. &
    1202             :              qs_control%method_id == do_method_mndod .OR. &
    1203             :              qs_control%method_id == do_method_pdg .OR. &
    1204             :              qs_control%method_id == do_method_pm3 .OR. &
    1205             :              qs_control%method_id == do_method_pm6 .OR. &
    1206             :              qs_control%method_id == do_method_pm6fm .OR. &
    1207         998 :              qs_control%method_id == do_method_pnnl .OR. &
    1208             :              qs_control%method_id == do_method_rm1) THEN
    1209         998 :             qs_control%se_control%orthogonal_basis = .TRUE.
    1210             :          END IF
    1211             :       END IF
    1212             : 
    1213             :       ! DFTB code
    1214        7324 :       IF (qs_control%dftb) THEN
    1215             :          CALL section_vals_val_get(dftb_section, "ORTHOGONAL_BASIS", &
    1216         222 :                                    l_val=qs_control%dftb_control%orthogonal_basis)
    1217             :          CALL section_vals_val_get(dftb_section, "SELF_CONSISTENT", &
    1218         222 :                                    l_val=qs_control%dftb_control%self_consistent)
    1219             :          CALL section_vals_val_get(dftb_section, "DISPERSION", &
    1220         222 :                                    l_val=qs_control%dftb_control%dispersion)
    1221             :          CALL section_vals_val_get(dftb_section, "DIAGONAL_DFTB3", &
    1222         222 :                                    l_val=qs_control%dftb_control%dftb3_diagonal)
    1223             :          CALL section_vals_val_get(dftb_section, "HB_SR_GAMMA", &
    1224         222 :                                    l_val=qs_control%dftb_control%hb_sr_damp)
    1225             :          CALL section_vals_val_get(dftb_section, "EPS_DISP", &
    1226         222 :                                    r_val=qs_control%dftb_control%eps_disp)
    1227         222 :          CALL section_vals_val_get(dftb_section, "DO_EWALD", explicit=explicit)
    1228         222 :          IF (explicit) THEN
    1229             :             CALL section_vals_val_get(dftb_section, "DO_EWALD", &
    1230         166 :                                       l_val=qs_control%dftb_control%do_ewald)
    1231             :          ELSE
    1232          56 :             qs_control%dftb_control%do_ewald = (qs_control%periodicity /= 0)
    1233             :          END IF
    1234             :          CALL section_vals_val_get(dftb_parameter, "PARAM_FILE_PATH", &
    1235         222 :                                    c_val=qs_control%dftb_control%sk_file_path)
    1236             :          CALL section_vals_val_get(dftb_parameter, "PARAM_FILE_NAME", &
    1237         222 :                                    c_val=qs_control%dftb_control%sk_file_list)
    1238             :          CALL section_vals_val_get(dftb_parameter, "HB_SR_PARAM", &
    1239         222 :                                    r_val=qs_control%dftb_control%hb_sr_para)
    1240         222 :          CALL section_vals_val_get(dftb_parameter, "SK_FILE", n_rep_val=n_var)
    1241         470 :          ALLOCATE (qs_control%dftb_control%sk_pair_list(3, n_var))
    1242         284 :          DO k = 1, n_var
    1243             :             CALL section_vals_val_get(dftb_parameter, "SK_FILE", i_rep_val=k, &
    1244          62 :                                       c_vals=clist)
    1245         470 :             qs_control%dftb_control%sk_pair_list(1:3, k) = clist(1:3)
    1246             :          END DO
    1247             :          ! Dispersion type
    1248             :          CALL section_vals_val_get(dftb_parameter, "DISPERSION_TYPE", &
    1249         222 :                                    i_val=qs_control%dftb_control%dispersion_type)
    1250             :          CALL section_vals_val_get(dftb_parameter, "UFF_FORCE_FIELD", &
    1251         222 :                                    c_val=qs_control%dftb_control%uff_force_field)
    1252             :          ! D3 Dispersion
    1253             :          CALL section_vals_val_get(dftb_parameter, "DISPERSION_RADIUS", &
    1254         222 :                                    r_val=qs_control%dftb_control%rcdisp)
    1255             :          CALL section_vals_val_get(dftb_parameter, "COORDINATION_CUTOFF", &
    1256         222 :                                    r_val=qs_control%dftb_control%epscn)
    1257             :          CALL section_vals_val_get(dftb_parameter, "D2_EXP_PRE", &
    1258         222 :                                    r_val=qs_control%dftb_control%exp_pre)
    1259             :          CALL section_vals_val_get(dftb_parameter, "D2_SCALING", &
    1260         222 :                                    r_val=qs_control%dftb_control%scaling)
    1261         222 :          CALL section_vals_val_get(dftb_parameter, "D3_SCALING", r_vals=scal)
    1262         222 :          qs_control%dftb_control%sd3(1) = scal(1)
    1263         222 :          qs_control%dftb_control%sd3(2) = scal(2)
    1264         222 :          qs_control%dftb_control%sd3(3) = scal(3)
    1265         222 :          CALL section_vals_val_get(dftb_parameter, "D3BJ_SCALING", r_vals=scal)
    1266         222 :          qs_control%dftb_control%sd3bj(1) = scal(1)
    1267         222 :          qs_control%dftb_control%sd3bj(2) = scal(2)
    1268         222 :          qs_control%dftb_control%sd3bj(3) = scal(3)
    1269         222 :          qs_control%dftb_control%sd3bj(4) = scal(4)
    1270             :          CALL section_vals_val_get(dftb_parameter, "DISPERSION_PARAMETER_FILE", &
    1271         222 :                                    c_val=qs_control%dftb_control%dispersion_parameter_file)
    1272             : 
    1273         222 :          IF (qs_control%dftb_control%dispersion) CALL cite_reference(Zhechkov2005)
    1274         222 :          IF (qs_control%dftb_control%self_consistent) CALL cite_reference(Elstner1998)
    1275         666 :          IF (qs_control%dftb_control%hb_sr_damp) CALL cite_reference(Hu2007)
    1276             :       END IF
    1277             : 
    1278             :       ! xTB code
    1279        7324 :       IF (qs_control%xtb) THEN
    1280         940 :          CALL section_vals_val_get(xtb_section, "GFN_TYPE", i_val=qs_control%xtb_control%gfn_type)
    1281         940 :          CALL section_vals_val_get(xtb_section, "DO_EWALD", explicit=explicit)
    1282         940 :          IF (explicit) THEN
    1283             :             CALL section_vals_val_get(xtb_section, "DO_EWALD", &
    1284         756 :                                       l_val=qs_control%xtb_control%do_ewald)
    1285             :          ELSE
    1286         184 :             qs_control%xtb_control%do_ewald = (qs_control%periodicity /= 0)
    1287             :          END IF
    1288             :          ! vdW
    1289         940 :          CALL section_vals_val_get(xtb_section, "VDW_POTENTIAL", explicit=explicit)
    1290         940 :          IF (explicit) THEN
    1291         660 :             CALL section_vals_val_get(xtb_section, "VDW_POTENTIAL", c_val=cval)
    1292         660 :             CALL uppercase(cval)
    1293           0 :             SELECT CASE (cval)
    1294             :             CASE ("NONE")
    1295           0 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_none
    1296             :             CASE ("DFTD3")
    1297          36 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d3
    1298             :             CASE ("DFTD4")
    1299         624 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
    1300             :             CASE DEFAULT
    1301         660 :                CPABORT("vdW type")
    1302             :             END SELECT
    1303             :          ELSE
    1304         296 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1305             :             CASE (0)
    1306          16 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
    1307             :             CASE (1)
    1308         264 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d3
    1309             :             CASE (2)
    1310           0 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
    1311           0 :                CPABORT("gfn2-xtb tbd")
    1312             :             CASE DEFAULT
    1313         280 :                CPABORT("GFN type")
    1314             :             END SELECT
    1315             :          END IF
    1316             :          !
    1317         940 :          CALL section_vals_val_get(xtb_section, "STO_NG", i_val=ngauss)
    1318         940 :          qs_control%xtb_control%sto_ng = ngauss
    1319         940 :          CALL section_vals_val_get(xtb_section, "HYDROGEN_STO_NG", i_val=ngauss)
    1320         940 :          qs_control%xtb_control%h_sto_ng = ngauss
    1321             :          CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_PATH", &
    1322         940 :                                    c_val=qs_control%xtb_control%parameter_file_path)
    1323         940 :          CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_NAME", explicit=explicit)
    1324         940 :          IF (explicit) THEN
    1325             :             CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_NAME", &
    1326           0 :                                       c_val=qs_control%xtb_control%parameter_file_name)
    1327             :          ELSE
    1328        1614 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1329             :             CASE (0)
    1330         674 :                qs_control%xtb_control%parameter_file_name = "xTB0_parameters"
    1331             :             CASE (1)
    1332         266 :                qs_control%xtb_control%parameter_file_name = "xTB1_parameters"
    1333             :             CASE (2)
    1334           0 :                CPABORT("gfn2-xtb tbd")
    1335             :             CASE DEFAULT
    1336         940 :                CPABORT("GFN type")
    1337             :             END SELECT
    1338             :          END IF
    1339             :          ! D3 Dispersion
    1340             :          CALL section_vals_val_get(xtb_parameter, "DISPERSION_RADIUS", &
    1341         940 :                                    r_val=qs_control%xtb_control%rcdisp)
    1342             :          CALL section_vals_val_get(xtb_parameter, "COORDINATION_CUTOFF", &
    1343         940 :                                    r_val=qs_control%xtb_control%epscn)
    1344         940 :          CALL section_vals_val_get(xtb_parameter, "D3BJ_SCALING", explicit=explicit)
    1345         940 :          IF (explicit) THEN
    1346           0 :             CALL section_vals_val_get(xtb_parameter, "D3BJ_SCALING", r_vals=scal)
    1347           0 :             qs_control%xtb_control%s6 = scal(1)
    1348           0 :             qs_control%xtb_control%s8 = scal(2)
    1349             :          ELSE
    1350        1614 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1351             :             CASE (0)
    1352         674 :                qs_control%xtb_control%s6 = 1.00_dp
    1353         674 :                qs_control%xtb_control%s8 = 2.85_dp
    1354             :             CASE (1)
    1355         266 :                qs_control%xtb_control%s6 = 1.00_dp
    1356         266 :                qs_control%xtb_control%s8 = 2.40_dp
    1357             :             CASE (2)
    1358           0 :                CPABORT("gfn2-xtb tbd")
    1359             :             CASE DEFAULT
    1360         940 :                CPABORT("GFN type")
    1361             :             END SELECT
    1362             :          END IF
    1363         940 :          CALL section_vals_val_get(xtb_parameter, "D3BJ_PARAM", explicit=explicit)
    1364         940 :          IF (explicit) THEN
    1365           0 :             CALL section_vals_val_get(xtb_parameter, "D3BJ_PARAM", r_vals=scal)
    1366           0 :             qs_control%xtb_control%a1 = scal(1)
    1367           0 :             qs_control%xtb_control%a2 = scal(2)
    1368             :          ELSE
    1369        1614 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1370             :             CASE (0)
    1371         674 :                qs_control%xtb_control%a1 = 0.80_dp
    1372         674 :                qs_control%xtb_control%a2 = 4.60_dp
    1373             :             CASE (1)
    1374         266 :                qs_control%xtb_control%a1 = 0.63_dp
    1375         266 :                qs_control%xtb_control%a2 = 5.00_dp
    1376             :             CASE (2)
    1377           0 :                CPABORT("gfn2-xtb tbd")
    1378             :             CASE DEFAULT
    1379         940 :                CPABORT("GFN type")
    1380             :             END SELECT
    1381             :          END IF
    1382             :          CALL section_vals_val_get(xtb_parameter, "DISPERSION_PARAMETER_FILE", &
    1383         940 :                                    c_val=qs_control%xtb_control%dispersion_parameter_file)
    1384             :          ! global parameters
    1385         940 :          CALL section_vals_val_get(xtb_parameter, "HUCKEL_CONSTANTS", explicit=explicit)
    1386         940 :          IF (explicit) THEN
    1387           0 :             CALL section_vals_val_get(xtb_parameter, "HUCKEL_CONSTANTS", r_vals=scal)
    1388           0 :             qs_control%xtb_control%ks = scal(1)
    1389           0 :             qs_control%xtb_control%kp = scal(2)
    1390           0 :             qs_control%xtb_control%kd = scal(3)
    1391           0 :             qs_control%xtb_control%ksp = scal(4)
    1392           0 :             qs_control%xtb_control%k2sh = scal(5)
    1393           0 :             IF (qs_control%xtb_control%gfn_type == 0) THEN
    1394             :                ! enforce ksp for gfn0
    1395           0 :                qs_control%xtb_control%ksp = 0.5_dp*(scal(1) + scal(2))
    1396             :             END IF
    1397             :          ELSE
    1398        1614 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1399             :             CASE (0)
    1400         674 :                qs_control%xtb_control%ks = 2.00_dp
    1401         674 :                qs_control%xtb_control%kp = 2.4868_dp
    1402         674 :                qs_control%xtb_control%kd = 2.27_dp
    1403         674 :                qs_control%xtb_control%ksp = 2.2434_dp
    1404         674 :                qs_control%xtb_control%k2sh = 1.1241_dp
    1405             :             CASE (1)
    1406         266 :                qs_control%xtb_control%ks = 1.85_dp
    1407         266 :                qs_control%xtb_control%kp = 2.25_dp
    1408         266 :                qs_control%xtb_control%kd = 2.00_dp
    1409         266 :                qs_control%xtb_control%ksp = 2.08_dp
    1410         266 :                qs_control%xtb_control%k2sh = 2.85_dp
    1411             :             CASE (2)
    1412           0 :                CPABORT("gfn2-xtb tbd")
    1413             :             CASE DEFAULT
    1414         940 :                CPABORT("GFN type")
    1415             :             END SELECT
    1416             :          END IF
    1417         940 :          CALL section_vals_val_get(xtb_parameter, "COULOMB_CONSTANTS", explicit=explicit)
    1418         940 :          IF (explicit) THEN
    1419           0 :             CALL section_vals_val_get(xtb_parameter, "COULOMB_CONSTANTS", r_vals=scal)
    1420           0 :             qs_control%xtb_control%kg = scal(1)
    1421           0 :             qs_control%xtb_control%kf = scal(2)
    1422             :          ELSE
    1423        1614 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1424             :             CASE (0)
    1425         674 :                qs_control%xtb_control%kg = 2.00_dp
    1426         674 :                qs_control%xtb_control%kf = 1.50_dp
    1427             :             CASE (1)
    1428         266 :                qs_control%xtb_control%kg = 2.00_dp
    1429         266 :                qs_control%xtb_control%kf = 1.50_dp
    1430             :             CASE (2)
    1431           0 :                CPABORT("gfn2-xtb tbd")
    1432             :             CASE DEFAULT
    1433         940 :                CPABORT("GFN type")
    1434             :             END SELECT
    1435             :          END IF
    1436         940 :          CALL section_vals_val_get(xtb_parameter, "CN_CONSTANTS", r_vals=scal)
    1437         940 :          qs_control%xtb_control%kcns = scal(1)
    1438         940 :          qs_control%xtb_control%kcnp = scal(2)
    1439         940 :          qs_control%xtb_control%kcnd = scal(3)
    1440             :          !
    1441         940 :          CALL section_vals_val_get(xtb_parameter, "EN_CONSTANTS", explicit=explicit)
    1442         940 :          IF (explicit) THEN
    1443           0 :             CALL section_vals_val_get(xtb_parameter, "EN_CONSTANTS", r_vals=scal)
    1444           0 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1445             :             CASE (0)
    1446           0 :                qs_control%xtb_control%ksen = scal(1)
    1447           0 :                qs_control%xtb_control%kpen = scal(2)
    1448           0 :                qs_control%xtb_control%kden = scal(3)
    1449             :             CASE (1)
    1450           0 :                qs_control%xtb_control%ken = scal(1)
    1451             :             CASE (2)
    1452           0 :                CPABORT("gfn2-xtb tbd")
    1453             :             CASE DEFAULT
    1454           0 :                CPABORT("GFN type")
    1455             :             END SELECT
    1456             :          ELSE
    1457        1614 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1458             :             CASE (0)
    1459         674 :                qs_control%xtb_control%ksen = 0.006_dp
    1460         674 :                qs_control%xtb_control%kpen = -0.001_dp
    1461         674 :                qs_control%xtb_control%kden = -0.002_dp
    1462             :             CASE (1)
    1463         266 :                qs_control%xtb_control%ken = -0.007_dp
    1464             :             CASE (2)
    1465           0 :                CPABORT("gfn2-xtb tbd")
    1466             :             CASE DEFAULT
    1467         940 :                CPABORT("GFN type")
    1468             :             END SELECT
    1469             :          END IF
    1470             :          ! ben
    1471         940 :          CALL section_vals_val_get(xtb_parameter, "BEN_CONSTANT", r_vals=scal)
    1472         940 :          qs_control%xtb_control%ben = scal(1)
    1473             :          ! enscale (hidden parameter in repulsion
    1474         940 :          CALL section_vals_val_get(xtb_parameter, "ENSCALE", explicit=explicit)
    1475         940 :          IF (explicit) THEN
    1476             :             CALL section_vals_val_get(xtb_parameter, "ENSCALE", &
    1477           0 :                                       r_val=qs_control%xtb_control%enscale)
    1478             :          ELSE
    1479        1614 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1480             :             CASE (0)
    1481         674 :                qs_control%xtb_control%enscale = -0.09_dp
    1482             :             CASE (1)
    1483         266 :                qs_control%xtb_control%enscale = 0._dp
    1484             :             CASE (2)
    1485           0 :                CPABORT("gfn2-xtb tbd")
    1486             :             CASE DEFAULT
    1487         940 :                CPABORT("GFN type")
    1488             :             END SELECT
    1489             :          END IF
    1490             :          ! XB
    1491             :          CALL section_vals_val_get(xtb_section, "USE_HALOGEN_CORRECTION", &
    1492         940 :                                    l_val=qs_control%xtb_control%xb_interaction)
    1493         940 :          CALL section_vals_val_get(xtb_parameter, "HALOGEN_BINDING", r_vals=scal)
    1494         940 :          qs_control%xtb_control%kxr = scal(1)
    1495         940 :          qs_control%xtb_control%kx2 = scal(2)
    1496             :          ! NONBONDED interactions
    1497             :          CALL section_vals_val_get(xtb_section, "DO_NONBONDED", &
    1498         940 :                                    l_val=qs_control%xtb_control%do_nonbonded)
    1499         940 :          CALL section_vals_get(nonbonded_section, explicit=explicit)
    1500         940 :          IF (explicit .AND. qs_control%xtb_control%do_nonbonded) THEN
    1501           6 :             CALL section_vals_get(genpot_section, explicit=explicit, n_repetition=ngp)
    1502           6 :             IF (explicit) THEN
    1503           6 :                CALL pair_potential_reallocate(qs_control%xtb_control%nonbonded, 1, ngp, gp=.TRUE.)
    1504           6 :                CALL read_gp_section(qs_control%xtb_control%nonbonded, genpot_section, 0)
    1505             :             END IF
    1506             :          END IF !nonbonded
    1507             :          CALL section_vals_val_get(xtb_section, "EPS_PAIRPOTENTIAL", &
    1508         940 :                                    r_val=qs_control%xtb_control%eps_pair)
    1509             :          ! SR Coulomb
    1510         940 :          CALL section_vals_val_get(xtb_parameter, "COULOMB_SR_CUT", r_vals=scal)
    1511         940 :          qs_control%xtb_control%coulomb_sr_cut = scal(1)
    1512         940 :          CALL section_vals_val_get(xtb_parameter, "COULOMB_SR_EPS", r_vals=scal)
    1513         940 :          qs_control%xtb_control%coulomb_sr_eps = scal(1)
    1514             :          ! XB_radius
    1515         940 :          CALL section_vals_val_get(xtb_parameter, "XB_RADIUS", r_val=qs_control%xtb_control%xb_radius)
    1516             :          ! Kab
    1517         940 :          CALL section_vals_val_get(xtb_parameter, "KAB_PARAM", n_rep_val=n_rep)
    1518             :          ! Coulomb
    1519        1614 :          SELECT CASE (qs_control%xtb_control%gfn_type)
    1520             :          CASE (0)
    1521         674 :             qs_control%xtb_control%coulomb_interaction = .FALSE.
    1522         674 :             qs_control%xtb_control%coulomb_lr = .FALSE.
    1523         674 :             qs_control%xtb_control%tb3_interaction = .FALSE.
    1524         674 :             qs_control%xtb_control%check_atomic_charges = .FALSE.
    1525             :             CALL section_vals_val_get(xtb_section, "VARIATIONAL_DIPOLE", &
    1526         674 :                                       l_val=qs_control%xtb_control%var_dipole)
    1527             :          CASE (1)
    1528             :             ! For debugging purposes
    1529             :             CALL section_vals_val_get(xtb_section, "COULOMB_INTERACTION", &
    1530         266 :                                       l_val=qs_control%xtb_control%coulomb_interaction)
    1531             :             CALL section_vals_val_get(xtb_section, "COULOMB_LR", &
    1532         266 :                                       l_val=qs_control%xtb_control%coulomb_lr)
    1533             :             CALL section_vals_val_get(xtb_section, "TB3_INTERACTION", &
    1534         266 :                                       l_val=qs_control%xtb_control%tb3_interaction)
    1535             :             ! Check for bad atomic charges
    1536             :             CALL section_vals_val_get(xtb_section, "CHECK_ATOMIC_CHARGES", &
    1537         266 :                                       l_val=qs_control%xtb_control%check_atomic_charges)
    1538         266 :             qs_control%xtb_control%var_dipole = .FALSE.
    1539             :          CASE (2)
    1540           0 :             CPABORT("gfn2-xtb tbd")
    1541             :          CASE DEFAULT
    1542         940 :             CPABORT("GFN type")
    1543             :          END SELECT
    1544         940 :          qs_control%xtb_control%kab_nval = n_rep
    1545         940 :          IF (n_rep > 0) THEN
    1546           6 :             ALLOCATE (qs_control%xtb_control%kab_param(3, n_rep))
    1547           6 :             ALLOCATE (qs_control%xtb_control%kab_types(2, n_rep))
    1548           6 :             ALLOCATE (qs_control%xtb_control%kab_vals(n_rep))
    1549           4 :             DO j = 1, n_rep
    1550           2 :                CALL section_vals_val_get(xtb_parameter, "KAB_PARAM", i_rep_val=j, c_vals=clist)
    1551           2 :                qs_control%xtb_control%kab_param(1, j) = clist(1)
    1552             :                CALL get_ptable_info(clist(1), &
    1553           2 :                                     ielement=qs_control%xtb_control%kab_types(1, j))
    1554           2 :                qs_control%xtb_control%kab_param(2, j) = clist(2)
    1555             :                CALL get_ptable_info(clist(2), &
    1556           2 :                                     ielement=qs_control%xtb_control%kab_types(2, j))
    1557           2 :                qs_control%xtb_control%kab_param(3, j) = clist(3)
    1558           4 :                READ (clist(3), '(F10.0)') qs_control%xtb_control%kab_vals(j)
    1559             :             END DO
    1560             :          END IF
    1561             : 
    1562         940 :          IF (qs_control%xtb_control%gfn_type == 0) THEN
    1563         674 :             CALL section_vals_val_get(xtb_parameter, "SRB_PARAMETER", r_vals=scal)
    1564         674 :             qs_control%xtb_control%ksrb = scal(1)
    1565         674 :             qs_control%xtb_control%esrb = scal(2)
    1566         674 :             qs_control%xtb_control%gscal = scal(3)
    1567         674 :             qs_control%xtb_control%c1srb = scal(4)
    1568         674 :             qs_control%xtb_control%c2srb = scal(5)
    1569         674 :             qs_control%xtb_control%shift = scal(6)
    1570             :          END IF
    1571             : 
    1572         940 :          CALL section_vals_val_get(xtb_section, "EN_SHIFT_TYPE", c_val=cval)
    1573         940 :          CALL uppercase(cval)
    1574         940 :          SELECT CASE (TRIM(cval))
    1575             :          CASE ("SELECT")
    1576           0 :             qs_control%xtb_control%enshift_type = 0
    1577             :          CASE ("MOLECULE")
    1578         940 :             qs_control%xtb_control%enshift_type = 1
    1579             :          CASE ("CRYSTAL")
    1580           0 :             qs_control%xtb_control%enshift_type = 2
    1581             :          CASE DEFAULT
    1582         940 :             CPABORT("Unknown value for EN_SHIFT_TYPE")
    1583             :          END SELECT
    1584             : 
    1585             :          ! EEQ solver params
    1586         940 :          CALL read_eeq_param(eeq_section, qs_control%xtb_control%eeq_sparam)
    1587             : 
    1588             :       END IF
    1589             : 
    1590             :       ! Optimize LRI basis set
    1591        7324 :       CALL section_vals_get(lri_optbas_section, explicit=qs_control%lri_optbas)
    1592             : 
    1593             :       ! Use instead the tblite
    1594             :       CALL section_vals_val_get(xtb_tblite, "_SECTION_PARAMETERS_", &
    1595        7324 :                                 l_val=qs_control%xtb_control%do_tblite)
    1596             :       CALL section_vals_val_get(xtb_tblite, "METHOD", &
    1597        7324 :                                 i_val=qs_control%xtb_control%tblite_method)
    1598        7324 :       IF (qs_control%xtb_control%do_tblite) THEN
    1599             :          !Ewald sum included in tblite
    1600           0 :          qs_control%xtb_control%do_ewald = .FALSE.
    1601             :       END IF
    1602             : 
    1603        7324 :       CALL timestop(handle)
    1604        7324 :    END SUBROUTINE read_qs_section
    1605             : 
    1606             : ! **************************************************************************************************
    1607             : !> \brief Read TDDFPT-related input parameters.
    1608             : !> \param t_control  TDDFPT control parameters
    1609             : !> \param t_section  TDDFPT input section
    1610             : !> \param qs_control Quickstep control parameters
    1611             : ! **************************************************************************************************
    1612        7324 :    SUBROUTINE read_tddfpt2_control(t_control, t_section, qs_control)
    1613             :       TYPE(tddfpt2_control_type), POINTER                :: t_control
    1614             :       TYPE(section_vals_type), POINTER                   :: t_section
    1615             :       TYPE(qs_control_type), POINTER                     :: qs_control
    1616             : 
    1617             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'read_tddfpt2_control'
    1618             : 
    1619             :       CHARACTER(LEN=default_string_length), &
    1620        7324 :          DIMENSION(:), POINTER                           :: tmpstringlist
    1621             :       INTEGER                                            :: handle, irep, isize, nrep
    1622        7324 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: inds
    1623             :       LOGICAL                                            :: do_ewald, do_exchange, expl, explicit, &
    1624             :                                                             multigrid_set
    1625             :       REAL(KIND=dp)                                      :: filter, fval, hfx
    1626             :       TYPE(section_vals_type), POINTER                   :: dipole_section, mgrid_section, &
    1627             :                                                             soc_section, stda_section, xc_func, &
    1628             :                                                             xc_section
    1629             : 
    1630        7324 :       CALL timeset(routineN, handle)
    1631             : 
    1632        7324 :       CALL section_vals_val_get(t_section, "_SECTION_PARAMETERS_", l_val=t_control%enabled)
    1633             : 
    1634        7324 :       CALL section_vals_val_get(t_section, "NSTATES", i_val=t_control%nstates)
    1635        7324 :       CALL section_vals_val_get(t_section, "MAX_ITER", i_val=t_control%niters)
    1636        7324 :       CALL section_vals_val_get(t_section, "MAX_KV", i_val=t_control%nkvs)
    1637        7324 :       CALL section_vals_val_get(t_section, "NLUMO", i_val=t_control%nlumo)
    1638        7324 :       CALL section_vals_val_get(t_section, "NPROC_STATE", i_val=t_control%nprocs)
    1639        7324 :       CALL section_vals_val_get(t_section, "KERNEL", i_val=t_control%kernel)
    1640        7324 :       CALL section_vals_val_get(t_section, "OE_CORR", i_val=t_control%oe_corr)
    1641        7324 :       CALL section_vals_val_get(t_section, "EV_SHIFT", r_val=t_control%ev_shift)
    1642        7324 :       CALL section_vals_val_get(t_section, "EOS_SHIFT", r_val=t_control%eos_shift)
    1643             : 
    1644        7324 :       CALL section_vals_val_get(t_section, "CONVERGENCE", r_val=t_control%conv)
    1645        7324 :       CALL section_vals_val_get(t_section, "MIN_AMPLITUDE", r_val=t_control%min_excitation_amplitude)
    1646        7324 :       CALL section_vals_val_get(t_section, "ORTHOGONAL_EPS", r_val=t_control%orthogonal_eps)
    1647             : 
    1648        7324 :       CALL section_vals_val_get(t_section, "RESTART", l_val=t_control%is_restart)
    1649        7324 :       CALL section_vals_val_get(t_section, "RKS_TRIPLETS", l_val=t_control%rks_triplets)
    1650        7324 :       CALL section_vals_val_get(t_section, "DO_LRIGPW", l_val=t_control%do_lrigpw)
    1651        7324 :       CALL section_vals_val_get(t_section, "DO_SMEARING", l_val=t_control%do_smearing)
    1652        7324 :       CALL section_vals_val_get(t_section, "ADMM_KERNEL_CORRECTION_SYMMETRIC", l_val=t_control%admm_symm)
    1653        7324 :       CALL section_vals_val_get(t_section, "ADMM_KERNEL_XC_CORRECTION", l_val=t_control%admm_xc_correction)
    1654        7324 :       CALL section_vals_val_get(t_section, "EXCITON_DESCRIPTORS", l_val=t_control%do_exciton_descriptors)
    1655        7324 :       CALL section_vals_val_get(t_section, "DIRECTIONAL_EXCITON_DESCRIPTORS", l_val=t_control%do_directional_exciton_descriptors)
    1656             : 
    1657             :       ! read automatically generated auxiliary basis for LRI
    1658        7324 :       CALL section_vals_val_get(t_section, "AUTO_BASIS", n_rep_val=nrep)
    1659       14648 :       DO irep = 1, nrep
    1660        7324 :          CALL section_vals_val_get(t_section, "AUTO_BASIS", i_rep_val=irep, c_vals=tmpstringlist)
    1661       14648 :          IF (SIZE(tmpstringlist) == 2) THEN
    1662        7324 :             CALL uppercase(tmpstringlist(2))
    1663        7324 :             SELECT CASE (tmpstringlist(2))
    1664             :             CASE ("X")
    1665           0 :                isize = -1
    1666             :             CASE ("SMALL")
    1667           0 :                isize = 0
    1668             :             CASE ("MEDIUM")
    1669           0 :                isize = 1
    1670             :             CASE ("LARGE")
    1671           0 :                isize = 2
    1672             :             CASE ("HUGE")
    1673           0 :                isize = 3
    1674             :             CASE DEFAULT
    1675        7324 :                CPABORT("Unknown basis size in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
    1676             :             END SELECT
    1677             :             !
    1678        7324 :             SELECT CASE (tmpstringlist(1))
    1679             :             CASE ("X")
    1680             :             CASE ("P_LRI_AUX")
    1681           0 :                t_control%auto_basis_p_lri_aux = isize
    1682             :             CASE DEFAULT
    1683        7324 :                CPABORT("Unknown basis type in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
    1684             :             END SELECT
    1685             :          ELSE
    1686             :             CALL cp_abort(__LOCATION__, &
    1687           0 :                           "AUTO_BASIS keyword in &PROPERTIES &TDDFT section has a wrong number of arguments.")
    1688             :          END IF
    1689             :       END DO
    1690             : 
    1691        7324 :       IF (t_control%conv < 0) &
    1692           0 :          t_control%conv = ABS(t_control%conv)
    1693             : 
    1694             :       ! DIPOLE_MOMENTS subsection
    1695        7324 :       dipole_section => section_vals_get_subs_vals(t_section, "DIPOLE_MOMENTS")
    1696        7324 :       CALL section_vals_val_get(dipole_section, "DIPOLE_FORM", explicit=explicit)
    1697        7324 :       IF (explicit) THEN
    1698          10 :          CALL section_vals_val_get(dipole_section, "DIPOLE_FORM", i_val=t_control%dipole_form)
    1699             :       ELSE
    1700        7314 :          t_control%dipole_form = 0
    1701             :       END IF
    1702        7324 :       CALL section_vals_val_get(dipole_section, "REFERENCE", i_val=t_control%dipole_reference)
    1703        7324 :       CALL section_vals_val_get(dipole_section, "REFERENCE_POINT", explicit=explicit)
    1704        7324 :       IF (explicit) THEN
    1705           0 :          CALL section_vals_val_get(dipole_section, "REFERENCE_POINT", r_vals=t_control%dipole_ref_point)
    1706             :       ELSE
    1707        7324 :          NULLIFY (t_control%dipole_ref_point)
    1708        7324 :          IF (t_control%dipole_form == tddfpt_dipole_length .AND. t_control%dipole_reference == use_mom_ref_user) THEN
    1709           0 :             CPABORT("User-defined reference point should be given explicitly")
    1710             :          END IF
    1711             :       END IF
    1712             : 
    1713             :       !SOC subsection
    1714        7324 :       soc_section => section_vals_get_subs_vals(t_section, "SOC")
    1715        7324 :       CALL section_vals_get(soc_section, explicit=explicit)
    1716        7324 :       IF (explicit) THEN
    1717           8 :          t_control%do_soc = .TRUE.
    1718             :       END IF
    1719             : 
    1720             :       ! MGRID subsection
    1721        7324 :       mgrid_section => section_vals_get_subs_vals(t_section, "MGRID")
    1722        7324 :       CALL section_vals_get(mgrid_section, explicit=t_control%mgrid_is_explicit)
    1723             : 
    1724        7324 :       IF (t_control%mgrid_is_explicit) THEN
    1725          10 :          CALL section_vals_val_get(mgrid_section, "NGRIDS", i_val=t_control%mgrid_ngrids, explicit=explicit)
    1726          10 :          IF (.NOT. explicit) t_control%mgrid_ngrids = SIZE(qs_control%e_cutoff)
    1727             : 
    1728          10 :          CALL section_vals_val_get(mgrid_section, "CUTOFF", r_val=t_control%mgrid_cutoff, explicit=explicit)
    1729          10 :          IF (.NOT. explicit) t_control%mgrid_cutoff = qs_control%cutoff
    1730             : 
    1731             :          CALL section_vals_val_get(mgrid_section, "PROGRESSION_FACTOR", &
    1732          10 :                                    r_val=t_control%mgrid_progression_factor, explicit=explicit)
    1733          10 :          IF (explicit) THEN
    1734           0 :             IF (t_control%mgrid_progression_factor <= 1.0_dp) &
    1735             :                CALL cp_abort(__LOCATION__, &
    1736           0 :                              "Progression factor should be greater then 1.0 to ensure multi-grid ordering")
    1737             :          ELSE
    1738          10 :             t_control%mgrid_progression_factor = qs_control%progression_factor
    1739             :          END IF
    1740             : 
    1741          10 :          CALL section_vals_val_get(mgrid_section, "COMMENSURATE", l_val=t_control%mgrid_commensurate_mgrids, explicit=explicit)
    1742          10 :          IF (.NOT. explicit) t_control%mgrid_commensurate_mgrids = qs_control%commensurate_mgrids
    1743          10 :          IF (t_control%mgrid_commensurate_mgrids) THEN
    1744           0 :             IF (explicit) THEN
    1745           0 :                t_control%mgrid_progression_factor = 4.0_dp
    1746             :             ELSE
    1747           0 :                t_control%mgrid_progression_factor = qs_control%progression_factor
    1748             :             END IF
    1749             :          END IF
    1750             : 
    1751          10 :          CALL section_vals_val_get(mgrid_section, "REL_CUTOFF", r_val=t_control%mgrid_relative_cutoff, explicit=explicit)
    1752          10 :          IF (.NOT. explicit) t_control%mgrid_relative_cutoff = qs_control%relative_cutoff
    1753             : 
    1754          10 :          CALL section_vals_val_get(mgrid_section, "MULTIGRID_SET", l_val=multigrid_set, explicit=explicit)
    1755          10 :          IF (.NOT. explicit) multigrid_set = .FALSE.
    1756          10 :          IF (multigrid_set) THEN
    1757           0 :             CALL section_vals_val_get(mgrid_section, "MULTIGRID_CUTOFF", r_vals=t_control%mgrid_e_cutoff)
    1758             :          ELSE
    1759          10 :             NULLIFY (t_control%mgrid_e_cutoff)
    1760             :          END IF
    1761             : 
    1762          10 :          CALL section_vals_val_get(mgrid_section, "REALSPACE", l_val=t_control%mgrid_realspace_mgrids, explicit=explicit)
    1763          10 :          IF (.NOT. explicit) t_control%mgrid_realspace_mgrids = qs_control%realspace_mgrids
    1764             : 
    1765             :          CALL section_vals_val_get(mgrid_section, "SKIP_LOAD_BALANCE_DISTRIBUTED", &
    1766          10 :                                    l_val=t_control%mgrid_skip_load_balance, explicit=explicit)
    1767          10 :          IF (.NOT. explicit) t_control%mgrid_skip_load_balance = qs_control%skip_load_balance_distributed
    1768             : 
    1769          10 :          IF (ASSOCIATED(t_control%mgrid_e_cutoff)) THEN
    1770           0 :             IF (SIZE(t_control%mgrid_e_cutoff) /= t_control%mgrid_ngrids) &
    1771           0 :                CPABORT("Inconsistent values for number of multi-grids")
    1772             : 
    1773             :             ! sort multi-grids in descending order according to their cutoff values
    1774           0 :             t_control%mgrid_e_cutoff = -t_control%mgrid_e_cutoff
    1775           0 :             ALLOCATE (inds(t_control%mgrid_ngrids))
    1776           0 :             CALL sort(t_control%mgrid_e_cutoff, t_control%mgrid_ngrids, inds)
    1777           0 :             DEALLOCATE (inds)
    1778           0 :             t_control%mgrid_e_cutoff = -t_control%mgrid_e_cutoff
    1779             :          END IF
    1780             :       END IF
    1781             : 
    1782             :       ! expand XC subsection (if given explicitly)
    1783        7324 :       xc_section => section_vals_get_subs_vals(t_section, "XC")
    1784        7324 :       xc_func => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
    1785        7324 :       CALL section_vals_get(xc_func, explicit=explicit)
    1786        7324 :       IF (explicit) &
    1787         200 :          CALL xc_functionals_expand(xc_func, xc_section)
    1788             : 
    1789             :       ! sTDA subsection
    1790        7324 :       stda_section => section_vals_get_subs_vals(t_section, "STDA")
    1791        7324 :       IF (t_control%kernel == tddfpt_kernel_stda) THEN
    1792         118 :          t_control%stda_control%hfx_fraction = 0.0_dp
    1793         118 :          t_control%stda_control%do_exchange = .TRUE.
    1794         118 :          t_control%stda_control%eps_td_filter = 1.e-10_dp
    1795         118 :          t_control%stda_control%mn_alpha = -99.0_dp
    1796         118 :          t_control%stda_control%mn_beta = -99.0_dp
    1797             :          ! set default for Ewald method (on/off) dependent on periodicity
    1798         212 :          SELECT CASE (qs_control%periodicity)
    1799             :          CASE (0)
    1800          94 :             t_control%stda_control%do_ewald = .FALSE.
    1801             :          CASE (1)
    1802           0 :             t_control%stda_control%do_ewald = .TRUE.
    1803             :          CASE (2)
    1804           0 :             t_control%stda_control%do_ewald = .TRUE.
    1805             :          CASE (3)
    1806          24 :             t_control%stda_control%do_ewald = .TRUE.
    1807             :          CASE DEFAULT
    1808         118 :             CPABORT("Illegal value for periodiciy")
    1809             :          END SELECT
    1810         118 :          CALL section_vals_get(stda_section, explicit=explicit)
    1811         118 :          IF (explicit) THEN
    1812         104 :             CALL section_vals_val_get(stda_section, "HFX_FRACTION", r_val=hfx, explicit=expl)
    1813         104 :             IF (expl) t_control%stda_control%hfx_fraction = hfx
    1814         104 :             CALL section_vals_val_get(stda_section, "EPS_TD_FILTER", r_val=filter, explicit=expl)
    1815         104 :             IF (expl) t_control%stda_control%eps_td_filter = filter
    1816         104 :             CALL section_vals_val_get(stda_section, "DO_EWALD", l_val=do_ewald, explicit=expl)
    1817         104 :             IF (expl) t_control%stda_control%do_ewald = do_ewald
    1818         104 :             CALL section_vals_val_get(stda_section, "DO_EXCHANGE", l_val=do_exchange, explicit=expl)
    1819         104 :             IF (expl) t_control%stda_control%do_exchange = do_exchange
    1820         104 :             CALL section_vals_val_get(stda_section, "MATAGA_NISHIMOTO_CEXP", r_val=fval)
    1821         104 :             t_control%stda_control%mn_alpha = fval
    1822         104 :             CALL section_vals_val_get(stda_section, "MATAGA_NISHIMOTO_XEXP", r_val=fval)
    1823         104 :             t_control%stda_control%mn_beta = fval
    1824             :          END IF
    1825         118 :          CALL section_vals_val_get(stda_section, "COULOMB_SR_CUT", r_val=fval)
    1826         118 :          t_control%stda_control%coulomb_sr_cut = fval
    1827         118 :          CALL section_vals_val_get(stda_section, "COULOMB_SR_EPS", r_val=fval)
    1828         118 :          t_control%stda_control%coulomb_sr_eps = fval
    1829             :       END IF
    1830             : 
    1831        7324 :       CALL timestop(handle)
    1832        7324 :    END SUBROUTINE read_tddfpt2_control
    1833             : 
    1834             : ! **************************************************************************************************
    1835             : !> \brief Write the DFT control parameters to the output unit.
    1836             : !> \param dft_control ...
    1837             : !> \param dft_section ...
    1838             : ! **************************************************************************************************
    1839       12480 :    SUBROUTINE write_dft_control(dft_control, dft_section)
    1840             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1841             :       TYPE(section_vals_type), POINTER                   :: dft_section
    1842             : 
    1843             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'write_dft_control'
    1844             : 
    1845             :       CHARACTER(LEN=20)                                  :: tmpStr
    1846             :       INTEGER                                            :: handle, i, output_unit
    1847             :       REAL(kind=dp)                                      :: density_cut, density_smooth_cut_range, &
    1848             :                                                             gradient_cut, tau_cut
    1849             :       TYPE(cp_logger_type), POINTER                      :: logger
    1850             :       TYPE(enumeration_type), POINTER                    :: enum
    1851             :       TYPE(keyword_type), POINTER                        :: keyword
    1852             :       TYPE(section_type), POINTER                        :: section
    1853             :       TYPE(section_vals_type), POINTER                   :: xc_section
    1854             : 
    1855        8476 :       IF (dft_control%qs_control%semi_empirical) RETURN
    1856        6320 :       IF (dft_control%qs_control%dftb) RETURN
    1857        6098 :       IF (dft_control%qs_control%xtb) THEN
    1858         936 :          CALL write_xtb_control(dft_control%qs_control%xtb_control, dft_section)
    1859         936 :          RETURN
    1860             :       END IF
    1861        5162 :       CALL timeset(routineN, handle)
    1862             : 
    1863        5162 :       NULLIFY (logger)
    1864        5162 :       logger => cp_get_default_logger()
    1865             : 
    1866             :       output_unit = cp_print_key_unit_nr(logger, dft_section, &
    1867        5162 :                                          "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
    1868             : 
    1869        5162 :       IF (output_unit > 0) THEN
    1870             : 
    1871        1340 :          xc_section => section_vals_get_subs_vals(dft_section, "XC")
    1872             : 
    1873        1340 :          IF (dft_control%uks) THEN
    1874             :             WRITE (UNIT=output_unit, FMT="(/,T2,A,T78,A)") &
    1875         409 :                "DFT| Spin unrestricted (spin-polarized) Kohn-Sham calculation", "UKS"
    1876         931 :          ELSE IF (dft_control%roks) THEN
    1877             :             WRITE (UNIT=output_unit, FMT="(/,T2,A,T77,A)") &
    1878          15 :                "DFT| Spin restricted open Kohn-Sham calculation", "ROKS"
    1879             :          ELSE
    1880             :             WRITE (UNIT=output_unit, FMT="(/,T2,A,T78,A)") &
    1881         916 :                "DFT| Spin restricted Kohn-Sham (RKS) calculation", "RKS"
    1882             :          END IF
    1883             : 
    1884             :          WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
    1885        1340 :             "DFT| Multiplicity", dft_control%multiplicity
    1886             :          WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
    1887        1340 :             "DFT| Number of spin states", dft_control%nspins
    1888             : 
    1889             :          WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
    1890        1340 :             "DFT| Charge", dft_control%charge
    1891             : 
    1892        1340 :          IF (dft_control%sic_method_id .NE. sic_none) CALL cite_reference(VandeVondele2005b)
    1893        2666 :          SELECT CASE (dft_control%sic_method_id)
    1894             :          CASE (sic_none)
    1895        1326 :             tmpstr = "NO"
    1896             :          CASE (sic_mauri_spz)
    1897           6 :             tmpstr = "SPZ/MAURI SIC"
    1898             :          CASE (sic_mauri_us)
    1899           3 :             tmpstr = "US/MAURI SIC"
    1900             :          CASE (sic_ad)
    1901           3 :             tmpstr = "AD SIC"
    1902             :          CASE (sic_eo)
    1903           2 :             tmpstr = "Explicit Orbital SIC"
    1904             :          CASE DEFAULT
    1905             :             ! fix throughout the cp2k for this option
    1906        1340 :             CPABORT("SIC option unknown")
    1907             :          END SELECT
    1908             : 
    1909             :          WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    1910        1340 :             "DFT| Self-interaction correction (SIC)", ADJUSTR(TRIM(tmpstr))
    1911             : 
    1912        1340 :          IF (dft_control%sic_method_id /= sic_none) THEN
    1913             :             WRITE (UNIT=output_unit, FMT="(T2,A,T66,ES15.6)") &
    1914          14 :                "DFT| SIC scaling parameter a", dft_control%sic_scaling_a, &
    1915          28 :                "DFT| SIC scaling parameter b", dft_control%sic_scaling_b
    1916             :          END IF
    1917             : 
    1918        1340 :          IF (dft_control%sic_method_id == sic_eo) THEN
    1919           2 :             IF (dft_control%sic_list_id == sic_list_all) THEN
    1920             :                WRITE (UNIT=output_unit, FMT="(T2,A,T66,A)") &
    1921           1 :                   "DFT| SIC orbitals", "ALL"
    1922             :             END IF
    1923           2 :             IF (dft_control%sic_list_id == sic_list_unpaired) THEN
    1924             :                WRITE (UNIT=output_unit, FMT="(T2,A,T66,A)") &
    1925           1 :                   "DFT| SIC orbitals", "UNPAIRED"
    1926             :             END IF
    1927             :          END IF
    1928             : 
    1929        1340 :          CALL section_vals_val_get(xc_section, "density_cutoff", r_val=density_cut)
    1930        1340 :          CALL section_vals_val_get(xc_section, "gradient_cutoff", r_val=gradient_cut)
    1931        1340 :          CALL section_vals_val_get(xc_section, "tau_cutoff", r_val=tau_cut)
    1932        1340 :          CALL section_vals_val_get(xc_section, "density_smooth_cutoff_range", r_val=density_smooth_cut_range)
    1933             : 
    1934             :          WRITE (UNIT=output_unit, FMT="(T2,A,T66,ES15.6)") &
    1935        1340 :             "DFT| Cutoffs: density ", density_cut, &
    1936        1340 :             "DFT|          gradient", gradient_cut, &
    1937        1340 :             "DFT|          tau     ", tau_cut, &
    1938        2680 :             "DFT|          cutoff_smoothing_range", density_smooth_cut_range
    1939             :          CALL section_vals_val_get(xc_section, "XC_GRID%XC_SMOOTH_RHO", &
    1940        1340 :                                    c_val=tmpStr)
    1941             :          WRITE (output_unit, '( A, T61, A )') &
    1942        1340 :             " DFT| XC density smoothing ", ADJUSTR(tmpStr)
    1943             :          CALL section_vals_val_get(xc_section, "XC_GRID%XC_DERIV", &
    1944        1340 :                                    c_val=tmpStr)
    1945             :          WRITE (output_unit, '( A, T61, A )') &
    1946        1340 :             " DFT| XC derivatives ", ADJUSTR(tmpStr)
    1947        1340 :          IF (dft_control%dft_plus_u) THEN
    1948          16 :             NULLIFY (enum, keyword, section)
    1949          16 :             CALL create_dft_section(section)
    1950          16 :             keyword => section_get_keyword(section, "PLUS_U_METHOD")
    1951          16 :             CALL keyword_get(keyword, enum=enum)
    1952             :             WRITE (UNIT=output_unit, FMT="(/,T2,A,T41,A40)") &
    1953          16 :                "DFT+U| Method", ADJUSTR(TRIM(enum_i2c(enum, dft_control%plus_u_method_id)))
    1954             :             WRITE (UNIT=output_unit, FMT="(T2,A)") &
    1955          16 :                "DFT+U| Check atomic kind information for details"
    1956          16 :             CALL section_release(section)
    1957             :          END IF
    1958             : 
    1959        1340 :          WRITE (UNIT=output_unit, FMT="(A)") ""
    1960        1340 :          CALL xc_write(output_unit, xc_section, dft_control%lsd)
    1961             : 
    1962        1340 :          IF (dft_control%apply_period_efield) THEN
    1963           6 :             WRITE (UNIT=output_unit, FMT="(A)") ""
    1964           6 :             IF (dft_control%period_efield%displacement_field) THEN
    1965             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    1966           0 :                   "PERIODIC_EFIELD| Use displacement field formulation"
    1967             :                WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
    1968           0 :                   "PERIODIC_EFIELD| Displacement field filter: x", &
    1969           0 :                   dft_control%period_efield%d_filter(1), &
    1970           0 :                   "PERIODIC_EFIELD|                            y", &
    1971           0 :                   dft_control%period_efield%d_filter(2), &
    1972           0 :                   "PERIODIC_EFIELD|                            z", &
    1973           0 :                   dft_control%period_efield%d_filter(3)
    1974             :             END IF
    1975             :             WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
    1976           6 :                "PERIODIC_EFIELD| Polarisation vector:       x", &
    1977           6 :                dft_control%period_efield%polarisation(1), &
    1978           6 :                "PERIODIC_EFIELD|                            y", &
    1979           6 :                dft_control%period_efield%polarisation(2), &
    1980           6 :                "PERIODIC_EFIELD|                            z", &
    1981          12 :                dft_control%period_efield%polarisation(3)
    1982             : 
    1983             :             WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,I14)") &
    1984           6 :                "PERIODIC_EFIELD| Start Frame:", &
    1985           6 :                dft_control%period_efield%start_frame, &
    1986           6 :                "PERIODIC_EFIELD| End Frame:", &
    1987          12 :                dft_control%period_efield%end_frame
    1988             : 
    1989           6 :             IF (ALLOCATED(dft_control%period_efield%strength_list)) THEN
    1990             :                WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,I14)") &
    1991           2 :                   "PERIODIC_EFIELD| Number of Intensities:", &
    1992           4 :                   SIZE(dft_control%period_efield%strength_list)
    1993             :                WRITE (UNIT=output_unit, FMT="(T2,A,I10,T66,1X,ES14.6)") &
    1994           2 :                   "PERIODIC_EFIELD| Intensity List [a.u.] ", &
    1995           4 :                   1, dft_control%period_efield%strength_list(1)
    1996          24 :                DO i = 2, SIZE(dft_control%period_efield%strength_list)
    1997             :                   WRITE (UNIT=output_unit, FMT="(T2,A,I10,T66,1X,ES14.6)") &
    1998          22 :                      "PERIODIC_EFIELD|                       ", &
    1999          46 :                      i, dft_control%period_efield%strength_list(i)
    2000             :                END DO
    2001             :             ELSE
    2002             :                WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
    2003           4 :                   "PERIODIC_EFIELD| Intensity [a.u.]:", &
    2004           8 :                   dft_control%period_efield%strength
    2005             :             END IF
    2006             : 
    2007          24 :             IF (SQRT(DOT_PRODUCT(dft_control%period_efield%polarisation, &
    2008             :                                  dft_control%period_efield%polarisation)) < EPSILON(0.0_dp)) THEN
    2009           0 :                CPABORT("Invalid (too small) polarisation vector specified for PERIODIC_EFIELD")
    2010             :             END IF
    2011             :          END IF
    2012             : 
    2013        1340 :          IF (dft_control%do_sccs) THEN
    2014             :             WRITE (UNIT=output_unit, FMT="(/,T2,A)") &
    2015           5 :                "SCCS| Self-consistent continuum solvation model"
    2016             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2017           5 :                "SCCS| Relative permittivity of the solvent (medium)", &
    2018           5 :                dft_control%sccs_control%epsilon_solvent, &
    2019           5 :                "SCCS| Absolute permittivity [a.u.]", &
    2020          10 :                dft_control%sccs_control%epsilon_solvent/fourpi
    2021           9 :             SELECT CASE (dft_control%sccs_control%method_id)
    2022             :             CASE (sccs_andreussi)
    2023             :                WRITE (UNIT=output_unit, FMT="(T2,A,/,(T2,A,T61,ES20.6))") &
    2024           4 :                   "SCCS| Dielectric function proposed by Andreussi et al.", &
    2025           4 :                   "SCCS|  rho_max", dft_control%sccs_control%rho_max, &
    2026           8 :                   "SCCS|  rho_min", dft_control%sccs_control%rho_min
    2027             :             CASE (sccs_fattebert_gygi)
    2028             :                WRITE (UNIT=output_unit, FMT="(T2,A,/,(T2,A,T61,ES20.6))") &
    2029           1 :                   "SCCS| Dielectric function proposed by Fattebert and Gygi", &
    2030           1 :                   "SCCS|  beta", dft_control%sccs_control%beta, &
    2031           2 :                   "SCCS|  rho_zero", dft_control%sccs_control%rho_zero
    2032             :             CASE DEFAULT
    2033           5 :                CPABORT("Invalid SCCS model specified. Please, check your input!")
    2034             :             END SELECT
    2035           6 :             SELECT CASE (dft_control%sccs_control%derivative_method)
    2036             :             CASE (sccs_derivative_fft)
    2037             :                WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
    2038           1 :                   "SCCS| Numerical derivative calculation", &
    2039           2 :                   ADJUSTR("FFT")
    2040             :             CASE (sccs_derivative_cd3)
    2041             :                WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
    2042           0 :                   "SCCS| Numerical derivative calculation", &
    2043           0 :                   ADJUSTR("3-point stencil central differences")
    2044             :             CASE (sccs_derivative_cd5)
    2045             :                WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
    2046           4 :                   "SCCS| Numerical derivative calculation", &
    2047           8 :                   ADJUSTR("5-point stencil central differences")
    2048             :             CASE (sccs_derivative_cd7)
    2049             :                WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
    2050           0 :                   "SCCS| Numerical derivative calculation", &
    2051           0 :                   ADJUSTR("7-point stencil central differences")
    2052             :             CASE DEFAULT
    2053             :                CALL cp_abort(__LOCATION__, &
    2054             :                              "Invalid derivative method specified for SCCS model. "// &
    2055           5 :                              "Please, check your input!")
    2056             :             END SELECT
    2057             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2058           5 :                "SCCS| Repulsion parameter alpha [mN/m] = [dyn/cm]", &
    2059          10 :                cp_unit_from_cp2k(dft_control%sccs_control%alpha_solvent, "mN/m")
    2060             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2061           5 :                "SCCS| Dispersion parameter beta [GPa]", &
    2062          10 :                cp_unit_from_cp2k(dft_control%sccs_control%beta_solvent, "GPa")
    2063             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2064           5 :                "SCCS| Surface tension gamma [mN/m] = [dyn/cm]", &
    2065          10 :                cp_unit_from_cp2k(dft_control%sccs_control%gamma_solvent, "mN/m")
    2066             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2067           5 :                "SCCS| Mixing parameter applied during the iteration cycle", &
    2068          10 :                dft_control%sccs_control%mixing
    2069             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2070           5 :                "SCCS| Tolerance for the convergence of the SCCS iteration cycle", &
    2071          10 :                dft_control%sccs_control%eps_sccs
    2072             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,I20)") &
    2073           5 :                "SCCS| Maximum number of iteration steps", &
    2074          10 :                dft_control%sccs_control%max_iter
    2075             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2076           5 :                "SCCS| SCF convergence threshold for starting the SCCS iteration", &
    2077          10 :                dft_control%sccs_control%eps_scf
    2078             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2079           5 :                "SCCS| Numerical increment for the cavity surface calculation", &
    2080          10 :                dft_control%sccs_control%delta_rho
    2081             :          END IF
    2082             : 
    2083        1340 :          WRITE (UNIT=output_unit, FMT="(A)") ""
    2084             : 
    2085             :       END IF
    2086             : 
    2087             :       CALL cp_print_key_finished_output(output_unit, logger, dft_section, &
    2088        5162 :                                         "PRINT%DFT_CONTROL_PARAMETERS")
    2089             : 
    2090        5162 :       CALL timestop(handle)
    2091             : 
    2092             :    END SUBROUTINE write_dft_control
    2093             : 
    2094             : ! **************************************************************************************************
    2095             : !> \brief Write the ADMM control parameters to the output unit.
    2096             : !> \param admm_control ...
    2097             : !> \param dft_section ...
    2098             : ! **************************************************************************************************
    2099         446 :    SUBROUTINE write_admm_control(admm_control, dft_section)
    2100             :       TYPE(admm_control_type), POINTER                   :: admm_control
    2101             :       TYPE(section_vals_type), POINTER                   :: dft_section
    2102             : 
    2103             :       INTEGER                                            :: iounit
    2104             :       TYPE(cp_logger_type), POINTER                      :: logger
    2105             : 
    2106         446 :       NULLIFY (logger)
    2107         446 :       logger => cp_get_default_logger()
    2108             : 
    2109             :       iounit = cp_print_key_unit_nr(logger, dft_section, &
    2110         446 :                                     "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
    2111             : 
    2112         446 :       IF (iounit > 0) THEN
    2113             : 
    2114         233 :          SELECT CASE (admm_control%admm_type)
    2115             :          CASE (no_admm_type)
    2116         114 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T77,A)") "ADMM| Specific ADMM type specified", "NONE"
    2117             :          CASE (admm1_type)
    2118           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMM1"
    2119             :          CASE (admm2_type)
    2120           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMM2"
    2121             :          CASE (admms_type)
    2122           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMS"
    2123             :          CASE (admmp_type)
    2124           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMP"
    2125             :          CASE (admmq_type)
    2126           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMQ"
    2127             :          CASE DEFAULT
    2128         119 :             CPABORT("admm_type")
    2129             :          END SELECT
    2130             : 
    2131         189 :          SELECT CASE (admm_control%purification_method)
    2132             :          CASE (do_admm_purify_none)
    2133          70 :             WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Density matrix purification method", "NONE"
    2134             :          CASE (do_admm_purify_cauchy)
    2135           9 :             WRITE (UNIT=iounit, FMT="(T2,A,T75,A)") "ADMM| Density matrix purification method", "Cauchy"
    2136             :          CASE (do_admm_purify_cauchy_subspace)
    2137           5 :             WRITE (UNIT=iounit, FMT="(T2,A,T66,A)") "ADMM| Density matrix purification method", "Cauchy subspace"
    2138             :          CASE (do_admm_purify_mo_diag)
    2139          25 :             WRITE (UNIT=iounit, FMT="(T2,A,T63,A)") "ADMM| Density matrix purification method", "MO diagonalization"
    2140             :          CASE (do_admm_purify_mo_no_diag)
    2141           3 :             WRITE (UNIT=iounit, FMT="(T2,A,T71,A)") "ADMM| Density matrix purification method", "MO no diag"
    2142             :          CASE (do_admm_purify_mcweeny)
    2143           1 :             WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Density matrix purification method", "McWeeny"
    2144             :          CASE (do_admm_purify_none_dm)
    2145           6 :             WRITE (UNIT=iounit, FMT="(T2,A,T73,A)") "ADMM| Density matrix purification method", "NONE(DM)"
    2146             :          CASE DEFAULT
    2147         119 :             CPABORT("admm_purification_method")
    2148             :          END SELECT
    2149             : 
    2150         214 :          SELECT CASE (admm_control%method)
    2151             :          CASE (do_admm_basis_projection)
    2152          95 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Orbital projection on ADMM basis"
    2153             :          CASE (do_admm_blocking_purify_full)
    2154           3 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Blocked Fock matrix projection with full purification"
    2155             :          CASE (do_admm_blocked_projection)
    2156           6 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Blocked Fock matrix projection"
    2157             :          CASE (do_admm_charge_constrained_projection)
    2158          15 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Orbital projection with charge constrain"
    2159             :          CASE DEFAULT
    2160         119 :             CPABORT("admm method")
    2161             :          END SELECT
    2162             : 
    2163         136 :          SELECT CASE (admm_control%scaling_model)
    2164             :          CASE (do_admm_exch_scaling_none)
    2165             :          CASE (do_admm_exch_scaling_merlot)
    2166          17 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Use Merlot (2014) scaling model"
    2167             :          CASE DEFAULT
    2168         119 :             CPABORT("admm scaling_model")
    2169             :          END SELECT
    2170             : 
    2171         119 :          WRITE (UNIT=iounit, FMT="(T2,A,T61,G20.10)") "ADMM| eps_filter", admm_control%eps_filter
    2172             : 
    2173         127 :          SELECT CASE (admm_control%aux_exch_func)
    2174             :          CASE (do_admm_aux_exch_func_none)
    2175           8 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| No exchange functional correction term used"
    2176             :          CASE (do_admm_aux_exch_func_default, do_admm_aux_exch_func_default_libxc)
    2177          85 :             WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "(W)PBEX"
    2178             :          CASE (do_admm_aux_exch_func_pbex, do_admm_aux_exch_func_pbex_libxc)
    2179          17 :             WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Exchange functional in correction term", "PBEX"
    2180             :          CASE (do_admm_aux_exch_func_opt, do_admm_aux_exch_func_opt_libxc)
    2181           8 :             WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Exchange functional in correction term", "OPTX"
    2182             :          CASE (do_admm_aux_exch_func_bee, do_admm_aux_exch_func_bee_libxc)
    2183           1 :             WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "Becke88"
    2184             :          CASE (do_admm_aux_exch_func_sx_libxc)
    2185           0 :             WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "SlaterX"
    2186             :          CASE DEFAULT
    2187         119 :             CPABORT("admm aux_exch_func")
    2188             :          END SELECT
    2189             : 
    2190         119 :          WRITE (UNIT=iounit, FMT="(A)") ""
    2191             : 
    2192             :       END IF
    2193             : 
    2194             :       CALL cp_print_key_finished_output(iounit, logger, dft_section, &
    2195         446 :                                         "PRINT%DFT_CONTROL_PARAMETERS")
    2196         446 :    END SUBROUTINE write_admm_control
    2197             : 
    2198             : ! **************************************************************************************************
    2199             : !> \brief Write the xTB control parameters to the output unit.
    2200             : !> \param xtb_control ...
    2201             : !> \param dft_section ...
    2202             : ! **************************************************************************************************
    2203         936 :    SUBROUTINE write_xtb_control(xtb_control, dft_section)
    2204             :       TYPE(xtb_control_type), POINTER                    :: xtb_control
    2205             :       TYPE(section_vals_type), POINTER                   :: dft_section
    2206             : 
    2207             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'write_xtb_control'
    2208             : 
    2209             :       INTEGER                                            :: handle, output_unit
    2210             :       TYPE(cp_logger_type), POINTER                      :: logger
    2211             : 
    2212         936 :       CALL timeset(routineN, handle)
    2213         936 :       NULLIFY (logger)
    2214         936 :       logger => cp_get_default_logger()
    2215             : 
    2216             :       output_unit = cp_print_key_unit_nr(logger, dft_section, &
    2217         936 :                                          "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
    2218             : 
    2219         936 :       IF (output_unit > 0) THEN
    2220             : 
    2221             :          WRITE (UNIT=output_unit, FMT="(/,T2,A,T31,A50)") &
    2222          37 :             "xTB| Parameter file", ADJUSTR(TRIM(xtb_control%parameter_file_name))
    2223             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2224          37 :             "xTB| Basis expansion STO-NG", xtb_control%sto_ng
    2225             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2226          37 :             "xTB| Basis expansion STO-NG for Hydrogen", xtb_control%h_sto_ng
    2227             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,E10.4)") &
    2228          37 :             "xTB| Repulsive pair potential accuracy", xtb_control%eps_pair
    2229             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.6)") &
    2230          37 :             "xTB| Repulsive enhancement factor", xtb_control%enscale
    2231             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,L10)") &
    2232          37 :             "xTB| Halogen interaction potential", xtb_control%xb_interaction
    2233             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
    2234          37 :             "xTB| Halogen interaction potential cutoff radius", xtb_control%xb_radius
    2235             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,L10)") &
    2236          37 :             "xTB| Nonbonded interactions", xtb_control%do_nonbonded
    2237          37 :          SELECT CASE (xtb_control%vdw_type)
    2238             :          CASE (xtb_vdw_type_none)
    2239           0 :             WRITE (UNIT=output_unit, FMT="(T2,A)") "xTB| No vdW potential selected"
    2240             :          CASE (xtb_vdw_type_d3)
    2241          37 :             WRITE (UNIT=output_unit, FMT="(T2,A,T72,A)") "xTB| vdW potential type:", "DFTD3(BJ)"
    2242             :             WRITE (UNIT=output_unit, FMT="(T2,A,T31,A50)") &
    2243          37 :                "xTB| D3 Dispersion: Parameter file", ADJUSTR(TRIM(xtb_control%dispersion_parameter_file))
    2244             :          CASE (xtb_vdw_type_d4)
    2245           0 :             WRITE (UNIT=output_unit, FMT="(T2,A,T76,A)") "xTB| vdW potential type:", "DFTD4"
    2246             :             WRITE (UNIT=output_unit, FMT="(T2,A,T31,A50)") &
    2247           0 :                "xTB| D4 Dispersion: Parameter file", ADJUSTR(TRIM(xtb_control%dispersion_parameter_file))
    2248             :          CASE DEFAULT
    2249          37 :             CPABORT("vdw type")
    2250             :          END SELECT
    2251             :          WRITE (UNIT=output_unit, FMT="(T2,A,T51,3F10.3)") &
    2252          37 :             "xTB| Huckel constants ks kp kd", xtb_control%ks, xtb_control%kp, xtb_control%kd
    2253             :          WRITE (UNIT=output_unit, FMT="(T2,A,T61,2F10.3)") &
    2254          37 :             "xTB| Huckel constants ksp k2sh", xtb_control%ksp, xtb_control%k2sh
    2255             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
    2256          37 :             "xTB| Mataga-Nishimoto exponent", xtb_control%kg
    2257             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
    2258          37 :             "xTB| Repulsion potential exponent", xtb_control%kf
    2259             :          WRITE (UNIT=output_unit, FMT="(T2,A,T51,3F10.3)") &
    2260          37 :             "xTB| Coordination number scaling kcn(s) kcn(p) kcn(d)", &
    2261          74 :             xtb_control%kcns, xtb_control%kcnp, xtb_control%kcnd
    2262             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
    2263          37 :             "xTB| Electronegativity scaling", xtb_control%ken
    2264             :          WRITE (UNIT=output_unit, FMT="(T2,A,T61,2F10.3)") &
    2265          37 :             "xTB| Halogen potential scaling kxr kx2", xtb_control%kxr, xtb_control%kx2
    2266          37 :          WRITE (UNIT=output_unit, FMT="(/)")
    2267             : 
    2268             :       END IF
    2269             : 
    2270             :       CALL cp_print_key_finished_output(output_unit, logger, dft_section, &
    2271         936 :                                         "PRINT%DFT_CONTROL_PARAMETERS")
    2272             : 
    2273         936 :       CALL timestop(handle)
    2274             : 
    2275         936 :    END SUBROUTINE write_xtb_control
    2276             : 
    2277             : ! **************************************************************************************************
    2278             : !> \brief Purpose: Write the QS control parameters to the output unit.
    2279             : !> \param qs_control ...
    2280             : !> \param dft_section ...
    2281             : ! **************************************************************************************************
    2282       12480 :    SUBROUTINE write_qs_control(qs_control, dft_section)
    2283             :       TYPE(qs_control_type), INTENT(IN)                  :: qs_control
    2284             :       TYPE(section_vals_type), POINTER                   :: dft_section
    2285             : 
    2286             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'write_qs_control'
    2287             : 
    2288             :       CHARACTER(len=20)                                  :: method, quadrature
    2289             :       INTEGER                                            :: handle, i, igrid_level, ngrid_level, &
    2290             :                                                             output_unit
    2291             :       TYPE(cp_logger_type), POINTER                      :: logger
    2292             :       TYPE(ddapc_restraint_type), POINTER                :: ddapc_restraint_control
    2293             :       TYPE(enumeration_type), POINTER                    :: enum
    2294             :       TYPE(keyword_type), POINTER                        :: keyword
    2295             :       TYPE(section_type), POINTER                        :: qs_section
    2296             :       TYPE(section_vals_type), POINTER                   :: print_section_vals, qs_section_vals
    2297             : 
    2298        8476 :       IF (qs_control%semi_empirical) RETURN
    2299        6320 :       IF (qs_control%dftb) RETURN
    2300        6098 :       IF (qs_control%xtb) RETURN
    2301        5162 :       CALL timeset(routineN, handle)
    2302        5162 :       NULLIFY (logger, print_section_vals, qs_section, qs_section_vals)
    2303        5162 :       logger => cp_get_default_logger()
    2304        5162 :       print_section_vals => section_vals_get_subs_vals(dft_section, "PRINT")
    2305        5162 :       qs_section_vals => section_vals_get_subs_vals(dft_section, "QS")
    2306        5162 :       CALL section_vals_get(qs_section_vals, section=qs_section)
    2307             : 
    2308        5162 :       NULLIFY (enum, keyword)
    2309        5162 :       keyword => section_get_keyword(qs_section, "METHOD")
    2310        5162 :       CALL keyword_get(keyword, enum=enum)
    2311        5162 :       method = enum_i2c(enum, qs_control%method_id)
    2312             : 
    2313        5162 :       NULLIFY (enum, keyword)
    2314        5162 :       keyword => section_get_keyword(qs_section, "QUADRATURE")
    2315        5162 :       CALL keyword_get(keyword, enum=enum)
    2316        5162 :       quadrature = enum_i2c(enum, qs_control%gapw_control%quadrature)
    2317             : 
    2318             :       output_unit = cp_print_key_unit_nr(logger, print_section_vals, &
    2319        5162 :                                          "DFT_CONTROL_PARAMETERS", extension=".Log")
    2320        5162 :       IF (output_unit > 0) THEN
    2321        1340 :          ngrid_level = SIZE(qs_control%e_cutoff)
    2322             :          WRITE (UNIT=output_unit, FMT="(/,T2,A,T61,A20)") &
    2323        1340 :             "QS| Method:", ADJUSTR(method)
    2324        1340 :          IF (qs_control%pw_grid_opt%spherical) THEN
    2325             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,A)") &
    2326           0 :                "QS| Density plane wave grid type", " SPHERICAL HALFSPACE"
    2327        1340 :          ELSE IF (qs_control%pw_grid_opt%fullspace) THEN
    2328             :             WRITE (UNIT=output_unit, FMT="(T2,A,T57,A)") &
    2329        1340 :                "QS| Density plane wave grid type", " NON-SPHERICAL FULLSPACE"
    2330             :          ELSE
    2331             :             WRITE (UNIT=output_unit, FMT="(T2,A,T57,A)") &
    2332           0 :                "QS| Density plane wave grid type", " NON-SPHERICAL HALFSPACE"
    2333             :          END IF
    2334             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2335        1340 :             "QS| Number of grid levels:", SIZE(qs_control%e_cutoff)
    2336        1340 :          IF (ngrid_level == 1) THEN
    2337             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2338          69 :                "QS| Density cutoff [a.u.]:", qs_control%e_cutoff(1)
    2339             :          ELSE
    2340             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2341        1271 :                "QS| Density cutoff [a.u.]:", qs_control%cutoff
    2342        1271 :             IF (qs_control%commensurate_mgrids) &
    2343         131 :                WRITE (UNIT=output_unit, FMT="(T2,A)") "QS| Using commensurate multigrids"
    2344             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2345        1271 :                "QS| Multi grid cutoff [a.u.]: 1) grid level", qs_control%e_cutoff(1)
    2346             :             WRITE (UNIT=output_unit, FMT="(T2,A,I3,A,T71,F10.1)") &
    2347        3976 :                ("QS|                         ", igrid_level, ") grid level", &
    2348        5247 :                 qs_control%e_cutoff(igrid_level), &
    2349        6518 :                 igrid_level=2, SIZE(qs_control%e_cutoff))
    2350             :          END IF
    2351        1340 :          IF (qs_control%pao) THEN
    2352           0 :             WRITE (UNIT=output_unit, FMT="(T2,A)") "QS| PAO active"
    2353             :          END IF
    2354             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2355        1340 :             "QS| Grid level progression factor:", qs_control%progression_factor
    2356             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2357        1340 :             "QS| Relative density cutoff [a.u.]:", qs_control%relative_cutoff
    2358             :          WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2359        1340 :             "QS| Interaction thresholds: eps_pgf_orb:", &
    2360        1340 :             qs_control%eps_pgf_orb, &
    2361        1340 :             "QS|                         eps_filter_matrix:", &
    2362        1340 :             qs_control%eps_filter_matrix, &
    2363        1340 :             "QS|                         eps_core_charge:", &
    2364        1340 :             qs_control%eps_core_charge, &
    2365        1340 :             "QS|                         eps_rho_gspace:", &
    2366        1340 :             qs_control%eps_rho_gspace, &
    2367        1340 :             "QS|                         eps_rho_rspace:", &
    2368        1340 :             qs_control%eps_rho_rspace, &
    2369        1340 :             "QS|                         eps_gvg_rspace:", &
    2370        1340 :             qs_control%eps_gvg_rspace, &
    2371        1340 :             "QS|                         eps_ppl:", &
    2372        1340 :             qs_control%eps_ppl, &
    2373        1340 :             "QS|                         eps_ppnl:", &
    2374        2680 :             qs_control%eps_ppnl
    2375        1340 :          IF (qs_control%gapw) THEN
    2376         390 :             SELECT CASE (qs_control%gapw_control%basis_1c)
    2377             :             CASE (gapw_1c_orb)
    2378             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2379         192 :                   "QS| GAPW|      One center basis from orbital basis primitives"
    2380             :             CASE (gapw_1c_small)
    2381             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2382           2 :                   "QS| GAPW|      One center basis extended with primitives (small:s)"
    2383             :             CASE (gapw_1c_medium)
    2384             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2385           1 :                   "QS| GAPW|      One center basis extended with primitives (medium:sp)"
    2386             :             CASE (gapw_1c_large)
    2387             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2388           2 :                   "QS| GAPW|      One center basis extended with primitives (large:spd)"
    2389             :             CASE (gapw_1c_very_large)
    2390             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2391           1 :                   "QS| GAPW|      One center basis extended with primitives (very large:spdf)"
    2392             :             CASE DEFAULT
    2393         198 :                CPABORT("basis_1c incorrect")
    2394             :             END SELECT
    2395             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2396         198 :                "QS| GAPW|                   eps_fit:", &
    2397         198 :                qs_control%gapw_control%eps_fit, &
    2398         198 :                "QS| GAPW|                   eps_iso:", &
    2399         198 :                qs_control%gapw_control%eps_iso, &
    2400         198 :                "QS| GAPW|                   eps_svd:", &
    2401         198 :                qs_control%gapw_control%eps_svd, &
    2402         198 :                "QS| GAPW|                   eps_cpc:", &
    2403         396 :                qs_control%gapw_control%eps_cpc
    2404             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2405         198 :                "QS| GAPW|   atom-r-grid: quadrature:", &
    2406         396 :                ADJUSTR(quadrature)
    2407             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2408         198 :                "QS| GAPW|      atom-s-grid:  max l :", &
    2409         198 :                qs_control%gapw_control%lmax_sphere, &
    2410         198 :                "QS| GAPW|      max_l_rho0 :", &
    2411         396 :                qs_control%gapw_control%lmax_rho0
    2412         198 :             IF (qs_control%gapw_control%non_paw_atoms) THEN
    2413             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2414          30 :                   "QS| GAPW|      At least one kind is NOT PAW, i.e. it has only soft AO "
    2415             :             END IF
    2416         198 :             IF (qs_control%gapw_control%nopaw_as_gpw) THEN
    2417             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2418          30 :                   "QS| GAPW|      The NOT PAW atoms are treated fully GPW"
    2419             :             END IF
    2420             :          END IF
    2421        1340 :          IF (qs_control%gapw_xc) THEN
    2422          50 :             SELECT CASE (qs_control%gapw_control%basis_1c)
    2423             :             CASE (gapw_1c_orb)
    2424             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2425          25 :                   "QS| GAPW_XC|      One center basis from orbital basis primitives"
    2426             :             CASE (gapw_1c_small)
    2427             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2428           0 :                   "QS| GAPW_XC|      One center basis extended with primitives (small:s)"
    2429             :             CASE (gapw_1c_medium)
    2430             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2431           0 :                   "QS| GAPW_XC|      One center basis extended with primitives (medium:sp)"
    2432             :             CASE (gapw_1c_large)
    2433             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2434           0 :                   "QS| GAPW_XC|      One center basis extended with primitives (large:spd)"
    2435             :             CASE (gapw_1c_very_large)
    2436             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2437           0 :                   "QS| GAPW_XC|      One center basis extended with primitives (very large:spdf)"
    2438             :             CASE DEFAULT
    2439          25 :                CPABORT("basis_1c incorrect")
    2440             :             END SELECT
    2441             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2442          25 :                "QS| GAPW_XC|                eps_fit:", &
    2443          25 :                qs_control%gapw_control%eps_fit, &
    2444          25 :                "QS| GAPW_XC|                eps_iso:", &
    2445          25 :                qs_control%gapw_control%eps_iso, &
    2446          25 :                "QS| GAPW_XC|                eps_svd:", &
    2447          50 :                qs_control%gapw_control%eps_svd
    2448             :             WRITE (UNIT=output_unit, FMT="(T2,A,T55,A30)") &
    2449          25 :                "QS| GAPW_XC|atom-r-grid: quadrature:", &
    2450          50 :                enum_i2c(enum, qs_control%gapw_control%quadrature)
    2451             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2452          25 :                "QS| GAPW_XC|   atom-s-grid:  max l :", &
    2453          50 :                qs_control%gapw_control%lmax_sphere
    2454             :          END IF
    2455        1340 :          IF (qs_control%mulliken_restraint) THEN
    2456             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2457           1 :                "QS| Mulliken restraint target", qs_control%mulliken_restraint_control%target
    2458             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2459           1 :                "QS| Mulliken restraint strength", qs_control%mulliken_restraint_control%strength
    2460             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,I8)") &
    2461           1 :                "QS| Mulliken restraint atoms: ", qs_control%mulliken_restraint_control%natoms
    2462           2 :             WRITE (UNIT=output_unit, FMT="(5I8)") qs_control%mulliken_restraint_control%atoms
    2463             :          END IF
    2464        1340 :          IF (qs_control%ddapc_restraint) THEN
    2465          14 :             DO i = 1, SIZE(qs_control%ddapc_restraint_control)
    2466           8 :                ddapc_restraint_control => qs_control%ddapc_restraint_control(i)
    2467           8 :                IF (SIZE(qs_control%ddapc_restraint_control) .GT. 1) &
    2468             :                   WRITE (UNIT=output_unit, FMT="(T2,A,T3,I8)") &
    2469           3 :                   "QS| parameters for DDAPC restraint number", i
    2470             :                WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2471           8 :                   "QS| ddapc restraint target", ddapc_restraint_control%target
    2472             :                WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2473           8 :                   "QS| ddapc restraint strength", ddapc_restraint_control%strength
    2474             :                WRITE (UNIT=output_unit, FMT="(T2,A,T73,I8)") &
    2475           8 :                   "QS| ddapc restraint atoms: ", ddapc_restraint_control%natoms
    2476          17 :                WRITE (UNIT=output_unit, FMT="(5I8)") ddapc_restraint_control%atoms
    2477           8 :                WRITE (UNIT=output_unit, FMT="(T2,A)") "Coefficients:"
    2478          17 :                WRITE (UNIT=output_unit, FMT="(5F6.2)") ddapc_restraint_control%coeff
    2479           6 :                SELECT CASE (ddapc_restraint_control%functional_form)
    2480             :                CASE (do_ddapc_restraint)
    2481             :                   WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2482           3 :                      "QS| ddapc restraint functional form :", "RESTRAINT"
    2483             :                CASE (do_ddapc_constraint)
    2484             :                   WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2485           5 :                      "QS| ddapc restraint functional form :", "CONSTRAINT"
    2486             :                CASE DEFAULT
    2487           8 :                   CPABORT("Unknown ddapc restraint")
    2488             :                END SELECT
    2489             :             END DO
    2490             :          END IF
    2491        1340 :          IF (qs_control%s2_restraint) THEN
    2492             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2493           0 :                "QS| s2 restraint target", qs_control%s2_restraint_control%target
    2494             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2495           0 :                "QS| s2 restraint strength", qs_control%s2_restraint_control%strength
    2496           0 :             SELECT CASE (qs_control%s2_restraint_control%functional_form)
    2497             :             CASE (do_s2_restraint)
    2498             :                WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2499           0 :                   "QS| s2 restraint functional form :", "RESTRAINT"
    2500           0 :                CPABORT("Not yet implemented")
    2501             :             CASE (do_s2_constraint)
    2502             :                WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2503           0 :                   "QS| s2 restraint functional form :", "CONSTRAINT"
    2504             :             CASE DEFAULT
    2505           0 :                CPABORT("Unknown ddapc restraint")
    2506             :             END SELECT
    2507             :          END IF
    2508             :       END IF
    2509             :       CALL cp_print_key_finished_output(output_unit, logger, print_section_vals, &
    2510        5162 :                                         "DFT_CONTROL_PARAMETERS")
    2511             : 
    2512        5162 :       CALL timestop(handle)
    2513             : 
    2514             :    END SUBROUTINE write_qs_control
    2515             : 
    2516             : ! **************************************************************************************************
    2517             : !> \brief reads the input parameters needed for ddapc.
    2518             : !> \param qs_control ...
    2519             : !> \param qs_section ...
    2520             : !> \param ddapc_restraint_section ...
    2521             : !> \author fschiff
    2522             : !> \note
    2523             : !>      either reads DFT%QS%DDAPC_RESTRAINT or PROPERTIES%ET_coupling
    2524             : !>      if(qs_section is present the DFT part is read, if ddapc_restraint_section
    2525             : !>      is present ET_COUPLING is read. Avoid having both!!!
    2526             : ! **************************************************************************************************
    2527          14 :    SUBROUTINE read_ddapc_section(qs_control, qs_section, ddapc_restraint_section)
    2528             : 
    2529             :       TYPE(qs_control_type), INTENT(INOUT)               :: qs_control
    2530             :       TYPE(section_vals_type), OPTIONAL, POINTER         :: qs_section, ddapc_restraint_section
    2531             : 
    2532             :       INTEGER                                            :: i, j, jj, k, n_rep
    2533          14 :       INTEGER, DIMENSION(:), POINTER                     :: tmplist
    2534          14 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: rtmplist
    2535             :       TYPE(ddapc_restraint_type), POINTER                :: ddapc_restraint_control
    2536             :       TYPE(section_vals_type), POINTER                   :: ddapc_section
    2537             : 
    2538          14 :       IF (PRESENT(ddapc_restraint_section)) THEN
    2539           0 :          IF (ASSOCIATED(qs_control%ddapc_restraint_control)) THEN
    2540           0 :             IF (SIZE(qs_control%ddapc_restraint_control) .GE. 2) &
    2541           0 :                CPABORT("ET_COUPLING cannot be used in combination with a normal restraint")
    2542             :          ELSE
    2543           0 :             ddapc_section => ddapc_restraint_section
    2544           0 :             ALLOCATE (qs_control%ddapc_restraint_control(1))
    2545             :          END IF
    2546             :       END IF
    2547             : 
    2548          14 :       IF (PRESENT(qs_section)) THEN
    2549          14 :          NULLIFY (ddapc_section)
    2550             :          ddapc_section => section_vals_get_subs_vals(qs_section, &
    2551          14 :                                                      "DDAPC_RESTRAINT")
    2552             :       END IF
    2553             : 
    2554          32 :       DO i = 1, SIZE(qs_control%ddapc_restraint_control)
    2555             : 
    2556          18 :          CALL ddapc_control_create(qs_control%ddapc_restraint_control(i))
    2557          18 :          ddapc_restraint_control => qs_control%ddapc_restraint_control(i)
    2558             : 
    2559             :          CALL section_vals_val_get(ddapc_section, "STRENGTH", i_rep_section=i, &
    2560          18 :                                    r_val=ddapc_restraint_control%strength)
    2561             :          CALL section_vals_val_get(ddapc_section, "TARGET", i_rep_section=i, &
    2562          18 :                                    r_val=ddapc_restraint_control%target)
    2563             :          CALL section_vals_val_get(ddapc_section, "FUNCTIONAL_FORM", i_rep_section=i, &
    2564          18 :                                    i_val=ddapc_restraint_control%functional_form)
    2565             :          CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
    2566          18 :                                    n_rep_val=n_rep)
    2567             :          CALL section_vals_val_get(ddapc_section, "TYPE_OF_DENSITY", i_rep_section=i, &
    2568          18 :                                    i_val=ddapc_restraint_control%density_type)
    2569             : 
    2570          18 :          jj = 0
    2571          36 :          DO k = 1, n_rep
    2572             :             CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
    2573          18 :                                       i_rep_val=k, i_vals=tmplist)
    2574          56 :             DO j = 1, SIZE(tmplist)
    2575          38 :                jj = jj + 1
    2576             :             END DO
    2577             :          END DO
    2578          18 :          IF (jj < 1) CPABORT("Need at least 1 atom to use ddapc constraints")
    2579          18 :          ddapc_restraint_control%natoms = jj
    2580          18 :          IF (ASSOCIATED(ddapc_restraint_control%atoms)) &
    2581           0 :             DEALLOCATE (ddapc_restraint_control%atoms)
    2582          54 :          ALLOCATE (ddapc_restraint_control%atoms(ddapc_restraint_control%natoms))
    2583          18 :          jj = 0
    2584          36 :          DO k = 1, n_rep
    2585             :             CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
    2586          18 :                                       i_rep_val=k, i_vals=tmplist)
    2587          56 :             DO j = 1, SIZE(tmplist)
    2588          20 :                jj = jj + 1
    2589          38 :                ddapc_restraint_control%atoms(jj) = tmplist(j)
    2590             :             END DO
    2591             :          END DO
    2592             : 
    2593          18 :          IF (ASSOCIATED(ddapc_restraint_control%coeff)) &
    2594           0 :             DEALLOCATE (ddapc_restraint_control%coeff)
    2595          54 :          ALLOCATE (ddapc_restraint_control%coeff(ddapc_restraint_control%natoms))
    2596          38 :          ddapc_restraint_control%coeff = 1.0_dp
    2597             : 
    2598             :          CALL section_vals_val_get(ddapc_section, "COEFF", i_rep_section=i, &
    2599          18 :                                    n_rep_val=n_rep)
    2600          18 :          jj = 0
    2601          20 :          DO k = 1, n_rep
    2602             :             CALL section_vals_val_get(ddapc_section, "COEFF", i_rep_section=i, &
    2603           2 :                                       i_rep_val=k, r_vals=rtmplist)
    2604          22 :             DO j = 1, SIZE(rtmplist)
    2605           2 :                jj = jj + 1
    2606           2 :                IF (jj > ddapc_restraint_control%natoms) &
    2607           0 :                   CPABORT("Need the same number of coeff as there are atoms ")
    2608           4 :                ddapc_restraint_control%coeff(jj) = rtmplist(j)
    2609             :             END DO
    2610             :          END DO
    2611          18 :          IF (jj < ddapc_restraint_control%natoms .AND. jj .NE. 0) &
    2612          50 :             CPABORT("Need no or the same number of coeff as there are atoms.")
    2613             :       END DO
    2614          14 :       k = 0
    2615          32 :       DO i = 1, SIZE(qs_control%ddapc_restraint_control)
    2616          18 :          IF (qs_control%ddapc_restraint_control(i)%functional_form == &
    2617          24 :              do_ddapc_constraint) k = k + 1
    2618             :       END DO
    2619          14 :       IF (k == 2) CALL cp_abort(__LOCATION__, &
    2620           0 :                                 "Only a single constraint possible yet, try to use restraints instead ")
    2621             : 
    2622          14 :    END SUBROUTINE read_ddapc_section
    2623             : 
    2624             : ! **************************************************************************************************
    2625             : !> \brief ...
    2626             : !> \param dft_control ...
    2627             : !> \param efield_section ...
    2628             : ! **************************************************************************************************
    2629         262 :    SUBROUTINE read_efield_sections(dft_control, efield_section)
    2630             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2631             :       TYPE(section_vals_type), POINTER                   :: efield_section
    2632             : 
    2633             :       CHARACTER(len=default_path_length)                 :: file_name
    2634             :       INTEGER                                            :: i, io, j, n, unit_nr
    2635         262 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tmp_vals
    2636             :       TYPE(efield_type), POINTER                         :: efield
    2637             :       TYPE(section_vals_type), POINTER                   :: tmp_section
    2638             : 
    2639         524 :       DO i = 1, SIZE(dft_control%efield_fields)
    2640         262 :          NULLIFY (dft_control%efield_fields(i)%efield)
    2641        1310 :          ALLOCATE (dft_control%efield_fields(i)%efield)
    2642         262 :          efield => dft_control%efield_fields(i)%efield
    2643         262 :          NULLIFY (efield%envelop_i_vars, efield%envelop_r_vars)
    2644             :          CALL section_vals_val_get(efield_section, "INTENSITY", i_rep_section=i, &
    2645         262 :                                    r_val=efield%strength)
    2646             : 
    2647             :          CALL section_vals_val_get(efield_section, "POLARISATION", i_rep_section=i, &
    2648         262 :                                    r_vals=tmp_vals)
    2649         786 :          ALLOCATE (efield%polarisation(SIZE(tmp_vals)))
    2650        2096 :          efield%polarisation = tmp_vals
    2651             :          CALL section_vals_val_get(efield_section, "PHASE", i_rep_section=i, &
    2652         262 :                                    r_val=efield%phase_offset)
    2653             :          CALL section_vals_val_get(efield_section, "ENVELOP", i_rep_section=i, &
    2654         262 :                                    i_val=efield%envelop_id)
    2655             :          CALL section_vals_val_get(efield_section, "WAVELENGTH", i_rep_section=i, &
    2656         262 :                                    r_val=efield%wavelength)
    2657             :          CALL section_vals_val_get(efield_section, "VEC_POT_INITIAL", i_rep_section=i, &
    2658         262 :                                    r_vals=tmp_vals)
    2659        2096 :          efield%vec_pot_initial = tmp_vals
    2660             : 
    2661         524 :          IF (efield%envelop_id == constant_env) THEN
    2662         252 :             ALLOCATE (efield%envelop_i_vars(2))
    2663         252 :             tmp_section => section_vals_get_subs_vals(efield_section, "CONSTANT_ENV", i_rep_section=i)
    2664             :             CALL section_vals_val_get(tmp_section, "START_STEP", &
    2665         252 :                                       i_val=efield%envelop_i_vars(1))
    2666             :             CALL section_vals_val_get(tmp_section, "END_STEP", &
    2667         252 :                                       i_val=efield%envelop_i_vars(2))
    2668          10 :          ELSE IF (efield%envelop_id == gaussian_env) THEN
    2669           6 :             ALLOCATE (efield%envelop_r_vars(2))
    2670           6 :             tmp_section => section_vals_get_subs_vals(efield_section, "GAUSSIAN_ENV", i_rep_section=i)
    2671             :             CALL section_vals_val_get(tmp_section, "T0", &
    2672           6 :                                       r_val=efield%envelop_r_vars(1))
    2673             :             CALL section_vals_val_get(tmp_section, "SIGMA", &
    2674           6 :                                       r_val=efield%envelop_r_vars(2))
    2675           4 :          ELSE IF (efield%envelop_id == ramp_env) THEN
    2676           2 :             ALLOCATE (efield%envelop_i_vars(4))
    2677           2 :             tmp_section => section_vals_get_subs_vals(efield_section, "RAMP_ENV", i_rep_section=i)
    2678             :             CALL section_vals_val_get(tmp_section, "START_STEP_IN", &
    2679           2 :                                       i_val=efield%envelop_i_vars(1))
    2680             :             CALL section_vals_val_get(tmp_section, "END_STEP_IN", &
    2681           2 :                                       i_val=efield%envelop_i_vars(2))
    2682             :             CALL section_vals_val_get(tmp_section, "START_STEP_OUT", &
    2683           2 :                                       i_val=efield%envelop_i_vars(3))
    2684             :             CALL section_vals_val_get(tmp_section, "END_STEP_OUT", &
    2685           2 :                                       i_val=efield%envelop_i_vars(4))
    2686           2 :          ELSE IF (efield%envelop_id == custom_env) THEN
    2687           2 :             tmp_section => section_vals_get_subs_vals(efield_section, "CUSTOM_ENV", i_rep_section=i)
    2688           2 :             CALL section_vals_val_get(tmp_section, "EFIELD_FILE_NAME", c_val=file_name)
    2689           2 :             CALL open_file(file_name=TRIM(file_name), file_action="READ", file_status="OLD", unit_number=unit_nr)
    2690             :             !Determine the number of lines in file
    2691           2 :             n = 0
    2692          10 :             DO WHILE (.TRUE.)
    2693          12 :                READ (unit_nr, *, iostat=io)
    2694          12 :                IF (io /= 0) EXIT
    2695          10 :                n = n + 1
    2696             :             END DO
    2697           2 :             REWIND (unit_nr)
    2698           6 :             ALLOCATE (efield%envelop_r_vars(n + 1))
    2699             :             !Store the timestep of the list in the first entry of the r_vars
    2700           2 :             CALL section_vals_val_get(tmp_section, "TIMESTEP", r_val=efield%envelop_r_vars(1))
    2701             :             !Read the file
    2702          12 :             DO j = 2, n + 1
    2703          10 :                READ (unit_nr, *) efield%envelop_r_vars(j)
    2704          12 :                efield%envelop_r_vars(j) = cp_unit_to_cp2k(efield%envelop_r_vars(j), "volt/m")
    2705             :             END DO
    2706           2 :             CALL close_file(unit_nr)
    2707             :          END IF
    2708             :       END DO
    2709         262 :    END SUBROUTINE read_efield_sections
    2710             : 
    2711             : ! **************************************************************************************************
    2712             : !> \brief reads the input parameters needed real time propagation
    2713             : !> \param dft_control ...
    2714             : !> \param rtp_section ...
    2715             : !> \author fschiff
    2716             : ! **************************************************************************************************
    2717         496 :    SUBROUTINE read_rtp_section(dft_control, rtp_section)
    2718             : 
    2719             :       TYPE(dft_control_type), INTENT(INOUT)              :: dft_control
    2720             :       TYPE(section_vals_type), POINTER                   :: rtp_section
    2721             : 
    2722         248 :       INTEGER, DIMENSION(:), POINTER                     :: tmp
    2723             :       LOGICAL                                            :: is_present
    2724             :       TYPE(section_vals_type), POINTER                   :: proj_mo_section
    2725             : 
    2726        2976 :       ALLOCATE (dft_control%rtp_control)
    2727             :       CALL section_vals_val_get(rtp_section, "MAX_ITER", &
    2728         248 :                                 i_val=dft_control%rtp_control%max_iter)
    2729             :       CALL section_vals_val_get(rtp_section, "MAT_EXP", &
    2730         248 :                                 i_val=dft_control%rtp_control%mat_exp)
    2731             :       CALL section_vals_val_get(rtp_section, "ASPC_ORDER", &
    2732         248 :                                 i_val=dft_control%rtp_control%aspc_order)
    2733             :       CALL section_vals_val_get(rtp_section, "EXP_ACCURACY", &
    2734         248 :                                 r_val=dft_control%rtp_control%eps_exp)
    2735             :       CALL section_vals_val_get(rtp_section, "RTBSE%_SECTION_PARAMETERS_", &
    2736         248 :                                 i_val=dft_control%rtp_control%rtp_method)
    2737             :       CALL section_vals_val_get(rtp_section, "RTBSE%RTBSE_HAMILTONIAN", &
    2738         248 :                                 i_val=dft_control%rtp_control%rtbse_ham)
    2739             :       CALL section_vals_val_get(rtp_section, "PROPAGATOR", &
    2740         248 :                                 i_val=dft_control%rtp_control%propagator)
    2741             :       CALL section_vals_val_get(rtp_section, "EPS_ITER", &
    2742         248 :                                 r_val=dft_control%rtp_control%eps_ener)
    2743             :       CALL section_vals_val_get(rtp_section, "INITIAL_WFN", &
    2744         248 :                                 i_val=dft_control%rtp_control%initial_wfn)
    2745             :       CALL section_vals_val_get(rtp_section, "HFX_BALANCE_IN_CORE", &
    2746         248 :                                 l_val=dft_control%rtp_control%hfx_redistribute)
    2747             :       CALL section_vals_val_get(rtp_section, "APPLY_WFN_MIX_INIT_RESTART", &
    2748         248 :                                 l_val=dft_control%rtp_control%apply_wfn_mix_init_restart)
    2749             :       CALL section_vals_val_get(rtp_section, "APPLY_DELTA_PULSE", &
    2750         248 :                                 l_val=dft_control%rtp_control%apply_delta_pulse)
    2751             :       CALL section_vals_val_get(rtp_section, "APPLY_DELTA_PULSE_MAG", &
    2752         248 :                                 l_val=dft_control%rtp_control%apply_delta_pulse_mag)
    2753             :       CALL section_vals_val_get(rtp_section, "VELOCITY_GAUGE", &
    2754         248 :                                 l_val=dft_control%rtp_control%velocity_gauge)
    2755             :       CALL section_vals_val_get(rtp_section, "VG_COM_NL", &
    2756         248 :                                 l_val=dft_control%rtp_control%nl_gauge_transform)
    2757             :       CALL section_vals_val_get(rtp_section, "PERIODIC", &
    2758         248 :                                 l_val=dft_control%rtp_control%periodic)
    2759             :       CALL section_vals_val_get(rtp_section, "DENSITY_PROPAGATION", &
    2760         248 :                                 l_val=dft_control%rtp_control%linear_scaling)
    2761             :       CALL section_vals_val_get(rtp_section, "MCWEENY_MAX_ITER", &
    2762         248 :                                 i_val=dft_control%rtp_control%mcweeny_max_iter)
    2763             :       CALL section_vals_val_get(rtp_section, "ACCURACY_REFINEMENT", &
    2764         248 :                                 i_val=dft_control%rtp_control%acc_ref)
    2765             :       CALL section_vals_val_get(rtp_section, "MCWEENY_EPS", &
    2766         248 :                                 r_val=dft_control%rtp_control%mcweeny_eps)
    2767             :       CALL section_vals_val_get(rtp_section, "DELTA_PULSE_SCALE", &
    2768         248 :                                 r_val=dft_control%rtp_control%delta_pulse_scale)
    2769             :       CALL section_vals_val_get(rtp_section, "DELTA_PULSE_DIRECTION", &
    2770         248 :                                 i_vals=tmp)
    2771         992 :       dft_control%rtp_control%delta_pulse_direction = tmp
    2772             :       CALL section_vals_val_get(rtp_section, "SC_CHECK_START", &
    2773         248 :                                 i_val=dft_control%rtp_control%sc_check_start)
    2774         248 :       proj_mo_section => section_vals_get_subs_vals(rtp_section, "PRINT%PROJECTION_MO")
    2775         248 :       CALL section_vals_get(proj_mo_section, explicit=is_present)
    2776         248 :       IF (is_present) THEN
    2777           4 :          IF (dft_control%rtp_control%linear_scaling) &
    2778             :             CALL cp_abort(__LOCATION__, &
    2779             :                           "You have defined a time dependent projection of mos, but "// &
    2780             :                           "only the density matrix is propagated (DENSITY_PROPAGATION "// &
    2781             :                           ".TRUE.). Please either use MO-based real time DFT or do not "// &
    2782           0 :                           "define any PRINT%PROJECTION_MO section")
    2783           4 :          dft_control%rtp_control%is_proj_mo = .TRUE.
    2784             :       ELSE
    2785         244 :          dft_control%rtp_control%is_proj_mo = .FALSE.
    2786             :       END IF
    2787             : 
    2788         248 :    END SUBROUTINE read_rtp_section
    2789             : 
    2790             : ! **************************************************************************************************
    2791             : !> \brief Parses the BLOCK_LIST keywords from the ADMM section
    2792             : !> \param admm_control ...
    2793             : !> \param dft_section ...
    2794             : ! **************************************************************************************************
    2795         446 :    SUBROUTINE read_admm_block_list(admm_control, dft_section)
    2796             :       TYPE(admm_control_type), POINTER                   :: admm_control
    2797             :       TYPE(section_vals_type), POINTER                   :: dft_section
    2798             : 
    2799             :       INTEGER                                            :: irep, list_size, n_rep
    2800         446 :       INTEGER, DIMENSION(:), POINTER                     :: tmplist
    2801             : 
    2802         446 :       NULLIFY (tmplist)
    2803             : 
    2804             :       CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%BLOCK_LIST", &
    2805         446 :                                 n_rep_val=n_rep)
    2806             : 
    2807         946 :       ALLOCATE (admm_control%blocks(n_rep))
    2808             : 
    2809         482 :       DO irep = 1, n_rep
    2810             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%BLOCK_LIST", &
    2811          36 :                                    i_rep_val=irep, i_vals=tmplist)
    2812          36 :          list_size = SIZE(tmplist)
    2813         108 :          ALLOCATE (admm_control%blocks(irep)%list(list_size))
    2814         654 :          admm_control%blocks(irep)%list(:) = tmplist(:)
    2815             :       END DO
    2816             : 
    2817         446 :    END SUBROUTINE read_admm_block_list
    2818             : 
    2819             : END MODULE cp_control_utils

Generated by: LCOV version 1.15