Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2026 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Utilities to set up the control types
10 : ! **************************************************************************************************
11 : MODULE cp_control_utils
12 : USE bibliography, ONLY: &
13 : Andreussi2012, Asgeirsson2017, Bannwarth2019, Caldeweyher2017, Caldeweyher2020, Dewar1977, &
14 : Dewar1985, Elstner1998, Fattebert2002, Grimme2017, Hu2007, Krack2000, Lippert1997, &
15 : Lippert1999, Porezag1995, Pracht2019, Repasky2002, Rocha2006, Schenter2008, Seifert1996, &
16 : Souza2002, Stengel2009, Stewart1989, Stewart2007, Thiel1992, Umari2002, VanVoorhis2015, &
17 : VandeVondele2005a, VandeVondele2005b, Yin2017, Zhechkov2005, cite_reference
18 : USE cp_control_types, ONLY: &
19 : admm_control_create, admm_control_type, ddapc_control_create, ddapc_restraint_type, &
20 : dft_control_create, dft_control_type, efield_type, expot_control_create, &
21 : maxwell_control_create, qs_control_type, rixs_control_type, tddfpt2_control_type, &
22 : xtb_control_type
23 : USE cp_files, ONLY: close_file,&
24 : open_file
25 : USE cp_log_handling, ONLY: cp_get_default_logger,&
26 : cp_logger_type
27 : USE cp_output_handling, ONLY: cp_print_key_finished_output,&
28 : cp_print_key_unit_nr
29 : USE cp_parser_methods, ONLY: parser_read_line
30 : USE cp_parser_types, ONLY: cp_parser_type,&
31 : parser_create,&
32 : parser_release,&
33 : parser_reset
34 : USE cp_units, ONLY: cp_unit_from_cp2k,&
35 : cp_unit_to_cp2k
36 : USE eeq_input, ONLY: read_eeq_param
37 : USE force_fields_input, ONLY: read_gp_section
38 : USE input_constants, ONLY: &
39 : admm1_type, admm2_type, admmp_type, admmq_type, admms_type, constant_env, custom_env, &
40 : do_admm_aux_exch_func_bee, do_admm_aux_exch_func_bee_libxc, do_admm_aux_exch_func_default, &
41 : do_admm_aux_exch_func_default_libxc, do_admm_aux_exch_func_none, &
42 : do_admm_aux_exch_func_opt, do_admm_aux_exch_func_opt_libxc, do_admm_aux_exch_func_pbex, &
43 : do_admm_aux_exch_func_pbex_libxc, do_admm_aux_exch_func_sx_libxc, &
44 : do_admm_basis_projection, do_admm_blocked_projection, do_admm_blocking_purify_full, &
45 : do_admm_charge_constrained_projection, do_admm_exch_scaling_merlot, &
46 : do_admm_exch_scaling_none, do_admm_purify_cauchy, do_admm_purify_cauchy_subspace, &
47 : do_admm_purify_mcweeny, do_admm_purify_mo_diag, do_admm_purify_mo_no_diag, &
48 : do_admm_purify_none, do_admm_purify_none_dm, do_ddapc_constraint, do_ddapc_restraint, &
49 : do_method_am1, do_method_dftb, do_method_gapw, do_method_gapw_xc, do_method_gpw, &
50 : do_method_lrigpw, do_method_mndo, do_method_mndod, do_method_ofgpw, do_method_pdg, &
51 : do_method_pm3, do_method_pm6, do_method_pm6fm, do_method_pnnl, do_method_rigpw, &
52 : do_method_rm1, do_method_xtb, do_pwgrid_ns_fullspace, do_pwgrid_ns_halfspace, &
53 : do_pwgrid_spherical, do_s2_constraint, do_s2_restraint, do_se_is_kdso, do_se_is_kdso_d, &
54 : do_se_is_slater, do_se_lr_ewald, do_se_lr_ewald_gks, do_se_lr_ewald_r3, do_se_lr_none, &
55 : gapw_1c_large, gapw_1c_medium, gapw_1c_orb, gapw_1c_small, gapw_1c_very_large, &
56 : gaussian_env, no_admm_type, numerical, ramp_env, real_time_propagation, rtp_method_bse, &
57 : sccs_andreussi, sccs_derivative_cd3, sccs_derivative_cd5, sccs_derivative_cd7, &
58 : sccs_derivative_fft, sccs_fattebert_gygi, sic_ad, sic_eo, sic_list_all, sic_list_unpaired, &
59 : sic_mauri_spz, sic_mauri_us, sic_none, slater, tddfpt_dipole_length, tddfpt_kernel_stda, &
60 : use_mom_ref_user, xtb_vdw_type_d3, xtb_vdw_type_d4, xtb_vdw_type_none
61 : USE input_cp2k_check, ONLY: xc_functionals_expand
62 : USE input_cp2k_dft, ONLY: create_dft_section
63 : USE input_enumeration_types, ONLY: enum_i2c,&
64 : enumeration_type
65 : USE input_keyword_types, ONLY: keyword_get,&
66 : keyword_type
67 : USE input_section_types, ONLY: &
68 : section_get_ival, section_get_keyword, section_release, section_type, section_vals_get, &
69 : section_vals_get_subs_vals, section_vals_type, section_vals_val_get, section_vals_val_set
70 : USE kinds, ONLY: default_path_length,&
71 : default_string_length,&
72 : dp
73 : USE mathconstants, ONLY: fourpi
74 : USE pair_potential_types, ONLY: pair_potential_reallocate
75 : USE periodic_table, ONLY: get_ptable_info
76 : USE qs_cdft_utils, ONLY: read_cdft_control_section
77 : USE smeagol_control_types, ONLY: read_smeagol_control
78 : USE string_utilities, ONLY: uppercase
79 : USE util, ONLY: sort
80 : USE xas_tdp_types, ONLY: read_xas_tdp_control
81 : USE xc, ONLY: xc_uses_kinetic_energy_density,&
82 : xc_uses_norm_drho
83 : USE xc_input_constants, ONLY: xc_deriv_collocate
84 : USE xc_write_output, ONLY: xc_write
85 : #include "./base/base_uses.f90"
86 :
87 : IMPLICIT NONE
88 :
89 : PRIVATE
90 :
91 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'cp_control_utils'
92 :
93 : PUBLIC :: read_dft_control, &
94 : read_rixs_control, &
95 : read_mgrid_section, &
96 : read_qs_section, &
97 : read_tddfpt2_control, &
98 : write_dft_control, &
99 : write_qs_control, &
100 : write_admm_control, &
101 : read_ddapc_section
102 : CONTAINS
103 :
104 : ! **************************************************************************************************
105 : !> \brief ...
106 : !> \param dft_control ...
107 : !> \param dft_section ...
108 : ! **************************************************************************************************
109 111780 : SUBROUTINE read_dft_control(dft_control, dft_section)
110 : TYPE(dft_control_type), POINTER :: dft_control
111 : TYPE(section_vals_type), POINTER :: dft_section
112 :
113 : CHARACTER(len=default_path_length) :: basis_set_file_name, &
114 : intensities_file_name, &
115 : potential_file_name
116 : CHARACTER(LEN=default_string_length), &
117 7452 : DIMENSION(:), POINTER :: tmpstringlist
118 : INTEGER :: admmtype, irep, isize, method_id, nrep, &
119 : xc_deriv_method_id
120 : LOGICAL :: at_end, do_hfx, do_ot, do_rpa_admm, do_rtp, exopt1, exopt2, exopt3, explicit, &
121 : is_present, l_param, local_moment_possible, not_SE, was_present
122 : REAL(KIND=dp) :: density_cut, gradient_cut, tau_cut
123 7452 : REAL(KIND=dp), DIMENSION(:), POINTER :: pol
124 : TYPE(cp_logger_type), POINTER :: logger
125 : TYPE(cp_parser_type) :: parser
126 : TYPE(section_vals_type), POINTER :: hairy_probes_section, hfx_section, maxwell_section, &
127 : sccs_section, scf_section, tmp_section, xc_fun_section, xc_section
128 :
129 7452 : was_present = .FALSE.
130 :
131 7452 : logger => cp_get_default_logger()
132 :
133 7452 : NULLIFY (tmp_section, xc_fun_section, xc_section)
134 7452 : ALLOCATE (dft_control)
135 7452 : CALL dft_control_create(dft_control)
136 : ! determine wheather this is a semiempirical or DFTB run
137 : ! --> (no XC section needs to be provided)
138 7452 : not_SE = .TRUE.
139 7452 : CALL section_vals_val_get(dft_section, "QS%METHOD", i_val=method_id)
140 2164 : SELECT CASE (method_id)
141 : CASE (do_method_dftb, do_method_xtb, do_method_mndo, do_method_am1, do_method_pm3, do_method_pnnl, &
142 : do_method_pm6, do_method_pm6fm, do_method_pdg, do_method_rm1, do_method_mndod)
143 7452 : not_SE = .FALSE.
144 : END SELECT
145 : ! Check for XC section and XC_FUNCTIONAL section
146 7452 : xc_section => section_vals_get_subs_vals(dft_section, "XC")
147 7452 : CALL section_vals_get(xc_section, explicit=is_present)
148 7452 : IF (.NOT. is_present .AND. not_SE) THEN
149 0 : CPABORT("XC section missing.")
150 : END IF
151 7452 : IF (is_present) THEN
152 5304 : CALL section_vals_val_get(xc_section, "density_cutoff", r_val=density_cut)
153 5304 : CALL section_vals_val_get(xc_section, "gradient_cutoff", r_val=gradient_cut)
154 5304 : CALL section_vals_val_get(xc_section, "tau_cutoff", r_val=tau_cut)
155 : ! Perform numerical stability checks and possibly correct the issues
156 5304 : IF (density_cut <= EPSILON(0.0_dp)*100.0_dp) &
157 : CALL cp_warn(__LOCATION__, &
158 : "DENSITY_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
159 0 : "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
160 5304 : density_cut = MAX(EPSILON(0.0_dp)*100.0_dp, density_cut)
161 5304 : IF (gradient_cut <= EPSILON(0.0_dp)*100.0_dp) &
162 : CALL cp_warn(__LOCATION__, &
163 : "GRADIENT_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
164 0 : "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
165 5304 : gradient_cut = MAX(EPSILON(0.0_dp)*100.0_dp, gradient_cut)
166 5304 : IF (tau_cut <= EPSILON(0.0_dp)*100.0_dp) &
167 : CALL cp_warn(__LOCATION__, &
168 : "TAU_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
169 0 : "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
170 5304 : tau_cut = MAX(EPSILON(0.0_dp)*100.0_dp, tau_cut)
171 5304 : CALL section_vals_val_set(xc_section, "density_cutoff", r_val=density_cut)
172 5304 : CALL section_vals_val_set(xc_section, "gradient_cutoff", r_val=gradient_cut)
173 5304 : CALL section_vals_val_set(xc_section, "tau_cutoff", r_val=tau_cut)
174 : END IF
175 7452 : xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
176 7452 : CALL section_vals_get(xc_fun_section, explicit=is_present)
177 7452 : IF (.NOT. is_present .AND. not_SE) THEN
178 0 : CPABORT("XC_FUNCTIONAL section missing.")
179 : END IF
180 7452 : scf_section => section_vals_get_subs_vals(dft_section, "SCF")
181 7452 : CALL section_vals_val_get(dft_section, "UKS", l_val=dft_control%uks)
182 7452 : CALL section_vals_val_get(dft_section, "ROKS", l_val=dft_control%roks)
183 7452 : IF (dft_control%uks .OR. dft_control%roks) THEN
184 1629 : dft_control%nspins = 2
185 : ELSE
186 5823 : dft_control%nspins = 1
187 : END IF
188 :
189 7452 : dft_control%lsd = (dft_control%nspins > 1)
190 7452 : dft_control%use_kinetic_energy_density = xc_uses_kinetic_energy_density(xc_fun_section, dft_control%lsd)
191 :
192 7452 : xc_deriv_method_id = section_get_ival(xc_section, "XC_GRID%XC_DERIV")
193 : dft_control%drho_by_collocation = (xc_uses_norm_drho(xc_fun_section, dft_control%lsd) &
194 7452 : .AND. (xc_deriv_method_id == xc_deriv_collocate))
195 7452 : IF (dft_control%drho_by_collocation) THEN
196 0 : CPABORT("derivatives by collocation not implemented")
197 : END IF
198 :
199 : ! Automatic auxiliary basis set generation
200 7452 : CALL section_vals_val_get(dft_section, "AUTO_BASIS", n_rep_val=nrep)
201 14904 : DO irep = 1, nrep
202 7452 : CALL section_vals_val_get(dft_section, "AUTO_BASIS", i_rep_val=irep, c_vals=tmpstringlist)
203 14904 : IF (SIZE(tmpstringlist) == 2) THEN
204 7452 : CALL uppercase(tmpstringlist(2))
205 7452 : SELECT CASE (tmpstringlist(2))
206 : CASE ("X")
207 88 : isize = -1
208 : CASE ("SMALL")
209 88 : isize = 0
210 : CASE ("MEDIUM")
211 54 : isize = 1
212 : CASE ("LARGE")
213 0 : isize = 2
214 : CASE ("HUGE")
215 6 : isize = 3
216 : CASE DEFAULT
217 7452 : CPWARN("Unknown basis size in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
218 : END SELECT
219 : !
220 7454 : SELECT CASE (tmpstringlist(1))
221 : CASE ("X")
222 : CASE ("RI_AUX")
223 2 : dft_control%auto_basis_ri_aux = isize
224 : CASE ("AUX_FIT")
225 0 : dft_control%auto_basis_aux_fit = isize
226 : CASE ("LRI_AUX")
227 0 : dft_control%auto_basis_lri_aux = isize
228 : CASE ("P_LRI_AUX")
229 0 : dft_control%auto_basis_p_lri_aux = isize
230 : CASE ("RI_HXC")
231 0 : dft_control%auto_basis_ri_hxc = isize
232 : CASE ("RI_XAS")
233 60 : dft_control%auto_basis_ri_xas = isize
234 : CASE ("RI_HFX")
235 86 : dft_control%auto_basis_ri_hfx = isize
236 : CASE DEFAULT
237 7452 : CPWARN("Unknown basis type in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
238 : END SELECT
239 : ELSE
240 : CALL cp_abort(__LOCATION__, &
241 0 : "AUTO_BASIS keyword in &DFT section has a wrong number of arguments.")
242 : END IF
243 : END DO
244 :
245 : !! check if we do wavefunction fitting
246 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD")
247 7452 : CALL section_vals_get(tmp_section, explicit=is_present)
248 : !
249 7452 : hfx_section => section_vals_get_subs_vals(xc_section, "HF")
250 7452 : CALL section_vals_get(hfx_section, explicit=do_hfx)
251 7452 : CALL section_vals_val_get(xc_section, "WF_CORRELATION%RI_RPA%ADMM", l_val=do_rpa_admm)
252 7452 : is_present = is_present .AND. (do_hfx .OR. do_rpa_admm)
253 : !
254 7452 : dft_control%do_admm = is_present
255 7452 : dft_control%do_admm_mo = .FALSE.
256 7452 : dft_control%do_admm_dm = .FALSE.
257 7452 : IF (is_present) THEN
258 : do_ot = .FALSE.
259 464 : CALL section_vals_val_get(scf_section, "OT%_SECTION_PARAMETERS_", l_val=do_ot)
260 464 : CALL admm_control_create(dft_control%admm_control)
261 :
262 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_TYPE", i_val=admmtype)
263 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", explicit=exopt1)
264 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%METHOD", explicit=exopt2)
265 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_SCALING_MODEL", explicit=exopt3)
266 464 : dft_control%admm_control%admm_type = admmtype
267 454 : SELECT CASE (admmtype)
268 : CASE (no_admm_type)
269 454 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", i_val=method_id)
270 454 : dft_control%admm_control%purification_method = method_id
271 454 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%METHOD", i_val=method_id)
272 454 : dft_control%admm_control%method = method_id
273 454 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_SCALING_MODEL", i_val=method_id)
274 454 : dft_control%admm_control%scaling_model = method_id
275 : CASE (admm1_type)
276 : ! METHOD BASIS_PROJECTION
277 : ! ADMM_PURIFICATION_METHOD choose
278 : ! EXCH_SCALING_MODEL NONE
279 2 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", i_val=method_id)
280 2 : dft_control%admm_control%purification_method = method_id
281 2 : dft_control%admm_control%method = do_admm_basis_projection
282 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
283 : CASE (admm2_type)
284 : ! METHOD BASIS_PROJECTION
285 : ! ADMM_PURIFICATION_METHOD NONE
286 : ! EXCH_SCALING_MODEL NONE
287 2 : dft_control%admm_control%purification_method = do_admm_purify_none
288 2 : dft_control%admm_control%method = do_admm_basis_projection
289 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
290 : CASE (admms_type)
291 : ! ADMM_PURIFICATION_METHOD NONE
292 : ! METHOD CHARGE_CONSTRAINED_PROJECTION
293 : ! EXCH_SCALING_MODEL MERLOT
294 2 : dft_control%admm_control%purification_method = do_admm_purify_none
295 2 : dft_control%admm_control%method = do_admm_charge_constrained_projection
296 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_merlot
297 : CASE (admmp_type)
298 : ! ADMM_PURIFICATION_METHOD NONE
299 : ! METHOD BASIS_PROJECTION
300 : ! EXCH_SCALING_MODEL MERLOT
301 2 : dft_control%admm_control%purification_method = do_admm_purify_none
302 2 : dft_control%admm_control%method = do_admm_basis_projection
303 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_merlot
304 : CASE (admmq_type)
305 : ! ADMM_PURIFICATION_METHOD NONE
306 : ! METHOD CHARGE_CONSTRAINED_PROJECTION
307 : ! EXCH_SCALING_MODEL NONE
308 2 : dft_control%admm_control%purification_method = do_admm_purify_none
309 2 : dft_control%admm_control%method = do_admm_charge_constrained_projection
310 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
311 : CASE DEFAULT
312 : CALL cp_abort(__LOCATION__, &
313 464 : "ADMM_TYPE keyword in &AUXILIARY_DENSITY_MATRIX_METHOD section has a wrong value.")
314 : END SELECT
315 :
316 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EPS_FILTER", &
317 464 : r_val=dft_control%admm_control%eps_filter)
318 :
319 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_CORRECTION_FUNC", i_val=method_id)
320 464 : dft_control%admm_control%aux_exch_func = method_id
321 :
322 : ! parameters for X functional
323 464 : dft_control%admm_control%aux_exch_func_param = .FALSE.
324 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_A1", explicit=explicit, &
325 464 : r_val=dft_control%admm_control%aux_x_param(1))
326 464 : IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
327 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_A2", explicit=explicit, &
328 464 : r_val=dft_control%admm_control%aux_x_param(2))
329 464 : IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
330 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_GAMMA", explicit=explicit, &
331 464 : r_val=dft_control%admm_control%aux_x_param(3))
332 464 : IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
333 :
334 464 : CALL read_admm_block_list(dft_control%admm_control, dft_section)
335 :
336 : ! check for double assignments
337 2 : SELECT CASE (admmtype)
338 : CASE (admm2_type)
339 2 : IF (exopt2) CALL cp_warn(__LOCATION__, &
340 0 : "Value of ADMM_PURIFICATION_METHOD keyword will be overwritten with ADMM_TYPE selections.")
341 2 : IF (exopt3) CALL cp_warn(__LOCATION__, &
342 0 : "Value of EXCH_SCALING_MODEL keyword will be overwritten with ADMM_TYPE selections.")
343 : CASE (admm1_type, admms_type, admmp_type, admmq_type)
344 8 : IF (exopt1) CALL cp_warn(__LOCATION__, &
345 0 : "Value of METHOD keyword will be overwritten with ADMM_TYPE selections.")
346 8 : IF (exopt2) CALL cp_warn(__LOCATION__, &
347 0 : "Value of METHOD keyword will be overwritten with ADMM_TYPE selections.")
348 8 : IF (exopt3) CALL cp_warn(__LOCATION__, &
349 464 : "Value of EXCH_SCALING_MODEL keyword will be overwritten with ADMM_TYPE selections.")
350 : END SELECT
351 :
352 : ! In the case of charge-constrained projection (e.g. according to Merlot),
353 : ! there is no purification needed and hence, do_admm_purify_none has to be set.
354 :
355 : IF ((dft_control%admm_control%method == do_admm_blocking_purify_full .OR. &
356 : dft_control%admm_control%method == do_admm_blocked_projection) &
357 464 : .AND. dft_control%admm_control%scaling_model == do_admm_exch_scaling_merlot) THEN
358 0 : CPABORT("ADMM: Blocking and Merlot scaling are mutually exclusive.")
359 : END IF
360 :
361 464 : IF (dft_control%admm_control%method == do_admm_charge_constrained_projection .AND. &
362 : dft_control%admm_control%purification_method /= do_admm_purify_none) THEN
363 : CALL cp_abort(__LOCATION__, &
364 : "ADMM: In the case of METHOD=CHARGE_CONSTRAINED_PROJECTION, "// &
365 0 : "ADMM_PURIFICATION_METHOD=NONE has to be set.")
366 : END IF
367 :
368 464 : IF (dft_control%admm_control%purification_method == do_admm_purify_mo_diag .OR. &
369 : dft_control%admm_control%purification_method == do_admm_purify_mo_no_diag) THEN
370 62 : IF (dft_control%admm_control%method /= do_admm_basis_projection) &
371 0 : CPABORT("ADMM: Chosen purification requires BASIS_PROJECTION")
372 :
373 62 : IF (.NOT. do_ot) CPABORT("ADMM: MO-based purification requires OT.")
374 : END IF
375 :
376 464 : IF (dft_control%admm_control%purification_method == do_admm_purify_none_dm .OR. &
377 : dft_control%admm_control%purification_method == do_admm_purify_mcweeny) THEN
378 14 : dft_control%do_admm_dm = .TRUE.
379 : ELSE
380 450 : dft_control%do_admm_mo = .TRUE.
381 : END IF
382 : END IF
383 :
384 : ! Set restricted to true, if both OT and ROKS are requested
385 : !MK in principle dft_control%restricted could be dropped completely like the
386 : !MK input key by using only dft_control%roks now
387 7452 : CALL section_vals_val_get(scf_section, "OT%_SECTION_PARAMETERS_", l_val=l_param)
388 7452 : dft_control%restricted = (dft_control%roks .AND. l_param)
389 :
390 7452 : CALL section_vals_val_get(dft_section, "CHARGE", i_val=dft_control%charge)
391 7452 : CALL section_vals_val_get(dft_section, "MULTIPLICITY", i_val=dft_control%multiplicity)
392 7452 : CALL section_vals_val_get(dft_section, "RELAX_MULTIPLICITY", r_val=dft_control%relax_multiplicity)
393 7452 : IF (dft_control%relax_multiplicity > 0.0_dp) THEN
394 8 : IF (.NOT. dft_control%uks) &
395 : CALL cp_abort(__LOCATION__, "The option RELAX_MULTIPLICITY is only valid for "// &
396 0 : "unrestricted Kohn-Sham (UKS) calculations")
397 : END IF
398 :
399 : !Read the HAIR PROBES input section if present
400 7452 : hairy_probes_section => section_vals_get_subs_vals(dft_section, "HAIRY_PROBES")
401 7452 : CALL section_vals_get(hairy_probes_section, n_repetition=nrep, explicit=is_present)
402 :
403 7452 : IF (is_present) THEN
404 4 : dft_control%hairy_probes = .TRUE.
405 20 : ALLOCATE (dft_control%probe(nrep))
406 4 : CALL read_hairy_probes_sections(dft_control, hairy_probes_section)
407 : END IF
408 :
409 : ! check for the presence of the low spin roks section
410 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "LOW_SPIN_ROKS")
411 7452 : CALL section_vals_get(tmp_section, explicit=dft_control%low_spin_roks)
412 :
413 7452 : dft_control%sic_method_id = sic_none
414 7452 : dft_control%sic_scaling_a = 1.0_dp
415 7452 : dft_control%sic_scaling_b = 1.0_dp
416 :
417 : ! DFT+U
418 7452 : dft_control%dft_plus_u = .FALSE.
419 7452 : CALL section_vals_val_get(dft_section, "PLUS_U_METHOD", i_val=method_id)
420 7452 : dft_control%plus_u_method_id = method_id
421 :
422 : ! Smearing in use
423 7452 : dft_control%smear = .FALSE.
424 :
425 : ! Surface dipole correction
426 7452 : dft_control%correct_surf_dip = .FALSE.
427 7452 : CALL section_vals_val_get(dft_section, "SURFACE_DIPOLE_CORRECTION", l_val=dft_control%correct_surf_dip)
428 7452 : CALL section_vals_val_get(dft_section, "SURF_DIP_DIR", i_val=dft_control%dir_surf_dip)
429 7452 : dft_control%pos_dir_surf_dip = -1.0_dp
430 7452 : CALL section_vals_val_get(dft_section, "SURF_DIP_POS", r_val=dft_control%pos_dir_surf_dip)
431 : ! another logical variable, surf_dip_correct_switch, is introduced for
432 : ! implementation of "SURF_DIP_SWITCH" [SGh]
433 7452 : dft_control%switch_surf_dip = .FALSE.
434 7452 : dft_control%surf_dip_correct_switch = dft_control%correct_surf_dip
435 7452 : CALL section_vals_val_get(dft_section, "SURF_DIP_SWITCH", l_val=dft_control%switch_surf_dip)
436 7452 : dft_control%correct_el_density_dip = .FALSE.
437 7452 : CALL section_vals_val_get(dft_section, "CORE_CORR_DIP", l_val=dft_control%correct_el_density_dip)
438 7452 : IF (dft_control%correct_el_density_dip) THEN
439 4 : IF (dft_control%correct_surf_dip) THEN
440 : ! Do nothing, move on
441 : ELSE
442 0 : dft_control%correct_el_density_dip = .FALSE.
443 0 : CPWARN("CORE_CORR_DIP keyword is activated only if SURFACE_DIPOLE_CORRECTION is TRUE")
444 : END IF
445 : END IF
446 :
447 : CALL section_vals_val_get(dft_section, "BASIS_SET_FILE_NAME", &
448 7452 : c_val=basis_set_file_name)
449 : CALL section_vals_val_get(dft_section, "POTENTIAL_FILE_NAME", &
450 7452 : c_val=potential_file_name)
451 :
452 : ! Read the input section
453 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "sic")
454 : CALL section_vals_val_get(tmp_section, "SIC_METHOD", &
455 7452 : i_val=dft_control%sic_method_id)
456 : CALL section_vals_val_get(tmp_section, "ORBITAL_SET", &
457 7452 : i_val=dft_control%sic_list_id)
458 : CALL section_vals_val_get(tmp_section, "SIC_SCALING_A", &
459 7452 : r_val=dft_control%sic_scaling_a)
460 : CALL section_vals_val_get(tmp_section, "SIC_SCALING_B", &
461 7452 : r_val=dft_control%sic_scaling_b)
462 :
463 7452 : do_rtp = .FALSE.
464 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "REAL_TIME_PROPAGATION")
465 7452 : CALL section_vals_get(tmp_section, explicit=is_present)
466 7452 : IF (is_present) THEN
467 248 : CALL read_rtp_section(dft_control, tmp_section)
468 248 : do_rtp = .TRUE.
469 : END IF
470 :
471 : ! Read the input section
472 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "XAS")
473 7452 : CALL section_vals_get(tmp_section, explicit=dft_control%do_xas_calculation)
474 7452 : IF (dft_control%do_xas_calculation) THEN
475 : ! Override with section parameter
476 : CALL section_vals_val_get(tmp_section, "_SECTION_PARAMETERS_", &
477 42 : l_val=dft_control%do_xas_calculation)
478 : END IF
479 :
480 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "XAS_TDP")
481 7452 : CALL section_vals_get(tmp_section, explicit=dft_control%do_xas_tdp_calculation)
482 7452 : IF (dft_control%do_xas_tdp_calculation) THEN
483 : ! Override with section parameter
484 : CALL section_vals_val_get(tmp_section, "_SECTION_PARAMETERS_", &
485 50 : l_val=dft_control%do_xas_tdp_calculation)
486 : END IF
487 :
488 : ! Read the finite field input section
489 7452 : dft_control%apply_efield = .FALSE.
490 7452 : dft_control%apply_efield_field = .FALSE. !this is for RTP
491 7452 : dft_control%apply_vector_potential = .FALSE. !this is for RTP
492 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "EFIELD")
493 7452 : CALL section_vals_get(tmp_section, n_repetition=nrep, explicit=is_present)
494 7452 : IF (is_present) THEN
495 1048 : ALLOCATE (dft_control%efield_fields(nrep))
496 262 : CALL read_efield_sections(dft_control, tmp_section)
497 262 : IF (do_rtp) THEN
498 22 : IF (.NOT. dft_control%rtp_control%velocity_gauge) THEN
499 14 : dft_control%apply_efield_field = .TRUE.
500 : ELSE
501 8 : dft_control%apply_vector_potential = .TRUE.
502 : ! Use this input value of vector potential to (re)start RTP
503 32 : dft_control%rtp_control%vec_pot = dft_control%efield_fields(1)%efield%vec_pot_initial
504 : END IF
505 : ELSE
506 240 : dft_control%apply_efield = .TRUE.
507 240 : CPASSERT(nrep == 1)
508 : END IF
509 : END IF
510 :
511 : ! Now, can try to guess polarisation in rtp
512 7452 : IF (do_rtp) THEN
513 : ! tmp_section => section_vals_get_subs_vals(dft_section, "REAL_TIME_PROPAGATION%PRINT%POLARIZABILITY")
514 : ! CALL section_vals_get(tmp_section, explicit=is_present)
515 : local_moment_possible = (dft_control%rtp_control%rtp_method == rtp_method_bse) .OR. &
516 248 : ((.NOT. dft_control%rtp_control%periodic) .AND. dft_control%rtp_control%linear_scaling)
517 30 : IF (local_moment_possible .AND. (.NOT. ASSOCIATED(dft_control%rtp_control%print_pol_elements))) THEN
518 30 : tmp_section => section_vals_get_subs_vals(dft_section, "REAL_TIME_PROPAGATION")
519 : CALL guess_pol_elements(dft_control, &
520 30 : dft_control%rtp_control%print_pol_elements)
521 : END IF
522 : END IF
523 :
524 : ! Read the finite field input section for periodic fields
525 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "PERIODIC_EFIELD")
526 7452 : CALL section_vals_get(tmp_section, explicit=dft_control%apply_period_efield)
527 7452 : IF (dft_control%apply_period_efield) THEN
528 532 : ALLOCATE (dft_control%period_efield)
529 76 : CALL section_vals_val_get(tmp_section, "POLARISATION", r_vals=pol)
530 532 : dft_control%period_efield%polarisation(1:3) = pol(1:3)
531 76 : CALL section_vals_val_get(tmp_section, "D_FILTER", r_vals=pol)
532 532 : dft_control%period_efield%d_filter(1:3) = pol(1:3)
533 : CALL section_vals_val_get(tmp_section, "INTENSITY", &
534 76 : r_val=dft_control%period_efield%strength)
535 76 : dft_control%period_efield%displacement_field = .FALSE.
536 : CALL section_vals_val_get(tmp_section, "DISPLACEMENT_FIELD", &
537 76 : l_val=dft_control%period_efield%displacement_field)
538 :
539 76 : CALL section_vals_val_get(tmp_section, "INTENSITY_LIST", r_vals=pol)
540 :
541 76 : CALL section_vals_val_get(tmp_section, "INTENSITIES_FILE_NAME", c_val=intensities_file_name)
542 :
543 76 : IF (SIZE(pol) > 1 .OR. pol(1) /= 0.0_dp) THEN
544 : ! if INTENSITY_LIST is present, INTENSITY and INTENSITIES_FILE_NAME must not be present
545 2 : IF (dft_control%period_efield%strength /= 0.0_dp .OR. intensities_file_name /= "") THEN
546 : CALL cp_abort(__LOCATION__, "[PERIODIC FIELD] Only one of INTENSITY, INTENSITY_LIST "// &
547 0 : "or INTENSITIES_FILE_NAME can be specified.")
548 : END IF
549 :
550 6 : ALLOCATE (dft_control%period_efield%strength_list(SIZE(pol)))
551 50 : dft_control%period_efield%strength_list(1:SIZE(pol)) = pol(1:SIZE(pol))
552 : END IF
553 :
554 76 : IF (intensities_file_name /= "") THEN
555 : ! if INTENSITIES_FILE_NAME is present, INTENSITY must not be present
556 2 : IF (dft_control%period_efield%strength /= 0.0_dp) THEN
557 : CALL cp_abort(__LOCATION__, "[PERIODIC FIELD] Only one of INTENSITY, INTENSITY_LIST "// &
558 0 : "or INTENSITIES_FILE_NAME can be specified.")
559 : END IF
560 :
561 2 : CALL parser_create(parser, intensities_file_name)
562 :
563 2 : nrep = 0
564 24 : DO WHILE (.TRUE.)
565 26 : CALL parser_read_line(parser, 1, at_end)
566 26 : IF (at_end) EXIT
567 24 : nrep = nrep + 1
568 : END DO
569 :
570 2 : IF (nrep == 0) THEN
571 0 : CPABORT("[PERIODIC FIELD] No intensities found in INTENSITIES_FILE_NAME")
572 : END IF
573 :
574 6 : ALLOCATE (dft_control%period_efield%strength_list(nrep))
575 :
576 2 : CALL parser_reset(parser)
577 26 : DO irep = 1, nrep
578 24 : CALL parser_read_line(parser, 1)
579 26 : READ (parser%input_line, *) dft_control%period_efield%strength_list(irep)
580 : END DO
581 :
582 4 : CALL parser_release(parser)
583 : END IF
584 :
585 : CALL section_vals_val_get(tmp_section, "START_FRAME", &
586 76 : i_val=dft_control%period_efield%start_frame)
587 : CALL section_vals_val_get(tmp_section, "END_FRAME", &
588 76 : i_val=dft_control%period_efield%end_frame)
589 :
590 76 : IF (dft_control%period_efield%end_frame /= -1) THEN
591 : ! check if valid bounds are given
592 : ! if an end frame is given, the number of active frames must be a
593 : ! multiple of the number of intensities
594 4 : IF (dft_control%period_efield%start_frame > dft_control%period_efield%end_frame) THEN
595 0 : CPABORT("[PERIODIC FIELD] START_FRAME > END_FRAME")
596 4 : ELSE IF (dft_control%period_efield%start_frame < 1) THEN
597 0 : CPABORT("[PERIODIC FIELD] START_FRAME < 1")
598 4 : ELSE IF (MOD(dft_control%period_efield%end_frame - &
599 : dft_control%period_efield%start_frame + 1, SIZE(pol)) /= 0) THEN
600 : CALL cp_abort(__LOCATION__, &
601 0 : "[PERIODIC FIELD] Number of active frames must be a multiple of the number of intensities")
602 : END IF
603 : END IF
604 :
605 : ! periodic fields don't work with RTP
606 76 : CPASSERT(.NOT. do_rtp)
607 76 : IF (dft_control%period_efield%displacement_field) THEN
608 16 : CALL cite_reference(Stengel2009)
609 : ELSE
610 60 : CALL cite_reference(Souza2002)
611 60 : CALL cite_reference(Umari2002)
612 : END IF
613 : END IF
614 :
615 : ! Read the external potential input section
616 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_POTENTIAL")
617 7452 : CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_potential)
618 7452 : IF (dft_control%apply_external_potential) THEN
619 16 : CALL expot_control_create(dft_control%expot_control)
620 : CALL section_vals_val_get(tmp_section, "READ_FROM_CUBE", &
621 16 : l_val=dft_control%expot_control%read_from_cube)
622 : CALL section_vals_val_get(tmp_section, "STATIC", &
623 16 : l_val=dft_control%expot_control%static)
624 : CALL section_vals_val_get(tmp_section, "SCALING_FACTOR", &
625 16 : r_val=dft_control%expot_control%scaling_factor)
626 : ! External potential using Maxwell equation
627 16 : maxwell_section => section_vals_get_subs_vals(tmp_section, "MAXWELL")
628 16 : CALL section_vals_get(maxwell_section, explicit=is_present)
629 16 : IF (is_present) THEN
630 0 : dft_control%expot_control%maxwell_solver = .TRUE.
631 0 : CALL maxwell_control_create(dft_control%maxwell_control)
632 : ! read the input values from Maxwell section
633 : CALL section_vals_val_get(maxwell_section, "TEST_REAL", &
634 0 : r_val=dft_control%maxwell_control%real_test)
635 : CALL section_vals_val_get(maxwell_section, "TEST_INTEGER", &
636 0 : i_val=dft_control%maxwell_control%int_test)
637 : CALL section_vals_val_get(maxwell_section, "TEST_LOGICAL", &
638 0 : l_val=dft_control%maxwell_control%log_test)
639 : ELSE
640 16 : dft_control%expot_control%maxwell_solver = .FALSE.
641 : END IF
642 : END IF
643 :
644 : ! Read the SCCS input section if present
645 7452 : sccs_section => section_vals_get_subs_vals(dft_section, "SCCS")
646 7452 : CALL section_vals_get(sccs_section, explicit=is_present)
647 7452 : IF (is_present) THEN
648 : ! Check section parameter if SCCS is activated
649 : CALL section_vals_val_get(sccs_section, "_SECTION_PARAMETERS_", &
650 10 : l_val=dft_control%do_sccs)
651 10 : IF (dft_control%do_sccs) THEN
652 10 : ALLOCATE (dft_control%sccs_control)
653 : CALL section_vals_val_get(sccs_section, "RELATIVE_PERMITTIVITY", &
654 10 : r_val=dft_control%sccs_control%epsilon_solvent)
655 : CALL section_vals_val_get(sccs_section, "ALPHA", &
656 10 : r_val=dft_control%sccs_control%alpha_solvent)
657 : CALL section_vals_val_get(sccs_section, "BETA", &
658 10 : r_val=dft_control%sccs_control%beta_solvent)
659 : CALL section_vals_val_get(sccs_section, "DELTA_RHO", &
660 10 : r_val=dft_control%sccs_control%delta_rho)
661 : CALL section_vals_val_get(sccs_section, "DERIVATIVE_METHOD", &
662 10 : i_val=dft_control%sccs_control%derivative_method)
663 : CALL section_vals_val_get(sccs_section, "METHOD", &
664 10 : i_val=dft_control%sccs_control%method_id)
665 : CALL section_vals_val_get(sccs_section, "EPS_SCCS", &
666 10 : r_val=dft_control%sccs_control%eps_sccs)
667 : CALL section_vals_val_get(sccs_section, "EPS_SCF", &
668 10 : r_val=dft_control%sccs_control%eps_scf)
669 : CALL section_vals_val_get(sccs_section, "GAMMA", &
670 10 : r_val=dft_control%sccs_control%gamma_solvent)
671 : CALL section_vals_val_get(sccs_section, "MAX_ITER", &
672 10 : i_val=dft_control%sccs_control%max_iter)
673 : CALL section_vals_val_get(sccs_section, "MIXING", &
674 10 : r_val=dft_control%sccs_control%mixing)
675 18 : SELECT CASE (dft_control%sccs_control%method_id)
676 : CASE (sccs_andreussi)
677 8 : tmp_section => section_vals_get_subs_vals(sccs_section, "ANDREUSSI")
678 : CALL section_vals_val_get(tmp_section, "RHO_MAX", &
679 8 : r_val=dft_control%sccs_control%rho_max)
680 : CALL section_vals_val_get(tmp_section, "RHO_MIN", &
681 8 : r_val=dft_control%sccs_control%rho_min)
682 8 : IF (dft_control%sccs_control%rho_max < dft_control%sccs_control%rho_min) THEN
683 : CALL cp_abort(__LOCATION__, &
684 : "The SCCS parameter RHO_MAX is smaller than RHO_MIN. "// &
685 0 : "Please, check your input!")
686 : END IF
687 8 : CALL cite_reference(Andreussi2012)
688 : CASE (sccs_fattebert_gygi)
689 2 : tmp_section => section_vals_get_subs_vals(sccs_section, "FATTEBERT-GYGI")
690 : CALL section_vals_val_get(tmp_section, "BETA", &
691 2 : r_val=dft_control%sccs_control%beta)
692 2 : IF (dft_control%sccs_control%beta < 0.5_dp) THEN
693 : CALL cp_abort(__LOCATION__, &
694 : "A value smaller than 0.5 for the SCCS parameter beta "// &
695 0 : "causes numerical problems. Please, check your input!")
696 : END IF
697 : CALL section_vals_val_get(tmp_section, "RHO_ZERO", &
698 2 : r_val=dft_control%sccs_control%rho_zero)
699 2 : CALL cite_reference(Fattebert2002)
700 : CASE DEFAULT
701 10 : CPABORT("Invalid SCCS model specified. Please, check your input!")
702 : END SELECT
703 10 : CALL cite_reference(Yin2017)
704 : END IF
705 : END IF
706 :
707 : ! ZMP added input sections
708 : ! Read the external density input section
709 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_DENSITY")
710 7452 : CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_density)
711 :
712 : ! Read the external vxc input section
713 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_VXC")
714 7452 : CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_vxc)
715 :
716 : ! SMEAGOL interface
717 7452 : tmp_section => section_vals_get_subs_vals(dft_section, "SMEAGOL")
718 7452 : CALL read_smeagol_control(dft_control%smeagol_control, tmp_section)
719 :
720 22356 : END SUBROUTINE read_dft_control
721 :
722 : ! **************************************************************************************************
723 : !> \brief Reads the input and stores in the rixs_control_type
724 : !> \param rixs_control ...
725 : !> \param rixs_section ...
726 : !> \param qs_control ...
727 : ! **************************************************************************************************
728 28 : SUBROUTINE read_rixs_control(rixs_control, rixs_section, qs_control)
729 : TYPE(rixs_control_type), POINTER :: rixs_control
730 : TYPE(section_vals_type), POINTER :: rixs_section
731 : TYPE(qs_control_type), POINTER :: qs_control
732 :
733 : TYPE(section_vals_type), POINTER :: td_section, xas_section
734 :
735 28 : CALL section_vals_val_get(rixs_section, "_SECTION_PARAMETERS_", l_val=rixs_control%enabled)
736 :
737 28 : CALL section_vals_val_get(rixs_section, "CORE_STATES", i_val=rixs_control%core_states)
738 28 : CALL section_vals_val_get(rixs_section, "VALENCE_STATES", i_val=rixs_control%valence_states)
739 :
740 28 : td_section => section_vals_get_subs_vals(rixs_section, "TDDFPT")
741 28 : CALL read_tddfpt2_control(rixs_control%tddfpt2_control, td_section, qs_control)
742 :
743 28 : xas_section => section_vals_get_subs_vals(rixs_section, "XAS_TDP")
744 28 : CALL read_xas_tdp_control(rixs_control%xas_tdp_control, xas_section)
745 :
746 28 : END SUBROUTINE read_rixs_control
747 :
748 : ! **************************************************************************************************
749 : !> \brief ...
750 : !> \param qs_control ...
751 : !> \param dft_section ...
752 : ! **************************************************************************************************
753 7452 : SUBROUTINE read_mgrid_section(qs_control, dft_section)
754 :
755 : TYPE(qs_control_type), INTENT(INOUT) :: qs_control
756 : TYPE(section_vals_type), POINTER :: dft_section
757 :
758 : CHARACTER(len=*), PARAMETER :: routineN = 'read_mgrid_section'
759 :
760 : INTEGER :: handle, igrid_level, ngrid_level
761 : LOGICAL :: explicit, multigrid_set
762 : REAL(dp) :: cutoff
763 7452 : REAL(dp), DIMENSION(:), POINTER :: cutofflist
764 : TYPE(section_vals_type), POINTER :: mgrid_section
765 :
766 7452 : CALL timeset(routineN, handle)
767 :
768 7452 : NULLIFY (mgrid_section, cutofflist)
769 7452 : mgrid_section => section_vals_get_subs_vals(dft_section, "MGRID")
770 :
771 7452 : CALL section_vals_val_get(mgrid_section, "NGRIDS", i_val=ngrid_level)
772 7452 : CALL section_vals_val_get(mgrid_section, "MULTIGRID_SET", l_val=multigrid_set)
773 7452 : CALL section_vals_val_get(mgrid_section, "CUTOFF", r_val=cutoff)
774 7452 : CALL section_vals_val_get(mgrid_section, "PROGRESSION_FACTOR", r_val=qs_control%progression_factor)
775 7452 : CALL section_vals_val_get(mgrid_section, "COMMENSURATE", l_val=qs_control%commensurate_mgrids)
776 7452 : CALL section_vals_val_get(mgrid_section, "REALSPACE", l_val=qs_control%realspace_mgrids)
777 7452 : CALL section_vals_val_get(mgrid_section, "REL_CUTOFF", r_val=qs_control%relative_cutoff)
778 : CALL section_vals_val_get(mgrid_section, "SKIP_LOAD_BALANCE_DISTRIBUTED", &
779 7452 : l_val=qs_control%skip_load_balance_distributed)
780 :
781 : ! For SE and DFTB possibly override with new defaults
782 7452 : IF (qs_control%semi_empirical .OR. qs_control%dftb .OR. qs_control%xtb) THEN
783 2164 : ngrid_level = 1
784 2164 : multigrid_set = .FALSE.
785 : ! Override default cutoff value unless user specified an explicit argument..
786 2164 : CALL section_vals_val_get(mgrid_section, "CUTOFF", explicit=explicit, r_val=cutoff)
787 2164 : IF (.NOT. explicit) cutoff = 1.0_dp
788 : END IF
789 :
790 22356 : ALLOCATE (qs_control%e_cutoff(ngrid_level))
791 7452 : qs_control%cutoff = cutoff
792 :
793 7452 : IF (multigrid_set) THEN
794 : ! Read the values from input
795 4 : IF (qs_control%commensurate_mgrids) THEN
796 0 : CPABORT("Do not specify cutoffs for the commensurate grids (NYI)")
797 : END IF
798 :
799 4 : CALL section_vals_val_get(mgrid_section, "MULTIGRID_CUTOFF", r_vals=cutofflist)
800 4 : IF (ASSOCIATED(cutofflist)) THEN
801 4 : IF (SIZE(cutofflist, 1) /= ngrid_level) THEN
802 0 : CPABORT("Number of multi-grids requested and number of cutoff values do not match")
803 : END IF
804 20 : DO igrid_level = 1, ngrid_level
805 20 : qs_control%e_cutoff(igrid_level) = cutofflist(igrid_level)
806 : END DO
807 : END IF
808 : ! set cutoff to smallest value in multgrid available with >= cutoff
809 20 : DO igrid_level = ngrid_level, 1, -1
810 16 : IF (qs_control%cutoff <= qs_control%e_cutoff(igrid_level)) THEN
811 0 : qs_control%cutoff = qs_control%e_cutoff(igrid_level)
812 0 : EXIT
813 : END IF
814 : ! set largest grid value to cutoff
815 20 : IF (igrid_level == 1) THEN
816 4 : qs_control%cutoff = qs_control%e_cutoff(1)
817 : END IF
818 : END DO
819 : ELSE
820 7448 : IF (qs_control%commensurate_mgrids) qs_control%progression_factor = 4.0_dp
821 7448 : qs_control%e_cutoff(1) = qs_control%cutoff
822 23152 : DO igrid_level = 2, ngrid_level
823 : qs_control%e_cutoff(igrid_level) = qs_control%e_cutoff(igrid_level - 1)/ &
824 23152 : qs_control%progression_factor
825 : END DO
826 : END IF
827 : ! check that multigrids are ordered
828 23168 : DO igrid_level = 2, ngrid_level
829 23168 : IF (qs_control%e_cutoff(igrid_level) > qs_control%e_cutoff(igrid_level - 1)) THEN
830 0 : CPABORT("The cutoff values for the multi-grids are not ordered from large to small")
831 15716 : ELSE IF (qs_control%e_cutoff(igrid_level) == qs_control%e_cutoff(igrid_level - 1)) THEN
832 0 : CPABORT("The same cutoff value was specified for two multi-grids")
833 : END IF
834 : END DO
835 7452 : CALL timestop(handle)
836 14904 : END SUBROUTINE read_mgrid_section
837 :
838 : ! **************************************************************************************************
839 : !> \brief ...
840 : !> \param qs_control ...
841 : !> \param qs_section ...
842 : ! **************************************************************************************************
843 119232 : SUBROUTINE read_qs_section(qs_control, qs_section)
844 :
845 : TYPE(qs_control_type), INTENT(INOUT) :: qs_control
846 : TYPE(section_vals_type), POINTER :: qs_section
847 :
848 : CHARACTER(len=*), PARAMETER :: routineN = 'read_qs_section'
849 :
850 : CHARACTER(LEN=default_string_length) :: cval
851 : CHARACTER(LEN=default_string_length), &
852 7452 : DIMENSION(:), POINTER :: clist
853 : INTEGER :: handle, itmp, j, jj, k, n_rep, n_var, &
854 : ngauss, ngp, nrep
855 7452 : INTEGER, DIMENSION(:), POINTER :: tmplist
856 : LOGICAL :: explicit, was_present
857 : REAL(dp) :: tmp, tmpsqrt, value
858 7452 : REAL(dp), POINTER :: scal(:)
859 : TYPE(section_vals_type), POINTER :: cdft_control_section, ddapc_restraint_section, &
860 : dftb_parameter, dftb_section, eeq_section, genpot_section, lri_optbas_section, &
861 : mull_section, nonbonded_section, s2_restraint_section, se_section, xtb_parameter, &
862 : xtb_section, xtb_tblite
863 :
864 7452 : CALL timeset(routineN, handle)
865 :
866 7452 : was_present = .FALSE.
867 7452 : NULLIFY (mull_section, ddapc_restraint_section, s2_restraint_section, &
868 7452 : se_section, dftb_section, xtb_section, dftb_parameter, xtb_parameter, lri_optbas_section, &
869 7452 : cdft_control_section, genpot_section, eeq_section)
870 :
871 7452 : mull_section => section_vals_get_subs_vals(qs_section, "MULLIKEN_RESTRAINT")
872 7452 : ddapc_restraint_section => section_vals_get_subs_vals(qs_section, "DDAPC_RESTRAINT")
873 7452 : s2_restraint_section => section_vals_get_subs_vals(qs_section, "S2_RESTRAINT")
874 7452 : se_section => section_vals_get_subs_vals(qs_section, "SE")
875 7452 : dftb_section => section_vals_get_subs_vals(qs_section, "DFTB")
876 7452 : xtb_section => section_vals_get_subs_vals(qs_section, "xTB")
877 7452 : dftb_parameter => section_vals_get_subs_vals(dftb_section, "PARAMETER")
878 7452 : xtb_parameter => section_vals_get_subs_vals(xtb_section, "PARAMETER")
879 7452 : eeq_section => section_vals_get_subs_vals(xtb_section, "EEQ")
880 7452 : lri_optbas_section => section_vals_get_subs_vals(qs_section, "OPTIMIZE_LRI_BASIS")
881 7452 : cdft_control_section => section_vals_get_subs_vals(qs_section, "CDFT")
882 7452 : nonbonded_section => section_vals_get_subs_vals(xtb_section, "NONBONDED")
883 7452 : genpot_section => section_vals_get_subs_vals(nonbonded_section, "GENPOT")
884 7452 : xtb_tblite => section_vals_get_subs_vals(xtb_section, "TBLITE")
885 :
886 : ! Setup all defaults values and overwrite input parameters
887 : ! EPS_DEFAULT should set the target accuracy in the total energy (~per electron) or a closely related value
888 7452 : CALL section_vals_val_get(qs_section, "EPS_DEFAULT", r_val=value)
889 7452 : tmpsqrt = SQRT(value) ! a trick to work around a NAG 5.1 optimizer bug
890 :
891 : ! random choice ?
892 7452 : qs_control%eps_core_charge = value/100.0_dp
893 : ! correct if all Gaussians would have the same radius (overlap will be smaller than eps_pgf_orb**2).
894 : ! Can be significantly in error if not... requires fully new screening/pairlist procedures
895 7452 : qs_control%eps_pgf_orb = tmpsqrt
896 7452 : qs_control%eps_kg_orb = qs_control%eps_pgf_orb
897 : ! consistent since also a kind of overlap
898 7452 : qs_control%eps_ppnl = qs_control%eps_pgf_orb/100.0_dp
899 : ! accuracy is basically set by the overlap, this sets an empirical shift
900 7452 : qs_control%eps_ppl = 1.0E-2_dp
901 : !
902 7452 : qs_control%gapw_control%eps_cpc = value
903 : ! expexted error in the density
904 7452 : qs_control%eps_rho_gspace = value
905 7452 : qs_control%eps_rho_rspace = value
906 : ! error in the gradient, can be the sqrt of the error in the energy, ignored if map_consistent
907 7452 : qs_control%eps_gvg_rspace = tmpsqrt
908 : !
909 7452 : CALL section_vals_val_get(qs_section, "EPS_CORE_CHARGE", n_rep_val=n_rep)
910 7452 : IF (n_rep /= 0) THEN
911 0 : CALL section_vals_val_get(qs_section, "EPS_CORE_CHARGE", r_val=qs_control%eps_core_charge)
912 : END IF
913 7452 : CALL section_vals_val_get(qs_section, "EPS_GVG_RSPACE", n_rep_val=n_rep)
914 7452 : IF (n_rep /= 0) THEN
915 138 : CALL section_vals_val_get(qs_section, "EPS_GVG_RSPACE", r_val=qs_control%eps_gvg_rspace)
916 : END IF
917 7452 : CALL section_vals_val_get(qs_section, "EPS_PGF_ORB", n_rep_val=n_rep)
918 7452 : IF (n_rep /= 0) THEN
919 606 : CALL section_vals_val_get(qs_section, "EPS_PGF_ORB", r_val=qs_control%eps_pgf_orb)
920 : END IF
921 7452 : CALL section_vals_val_get(qs_section, "EPS_KG_ORB", n_rep_val=n_rep)
922 7452 : IF (n_rep /= 0) THEN
923 62 : CALL section_vals_val_get(qs_section, "EPS_KG_ORB", r_val=tmp)
924 62 : qs_control%eps_kg_orb = SQRT(tmp)
925 : END IF
926 7452 : CALL section_vals_val_get(qs_section, "EPS_PPL", n_rep_val=n_rep)
927 7452 : IF (n_rep /= 0) THEN
928 7452 : CALL section_vals_val_get(qs_section, "EPS_PPL", r_val=qs_control%eps_ppl)
929 : END IF
930 7452 : CALL section_vals_val_get(qs_section, "EPS_PPNL", n_rep_val=n_rep)
931 7452 : IF (n_rep /= 0) THEN
932 0 : CALL section_vals_val_get(qs_section, "EPS_PPNL", r_val=qs_control%eps_ppnl)
933 : END IF
934 7452 : CALL section_vals_val_get(qs_section, "EPS_RHO", n_rep_val=n_rep)
935 7452 : IF (n_rep /= 0) THEN
936 30 : CALL section_vals_val_get(qs_section, "EPS_RHO", r_val=qs_control%eps_rho_gspace)
937 30 : qs_control%eps_rho_rspace = qs_control%eps_rho_gspace
938 : END IF
939 7452 : CALL section_vals_val_get(qs_section, "EPS_RHO_RSPACE", n_rep_val=n_rep)
940 7452 : IF (n_rep /= 0) THEN
941 2 : CALL section_vals_val_get(qs_section, "EPS_RHO_RSPACE", r_val=qs_control%eps_rho_rspace)
942 : END IF
943 7452 : CALL section_vals_val_get(qs_section, "EPS_RHO_GSPACE", n_rep_val=n_rep)
944 7452 : IF (n_rep /= 0) THEN
945 2 : CALL section_vals_val_get(qs_section, "EPS_RHO_GSPACE", r_val=qs_control%eps_rho_gspace)
946 : END IF
947 7452 : CALL section_vals_val_get(qs_section, "EPS_FILTER_MATRIX", n_rep_val=n_rep)
948 7452 : IF (n_rep /= 0) THEN
949 7452 : CALL section_vals_val_get(qs_section, "EPS_FILTER_MATRIX", r_val=qs_control%eps_filter_matrix)
950 : END IF
951 7452 : CALL section_vals_val_get(qs_section, "EPS_CPC", n_rep_val=n_rep)
952 7452 : IF (n_rep /= 0) THEN
953 0 : CALL section_vals_val_get(qs_section, "EPS_CPC", r_val=qs_control%gapw_control%eps_cpc)
954 : END IF
955 :
956 7452 : CALL section_vals_val_get(qs_section, "EPSFIT", r_val=qs_control%gapw_control%eps_fit)
957 7452 : CALL section_vals_val_get(qs_section, "EPSISO", r_val=qs_control%gapw_control%eps_iso)
958 7452 : CALL section_vals_val_get(qs_section, "EPSSVD", r_val=qs_control%gapw_control%eps_svd)
959 7452 : CALL section_vals_val_get(qs_section, "EPSRHO0", r_val=qs_control%gapw_control%eps_Vrho0)
960 7452 : CALL section_vals_val_get(qs_section, "ALPHA0_HARD", r_val=qs_control%gapw_control%alpha0_hard)
961 7452 : qs_control%gapw_control%alpha0_hard_from_input = .FALSE.
962 7452 : IF (qs_control%gapw_control%alpha0_hard /= 0.0_dp) qs_control%gapw_control%alpha0_hard_from_input = .TRUE.
963 7452 : CALL section_vals_val_get(qs_section, "FORCE_PAW", l_val=qs_control%gapw_control%force_paw)
964 7452 : CALL section_vals_val_get(qs_section, "MAX_RAD_LOCAL", r_val=qs_control%gapw_control%max_rad_local)
965 :
966 7452 : CALL section_vals_val_get(qs_section, "MIN_PAIR_LIST_RADIUS", r_val=qs_control%pairlist_radius)
967 :
968 7452 : CALL section_vals_val_get(qs_section, "LS_SCF", l_val=qs_control%do_ls_scf)
969 7452 : CALL section_vals_val_get(qs_section, "ALMO_SCF", l_val=qs_control%do_almo_scf)
970 7452 : CALL section_vals_val_get(qs_section, "KG_METHOD", l_val=qs_control%do_kg)
971 :
972 : ! Logicals
973 7452 : CALL section_vals_val_get(qs_section, "REF_EMBED_SUBSYS", l_val=qs_control%ref_embed_subsys)
974 7452 : CALL section_vals_val_get(qs_section, "CLUSTER_EMBED_SUBSYS", l_val=qs_control%cluster_embed_subsys)
975 7452 : CALL section_vals_val_get(qs_section, "HIGH_LEVEL_EMBED_SUBSYS", l_val=qs_control%high_level_embed_subsys)
976 7452 : CALL section_vals_val_get(qs_section, "DFET_EMBEDDED", l_val=qs_control%dfet_embedded)
977 7452 : CALL section_vals_val_get(qs_section, "DMFET_EMBEDDED", l_val=qs_control%dmfet_embedded)
978 :
979 : ! Integers gapw
980 7452 : CALL section_vals_val_get(qs_section, "LMAXN1", i_val=qs_control%gapw_control%lmax_sphere)
981 7452 : CALL section_vals_val_get(qs_section, "LMAXN0", i_val=qs_control%gapw_control%lmax_rho0)
982 7452 : CALL section_vals_val_get(qs_section, "LADDN0", i_val=qs_control%gapw_control%ladd_rho0)
983 7452 : CALL section_vals_val_get(qs_section, "QUADRATURE", i_val=qs_control%gapw_control%quadrature)
984 : ! GAPW 1c basis
985 7452 : CALL section_vals_val_get(qs_section, "GAPW_1C_BASIS", i_val=qs_control%gapw_control%basis_1c)
986 7452 : IF (qs_control%gapw_control%basis_1c /= gapw_1c_orb) THEN
987 18 : qs_control%gapw_control%eps_svd = MAX(qs_control%gapw_control%eps_svd, 1.E-12_dp)
988 : END IF
989 :
990 : ! Integers grids
991 7452 : CALL section_vals_val_get(qs_section, "PW_GRID", i_val=itmp)
992 0 : SELECT CASE (itmp)
993 : CASE (do_pwgrid_spherical)
994 0 : qs_control%pw_grid_opt%spherical = .TRUE.
995 0 : qs_control%pw_grid_opt%fullspace = .FALSE.
996 : CASE (do_pwgrid_ns_fullspace)
997 7452 : qs_control%pw_grid_opt%spherical = .FALSE.
998 7452 : qs_control%pw_grid_opt%fullspace = .TRUE.
999 : CASE (do_pwgrid_ns_halfspace)
1000 0 : qs_control%pw_grid_opt%spherical = .FALSE.
1001 7452 : qs_control%pw_grid_opt%fullspace = .FALSE.
1002 : END SELECT
1003 :
1004 : ! Method for PPL calculation
1005 7452 : CALL section_vals_val_get(qs_section, "CORE_PPL", i_val=itmp)
1006 7452 : qs_control%do_ppl_method = itmp
1007 :
1008 7452 : CALL section_vals_val_get(qs_section, "PW_GRID_LAYOUT", i_vals=tmplist)
1009 22356 : qs_control%pw_grid_opt%distribution_layout = tmplist
1010 7452 : CALL section_vals_val_get(qs_section, "PW_GRID_BLOCKED", i_val=qs_control%pw_grid_opt%blocked)
1011 :
1012 : !Integers extrapolation
1013 7452 : CALL section_vals_val_get(qs_section, "EXTRAPOLATION", i_val=qs_control%wf_interpolation_method_nr)
1014 7452 : CALL section_vals_val_get(qs_section, "EXTRAPOLATION_ORDER", i_val=qs_control%wf_extrapolation_order)
1015 :
1016 : !Method
1017 7452 : CALL section_vals_val_get(qs_section, "METHOD", i_val=qs_control%method_id)
1018 7452 : qs_control%gapw = .FALSE.
1019 7452 : qs_control%gapw_xc = .FALSE.
1020 7452 : qs_control%gpw = .FALSE.
1021 7452 : qs_control%pao = .FALSE.
1022 7452 : qs_control%dftb = .FALSE.
1023 7452 : qs_control%xtb = .FALSE.
1024 7452 : qs_control%semi_empirical = .FALSE.
1025 7452 : qs_control%ofgpw = .FALSE.
1026 7452 : qs_control%lrigpw = .FALSE.
1027 7452 : qs_control%rigpw = .FALSE.
1028 8326 : SELECT CASE (qs_control%method_id)
1029 : CASE (do_method_gapw)
1030 874 : CALL cite_reference(Lippert1999)
1031 874 : CALL cite_reference(Krack2000)
1032 874 : qs_control%gapw = .TRUE.
1033 : CASE (do_method_gapw_xc)
1034 124 : qs_control%gapw_xc = .TRUE.
1035 : CASE (do_method_gpw)
1036 4250 : CALL cite_reference(Lippert1997)
1037 4250 : CALL cite_reference(VandeVondele2005a)
1038 4250 : qs_control%gpw = .TRUE.
1039 : CASE (do_method_ofgpw)
1040 0 : qs_control%ofgpw = .TRUE.
1041 : CASE (do_method_lrigpw)
1042 40 : qs_control%lrigpw = .TRUE.
1043 : CASE (do_method_rigpw)
1044 0 : qs_control%rigpw = .TRUE.
1045 : CASE (do_method_dftb)
1046 222 : qs_control%dftb = .TRUE.
1047 222 : CALL cite_reference(Porezag1995)
1048 222 : CALL cite_reference(Seifert1996)
1049 : CASE (do_method_xtb)
1050 944 : qs_control%xtb = .TRUE.
1051 944 : CALL cite_reference(Grimme2017)
1052 944 : CALL cite_reference(Pracht2019)
1053 : CASE (do_method_mndo)
1054 52 : CALL cite_reference(Dewar1977)
1055 52 : qs_control%semi_empirical = .TRUE.
1056 : CASE (do_method_am1)
1057 112 : CALL cite_reference(Dewar1985)
1058 112 : qs_control%semi_empirical = .TRUE.
1059 : CASE (do_method_pm3)
1060 46 : CALL cite_reference(Stewart1989)
1061 46 : qs_control%semi_empirical = .TRUE.
1062 : CASE (do_method_pnnl)
1063 14 : CALL cite_reference(Schenter2008)
1064 14 : qs_control%semi_empirical = .TRUE.
1065 : CASE (do_method_pm6)
1066 754 : CALL cite_reference(Stewart2007)
1067 754 : qs_control%semi_empirical = .TRUE.
1068 : CASE (do_method_pm6fm)
1069 0 : CALL cite_reference(VanVoorhis2015)
1070 0 : qs_control%semi_empirical = .TRUE.
1071 : CASE (do_method_pdg)
1072 2 : CALL cite_reference(Repasky2002)
1073 2 : qs_control%semi_empirical = .TRUE.
1074 : CASE (do_method_rm1)
1075 2 : CALL cite_reference(Rocha2006)
1076 2 : qs_control%semi_empirical = .TRUE.
1077 : CASE (do_method_mndod)
1078 16 : CALL cite_reference(Dewar1977)
1079 16 : CALL cite_reference(Thiel1992)
1080 7468 : qs_control%semi_empirical = .TRUE.
1081 : END SELECT
1082 :
1083 7452 : CALL section_vals_get(mull_section, explicit=qs_control%mulliken_restraint)
1084 :
1085 7452 : IF (qs_control%mulliken_restraint) THEN
1086 2 : CALL section_vals_val_get(mull_section, "STRENGTH", r_val=qs_control%mulliken_restraint_control%strength)
1087 2 : CALL section_vals_val_get(mull_section, "TARGET", r_val=qs_control%mulliken_restraint_control%target)
1088 2 : CALL section_vals_val_get(mull_section, "ATOMS", n_rep_val=n_rep)
1089 2 : jj = 0
1090 4 : DO k = 1, n_rep
1091 2 : CALL section_vals_val_get(mull_section, "ATOMS", i_rep_val=k, i_vals=tmplist)
1092 4 : jj = jj + SIZE(tmplist)
1093 : END DO
1094 2 : qs_control%mulliken_restraint_control%natoms = jj
1095 2 : IF (qs_control%mulliken_restraint_control%natoms < 1) &
1096 0 : CPABORT("Need at least 1 atom to use mulliken constraints")
1097 6 : ALLOCATE (qs_control%mulliken_restraint_control%atoms(qs_control%mulliken_restraint_control%natoms))
1098 2 : jj = 0
1099 6 : DO k = 1, n_rep
1100 2 : CALL section_vals_val_get(mull_section, "ATOMS", i_rep_val=k, i_vals=tmplist)
1101 6 : DO j = 1, SIZE(tmplist)
1102 2 : jj = jj + 1
1103 4 : qs_control%mulliken_restraint_control%atoms(jj) = tmplist(j)
1104 : END DO
1105 : END DO
1106 : END IF
1107 7452 : CALL section_vals_get(ddapc_restraint_section, n_repetition=nrep, explicit=qs_control%ddapc_restraint)
1108 7452 : IF (qs_control%ddapc_restraint) THEN
1109 60 : ALLOCATE (qs_control%ddapc_restraint_control(nrep))
1110 14 : CALL read_ddapc_section(qs_control, qs_section=qs_section)
1111 14 : qs_control%ddapc_restraint_is_spin = .FALSE.
1112 14 : qs_control%ddapc_explicit_potential = .FALSE.
1113 : END IF
1114 :
1115 7452 : CALL section_vals_get(s2_restraint_section, explicit=qs_control%s2_restraint)
1116 7452 : IF (qs_control%s2_restraint) THEN
1117 : CALL section_vals_val_get(s2_restraint_section, "STRENGTH", &
1118 0 : r_val=qs_control%s2_restraint_control%strength)
1119 : CALL section_vals_val_get(s2_restraint_section, "TARGET", &
1120 0 : r_val=qs_control%s2_restraint_control%target)
1121 : CALL section_vals_val_get(s2_restraint_section, "FUNCTIONAL_FORM", &
1122 0 : i_val=qs_control%s2_restraint_control%functional_form)
1123 : END IF
1124 :
1125 7452 : CALL section_vals_get(cdft_control_section, explicit=qs_control%cdft)
1126 7452 : IF (qs_control%cdft) THEN
1127 264 : CALL read_cdft_control_section(qs_control, cdft_control_section)
1128 : END IF
1129 :
1130 : ! Semi-empirical code
1131 7452 : IF (qs_control%semi_empirical) THEN
1132 : CALL section_vals_val_get(se_section, "ORTHOGONAL_BASIS", &
1133 998 : l_val=qs_control%se_control%orthogonal_basis)
1134 : CALL section_vals_val_get(se_section, "DELTA", &
1135 998 : r_val=qs_control%se_control%delta)
1136 : CALL section_vals_val_get(se_section, "ANALYTICAL_GRADIENTS", &
1137 998 : l_val=qs_control%se_control%analytical_gradients)
1138 : CALL section_vals_val_get(se_section, "FORCE_KDSO-D_EXCHANGE", &
1139 998 : l_val=qs_control%se_control%force_kdsod_EX)
1140 : ! Integral Screening
1141 : CALL section_vals_val_get(se_section, "INTEGRAL_SCREENING", &
1142 998 : i_val=qs_control%se_control%integral_screening)
1143 998 : IF (qs_control%method_id == do_method_pnnl) THEN
1144 14 : IF (qs_control%se_control%integral_screening /= do_se_IS_slater) &
1145 : CALL cp_warn(__LOCATION__, &
1146 : "PNNL semi-empirical parameterization supports only the Slater type "// &
1147 0 : "integral scheme. Revert to Slater and continue the calculation.")
1148 14 : qs_control%se_control%integral_screening = do_se_IS_slater
1149 : END IF
1150 : ! Global Arrays variable
1151 : CALL section_vals_val_get(se_section, "GA%NCELLS", &
1152 998 : i_val=qs_control%se_control%ga_ncells)
1153 : ! Long-Range correction
1154 : CALL section_vals_val_get(se_section, "LR_CORRECTION%CUTOFF", &
1155 998 : r_val=qs_control%se_control%cutoff_lrc)
1156 998 : qs_control%se_control%taper_lrc = qs_control%se_control%cutoff_lrc
1157 : CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_TAPER", &
1158 998 : explicit=explicit)
1159 998 : IF (explicit) THEN
1160 : CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_TAPER", &
1161 0 : r_val=qs_control%se_control%taper_lrc)
1162 : END IF
1163 : CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_RANGE", &
1164 998 : r_val=qs_control%se_control%range_lrc)
1165 : ! Coulomb
1166 : CALL section_vals_val_get(se_section, "COULOMB%CUTOFF", &
1167 998 : r_val=qs_control%se_control%cutoff_cou)
1168 998 : qs_control%se_control%taper_cou = qs_control%se_control%cutoff_cou
1169 : CALL section_vals_val_get(se_section, "COULOMB%RC_TAPER", &
1170 998 : explicit=explicit)
1171 998 : IF (explicit) THEN
1172 : CALL section_vals_val_get(se_section, "COULOMB%RC_TAPER", &
1173 0 : r_val=qs_control%se_control%taper_cou)
1174 : END IF
1175 : CALL section_vals_val_get(se_section, "COULOMB%RC_RANGE", &
1176 998 : r_val=qs_control%se_control%range_cou)
1177 : ! Exchange
1178 : CALL section_vals_val_get(se_section, "EXCHANGE%CUTOFF", &
1179 998 : r_val=qs_control%se_control%cutoff_exc)
1180 998 : qs_control%se_control%taper_exc = qs_control%se_control%cutoff_exc
1181 : CALL section_vals_val_get(se_section, "EXCHANGE%RC_TAPER", &
1182 998 : explicit=explicit)
1183 998 : IF (explicit) THEN
1184 : CALL section_vals_val_get(se_section, "EXCHANGE%RC_TAPER", &
1185 38 : r_val=qs_control%se_control%taper_exc)
1186 : END IF
1187 : CALL section_vals_val_get(se_section, "EXCHANGE%RC_RANGE", &
1188 998 : r_val=qs_control%se_control%range_exc)
1189 : ! Screening (only if the integral scheme is of dumped type)
1190 998 : IF (qs_control%se_control%integral_screening == do_se_IS_kdso_d) THEN
1191 : CALL section_vals_val_get(se_section, "SCREENING%RC_TAPER", &
1192 14 : r_val=qs_control%se_control%taper_scr)
1193 : CALL section_vals_val_get(se_section, "SCREENING%RC_RANGE", &
1194 14 : r_val=qs_control%se_control%range_scr)
1195 : END IF
1196 : ! Periodic Type Calculation
1197 : CALL section_vals_val_get(se_section, "PERIODIC", &
1198 998 : i_val=qs_control%se_control%periodic_type)
1199 1964 : SELECT CASE (qs_control%se_control%periodic_type)
1200 : CASE (do_se_lr_none)
1201 966 : qs_control%se_control%do_ewald = .FALSE.
1202 966 : qs_control%se_control%do_ewald_r3 = .FALSE.
1203 966 : qs_control%se_control%do_ewald_gks = .FALSE.
1204 : CASE (do_se_lr_ewald)
1205 30 : qs_control%se_control%do_ewald = .TRUE.
1206 30 : qs_control%se_control%do_ewald_r3 = .FALSE.
1207 30 : qs_control%se_control%do_ewald_gks = .FALSE.
1208 : CASE (do_se_lr_ewald_gks)
1209 2 : qs_control%se_control%do_ewald = .FALSE.
1210 2 : qs_control%se_control%do_ewald_r3 = .FALSE.
1211 2 : qs_control%se_control%do_ewald_gks = .TRUE.
1212 2 : IF (qs_control%method_id /= do_method_pnnl) &
1213 : CALL cp_abort(__LOCATION__, &
1214 : "A periodic semi-empirical calculation was requested with a long-range "// &
1215 : "summation on the single integral evaluation. This scheme is supported "// &
1216 0 : "only by the PNNL parameterization.")
1217 : CASE (do_se_lr_ewald_r3)
1218 0 : qs_control%se_control%do_ewald = .TRUE.
1219 0 : qs_control%se_control%do_ewald_r3 = .TRUE.
1220 0 : qs_control%se_control%do_ewald_gks = .FALSE.
1221 0 : IF (qs_control%se_control%integral_screening /= do_se_IS_kdso) &
1222 : CALL cp_abort(__LOCATION__, &
1223 : "A periodic semi-empirical calculation was requested with a long-range "// &
1224 : "summation for the slowly convergent part 1/R^3, which is not congruent "// &
1225 : "with the integral screening chosen. The only integral screening supported "// &
1226 998 : "by this periodic type calculation is the standard Klopman-Dewar-Sabelli-Ohno.")
1227 : END SELECT
1228 :
1229 : ! dispersion pair potentials
1230 : CALL section_vals_val_get(se_section, "DISPERSION", &
1231 998 : l_val=qs_control%se_control%dispersion)
1232 : CALL section_vals_val_get(se_section, "DISPERSION_RADIUS", &
1233 998 : r_val=qs_control%se_control%rcdisp)
1234 : CALL section_vals_val_get(se_section, "COORDINATION_CUTOFF", &
1235 998 : r_val=qs_control%se_control%epscn)
1236 998 : CALL section_vals_val_get(se_section, "D3_SCALING", r_vals=scal)
1237 998 : qs_control%se_control%sd3(1) = scal(1)
1238 998 : qs_control%se_control%sd3(2) = scal(2)
1239 998 : qs_control%se_control%sd3(3) = scal(3)
1240 : CALL section_vals_val_get(se_section, "DISPERSION_PARAMETER_FILE", &
1241 998 : c_val=qs_control%se_control%dispersion_parameter_file)
1242 :
1243 : ! Stop the execution for non-implemented features
1244 998 : IF (qs_control%se_control%periodic_type == do_se_lr_ewald_r3) THEN
1245 0 : CPABORT("EWALD_R3 not implemented yet!")
1246 : END IF
1247 :
1248 : IF (qs_control%method_id == do_method_mndo .OR. &
1249 : qs_control%method_id == do_method_am1 .OR. &
1250 : qs_control%method_id == do_method_mndod .OR. &
1251 : qs_control%method_id == do_method_pdg .OR. &
1252 : qs_control%method_id == do_method_pm3 .OR. &
1253 : qs_control%method_id == do_method_pm6 .OR. &
1254 : qs_control%method_id == do_method_pm6fm .OR. &
1255 998 : qs_control%method_id == do_method_pnnl .OR. &
1256 : qs_control%method_id == do_method_rm1) THEN
1257 998 : qs_control%se_control%orthogonal_basis = .TRUE.
1258 : END IF
1259 : END IF
1260 :
1261 : ! DFTB code
1262 7452 : IF (qs_control%dftb) THEN
1263 : CALL section_vals_val_get(dftb_section, "ORTHOGONAL_BASIS", &
1264 222 : l_val=qs_control%dftb_control%orthogonal_basis)
1265 : CALL section_vals_val_get(dftb_section, "SELF_CONSISTENT", &
1266 222 : l_val=qs_control%dftb_control%self_consistent)
1267 : CALL section_vals_val_get(dftb_section, "DISPERSION", &
1268 222 : l_val=qs_control%dftb_control%dispersion)
1269 : CALL section_vals_val_get(dftb_section, "DIAGONAL_DFTB3", &
1270 222 : l_val=qs_control%dftb_control%dftb3_diagonal)
1271 : CALL section_vals_val_get(dftb_section, "HB_SR_GAMMA", &
1272 222 : l_val=qs_control%dftb_control%hb_sr_damp)
1273 : CALL section_vals_val_get(dftb_section, "EPS_DISP", &
1274 222 : r_val=qs_control%dftb_control%eps_disp)
1275 222 : CALL section_vals_val_get(dftb_section, "DO_EWALD", explicit=explicit)
1276 222 : IF (explicit) THEN
1277 : CALL section_vals_val_get(dftb_section, "DO_EWALD", &
1278 166 : l_val=qs_control%dftb_control%do_ewald)
1279 : ELSE
1280 56 : qs_control%dftb_control%do_ewald = (qs_control%periodicity /= 0)
1281 : END IF
1282 : CALL section_vals_val_get(dftb_parameter, "PARAM_FILE_PATH", &
1283 222 : c_val=qs_control%dftb_control%sk_file_path)
1284 : CALL section_vals_val_get(dftb_parameter, "PARAM_FILE_NAME", &
1285 222 : c_val=qs_control%dftb_control%sk_file_list)
1286 : CALL section_vals_val_get(dftb_parameter, "HB_SR_PARAM", &
1287 222 : r_val=qs_control%dftb_control%hb_sr_para)
1288 222 : CALL section_vals_val_get(dftb_parameter, "SK_FILE", n_rep_val=n_var)
1289 470 : ALLOCATE (qs_control%dftb_control%sk_pair_list(3, n_var))
1290 284 : DO k = 1, n_var
1291 : CALL section_vals_val_get(dftb_parameter, "SK_FILE", i_rep_val=k, &
1292 62 : c_vals=clist)
1293 470 : qs_control%dftb_control%sk_pair_list(1:3, k) = clist(1:3)
1294 : END DO
1295 : ! Dispersion type
1296 : CALL section_vals_val_get(dftb_parameter, "DISPERSION_TYPE", &
1297 222 : i_val=qs_control%dftb_control%dispersion_type)
1298 : CALL section_vals_val_get(dftb_parameter, "UFF_FORCE_FIELD", &
1299 222 : c_val=qs_control%dftb_control%uff_force_field)
1300 : ! D3 Dispersion
1301 : CALL section_vals_val_get(dftb_parameter, "DISPERSION_RADIUS", &
1302 222 : r_val=qs_control%dftb_control%rcdisp)
1303 : CALL section_vals_val_get(dftb_parameter, "COORDINATION_CUTOFF", &
1304 222 : r_val=qs_control%dftb_control%epscn)
1305 : CALL section_vals_val_get(dftb_parameter, "D2_EXP_PRE", &
1306 222 : r_val=qs_control%dftb_control%exp_pre)
1307 : CALL section_vals_val_get(dftb_parameter, "D2_SCALING", &
1308 222 : r_val=qs_control%dftb_control%scaling)
1309 222 : CALL section_vals_val_get(dftb_parameter, "D3_SCALING", r_vals=scal)
1310 222 : qs_control%dftb_control%sd3(1) = scal(1)
1311 222 : qs_control%dftb_control%sd3(2) = scal(2)
1312 222 : qs_control%dftb_control%sd3(3) = scal(3)
1313 222 : CALL section_vals_val_get(dftb_parameter, "D3BJ_SCALING", r_vals=scal)
1314 222 : qs_control%dftb_control%sd3bj(1) = scal(1)
1315 222 : qs_control%dftb_control%sd3bj(2) = scal(2)
1316 222 : qs_control%dftb_control%sd3bj(3) = scal(3)
1317 222 : qs_control%dftb_control%sd3bj(4) = scal(4)
1318 : CALL section_vals_val_get(dftb_parameter, "DISPERSION_PARAMETER_FILE", &
1319 222 : c_val=qs_control%dftb_control%dispersion_parameter_file)
1320 :
1321 222 : IF (qs_control%dftb_control%dispersion) CALL cite_reference(Zhechkov2005)
1322 222 : IF (qs_control%dftb_control%self_consistent) CALL cite_reference(Elstner1998)
1323 666 : IF (qs_control%dftb_control%hb_sr_damp) CALL cite_reference(Hu2007)
1324 : END IF
1325 :
1326 : ! xTB code
1327 7452 : IF (qs_control%xtb) THEN
1328 944 : CALL section_vals_val_get(xtb_section, "GFN_TYPE", i_val=qs_control%xtb_control%gfn_type)
1329 944 : CALL section_vals_val_get(xtb_section, "DO_EWALD", explicit=explicit)
1330 944 : IF (explicit) THEN
1331 : CALL section_vals_val_get(xtb_section, "DO_EWALD", &
1332 760 : l_val=qs_control%xtb_control%do_ewald)
1333 : ELSE
1334 184 : qs_control%xtb_control%do_ewald = (qs_control%periodicity /= 0)
1335 : END IF
1336 : ! vdW
1337 944 : CALL section_vals_val_get(xtb_section, "VDW_POTENTIAL", explicit=explicit)
1338 944 : IF (explicit) THEN
1339 660 : CALL section_vals_val_get(xtb_section, "VDW_POTENTIAL", c_val=cval)
1340 660 : CALL uppercase(cval)
1341 0 : SELECT CASE (cval)
1342 : CASE ("NONE")
1343 0 : qs_control%xtb_control%vdw_type = xtb_vdw_type_none
1344 : CASE ("DFTD3")
1345 36 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d3
1346 : CASE ("DFTD4")
1347 624 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
1348 : CASE DEFAULT
1349 660 : CPABORT("vdW type")
1350 : END SELECT
1351 : ELSE
1352 300 : SELECT CASE (qs_control%xtb_control%gfn_type)
1353 : CASE (0)
1354 16 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
1355 : CASE (1)
1356 268 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d3
1357 : CASE (2)
1358 0 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
1359 0 : CPABORT("gfn2-xtb tbd")
1360 : CASE DEFAULT
1361 284 : CPABORT("GFN type")
1362 : END SELECT
1363 : END IF
1364 : !
1365 944 : CALL section_vals_val_get(xtb_section, "STO_NG", i_val=ngauss)
1366 944 : qs_control%xtb_control%sto_ng = ngauss
1367 944 : CALL section_vals_val_get(xtb_section, "HYDROGEN_STO_NG", i_val=ngauss)
1368 944 : qs_control%xtb_control%h_sto_ng = ngauss
1369 : CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_PATH", &
1370 944 : c_val=qs_control%xtb_control%parameter_file_path)
1371 944 : CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_NAME", explicit=explicit)
1372 944 : IF (explicit) THEN
1373 : CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_NAME", &
1374 0 : c_val=qs_control%xtb_control%parameter_file_name)
1375 : ELSE
1376 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1377 : CASE (0)
1378 674 : qs_control%xtb_control%parameter_file_name = "xTB0_parameters"
1379 : CASE (1)
1380 270 : qs_control%xtb_control%parameter_file_name = "xTB1_parameters"
1381 : CASE (2)
1382 0 : CPABORT("gfn2-xtb tbd")
1383 : CASE DEFAULT
1384 944 : CPABORT("GFN type")
1385 : END SELECT
1386 : END IF
1387 : ! D3 Dispersion
1388 : CALL section_vals_val_get(xtb_parameter, "DISPERSION_RADIUS", &
1389 944 : r_val=qs_control%xtb_control%rcdisp)
1390 : CALL section_vals_val_get(xtb_parameter, "COORDINATION_CUTOFF", &
1391 944 : r_val=qs_control%xtb_control%epscn)
1392 944 : CALL section_vals_val_get(xtb_parameter, "D3BJ_SCALING", explicit=explicit)
1393 944 : IF (explicit) THEN
1394 0 : CALL section_vals_val_get(xtb_parameter, "D3BJ_SCALING", r_vals=scal)
1395 0 : qs_control%xtb_control%s6 = scal(1)
1396 0 : qs_control%xtb_control%s8 = scal(2)
1397 : ELSE
1398 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1399 : CASE (0)
1400 674 : qs_control%xtb_control%s6 = 1.00_dp
1401 674 : qs_control%xtb_control%s8 = 2.85_dp
1402 : CASE (1)
1403 270 : qs_control%xtb_control%s6 = 1.00_dp
1404 270 : qs_control%xtb_control%s8 = 2.40_dp
1405 : CASE (2)
1406 0 : CPABORT("gfn2-xtb tbd")
1407 : CASE DEFAULT
1408 944 : CPABORT("GFN type")
1409 : END SELECT
1410 : END IF
1411 944 : CALL section_vals_val_get(xtb_parameter, "D3BJ_PARAM", explicit=explicit)
1412 944 : IF (explicit) THEN
1413 0 : CALL section_vals_val_get(xtb_parameter, "D3BJ_PARAM", r_vals=scal)
1414 0 : qs_control%xtb_control%a1 = scal(1)
1415 0 : qs_control%xtb_control%a2 = scal(2)
1416 : ELSE
1417 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1418 : CASE (0)
1419 674 : qs_control%xtb_control%a1 = 0.80_dp
1420 674 : qs_control%xtb_control%a2 = 4.60_dp
1421 : CASE (1)
1422 270 : qs_control%xtb_control%a1 = 0.63_dp
1423 270 : qs_control%xtb_control%a2 = 5.00_dp
1424 : CASE (2)
1425 0 : CPABORT("gfn2-xtb tbd")
1426 : CASE DEFAULT
1427 944 : CPABORT("GFN type")
1428 : END SELECT
1429 : END IF
1430 : CALL section_vals_val_get(xtb_parameter, "DISPERSION_PARAMETER_FILE", &
1431 944 : c_val=qs_control%xtb_control%dispersion_parameter_file)
1432 : ! global parameters
1433 944 : CALL section_vals_val_get(xtb_parameter, "HUCKEL_CONSTANTS", explicit=explicit)
1434 944 : IF (explicit) THEN
1435 0 : CALL section_vals_val_get(xtb_parameter, "HUCKEL_CONSTANTS", r_vals=scal)
1436 0 : qs_control%xtb_control%ks = scal(1)
1437 0 : qs_control%xtb_control%kp = scal(2)
1438 0 : qs_control%xtb_control%kd = scal(3)
1439 0 : qs_control%xtb_control%ksp = scal(4)
1440 0 : qs_control%xtb_control%k2sh = scal(5)
1441 0 : IF (qs_control%xtb_control%gfn_type == 0) THEN
1442 : ! enforce ksp for gfn0
1443 0 : qs_control%xtb_control%ksp = 0.5_dp*(scal(1) + scal(2))
1444 : END IF
1445 : ELSE
1446 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1447 : CASE (0)
1448 674 : qs_control%xtb_control%ks = 2.00_dp
1449 674 : qs_control%xtb_control%kp = 2.4868_dp
1450 674 : qs_control%xtb_control%kd = 2.27_dp
1451 674 : qs_control%xtb_control%ksp = 2.2434_dp
1452 674 : qs_control%xtb_control%k2sh = 1.1241_dp
1453 : CASE (1)
1454 270 : qs_control%xtb_control%ks = 1.85_dp
1455 270 : qs_control%xtb_control%kp = 2.25_dp
1456 270 : qs_control%xtb_control%kd = 2.00_dp
1457 270 : qs_control%xtb_control%ksp = 2.08_dp
1458 270 : qs_control%xtb_control%k2sh = 2.85_dp
1459 : CASE (2)
1460 0 : CPABORT("gfn2-xtb tbd")
1461 : CASE DEFAULT
1462 944 : CPABORT("GFN type")
1463 : END SELECT
1464 : END IF
1465 944 : CALL section_vals_val_get(xtb_parameter, "COULOMB_CONSTANTS", explicit=explicit)
1466 944 : IF (explicit) THEN
1467 0 : CALL section_vals_val_get(xtb_parameter, "COULOMB_CONSTANTS", r_vals=scal)
1468 0 : qs_control%xtb_control%kg = scal(1)
1469 0 : qs_control%xtb_control%kf = scal(2)
1470 : ELSE
1471 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1472 : CASE (0)
1473 674 : qs_control%xtb_control%kg = 2.00_dp
1474 674 : qs_control%xtb_control%kf = 1.50_dp
1475 : CASE (1)
1476 270 : qs_control%xtb_control%kg = 2.00_dp
1477 270 : qs_control%xtb_control%kf = 1.50_dp
1478 : CASE (2)
1479 0 : CPABORT("gfn2-xtb tbd")
1480 : CASE DEFAULT
1481 944 : CPABORT("GFN type")
1482 : END SELECT
1483 : END IF
1484 944 : CALL section_vals_val_get(xtb_parameter, "CN_CONSTANTS", r_vals=scal)
1485 944 : qs_control%xtb_control%kcns = scal(1)
1486 944 : qs_control%xtb_control%kcnp = scal(2)
1487 944 : qs_control%xtb_control%kcnd = scal(3)
1488 : !
1489 944 : CALL section_vals_val_get(xtb_parameter, "EN_CONSTANTS", explicit=explicit)
1490 944 : IF (explicit) THEN
1491 0 : CALL section_vals_val_get(xtb_parameter, "EN_CONSTANTS", r_vals=scal)
1492 0 : SELECT CASE (qs_control%xtb_control%gfn_type)
1493 : CASE (0)
1494 0 : qs_control%xtb_control%ksen = scal(1)
1495 0 : qs_control%xtb_control%kpen = scal(2)
1496 0 : qs_control%xtb_control%kden = scal(3)
1497 : CASE (1)
1498 0 : qs_control%xtb_control%ken = scal(1)
1499 : CASE (2)
1500 0 : CPABORT("gfn2-xtb tbd")
1501 : CASE DEFAULT
1502 0 : CPABORT("GFN type")
1503 : END SELECT
1504 : ELSE
1505 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1506 : CASE (0)
1507 674 : qs_control%xtb_control%ksen = 0.006_dp
1508 674 : qs_control%xtb_control%kpen = -0.001_dp
1509 674 : qs_control%xtb_control%kden = -0.002_dp
1510 : CASE (1)
1511 270 : qs_control%xtb_control%ken = -0.007_dp
1512 : CASE (2)
1513 0 : CPABORT("gfn2-xtb tbd")
1514 : CASE DEFAULT
1515 944 : CPABORT("GFN type")
1516 : END SELECT
1517 : END IF
1518 : ! ben
1519 944 : CALL section_vals_val_get(xtb_parameter, "BEN_CONSTANT", r_vals=scal)
1520 944 : qs_control%xtb_control%ben = scal(1)
1521 : ! enscale (hidden parameter in repulsion
1522 944 : CALL section_vals_val_get(xtb_parameter, "ENSCALE", explicit=explicit)
1523 944 : IF (explicit) THEN
1524 : CALL section_vals_val_get(xtb_parameter, "ENSCALE", &
1525 0 : r_val=qs_control%xtb_control%enscale)
1526 : ELSE
1527 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1528 : CASE (0)
1529 674 : qs_control%xtb_control%enscale = -0.09_dp
1530 : CASE (1)
1531 270 : qs_control%xtb_control%enscale = 0._dp
1532 : CASE (2)
1533 0 : CPABORT("gfn2-xtb tbd")
1534 : CASE DEFAULT
1535 944 : CPABORT("GFN type")
1536 : END SELECT
1537 : END IF
1538 : ! XB
1539 : CALL section_vals_val_get(xtb_section, "USE_HALOGEN_CORRECTION", &
1540 944 : l_val=qs_control%xtb_control%xb_interaction)
1541 944 : CALL section_vals_val_get(xtb_parameter, "HALOGEN_BINDING", r_vals=scal)
1542 944 : qs_control%xtb_control%kxr = scal(1)
1543 944 : qs_control%xtb_control%kx2 = scal(2)
1544 : ! NONBONDED interactions
1545 : CALL section_vals_val_get(xtb_section, "DO_NONBONDED", &
1546 944 : l_val=qs_control%xtb_control%do_nonbonded)
1547 944 : CALL section_vals_get(nonbonded_section, explicit=explicit)
1548 944 : IF (explicit .AND. qs_control%xtb_control%do_nonbonded) THEN
1549 6 : CALL section_vals_get(genpot_section, explicit=explicit, n_repetition=ngp)
1550 6 : IF (explicit) THEN
1551 6 : CALL pair_potential_reallocate(qs_control%xtb_control%nonbonded, 1, ngp, gp=.TRUE.)
1552 6 : CALL read_gp_section(qs_control%xtb_control%nonbonded, genpot_section, 0)
1553 : END IF
1554 : END IF !nonbonded
1555 : CALL section_vals_val_get(xtb_section, "EPS_PAIRPOTENTIAL", &
1556 944 : r_val=qs_control%xtb_control%eps_pair)
1557 : ! SR Coulomb
1558 944 : CALL section_vals_val_get(xtb_parameter, "COULOMB_SR_CUT", r_vals=scal)
1559 944 : qs_control%xtb_control%coulomb_sr_cut = scal(1)
1560 944 : CALL section_vals_val_get(xtb_parameter, "COULOMB_SR_EPS", r_vals=scal)
1561 944 : qs_control%xtb_control%coulomb_sr_eps = scal(1)
1562 : ! XB_radius
1563 944 : CALL section_vals_val_get(xtb_parameter, "XB_RADIUS", r_val=qs_control%xtb_control%xb_radius)
1564 : ! Kab
1565 944 : CALL section_vals_val_get(xtb_parameter, "KAB_PARAM", n_rep_val=n_rep)
1566 : ! Coulomb
1567 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1568 : CASE (0)
1569 674 : qs_control%xtb_control%coulomb_interaction = .FALSE.
1570 674 : qs_control%xtb_control%coulomb_lr = .FALSE.
1571 674 : qs_control%xtb_control%tb3_interaction = .FALSE.
1572 674 : qs_control%xtb_control%check_atomic_charges = .FALSE.
1573 : CALL section_vals_val_get(xtb_section, "VARIATIONAL_DIPOLE", &
1574 674 : l_val=qs_control%xtb_control%var_dipole)
1575 : CASE (1)
1576 : ! For debugging purposes
1577 : CALL section_vals_val_get(xtb_section, "COULOMB_INTERACTION", &
1578 270 : l_val=qs_control%xtb_control%coulomb_interaction)
1579 : CALL section_vals_val_get(xtb_section, "COULOMB_LR", &
1580 270 : l_val=qs_control%xtb_control%coulomb_lr)
1581 : CALL section_vals_val_get(xtb_section, "TB3_INTERACTION", &
1582 270 : l_val=qs_control%xtb_control%tb3_interaction)
1583 : ! Check for bad atomic charges
1584 : CALL section_vals_val_get(xtb_section, "CHECK_ATOMIC_CHARGES", &
1585 270 : l_val=qs_control%xtb_control%check_atomic_charges)
1586 270 : qs_control%xtb_control%var_dipole = .FALSE.
1587 : CASE (2)
1588 0 : CPABORT("gfn2-xtb tbd")
1589 : CASE DEFAULT
1590 944 : CPABORT("GFN type")
1591 : END SELECT
1592 944 : qs_control%xtb_control%kab_nval = n_rep
1593 944 : IF (n_rep > 0) THEN
1594 6 : ALLOCATE (qs_control%xtb_control%kab_param(3, n_rep))
1595 6 : ALLOCATE (qs_control%xtb_control%kab_types(2, n_rep))
1596 6 : ALLOCATE (qs_control%xtb_control%kab_vals(n_rep))
1597 4 : DO j = 1, n_rep
1598 2 : CALL section_vals_val_get(xtb_parameter, "KAB_PARAM", i_rep_val=j, c_vals=clist)
1599 2 : qs_control%xtb_control%kab_param(1, j) = clist(1)
1600 : CALL get_ptable_info(clist(1), &
1601 2 : ielement=qs_control%xtb_control%kab_types(1, j))
1602 2 : qs_control%xtb_control%kab_param(2, j) = clist(2)
1603 : CALL get_ptable_info(clist(2), &
1604 2 : ielement=qs_control%xtb_control%kab_types(2, j))
1605 2 : qs_control%xtb_control%kab_param(3, j) = clist(3)
1606 4 : READ (clist(3), '(F10.0)') qs_control%xtb_control%kab_vals(j)
1607 : END DO
1608 : END IF
1609 :
1610 944 : IF (qs_control%xtb_control%gfn_type == 0) THEN
1611 674 : CALL section_vals_val_get(xtb_parameter, "SRB_PARAMETER", r_vals=scal)
1612 674 : qs_control%xtb_control%ksrb = scal(1)
1613 674 : qs_control%xtb_control%esrb = scal(2)
1614 674 : qs_control%xtb_control%gscal = scal(3)
1615 674 : qs_control%xtb_control%c1srb = scal(4)
1616 674 : qs_control%xtb_control%c2srb = scal(5)
1617 674 : qs_control%xtb_control%shift = scal(6)
1618 : END IF
1619 :
1620 944 : CALL section_vals_val_get(xtb_section, "EN_SHIFT_TYPE", c_val=cval)
1621 944 : CALL uppercase(cval)
1622 944 : SELECT CASE (TRIM(cval))
1623 : CASE ("SELECT")
1624 0 : qs_control%xtb_control%enshift_type = 0
1625 : CASE ("MOLECULE")
1626 944 : qs_control%xtb_control%enshift_type = 1
1627 : CASE ("CRYSTAL")
1628 0 : qs_control%xtb_control%enshift_type = 2
1629 : CASE DEFAULT
1630 944 : CPABORT("Unknown value for EN_SHIFT_TYPE")
1631 : END SELECT
1632 :
1633 : ! EEQ solver params
1634 944 : CALL read_eeq_param(eeq_section, qs_control%xtb_control%eeq_sparam)
1635 :
1636 : END IF
1637 :
1638 : ! Optimize LRI basis set
1639 7452 : CALL section_vals_get(lri_optbas_section, explicit=qs_control%lri_optbas)
1640 :
1641 : ! Use instead the tblite
1642 : CALL section_vals_val_get(xtb_tblite, "_SECTION_PARAMETERS_", &
1643 7452 : l_val=qs_control%xtb_control%do_tblite)
1644 : CALL section_vals_val_get(xtb_tblite, "METHOD", &
1645 7452 : i_val=qs_control%xtb_control%tblite_method)
1646 7452 : IF (qs_control%xtb_control%do_tblite) THEN
1647 0 : CALL cite_reference(Caldeweyher2017)
1648 0 : CALL cite_reference(Caldeweyher2020)
1649 0 : CALL cite_reference(Asgeirsson2017)
1650 0 : CALL cite_reference(Grimme2017)
1651 0 : CALL cite_reference(Bannwarth2019)
1652 : !Ewald sum included in tblite
1653 0 : qs_control%xtb_control%do_ewald = .FALSE.
1654 : END IF
1655 :
1656 7452 : CALL timestop(handle)
1657 7452 : END SUBROUTINE read_qs_section
1658 :
1659 : ! **************************************************************************************************
1660 : !> \brief Read TDDFPT-related input parameters.
1661 : !> \param t_control TDDFPT control parameters
1662 : !> \param t_section TDDFPT input section
1663 : !> \param qs_control Quickstep control parameters
1664 : ! **************************************************************************************************
1665 7480 : SUBROUTINE read_tddfpt2_control(t_control, t_section, qs_control)
1666 : TYPE(tddfpt2_control_type), POINTER :: t_control
1667 : TYPE(section_vals_type), POINTER :: t_section
1668 : TYPE(qs_control_type), POINTER :: qs_control
1669 :
1670 : CHARACTER(LEN=*), PARAMETER :: routineN = 'read_tddfpt2_control'
1671 :
1672 : CHARACTER(LEN=default_string_length), &
1673 7480 : DIMENSION(:), POINTER :: tmpstringlist
1674 : INTEGER :: handle, irep, isize, nrep
1675 7480 : INTEGER, ALLOCATABLE, DIMENSION(:) :: inds
1676 : LOGICAL :: do_ewald, do_exchange, expl, explicit, &
1677 : multigrid_set
1678 : REAL(KIND=dp) :: filter, fval, hfx
1679 : TYPE(section_vals_type), POINTER :: dipole_section, mgrid_section, &
1680 : soc_section, stda_section, xc_func, &
1681 : xc_section
1682 :
1683 7480 : CALL timeset(routineN, handle)
1684 :
1685 7480 : CALL section_vals_val_get(t_section, "_SECTION_PARAMETERS_", l_val=t_control%enabled)
1686 :
1687 7480 : CALL section_vals_val_get(t_section, "NSTATES", i_val=t_control%nstates)
1688 7480 : CALL section_vals_val_get(t_section, "MAX_ITER", i_val=t_control%niters)
1689 7480 : CALL section_vals_val_get(t_section, "MAX_KV", i_val=t_control%nkvs)
1690 7480 : CALL section_vals_val_get(t_section, "NLUMO", i_val=t_control%nlumo)
1691 7480 : CALL section_vals_val_get(t_section, "NPROC_STATE", i_val=t_control%nprocs)
1692 7480 : CALL section_vals_val_get(t_section, "KERNEL", i_val=t_control%kernel)
1693 7480 : CALL section_vals_val_get(t_section, "SPINFLIP", i_val=t_control%spinflip)
1694 7480 : CALL section_vals_val_get(t_section, "OE_CORR", i_val=t_control%oe_corr)
1695 7480 : CALL section_vals_val_get(t_section, "EV_SHIFT", r_val=t_control%ev_shift)
1696 7480 : CALL section_vals_val_get(t_section, "EOS_SHIFT", r_val=t_control%eos_shift)
1697 :
1698 7480 : CALL section_vals_val_get(t_section, "CONVERGENCE", r_val=t_control%conv)
1699 7480 : CALL section_vals_val_get(t_section, "MIN_AMPLITUDE", r_val=t_control%min_excitation_amplitude)
1700 7480 : CALL section_vals_val_get(t_section, "ORTHOGONAL_EPS", r_val=t_control%orthogonal_eps)
1701 :
1702 7480 : CALL section_vals_val_get(t_section, "RESTART", l_val=t_control%is_restart)
1703 7480 : CALL section_vals_val_get(t_section, "RKS_TRIPLETS", l_val=t_control%rks_triplets)
1704 7480 : CALL section_vals_val_get(t_section, "DO_LRIGPW", l_val=t_control%do_lrigpw)
1705 7480 : CALL section_vals_val_get(t_section, "DO_SMEARING", l_val=t_control%do_smearing)
1706 7480 : CALL section_vals_val_get(t_section, "DO_BSE", l_val=t_control%do_bse)
1707 7480 : CALL section_vals_val_get(t_section, "ADMM_KERNEL_CORRECTION_SYMMETRIC", l_val=t_control%admm_symm)
1708 7480 : CALL section_vals_val_get(t_section, "ADMM_KERNEL_XC_CORRECTION", l_val=t_control%admm_xc_correction)
1709 7480 : CALL section_vals_val_get(t_section, "EXCITON_DESCRIPTORS", l_val=t_control%do_exciton_descriptors)
1710 7480 : CALL section_vals_val_get(t_section, "DIRECTIONAL_EXCITON_DESCRIPTORS", l_val=t_control%do_directional_exciton_descriptors)
1711 :
1712 : ! read automatically generated auxiliary basis for LRI
1713 7480 : CALL section_vals_val_get(t_section, "AUTO_BASIS", n_rep_val=nrep)
1714 14960 : DO irep = 1, nrep
1715 7480 : CALL section_vals_val_get(t_section, "AUTO_BASIS", i_rep_val=irep, c_vals=tmpstringlist)
1716 14960 : IF (SIZE(tmpstringlist) == 2) THEN
1717 7480 : CALL uppercase(tmpstringlist(2))
1718 7480 : SELECT CASE (tmpstringlist(2))
1719 : CASE ("X")
1720 0 : isize = -1
1721 : CASE ("SMALL")
1722 0 : isize = 0
1723 : CASE ("MEDIUM")
1724 0 : isize = 1
1725 : CASE ("LARGE")
1726 0 : isize = 2
1727 : CASE ("HUGE")
1728 0 : isize = 3
1729 : CASE DEFAULT
1730 7480 : CPABORT("Unknown basis size in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
1731 : END SELECT
1732 : !
1733 7480 : SELECT CASE (tmpstringlist(1))
1734 : CASE ("X")
1735 : CASE ("P_LRI_AUX")
1736 0 : t_control%auto_basis_p_lri_aux = isize
1737 : CASE DEFAULT
1738 7480 : CPABORT("Unknown basis type in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
1739 : END SELECT
1740 : ELSE
1741 : CALL cp_abort(__LOCATION__, &
1742 0 : "AUTO_BASIS keyword in &PROPERTIES &TDDFT section has a wrong number of arguments.")
1743 : END IF
1744 : END DO
1745 :
1746 7480 : IF (t_control%conv < 0) &
1747 0 : t_control%conv = ABS(t_control%conv)
1748 :
1749 : ! DIPOLE_MOMENTS subsection
1750 7480 : dipole_section => section_vals_get_subs_vals(t_section, "DIPOLE_MOMENTS")
1751 7480 : CALL section_vals_val_get(dipole_section, "DIPOLE_FORM", explicit=explicit)
1752 7480 : IF (explicit) THEN
1753 12 : CALL section_vals_val_get(dipole_section, "DIPOLE_FORM", i_val=t_control%dipole_form)
1754 : ELSE
1755 7468 : t_control%dipole_form = 0
1756 : END IF
1757 7480 : CALL section_vals_val_get(dipole_section, "REFERENCE", i_val=t_control%dipole_reference)
1758 7480 : CALL section_vals_val_get(dipole_section, "REFERENCE_POINT", explicit=explicit)
1759 7480 : IF (explicit) THEN
1760 0 : CALL section_vals_val_get(dipole_section, "REFERENCE_POINT", r_vals=t_control%dipole_ref_point)
1761 : ELSE
1762 7480 : NULLIFY (t_control%dipole_ref_point)
1763 7480 : IF (t_control%dipole_form == tddfpt_dipole_length .AND. t_control%dipole_reference == use_mom_ref_user) THEN
1764 0 : CPABORT("User-defined reference point should be given explicitly")
1765 : END IF
1766 : END IF
1767 :
1768 : !SOC subsection
1769 7480 : soc_section => section_vals_get_subs_vals(t_section, "SOC")
1770 7480 : CALL section_vals_get(soc_section, explicit=explicit)
1771 7480 : IF (explicit) THEN
1772 10 : t_control%do_soc = .TRUE.
1773 : END IF
1774 :
1775 : ! MGRID subsection
1776 7480 : mgrid_section => section_vals_get_subs_vals(t_section, "MGRID")
1777 7480 : CALL section_vals_get(mgrid_section, explicit=t_control%mgrid_is_explicit)
1778 :
1779 7480 : IF (t_control%mgrid_is_explicit) THEN
1780 10 : CALL section_vals_val_get(mgrid_section, "NGRIDS", i_val=t_control%mgrid_ngrids, explicit=explicit)
1781 10 : IF (.NOT. explicit) t_control%mgrid_ngrids = SIZE(qs_control%e_cutoff)
1782 :
1783 10 : CALL section_vals_val_get(mgrid_section, "CUTOFF", r_val=t_control%mgrid_cutoff, explicit=explicit)
1784 10 : IF (.NOT. explicit) t_control%mgrid_cutoff = qs_control%cutoff
1785 :
1786 : CALL section_vals_val_get(mgrid_section, "PROGRESSION_FACTOR", &
1787 10 : r_val=t_control%mgrid_progression_factor, explicit=explicit)
1788 10 : IF (explicit) THEN
1789 0 : IF (t_control%mgrid_progression_factor <= 1.0_dp) &
1790 : CALL cp_abort(__LOCATION__, &
1791 0 : "Progression factor should be greater then 1.0 to ensure multi-grid ordering")
1792 : ELSE
1793 10 : t_control%mgrid_progression_factor = qs_control%progression_factor
1794 : END IF
1795 :
1796 10 : CALL section_vals_val_get(mgrid_section, "COMMENSURATE", l_val=t_control%mgrid_commensurate_mgrids, explicit=explicit)
1797 10 : IF (.NOT. explicit) t_control%mgrid_commensurate_mgrids = qs_control%commensurate_mgrids
1798 10 : IF (t_control%mgrid_commensurate_mgrids) THEN
1799 0 : IF (explicit) THEN
1800 0 : t_control%mgrid_progression_factor = 4.0_dp
1801 : ELSE
1802 0 : t_control%mgrid_progression_factor = qs_control%progression_factor
1803 : END IF
1804 : END IF
1805 :
1806 10 : CALL section_vals_val_get(mgrid_section, "REL_CUTOFF", r_val=t_control%mgrid_relative_cutoff, explicit=explicit)
1807 10 : IF (.NOT. explicit) t_control%mgrid_relative_cutoff = qs_control%relative_cutoff
1808 :
1809 10 : CALL section_vals_val_get(mgrid_section, "MULTIGRID_SET", l_val=multigrid_set, explicit=explicit)
1810 10 : IF (.NOT. explicit) multigrid_set = .FALSE.
1811 10 : IF (multigrid_set) THEN
1812 0 : CALL section_vals_val_get(mgrid_section, "MULTIGRID_CUTOFF", r_vals=t_control%mgrid_e_cutoff)
1813 : ELSE
1814 10 : NULLIFY (t_control%mgrid_e_cutoff)
1815 : END IF
1816 :
1817 10 : CALL section_vals_val_get(mgrid_section, "REALSPACE", l_val=t_control%mgrid_realspace_mgrids, explicit=explicit)
1818 10 : IF (.NOT. explicit) t_control%mgrid_realspace_mgrids = qs_control%realspace_mgrids
1819 :
1820 : CALL section_vals_val_get(mgrid_section, "SKIP_LOAD_BALANCE_DISTRIBUTED", &
1821 10 : l_val=t_control%mgrid_skip_load_balance, explicit=explicit)
1822 10 : IF (.NOT. explicit) t_control%mgrid_skip_load_balance = qs_control%skip_load_balance_distributed
1823 :
1824 10 : IF (ASSOCIATED(t_control%mgrid_e_cutoff)) THEN
1825 0 : IF (SIZE(t_control%mgrid_e_cutoff) /= t_control%mgrid_ngrids) &
1826 0 : CPABORT("Inconsistent values for number of multi-grids")
1827 :
1828 : ! sort multi-grids in descending order according to their cutoff values
1829 0 : t_control%mgrid_e_cutoff = -t_control%mgrid_e_cutoff
1830 0 : ALLOCATE (inds(t_control%mgrid_ngrids))
1831 0 : CALL sort(t_control%mgrid_e_cutoff, t_control%mgrid_ngrids, inds)
1832 0 : DEALLOCATE (inds)
1833 0 : t_control%mgrid_e_cutoff = -t_control%mgrid_e_cutoff
1834 : END IF
1835 : END IF
1836 :
1837 : ! expand XC subsection (if given explicitly)
1838 7480 : xc_section => section_vals_get_subs_vals(t_section, "XC")
1839 7480 : xc_func => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
1840 7480 : CALL section_vals_get(xc_func, explicit=explicit)
1841 7480 : IF (explicit) &
1842 218 : CALL xc_functionals_expand(xc_func, xc_section)
1843 :
1844 : ! sTDA subsection
1845 7480 : stda_section => section_vals_get_subs_vals(t_section, "STDA")
1846 7480 : IF (t_control%kernel == tddfpt_kernel_stda) THEN
1847 118 : t_control%stda_control%hfx_fraction = 0.0_dp
1848 118 : t_control%stda_control%do_exchange = .TRUE.
1849 118 : t_control%stda_control%eps_td_filter = 1.e-10_dp
1850 118 : t_control%stda_control%mn_alpha = -99.0_dp
1851 118 : t_control%stda_control%mn_beta = -99.0_dp
1852 : ! set default for Ewald method (on/off) dependent on periodicity
1853 212 : SELECT CASE (qs_control%periodicity)
1854 : CASE (0)
1855 94 : t_control%stda_control%do_ewald = .FALSE.
1856 : CASE (1)
1857 0 : t_control%stda_control%do_ewald = .TRUE.
1858 : CASE (2)
1859 0 : t_control%stda_control%do_ewald = .TRUE.
1860 : CASE (3)
1861 24 : t_control%stda_control%do_ewald = .TRUE.
1862 : CASE DEFAULT
1863 118 : CPABORT("Illegal value for periodiciy")
1864 : END SELECT
1865 118 : CALL section_vals_get(stda_section, explicit=explicit)
1866 118 : IF (explicit) THEN
1867 104 : CALL section_vals_val_get(stda_section, "HFX_FRACTION", r_val=hfx, explicit=expl)
1868 104 : IF (expl) t_control%stda_control%hfx_fraction = hfx
1869 104 : CALL section_vals_val_get(stda_section, "EPS_TD_FILTER", r_val=filter, explicit=expl)
1870 104 : IF (expl) t_control%stda_control%eps_td_filter = filter
1871 104 : CALL section_vals_val_get(stda_section, "DO_EWALD", l_val=do_ewald, explicit=expl)
1872 104 : IF (expl) t_control%stda_control%do_ewald = do_ewald
1873 104 : CALL section_vals_val_get(stda_section, "DO_EXCHANGE", l_val=do_exchange, explicit=expl)
1874 104 : IF (expl) t_control%stda_control%do_exchange = do_exchange
1875 104 : CALL section_vals_val_get(stda_section, "MATAGA_NISHIMOTO_CEXP", r_val=fval)
1876 104 : t_control%stda_control%mn_alpha = fval
1877 104 : CALL section_vals_val_get(stda_section, "MATAGA_NISHIMOTO_XEXP", r_val=fval)
1878 104 : t_control%stda_control%mn_beta = fval
1879 : END IF
1880 118 : CALL section_vals_val_get(stda_section, "COULOMB_SR_CUT", r_val=fval)
1881 118 : t_control%stda_control%coulomb_sr_cut = fval
1882 118 : CALL section_vals_val_get(stda_section, "COULOMB_SR_EPS", r_val=fval)
1883 118 : t_control%stda_control%coulomb_sr_eps = fval
1884 : END IF
1885 :
1886 7480 : CALL timestop(handle)
1887 7480 : END SUBROUTINE read_tddfpt2_control
1888 :
1889 : ! **************************************************************************************************
1890 : !> \brief Write the DFT control parameters to the output unit.
1891 : !> \param dft_control ...
1892 : !> \param dft_section ...
1893 : ! **************************************************************************************************
1894 12732 : SUBROUTINE write_dft_control(dft_control, dft_section)
1895 : TYPE(dft_control_type), POINTER :: dft_control
1896 : TYPE(section_vals_type), POINTER :: dft_section
1897 :
1898 : CHARACTER(len=*), PARAMETER :: routineN = 'write_dft_control'
1899 :
1900 : CHARACTER(LEN=20) :: tmpStr
1901 : INTEGER :: handle, i, i_rep, n_rep, output_unit
1902 : REAL(kind=dp) :: density_cut, density_smooth_cut_range, &
1903 : gradient_cut, tau_cut
1904 : TYPE(cp_logger_type), POINTER :: logger
1905 : TYPE(enumeration_type), POINTER :: enum
1906 : TYPE(keyword_type), POINTER :: keyword
1907 : TYPE(section_type), POINTER :: section
1908 : TYPE(section_vals_type), POINTER :: xc_section
1909 :
1910 8608 : IF (dft_control%qs_control%semi_empirical) RETURN
1911 6448 : IF (dft_control%qs_control%dftb) RETURN
1912 6226 : IF (dft_control%qs_control%xtb) THEN
1913 940 : CALL write_xtb_control(dft_control%qs_control%xtb_control, dft_section)
1914 940 : RETURN
1915 : END IF
1916 5286 : CALL timeset(routineN, handle)
1917 :
1918 5286 : NULLIFY (logger)
1919 5286 : logger => cp_get_default_logger()
1920 :
1921 : output_unit = cp_print_key_unit_nr(logger, dft_section, &
1922 5286 : "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
1923 :
1924 5286 : IF (output_unit > 0) THEN
1925 :
1926 1357 : xc_section => section_vals_get_subs_vals(dft_section, "XC")
1927 :
1928 1357 : IF (dft_control%uks) THEN
1929 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T78,A)") &
1930 412 : "DFT| Spin unrestricted (spin-polarized) Kohn-Sham calculation", "UKS"
1931 945 : ELSE IF (dft_control%roks) THEN
1932 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T77,A)") &
1933 15 : "DFT| Spin restricted open Kohn-Sham calculation", "ROKS"
1934 : ELSE
1935 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T78,A)") &
1936 930 : "DFT| Spin restricted Kohn-Sham (RKS) calculation", "RKS"
1937 : END IF
1938 :
1939 : WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
1940 1357 : "DFT| Multiplicity", dft_control%multiplicity
1941 : WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
1942 1357 : "DFT| Number of spin states", dft_control%nspins
1943 :
1944 : WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
1945 1357 : "DFT| Charge", dft_control%charge
1946 :
1947 1357 : IF (dft_control%sic_method_id /= sic_none) CALL cite_reference(VandeVondele2005b)
1948 2700 : SELECT CASE (dft_control%sic_method_id)
1949 : CASE (sic_none)
1950 1343 : tmpstr = "NO"
1951 : CASE (sic_mauri_spz)
1952 6 : tmpstr = "SPZ/MAURI SIC"
1953 : CASE (sic_mauri_us)
1954 3 : tmpstr = "US/MAURI SIC"
1955 : CASE (sic_ad)
1956 3 : tmpstr = "AD SIC"
1957 : CASE (sic_eo)
1958 2 : tmpstr = "Explicit Orbital SIC"
1959 : CASE DEFAULT
1960 : ! fix throughout the cp2k for this option
1961 1357 : CPABORT("SIC option unknown")
1962 : END SELECT
1963 :
1964 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
1965 1357 : "DFT| Self-interaction correction (SIC)", ADJUSTR(TRIM(tmpstr))
1966 :
1967 1357 : IF (dft_control%sic_method_id /= sic_none) THEN
1968 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,ES15.6)") &
1969 14 : "DFT| SIC scaling parameter a", dft_control%sic_scaling_a, &
1970 28 : "DFT| SIC scaling parameter b", dft_control%sic_scaling_b
1971 : END IF
1972 :
1973 1357 : IF (dft_control%sic_method_id == sic_eo) THEN
1974 2 : IF (dft_control%sic_list_id == sic_list_all) THEN
1975 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,A)") &
1976 1 : "DFT| SIC orbitals", "ALL"
1977 : END IF
1978 2 : IF (dft_control%sic_list_id == sic_list_unpaired) THEN
1979 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,A)") &
1980 1 : "DFT| SIC orbitals", "UNPAIRED"
1981 : END IF
1982 : END IF
1983 :
1984 1357 : CALL section_vals_val_get(xc_section, "density_cutoff", r_val=density_cut)
1985 1357 : CALL section_vals_val_get(xc_section, "gradient_cutoff", r_val=gradient_cut)
1986 1357 : CALL section_vals_val_get(xc_section, "tau_cutoff", r_val=tau_cut)
1987 1357 : CALL section_vals_val_get(xc_section, "density_smooth_cutoff_range", r_val=density_smooth_cut_range)
1988 :
1989 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,ES15.6)") &
1990 1357 : "DFT| Cutoffs: density ", density_cut, &
1991 1357 : "DFT| gradient", gradient_cut, &
1992 1357 : "DFT| tau ", tau_cut, &
1993 2714 : "DFT| cutoff_smoothing_range", density_smooth_cut_range
1994 : CALL section_vals_val_get(xc_section, "XC_GRID%XC_SMOOTH_RHO", &
1995 1357 : c_val=tmpStr)
1996 : WRITE (output_unit, '( A, T61, A )') &
1997 1357 : " DFT| XC density smoothing ", ADJUSTR(tmpStr)
1998 : CALL section_vals_val_get(xc_section, "XC_GRID%XC_DERIV", &
1999 1357 : c_val=tmpStr)
2000 : WRITE (output_unit, '( A, T61, A )') &
2001 1357 : " DFT| XC derivatives ", ADJUSTR(tmpStr)
2002 1357 : IF (dft_control%dft_plus_u) THEN
2003 16 : NULLIFY (enum, keyword, section)
2004 16 : CALL create_dft_section(section)
2005 16 : keyword => section_get_keyword(section, "PLUS_U_METHOD")
2006 16 : CALL keyword_get(keyword, enum=enum)
2007 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T41,A40)") &
2008 16 : "DFT+U| Method", ADJUSTR(TRIM(enum_i2c(enum, dft_control%plus_u_method_id)))
2009 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2010 16 : "DFT+U| Check atomic kind information for details"
2011 16 : CALL section_release(section)
2012 : END IF
2013 :
2014 1357 : WRITE (UNIT=output_unit, FMT="(A)") ""
2015 1357 : CALL xc_write(output_unit, xc_section, dft_control%lsd)
2016 :
2017 1357 : IF (dft_control%apply_period_efield) THEN
2018 6 : WRITE (UNIT=output_unit, FMT="(A)") ""
2019 6 : IF (dft_control%period_efield%displacement_field) THEN
2020 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2021 0 : "PERIODIC_EFIELD| Use displacement field formulation"
2022 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
2023 0 : "PERIODIC_EFIELD| Displacement field filter: x", &
2024 0 : dft_control%period_efield%d_filter(1), &
2025 0 : "PERIODIC_EFIELD| y", &
2026 0 : dft_control%period_efield%d_filter(2), &
2027 0 : "PERIODIC_EFIELD| z", &
2028 0 : dft_control%period_efield%d_filter(3)
2029 : END IF
2030 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
2031 6 : "PERIODIC_EFIELD| Polarisation vector: x", &
2032 6 : dft_control%period_efield%polarisation(1), &
2033 6 : "PERIODIC_EFIELD| y", &
2034 6 : dft_control%period_efield%polarisation(2), &
2035 6 : "PERIODIC_EFIELD| z", &
2036 12 : dft_control%period_efield%polarisation(3)
2037 :
2038 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,I14)") &
2039 6 : "PERIODIC_EFIELD| Start Frame:", &
2040 6 : dft_control%period_efield%start_frame, &
2041 6 : "PERIODIC_EFIELD| End Frame:", &
2042 12 : dft_control%period_efield%end_frame
2043 :
2044 6 : IF (ALLOCATED(dft_control%period_efield%strength_list)) THEN
2045 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,I14)") &
2046 2 : "PERIODIC_EFIELD| Number of Intensities:", &
2047 4 : SIZE(dft_control%period_efield%strength_list)
2048 : WRITE (UNIT=output_unit, FMT="(T2,A,I10,T66,1X,ES14.6)") &
2049 2 : "PERIODIC_EFIELD| Intensity List [a.u.] ", &
2050 4 : 1, dft_control%period_efield%strength_list(1)
2051 24 : DO i = 2, SIZE(dft_control%period_efield%strength_list)
2052 : WRITE (UNIT=output_unit, FMT="(T2,A,I10,T66,1X,ES14.6)") &
2053 22 : "PERIODIC_EFIELD| ", &
2054 46 : i, dft_control%period_efield%strength_list(i)
2055 : END DO
2056 : ELSE
2057 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
2058 4 : "PERIODIC_EFIELD| Intensity [a.u.]:", &
2059 8 : dft_control%period_efield%strength
2060 : END IF
2061 :
2062 24 : IF (SQRT(DOT_PRODUCT(dft_control%period_efield%polarisation, &
2063 : dft_control%period_efield%polarisation)) < EPSILON(0.0_dp)) THEN
2064 0 : CPABORT("Invalid (too small) polarisation vector specified for PERIODIC_EFIELD")
2065 : END IF
2066 : END IF
2067 :
2068 1357 : IF (dft_control%do_sccs) THEN
2069 : WRITE (UNIT=output_unit, FMT="(/,T2,A)") &
2070 5 : "SCCS| Self-consistent continuum solvation model"
2071 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2072 5 : "SCCS| Relative permittivity of the solvent (medium)", &
2073 5 : dft_control%sccs_control%epsilon_solvent, &
2074 5 : "SCCS| Absolute permittivity [a.u.]", &
2075 10 : dft_control%sccs_control%epsilon_solvent/fourpi
2076 9 : SELECT CASE (dft_control%sccs_control%method_id)
2077 : CASE (sccs_andreussi)
2078 : WRITE (UNIT=output_unit, FMT="(T2,A,/,(T2,A,T61,ES20.6))") &
2079 4 : "SCCS| Dielectric function proposed by Andreussi et al.", &
2080 4 : "SCCS| rho_max", dft_control%sccs_control%rho_max, &
2081 8 : "SCCS| rho_min", dft_control%sccs_control%rho_min
2082 : CASE (sccs_fattebert_gygi)
2083 : WRITE (UNIT=output_unit, FMT="(T2,A,/,(T2,A,T61,ES20.6))") &
2084 1 : "SCCS| Dielectric function proposed by Fattebert and Gygi", &
2085 1 : "SCCS| beta", dft_control%sccs_control%beta, &
2086 2 : "SCCS| rho_zero", dft_control%sccs_control%rho_zero
2087 : CASE DEFAULT
2088 5 : CPABORT("Invalid SCCS model specified. Please, check your input!")
2089 : END SELECT
2090 6 : SELECT CASE (dft_control%sccs_control%derivative_method)
2091 : CASE (sccs_derivative_fft)
2092 : WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
2093 1 : "SCCS| Numerical derivative calculation", &
2094 2 : ADJUSTR("FFT")
2095 : CASE (sccs_derivative_cd3)
2096 : WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
2097 0 : "SCCS| Numerical derivative calculation", &
2098 0 : ADJUSTR("3-point stencil central differences")
2099 : CASE (sccs_derivative_cd5)
2100 : WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
2101 4 : "SCCS| Numerical derivative calculation", &
2102 8 : ADJUSTR("5-point stencil central differences")
2103 : CASE (sccs_derivative_cd7)
2104 : WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
2105 0 : "SCCS| Numerical derivative calculation", &
2106 0 : ADJUSTR("7-point stencil central differences")
2107 : CASE DEFAULT
2108 : CALL cp_abort(__LOCATION__, &
2109 : "Invalid derivative method specified for SCCS model. "// &
2110 5 : "Please, check your input!")
2111 : END SELECT
2112 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2113 5 : "SCCS| Repulsion parameter alpha [mN/m] = [dyn/cm]", &
2114 10 : cp_unit_from_cp2k(dft_control%sccs_control%alpha_solvent, "mN/m")
2115 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2116 5 : "SCCS| Dispersion parameter beta [GPa]", &
2117 10 : cp_unit_from_cp2k(dft_control%sccs_control%beta_solvent, "GPa")
2118 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2119 5 : "SCCS| Surface tension gamma [mN/m] = [dyn/cm]", &
2120 10 : cp_unit_from_cp2k(dft_control%sccs_control%gamma_solvent, "mN/m")
2121 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2122 5 : "SCCS| Mixing parameter applied during the iteration cycle", &
2123 10 : dft_control%sccs_control%mixing
2124 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2125 5 : "SCCS| Tolerance for the convergence of the SCCS iteration cycle", &
2126 10 : dft_control%sccs_control%eps_sccs
2127 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,I20)") &
2128 5 : "SCCS| Maximum number of iteration steps", &
2129 10 : dft_control%sccs_control%max_iter
2130 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2131 5 : "SCCS| SCF convergence threshold for starting the SCCS iteration", &
2132 10 : dft_control%sccs_control%eps_scf
2133 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2134 5 : "SCCS| Numerical increment for the cavity surface calculation", &
2135 10 : dft_control%sccs_control%delta_rho
2136 : END IF
2137 :
2138 1357 : WRITE (UNIT=output_unit, FMT="(A)") ""
2139 :
2140 : END IF
2141 :
2142 5286 : IF (dft_control%hairy_probes .EQV. .TRUE.) THEN
2143 4 : n_rep = SIZE(dft_control%probe)
2144 4 : IF (output_unit > 0) THEN
2145 6 : DO i_rep = 1, n_rep
2146 : WRITE (UNIT=output_unit, FMT="(T2,A,I5)") &
2147 4 : "HP | hair probe set", i_rep
2148 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,*(I5))") &
2149 4 : "HP| atom indexes", &
2150 12 : (dft_control%probe(i_rep)%atom_ids(i), i=1, dft_control%probe(i_rep)%natoms)
2151 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2152 4 : "HP| potential", dft_control%probe(i_rep)%mu
2153 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,F20.2)") &
2154 4 : "HP| temperature", dft_control%probe(i_rep)%T
2155 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2156 6 : "HP| eps_hp", dft_control%probe(i_rep)%eps_hp
2157 : END DO
2158 : END IF
2159 : END IF
2160 :
2161 : CALL cp_print_key_finished_output(output_unit, logger, dft_section, &
2162 5286 : "PRINT%DFT_CONTROL_PARAMETERS")
2163 :
2164 5286 : CALL timestop(handle)
2165 :
2166 : END SUBROUTINE write_dft_control
2167 :
2168 : ! **************************************************************************************************
2169 : !> \brief Write the ADMM control parameters to the output unit.
2170 : !> \param admm_control ...
2171 : !> \param dft_section ...
2172 : ! **************************************************************************************************
2173 464 : SUBROUTINE write_admm_control(admm_control, dft_section)
2174 : TYPE(admm_control_type), POINTER :: admm_control
2175 : TYPE(section_vals_type), POINTER :: dft_section
2176 :
2177 : INTEGER :: iounit
2178 : TYPE(cp_logger_type), POINTER :: logger
2179 :
2180 464 : NULLIFY (logger)
2181 464 : logger => cp_get_default_logger()
2182 :
2183 : iounit = cp_print_key_unit_nr(logger, dft_section, &
2184 464 : "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
2185 :
2186 464 : IF (iounit > 0) THEN
2187 :
2188 235 : SELECT CASE (admm_control%admm_type)
2189 : CASE (no_admm_type)
2190 115 : WRITE (UNIT=iounit, FMT="(/,T2,A,T77,A)") "ADMM| Specific ADMM type specified", "NONE"
2191 : CASE (admm1_type)
2192 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMM1"
2193 : CASE (admm2_type)
2194 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMM2"
2195 : CASE (admms_type)
2196 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMS"
2197 : CASE (admmp_type)
2198 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMP"
2199 : CASE (admmq_type)
2200 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMQ"
2201 : CASE DEFAULT
2202 120 : CPABORT("admm_type")
2203 : END SELECT
2204 :
2205 191 : SELECT CASE (admm_control%purification_method)
2206 : CASE (do_admm_purify_none)
2207 71 : WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Density matrix purification method", "NONE"
2208 : CASE (do_admm_purify_cauchy)
2209 9 : WRITE (UNIT=iounit, FMT="(T2,A,T75,A)") "ADMM| Density matrix purification method", "Cauchy"
2210 : CASE (do_admm_purify_cauchy_subspace)
2211 5 : WRITE (UNIT=iounit, FMT="(T2,A,T66,A)") "ADMM| Density matrix purification method", "Cauchy subspace"
2212 : CASE (do_admm_purify_mo_diag)
2213 25 : WRITE (UNIT=iounit, FMT="(T2,A,T63,A)") "ADMM| Density matrix purification method", "MO diagonalization"
2214 : CASE (do_admm_purify_mo_no_diag)
2215 3 : WRITE (UNIT=iounit, FMT="(T2,A,T71,A)") "ADMM| Density matrix purification method", "MO no diag"
2216 : CASE (do_admm_purify_mcweeny)
2217 1 : WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Density matrix purification method", "McWeeny"
2218 : CASE (do_admm_purify_none_dm)
2219 6 : WRITE (UNIT=iounit, FMT="(T2,A,T73,A)") "ADMM| Density matrix purification method", "NONE(DM)"
2220 : CASE DEFAULT
2221 120 : CPABORT("admm_purification_method")
2222 : END SELECT
2223 :
2224 215 : SELECT CASE (admm_control%method)
2225 : CASE (do_admm_basis_projection)
2226 95 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Orbital projection on ADMM basis"
2227 : CASE (do_admm_blocking_purify_full)
2228 3 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Blocked Fock matrix projection with full purification"
2229 : CASE (do_admm_blocked_projection)
2230 6 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Blocked Fock matrix projection"
2231 : CASE (do_admm_charge_constrained_projection)
2232 16 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Orbital projection with charge constrain"
2233 : CASE DEFAULT
2234 120 : CPABORT("admm method")
2235 : END SELECT
2236 :
2237 138 : SELECT CASE (admm_control%scaling_model)
2238 : CASE (do_admm_exch_scaling_none)
2239 : CASE (do_admm_exch_scaling_merlot)
2240 18 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Use Merlot (2014) scaling model"
2241 : CASE DEFAULT
2242 120 : CPABORT("admm scaling_model")
2243 : END SELECT
2244 :
2245 120 : WRITE (UNIT=iounit, FMT="(T2,A,T61,G20.10)") "ADMM| eps_filter", admm_control%eps_filter
2246 :
2247 128 : SELECT CASE (admm_control%aux_exch_func)
2248 : CASE (do_admm_aux_exch_func_none)
2249 8 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| No exchange functional correction term used"
2250 : CASE (do_admm_aux_exch_func_default, do_admm_aux_exch_func_default_libxc)
2251 85 : WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "(W)PBEX"
2252 : CASE (do_admm_aux_exch_func_pbex, do_admm_aux_exch_func_pbex_libxc)
2253 18 : WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Exchange functional in correction term", "PBEX"
2254 : CASE (do_admm_aux_exch_func_opt, do_admm_aux_exch_func_opt_libxc)
2255 8 : WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Exchange functional in correction term", "OPTX"
2256 : CASE (do_admm_aux_exch_func_bee, do_admm_aux_exch_func_bee_libxc)
2257 1 : WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "Becke88"
2258 : CASE (do_admm_aux_exch_func_sx_libxc)
2259 0 : WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "SlaterX"
2260 : CASE DEFAULT
2261 120 : CPABORT("admm aux_exch_func")
2262 : END SELECT
2263 :
2264 120 : WRITE (UNIT=iounit, FMT="(A)") ""
2265 :
2266 : END IF
2267 :
2268 : CALL cp_print_key_finished_output(iounit, logger, dft_section, &
2269 464 : "PRINT%DFT_CONTROL_PARAMETERS")
2270 464 : END SUBROUTINE write_admm_control
2271 :
2272 : ! **************************************************************************************************
2273 : !> \brief Write the xTB control parameters to the output unit.
2274 : !> \param xtb_control ...
2275 : !> \param dft_section ...
2276 : ! **************************************************************************************************
2277 940 : SUBROUTINE write_xtb_control(xtb_control, dft_section)
2278 : TYPE(xtb_control_type), POINTER :: xtb_control
2279 : TYPE(section_vals_type), POINTER :: dft_section
2280 :
2281 : CHARACTER(len=*), PARAMETER :: routineN = 'write_xtb_control'
2282 :
2283 : INTEGER :: handle, output_unit
2284 : TYPE(cp_logger_type), POINTER :: logger
2285 :
2286 940 : CALL timeset(routineN, handle)
2287 940 : NULLIFY (logger)
2288 940 : logger => cp_get_default_logger()
2289 :
2290 : output_unit = cp_print_key_unit_nr(logger, dft_section, &
2291 940 : "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
2292 :
2293 940 : IF (output_unit > 0) THEN
2294 :
2295 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T31,A50)") &
2296 39 : "xTB| Parameter file", ADJUSTR(TRIM(xtb_control%parameter_file_name))
2297 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2298 39 : "xTB| Basis expansion STO-NG", xtb_control%sto_ng
2299 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2300 39 : "xTB| Basis expansion STO-NG for Hydrogen", xtb_control%h_sto_ng
2301 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,E10.4)") &
2302 39 : "xTB| Repulsive pair potential accuracy", xtb_control%eps_pair
2303 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.6)") &
2304 39 : "xTB| Repulsive enhancement factor", xtb_control%enscale
2305 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,L10)") &
2306 39 : "xTB| Halogen interaction potential", xtb_control%xb_interaction
2307 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
2308 39 : "xTB| Halogen interaction potential cutoff radius", xtb_control%xb_radius
2309 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,L10)") &
2310 39 : "xTB| Nonbonded interactions", xtb_control%do_nonbonded
2311 39 : SELECT CASE (xtb_control%vdw_type)
2312 : CASE (xtb_vdw_type_none)
2313 0 : WRITE (UNIT=output_unit, FMT="(T2,A)") "xTB| No vdW potential selected"
2314 : CASE (xtb_vdw_type_d3)
2315 39 : WRITE (UNIT=output_unit, FMT="(T2,A,T72,A)") "xTB| vdW potential type:", "DFTD3(BJ)"
2316 : WRITE (UNIT=output_unit, FMT="(T2,A,T31,A50)") &
2317 39 : "xTB| D3 Dispersion: Parameter file", ADJUSTR(TRIM(xtb_control%dispersion_parameter_file))
2318 : CASE (xtb_vdw_type_d4)
2319 0 : WRITE (UNIT=output_unit, FMT="(T2,A,T76,A)") "xTB| vdW potential type:", "DFTD4"
2320 : WRITE (UNIT=output_unit, FMT="(T2,A,T31,A50)") &
2321 0 : "xTB| D4 Dispersion: Parameter file", ADJUSTR(TRIM(xtb_control%dispersion_parameter_file))
2322 : CASE DEFAULT
2323 39 : CPABORT("vdw type")
2324 : END SELECT
2325 : WRITE (UNIT=output_unit, FMT="(T2,A,T51,3F10.3)") &
2326 39 : "xTB| Huckel constants ks kp kd", xtb_control%ks, xtb_control%kp, xtb_control%kd
2327 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,2F10.3)") &
2328 39 : "xTB| Huckel constants ksp k2sh", xtb_control%ksp, xtb_control%k2sh
2329 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
2330 39 : "xTB| Mataga-Nishimoto exponent", xtb_control%kg
2331 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
2332 39 : "xTB| Repulsion potential exponent", xtb_control%kf
2333 : WRITE (UNIT=output_unit, FMT="(T2,A,T51,3F10.3)") &
2334 39 : "xTB| Coordination number scaling kcn(s) kcn(p) kcn(d)", &
2335 78 : xtb_control%kcns, xtb_control%kcnp, xtb_control%kcnd
2336 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
2337 39 : "xTB| Electronegativity scaling", xtb_control%ken
2338 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,2F10.3)") &
2339 39 : "xTB| Halogen potential scaling kxr kx2", xtb_control%kxr, xtb_control%kx2
2340 39 : WRITE (UNIT=output_unit, FMT="(/)")
2341 :
2342 : END IF
2343 :
2344 : CALL cp_print_key_finished_output(output_unit, logger, dft_section, &
2345 940 : "PRINT%DFT_CONTROL_PARAMETERS")
2346 :
2347 940 : CALL timestop(handle)
2348 :
2349 940 : END SUBROUTINE write_xtb_control
2350 :
2351 : ! **************************************************************************************************
2352 : !> \brief Purpose: Write the QS control parameters to the output unit.
2353 : !> \param qs_control ...
2354 : !> \param dft_section ...
2355 : ! **************************************************************************************************
2356 12732 : SUBROUTINE write_qs_control(qs_control, dft_section)
2357 : TYPE(qs_control_type), INTENT(IN) :: qs_control
2358 : TYPE(section_vals_type), POINTER :: dft_section
2359 :
2360 : CHARACTER(len=*), PARAMETER :: routineN = 'write_qs_control'
2361 :
2362 : CHARACTER(len=20) :: method, quadrature
2363 : INTEGER :: handle, i, igrid_level, ngrid_level, &
2364 : output_unit
2365 : TYPE(cp_logger_type), POINTER :: logger
2366 : TYPE(ddapc_restraint_type), POINTER :: ddapc_restraint_control
2367 : TYPE(enumeration_type), POINTER :: enum
2368 : TYPE(keyword_type), POINTER :: keyword
2369 : TYPE(section_type), POINTER :: qs_section
2370 : TYPE(section_vals_type), POINTER :: print_section_vals, qs_section_vals
2371 :
2372 8608 : IF (qs_control%semi_empirical) RETURN
2373 6448 : IF (qs_control%dftb) RETURN
2374 6226 : IF (qs_control%xtb) RETURN
2375 5286 : CALL timeset(routineN, handle)
2376 5286 : NULLIFY (logger, print_section_vals, qs_section, qs_section_vals)
2377 5286 : logger => cp_get_default_logger()
2378 5286 : print_section_vals => section_vals_get_subs_vals(dft_section, "PRINT")
2379 5286 : qs_section_vals => section_vals_get_subs_vals(dft_section, "QS")
2380 5286 : CALL section_vals_get(qs_section_vals, section=qs_section)
2381 :
2382 5286 : NULLIFY (enum, keyword)
2383 5286 : keyword => section_get_keyword(qs_section, "METHOD")
2384 5286 : CALL keyword_get(keyword, enum=enum)
2385 5286 : method = TRIM(enum_i2c(enum, qs_control%method_id))
2386 :
2387 5286 : NULLIFY (enum, keyword)
2388 5286 : keyword => section_get_keyword(qs_section, "QUADRATURE")
2389 5286 : CALL keyword_get(keyword, enum=enum)
2390 5286 : quadrature = TRIM(enum_i2c(enum, qs_control%gapw_control%quadrature))
2391 :
2392 : output_unit = cp_print_key_unit_nr(logger, print_section_vals, &
2393 5286 : "DFT_CONTROL_PARAMETERS", extension=".Log")
2394 5286 : IF (output_unit > 0) THEN
2395 1357 : ngrid_level = SIZE(qs_control%e_cutoff)
2396 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T61,A20)") &
2397 1357 : "QS| Method:", ADJUSTR(method)
2398 1357 : IF (qs_control%pw_grid_opt%spherical) THEN
2399 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A)") &
2400 0 : "QS| Density plane wave grid type", " SPHERICAL HALFSPACE"
2401 1357 : ELSE IF (qs_control%pw_grid_opt%fullspace) THEN
2402 : WRITE (UNIT=output_unit, FMT="(T2,A,T57,A)") &
2403 1357 : "QS| Density plane wave grid type", " NON-SPHERICAL FULLSPACE"
2404 : ELSE
2405 : WRITE (UNIT=output_unit, FMT="(T2,A,T57,A)") &
2406 0 : "QS| Density plane wave grid type", " NON-SPHERICAL HALFSPACE"
2407 : END IF
2408 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2409 1357 : "QS| Number of grid levels:", SIZE(qs_control%e_cutoff)
2410 1357 : IF (ngrid_level == 1) THEN
2411 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2412 72 : "QS| Density cutoff [a.u.]:", qs_control%e_cutoff(1)
2413 : ELSE
2414 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2415 1285 : "QS| Density cutoff [a.u.]:", qs_control%cutoff
2416 1285 : IF (qs_control%commensurate_mgrids) &
2417 131 : WRITE (UNIT=output_unit, FMT="(T2,A)") "QS| Using commensurate multigrids"
2418 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2419 1285 : "QS| Multi grid cutoff [a.u.]: 1) grid level", qs_control%e_cutoff(1)
2420 : WRITE (UNIT=output_unit, FMT="(T2,A,I3,A,T71,F10.1)") &
2421 4020 : ("QS| ", igrid_level, ") grid level", &
2422 5305 : qs_control%e_cutoff(igrid_level), &
2423 6590 : igrid_level=2, SIZE(qs_control%e_cutoff))
2424 : END IF
2425 1357 : IF (qs_control%pao) THEN
2426 0 : WRITE (UNIT=output_unit, FMT="(T2,A)") "QS| PAO active"
2427 : END IF
2428 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2429 1357 : "QS| Grid level progression factor:", qs_control%progression_factor
2430 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2431 1357 : "QS| Relative density cutoff [a.u.]:", qs_control%relative_cutoff
2432 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2433 1357 : "QS| Interaction thresholds: eps_pgf_orb:", &
2434 1357 : qs_control%eps_pgf_orb, &
2435 1357 : "QS| eps_filter_matrix:", &
2436 1357 : qs_control%eps_filter_matrix, &
2437 1357 : "QS| eps_core_charge:", &
2438 1357 : qs_control%eps_core_charge, &
2439 1357 : "QS| eps_rho_gspace:", &
2440 1357 : qs_control%eps_rho_gspace, &
2441 1357 : "QS| eps_rho_rspace:", &
2442 1357 : qs_control%eps_rho_rspace, &
2443 1357 : "QS| eps_gvg_rspace:", &
2444 1357 : qs_control%eps_gvg_rspace, &
2445 1357 : "QS| eps_ppl:", &
2446 1357 : qs_control%eps_ppl, &
2447 1357 : "QS| eps_ppnl:", &
2448 2714 : qs_control%eps_ppnl
2449 1357 : IF (qs_control%gapw) THEN
2450 410 : SELECT CASE (qs_control%gapw_control%basis_1c)
2451 : CASE (gapw_1c_orb)
2452 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2453 202 : "QS| GAPW| One center basis from orbital basis primitives"
2454 : CASE (gapw_1c_small)
2455 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2456 2 : "QS| GAPW| One center basis extended with primitives (small:s)"
2457 : CASE (gapw_1c_medium)
2458 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2459 1 : "QS| GAPW| One center basis extended with primitives (medium:sp)"
2460 : CASE (gapw_1c_large)
2461 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2462 2 : "QS| GAPW| One center basis extended with primitives (large:spd)"
2463 : CASE (gapw_1c_very_large)
2464 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2465 1 : "QS| GAPW| One center basis extended with primitives (very large:spdf)"
2466 : CASE DEFAULT
2467 208 : CPABORT("basis_1c incorrect")
2468 : END SELECT
2469 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2470 208 : "QS| GAPW| eps_fit:", &
2471 208 : qs_control%gapw_control%eps_fit, &
2472 208 : "QS| GAPW| eps_iso:", &
2473 208 : qs_control%gapw_control%eps_iso, &
2474 208 : "QS| GAPW| eps_svd:", &
2475 208 : qs_control%gapw_control%eps_svd, &
2476 208 : "QS| GAPW| eps_cpc:", &
2477 416 : qs_control%gapw_control%eps_cpc
2478 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2479 208 : "QS| GAPW| atom-r-grid: quadrature:", &
2480 416 : ADJUSTR(quadrature)
2481 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2482 208 : "QS| GAPW| atom-s-grid: max l :", &
2483 208 : qs_control%gapw_control%lmax_sphere, &
2484 208 : "QS| GAPW| max_l_rho0 :", &
2485 416 : qs_control%gapw_control%lmax_rho0
2486 208 : IF (qs_control%gapw_control%non_paw_atoms) THEN
2487 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2488 31 : "QS| GAPW| At least one kind is NOT PAW, i.e. it has only soft AO "
2489 : END IF
2490 208 : IF (qs_control%gapw_control%nopaw_as_gpw) THEN
2491 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2492 31 : "QS| GAPW| The NOT PAW atoms are treated fully GPW"
2493 : END IF
2494 : END IF
2495 1357 : IF (qs_control%gapw_xc) THEN
2496 50 : SELECT CASE (qs_control%gapw_control%basis_1c)
2497 : CASE (gapw_1c_orb)
2498 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2499 25 : "QS| GAPW_XC| One center basis from orbital basis primitives"
2500 : CASE (gapw_1c_small)
2501 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2502 0 : "QS| GAPW_XC| One center basis extended with primitives (small:s)"
2503 : CASE (gapw_1c_medium)
2504 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2505 0 : "QS| GAPW_XC| One center basis extended with primitives (medium:sp)"
2506 : CASE (gapw_1c_large)
2507 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2508 0 : "QS| GAPW_XC| One center basis extended with primitives (large:spd)"
2509 : CASE (gapw_1c_very_large)
2510 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2511 0 : "QS| GAPW_XC| One center basis extended with primitives (very large:spdf)"
2512 : CASE DEFAULT
2513 25 : CPABORT("basis_1c incorrect")
2514 : END SELECT
2515 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2516 25 : "QS| GAPW_XC| eps_fit:", &
2517 25 : qs_control%gapw_control%eps_fit, &
2518 25 : "QS| GAPW_XC| eps_iso:", &
2519 25 : qs_control%gapw_control%eps_iso, &
2520 25 : "QS| GAPW_XC| eps_svd:", &
2521 50 : qs_control%gapw_control%eps_svd
2522 : WRITE (UNIT=output_unit, FMT="(T2,A,T55,A30)") &
2523 25 : "QS| GAPW_XC|atom-r-grid: quadrature:", &
2524 50 : enum_i2c(enum, qs_control%gapw_control%quadrature)
2525 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2526 25 : "QS| GAPW_XC| atom-s-grid: max l :", &
2527 50 : qs_control%gapw_control%lmax_sphere
2528 : END IF
2529 1357 : IF (qs_control%mulliken_restraint) THEN
2530 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2531 1 : "QS| Mulliken restraint target", qs_control%mulliken_restraint_control%target
2532 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2533 1 : "QS| Mulliken restraint strength", qs_control%mulliken_restraint_control%strength
2534 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,I8)") &
2535 1 : "QS| Mulliken restraint atoms: ", qs_control%mulliken_restraint_control%natoms
2536 2 : WRITE (UNIT=output_unit, FMT="(5I8)") qs_control%mulliken_restraint_control%atoms
2537 : END IF
2538 1357 : IF (qs_control%ddapc_restraint) THEN
2539 14 : DO i = 1, SIZE(qs_control%ddapc_restraint_control)
2540 8 : ddapc_restraint_control => qs_control%ddapc_restraint_control(i)
2541 8 : IF (SIZE(qs_control%ddapc_restraint_control) > 1) &
2542 : WRITE (UNIT=output_unit, FMT="(T2,A,T3,I8)") &
2543 3 : "QS| parameters for DDAPC restraint number", i
2544 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2545 8 : "QS| ddapc restraint target", ddapc_restraint_control%target
2546 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2547 8 : "QS| ddapc restraint strength", ddapc_restraint_control%strength
2548 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,I8)") &
2549 8 : "QS| ddapc restraint atoms: ", ddapc_restraint_control%natoms
2550 17 : WRITE (UNIT=output_unit, FMT="(5I8)") ddapc_restraint_control%atoms
2551 8 : WRITE (UNIT=output_unit, FMT="(T2,A)") "Coefficients:"
2552 17 : WRITE (UNIT=output_unit, FMT="(5F6.2)") ddapc_restraint_control%coeff
2553 6 : SELECT CASE (ddapc_restraint_control%functional_form)
2554 : CASE (do_ddapc_restraint)
2555 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2556 3 : "QS| ddapc restraint functional form :", "RESTRAINT"
2557 : CASE (do_ddapc_constraint)
2558 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2559 5 : "QS| ddapc restraint functional form :", "CONSTRAINT"
2560 : CASE DEFAULT
2561 8 : CPABORT("Unknown ddapc restraint")
2562 : END SELECT
2563 : END DO
2564 : END IF
2565 1357 : IF (qs_control%s2_restraint) THEN
2566 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2567 0 : "QS| s2 restraint target", qs_control%s2_restraint_control%target
2568 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2569 0 : "QS| s2 restraint strength", qs_control%s2_restraint_control%strength
2570 0 : SELECT CASE (qs_control%s2_restraint_control%functional_form)
2571 : CASE (do_s2_restraint)
2572 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2573 0 : "QS| s2 restraint functional form :", "RESTRAINT"
2574 0 : CPABORT("Not yet implemented")
2575 : CASE (do_s2_constraint)
2576 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2577 0 : "QS| s2 restraint functional form :", "CONSTRAINT"
2578 : CASE DEFAULT
2579 0 : CPABORT("Unknown ddapc restraint")
2580 : END SELECT
2581 : END IF
2582 : END IF
2583 : CALL cp_print_key_finished_output(output_unit, logger, print_section_vals, &
2584 5286 : "DFT_CONTROL_PARAMETERS")
2585 :
2586 5286 : CALL timestop(handle)
2587 :
2588 : END SUBROUTINE write_qs_control
2589 :
2590 : ! **************************************************************************************************
2591 : !> \brief reads the input parameters needed for ddapc.
2592 : !> \param qs_control ...
2593 : !> \param qs_section ...
2594 : !> \param ddapc_restraint_section ...
2595 : !> \author fschiff
2596 : !> \note
2597 : !> either reads DFT%QS%DDAPC_RESTRAINT or PROPERTIES%ET_coupling
2598 : !> if(qs_section is present the DFT part is read, if ddapc_restraint_section
2599 : !> is present ET_COUPLING is read. Avoid having both!!!
2600 : ! **************************************************************************************************
2601 14 : SUBROUTINE read_ddapc_section(qs_control, qs_section, ddapc_restraint_section)
2602 :
2603 : TYPE(qs_control_type), INTENT(INOUT) :: qs_control
2604 : TYPE(section_vals_type), OPTIONAL, POINTER :: qs_section, ddapc_restraint_section
2605 :
2606 : INTEGER :: i, j, jj, k, n_rep
2607 14 : INTEGER, DIMENSION(:), POINTER :: tmplist
2608 14 : REAL(KIND=dp), DIMENSION(:), POINTER :: rtmplist
2609 : TYPE(ddapc_restraint_type), POINTER :: ddapc_restraint_control
2610 : TYPE(section_vals_type), POINTER :: ddapc_section
2611 :
2612 14 : IF (PRESENT(ddapc_restraint_section)) THEN
2613 0 : IF (ASSOCIATED(qs_control%ddapc_restraint_control)) THEN
2614 0 : IF (SIZE(qs_control%ddapc_restraint_control) >= 2) &
2615 0 : CPABORT("ET_COUPLING cannot be used in combination with a normal restraint")
2616 : ELSE
2617 0 : ddapc_section => ddapc_restraint_section
2618 0 : ALLOCATE (qs_control%ddapc_restraint_control(1))
2619 : END IF
2620 : END IF
2621 :
2622 14 : IF (PRESENT(qs_section)) THEN
2623 14 : NULLIFY (ddapc_section)
2624 : ddapc_section => section_vals_get_subs_vals(qs_section, &
2625 14 : "DDAPC_RESTRAINT")
2626 : END IF
2627 :
2628 32 : DO i = 1, SIZE(qs_control%ddapc_restraint_control)
2629 :
2630 18 : CALL ddapc_control_create(qs_control%ddapc_restraint_control(i))
2631 18 : ddapc_restraint_control => qs_control%ddapc_restraint_control(i)
2632 :
2633 : CALL section_vals_val_get(ddapc_section, "STRENGTH", i_rep_section=i, &
2634 18 : r_val=ddapc_restraint_control%strength)
2635 : CALL section_vals_val_get(ddapc_section, "TARGET", i_rep_section=i, &
2636 18 : r_val=ddapc_restraint_control%target)
2637 : CALL section_vals_val_get(ddapc_section, "FUNCTIONAL_FORM", i_rep_section=i, &
2638 18 : i_val=ddapc_restraint_control%functional_form)
2639 : CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
2640 18 : n_rep_val=n_rep)
2641 : CALL section_vals_val_get(ddapc_section, "TYPE_OF_DENSITY", i_rep_section=i, &
2642 18 : i_val=ddapc_restraint_control%density_type)
2643 :
2644 18 : jj = 0
2645 36 : DO k = 1, n_rep
2646 : CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
2647 18 : i_rep_val=k, i_vals=tmplist)
2648 56 : DO j = 1, SIZE(tmplist)
2649 38 : jj = jj + 1
2650 : END DO
2651 : END DO
2652 18 : IF (jj < 1) CPABORT("Need at least 1 atom to use ddapc constraints")
2653 18 : ddapc_restraint_control%natoms = jj
2654 18 : IF (ASSOCIATED(ddapc_restraint_control%atoms)) &
2655 0 : DEALLOCATE (ddapc_restraint_control%atoms)
2656 54 : ALLOCATE (ddapc_restraint_control%atoms(ddapc_restraint_control%natoms))
2657 18 : jj = 0
2658 36 : DO k = 1, n_rep
2659 : CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
2660 18 : i_rep_val=k, i_vals=tmplist)
2661 56 : DO j = 1, SIZE(tmplist)
2662 20 : jj = jj + 1
2663 38 : ddapc_restraint_control%atoms(jj) = tmplist(j)
2664 : END DO
2665 : END DO
2666 :
2667 18 : IF (ASSOCIATED(ddapc_restraint_control%coeff)) &
2668 0 : DEALLOCATE (ddapc_restraint_control%coeff)
2669 54 : ALLOCATE (ddapc_restraint_control%coeff(ddapc_restraint_control%natoms))
2670 38 : ddapc_restraint_control%coeff = 1.0_dp
2671 :
2672 : CALL section_vals_val_get(ddapc_section, "COEFF", i_rep_section=i, &
2673 18 : n_rep_val=n_rep)
2674 18 : jj = 0
2675 20 : DO k = 1, n_rep
2676 : CALL section_vals_val_get(ddapc_section, "COEFF", i_rep_section=i, &
2677 2 : i_rep_val=k, r_vals=rtmplist)
2678 22 : DO j = 1, SIZE(rtmplist)
2679 2 : jj = jj + 1
2680 2 : IF (jj > ddapc_restraint_control%natoms) &
2681 0 : CPABORT("Need the same number of coeff as there are atoms ")
2682 4 : ddapc_restraint_control%coeff(jj) = rtmplist(j)
2683 : END DO
2684 : END DO
2685 18 : IF (jj < ddapc_restraint_control%natoms .AND. jj /= 0) &
2686 50 : CPABORT("Need no or the same number of coeff as there are atoms.")
2687 : END DO
2688 14 : k = 0
2689 32 : DO i = 1, SIZE(qs_control%ddapc_restraint_control)
2690 18 : IF (qs_control%ddapc_restraint_control(i)%functional_form == &
2691 24 : do_ddapc_constraint) k = k + 1
2692 : END DO
2693 14 : IF (k == 2) CALL cp_abort(__LOCATION__, &
2694 0 : "Only a single constraint possible yet, try to use restraints instead ")
2695 :
2696 14 : END SUBROUTINE read_ddapc_section
2697 :
2698 : ! **************************************************************************************************
2699 : !> \brief ...
2700 : !> \param dft_control ...
2701 : !> \param efield_section ...
2702 : ! **************************************************************************************************
2703 262 : SUBROUTINE read_efield_sections(dft_control, efield_section)
2704 : TYPE(dft_control_type), POINTER :: dft_control
2705 : TYPE(section_vals_type), POINTER :: efield_section
2706 :
2707 : CHARACTER(len=default_path_length) :: file_name
2708 : INTEGER :: i, io, j, n, unit_nr
2709 262 : REAL(KIND=dp), DIMENSION(:), POINTER :: tmp_vals
2710 : TYPE(efield_type), POINTER :: efield
2711 : TYPE(section_vals_type), POINTER :: tmp_section
2712 :
2713 524 : DO i = 1, SIZE(dft_control%efield_fields)
2714 262 : NULLIFY (dft_control%efield_fields(i)%efield)
2715 1310 : ALLOCATE (dft_control%efield_fields(i)%efield)
2716 262 : efield => dft_control%efield_fields(i)%efield
2717 262 : NULLIFY (efield%envelop_i_vars, efield%envelop_r_vars)
2718 : CALL section_vals_val_get(efield_section, "INTENSITY", i_rep_section=i, &
2719 262 : r_val=efield%strength)
2720 :
2721 : CALL section_vals_val_get(efield_section, "POLARISATION", i_rep_section=i, &
2722 262 : r_vals=tmp_vals)
2723 786 : ALLOCATE (efield%polarisation(SIZE(tmp_vals)))
2724 2096 : efield%polarisation = tmp_vals
2725 : CALL section_vals_val_get(efield_section, "PHASE", i_rep_section=i, &
2726 262 : r_val=efield%phase_offset)
2727 : CALL section_vals_val_get(efield_section, "ENVELOP", i_rep_section=i, &
2728 262 : i_val=efield%envelop_id)
2729 : CALL section_vals_val_get(efield_section, "WAVELENGTH", i_rep_section=i, &
2730 262 : r_val=efield%wavelength)
2731 : CALL section_vals_val_get(efield_section, "VEC_POT_INITIAL", i_rep_section=i, &
2732 262 : r_vals=tmp_vals)
2733 2096 : efield%vec_pot_initial = tmp_vals
2734 :
2735 524 : IF (efield%envelop_id == constant_env) THEN
2736 252 : ALLOCATE (efield%envelop_i_vars(2))
2737 252 : tmp_section => section_vals_get_subs_vals(efield_section, "CONSTANT_ENV", i_rep_section=i)
2738 : CALL section_vals_val_get(tmp_section, "START_STEP", &
2739 252 : i_val=efield%envelop_i_vars(1))
2740 : CALL section_vals_val_get(tmp_section, "END_STEP", &
2741 252 : i_val=efield%envelop_i_vars(2))
2742 10 : ELSE IF (efield%envelop_id == gaussian_env) THEN
2743 6 : ALLOCATE (efield%envelop_r_vars(2))
2744 6 : tmp_section => section_vals_get_subs_vals(efield_section, "GAUSSIAN_ENV", i_rep_section=i)
2745 : CALL section_vals_val_get(tmp_section, "T0", &
2746 6 : r_val=efield%envelop_r_vars(1))
2747 : CALL section_vals_val_get(tmp_section, "SIGMA", &
2748 6 : r_val=efield%envelop_r_vars(2))
2749 4 : ELSE IF (efield%envelop_id == ramp_env) THEN
2750 2 : ALLOCATE (efield%envelop_i_vars(4))
2751 2 : tmp_section => section_vals_get_subs_vals(efield_section, "RAMP_ENV", i_rep_section=i)
2752 : CALL section_vals_val_get(tmp_section, "START_STEP_IN", &
2753 2 : i_val=efield%envelop_i_vars(1))
2754 : CALL section_vals_val_get(tmp_section, "END_STEP_IN", &
2755 2 : i_val=efield%envelop_i_vars(2))
2756 : CALL section_vals_val_get(tmp_section, "START_STEP_OUT", &
2757 2 : i_val=efield%envelop_i_vars(3))
2758 : CALL section_vals_val_get(tmp_section, "END_STEP_OUT", &
2759 2 : i_val=efield%envelop_i_vars(4))
2760 2 : ELSE IF (efield%envelop_id == custom_env) THEN
2761 2 : tmp_section => section_vals_get_subs_vals(efield_section, "CUSTOM_ENV", i_rep_section=i)
2762 2 : CALL section_vals_val_get(tmp_section, "EFIELD_FILE_NAME", c_val=file_name)
2763 2 : CALL open_file(file_name=TRIM(file_name), file_action="READ", file_status="OLD", unit_number=unit_nr)
2764 : !Determine the number of lines in file
2765 2 : n = 0
2766 10 : DO WHILE (.TRUE.)
2767 12 : READ (unit_nr, *, iostat=io)
2768 12 : IF (io /= 0) EXIT
2769 10 : n = n + 1
2770 : END DO
2771 2 : REWIND (unit_nr)
2772 6 : ALLOCATE (efield%envelop_r_vars(n + 1))
2773 : !Store the timestep of the list in the first entry of the r_vars
2774 2 : CALL section_vals_val_get(tmp_section, "TIMESTEP", r_val=efield%envelop_r_vars(1))
2775 : !Read the file
2776 12 : DO j = 2, n + 1
2777 10 : READ (unit_nr, *) efield%envelop_r_vars(j)
2778 12 : efield%envelop_r_vars(j) = cp_unit_to_cp2k(efield%envelop_r_vars(j), "volt/m")
2779 : END DO
2780 2 : CALL close_file(unit_nr)
2781 : END IF
2782 : END DO
2783 262 : END SUBROUTINE read_efield_sections
2784 :
2785 : ! **************************************************************************************************
2786 : !> \brief reads the input parameters needed real time propagation
2787 : !> \param dft_control ...
2788 : !> \param rtp_section ...
2789 : !> \author fschiff
2790 : ! **************************************************************************************************
2791 1488 : SUBROUTINE read_rtp_section(dft_control, rtp_section)
2792 :
2793 : TYPE(dft_control_type), INTENT(INOUT) :: dft_control
2794 : TYPE(section_vals_type), POINTER :: rtp_section
2795 :
2796 : INTEGER :: i, j, n_elems
2797 248 : INTEGER, DIMENSION(:), POINTER :: tmp
2798 : LOGICAL :: is_present, local_moment_possible
2799 : TYPE(section_vals_type), POINTER :: proj_mo_section, subsection
2800 :
2801 2976 : ALLOCATE (dft_control%rtp_control)
2802 : CALL section_vals_val_get(rtp_section, "MAX_ITER", &
2803 248 : i_val=dft_control%rtp_control%max_iter)
2804 : CALL section_vals_val_get(rtp_section, "MAT_EXP", &
2805 248 : i_val=dft_control%rtp_control%mat_exp)
2806 : CALL section_vals_val_get(rtp_section, "ASPC_ORDER", &
2807 248 : i_val=dft_control%rtp_control%aspc_order)
2808 : CALL section_vals_val_get(rtp_section, "EXP_ACCURACY", &
2809 248 : r_val=dft_control%rtp_control%eps_exp)
2810 : CALL section_vals_val_get(rtp_section, "RTBSE%_SECTION_PARAMETERS_", &
2811 248 : i_val=dft_control%rtp_control%rtp_method)
2812 : CALL section_vals_val_get(rtp_section, "RTBSE%RTBSE_HAMILTONIAN", &
2813 248 : i_val=dft_control%rtp_control%rtbse_ham)
2814 : CALL section_vals_val_get(rtp_section, "PROPAGATOR", &
2815 248 : i_val=dft_control%rtp_control%propagator)
2816 : CALL section_vals_val_get(rtp_section, "EPS_ITER", &
2817 248 : r_val=dft_control%rtp_control%eps_ener)
2818 : CALL section_vals_val_get(rtp_section, "INITIAL_WFN", &
2819 248 : i_val=dft_control%rtp_control%initial_wfn)
2820 : CALL section_vals_val_get(rtp_section, "HFX_BALANCE_IN_CORE", &
2821 248 : l_val=dft_control%rtp_control%hfx_redistribute)
2822 : CALL section_vals_val_get(rtp_section, "APPLY_WFN_MIX_INIT_RESTART", &
2823 248 : l_val=dft_control%rtp_control%apply_wfn_mix_init_restart)
2824 : CALL section_vals_val_get(rtp_section, "APPLY_DELTA_PULSE", &
2825 248 : l_val=dft_control%rtp_control%apply_delta_pulse)
2826 : CALL section_vals_val_get(rtp_section, "APPLY_DELTA_PULSE_MAG", &
2827 248 : l_val=dft_control%rtp_control%apply_delta_pulse_mag)
2828 : CALL section_vals_val_get(rtp_section, "VELOCITY_GAUGE", &
2829 248 : l_val=dft_control%rtp_control%velocity_gauge)
2830 : CALL section_vals_val_get(rtp_section, "VG_COM_NL", &
2831 248 : l_val=dft_control%rtp_control%nl_gauge_transform)
2832 : CALL section_vals_val_get(rtp_section, "PERIODIC", &
2833 248 : l_val=dft_control%rtp_control%periodic)
2834 : CALL section_vals_val_get(rtp_section, "DENSITY_PROPAGATION", &
2835 248 : l_val=dft_control%rtp_control%linear_scaling)
2836 : CALL section_vals_val_get(rtp_section, "MCWEENY_MAX_ITER", &
2837 248 : i_val=dft_control%rtp_control%mcweeny_max_iter)
2838 : CALL section_vals_val_get(rtp_section, "ACCURACY_REFINEMENT", &
2839 248 : i_val=dft_control%rtp_control%acc_ref)
2840 : CALL section_vals_val_get(rtp_section, "MCWEENY_EPS", &
2841 248 : r_val=dft_control%rtp_control%mcweeny_eps)
2842 : CALL section_vals_val_get(rtp_section, "DELTA_PULSE_SCALE", &
2843 248 : r_val=dft_control%rtp_control%delta_pulse_scale)
2844 : CALL section_vals_val_get(rtp_section, "DELTA_PULSE_DIRECTION", &
2845 248 : i_vals=tmp)
2846 992 : dft_control%rtp_control%delta_pulse_direction = tmp
2847 : CALL section_vals_val_get(rtp_section, "SC_CHECK_START", &
2848 248 : i_val=dft_control%rtp_control%sc_check_start)
2849 248 : proj_mo_section => section_vals_get_subs_vals(rtp_section, "PRINT%PROJECTION_MO")
2850 248 : CALL section_vals_get(proj_mo_section, explicit=is_present)
2851 248 : IF (is_present) THEN
2852 4 : IF (dft_control%rtp_control%linear_scaling) &
2853 : CALL cp_abort(__LOCATION__, &
2854 : "You have defined a time dependent projection of mos, but "// &
2855 : "only the density matrix is propagated (DENSITY_PROPAGATION "// &
2856 : ".TRUE.). Please either use MO-based real time DFT or do not "// &
2857 0 : "define any PRINT%PROJECTION_MO section")
2858 4 : dft_control%rtp_control%is_proj_mo = .TRUE.
2859 : ELSE
2860 244 : dft_control%rtp_control%is_proj_mo = .FALSE.
2861 : END IF
2862 : ! Moment trace
2863 : local_moment_possible = (dft_control%rtp_control%rtp_method == rtp_method_bse) .OR. &
2864 248 : ((.NOT. dft_control%rtp_control%periodic) .AND. dft_control%rtp_control%linear_scaling)
2865 : ! TODO : Implement for other moment operators
2866 248 : subsection => section_vals_get_subs_vals(rtp_section, "PRINT%MOMENTS")
2867 248 : CALL section_vals_get(subsection, explicit=is_present)
2868 : ! Trigger the flag
2869 : dft_control%rtp_control%save_local_moments = &
2870 248 : is_present .OR. dft_control%rtp_control%save_local_moments
2871 248 : IF (is_present .AND. (.NOT. local_moment_possible)) THEN
2872 : CALL cp_abort(__LOCATION__, "Moments trace printing only "// &
2873 : "implemented in non-periodic systems in linear scaling. "// &
2874 0 : "Please use DFT%PRINT%MOMENTS for other printing.")
2875 : END IF
2876 : CALL section_vals_val_get(rtp_section, "PRINT%MOMENTS%REFERENCE", &
2877 248 : i_val=dft_control%rtp_control%moment_trace_ref_type)
2878 : CALL section_vals_val_get(rtp_section, "PRINT%MOMENTS%REFERENCE_POINT", &
2879 248 : r_vals=dft_control%rtp_control%moment_trace_user_ref_point)
2880 : ! Moment Fourier transform
2881 248 : subsection => section_vals_get_subs_vals(rtp_section, "PRINT%MOMENTS_FT")
2882 248 : CALL section_vals_get(subsection, explicit=is_present)
2883 : ! Trigger the flag
2884 : dft_control%rtp_control%save_local_moments = &
2885 248 : is_present .OR. dft_control%rtp_control%save_local_moments
2886 248 : IF (is_present .AND. (.NOT. local_moment_possible)) THEN
2887 : ! Not implemented
2888 : CALL cp_abort(__LOCATION__, "Moments Fourier transform printing "// &
2889 0 : "implemented only for non-periodic systems in linear scaling.")
2890 : END IF
2891 : ! General FT settings
2892 : CALL section_vals_val_get(rtp_section, "FT%DAMPING", &
2893 248 : r_val=dft_control%rtp_control%ft_damping)
2894 : CALL section_vals_val_get(rtp_section, "FT%START_TIME", &
2895 248 : r_val=dft_control%rtp_control%ft_t0)
2896 : ! Padé settings
2897 248 : subsection => section_vals_get_subs_vals(rtp_section, "FT%PADE")
2898 : CALL section_vals_val_get(subsection, "_SECTION_PARAMETERS_", &
2899 248 : l_val=dft_control%rtp_control%pade_requested)
2900 : CALL section_vals_val_get(subsection, "E_MIN", &
2901 248 : r_val=dft_control%rtp_control%pade_e_min)
2902 : CALL section_vals_val_get(subsection, "E_STEP", &
2903 248 : r_val=dft_control%rtp_control%pade_e_step)
2904 : CALL section_vals_val_get(subsection, "E_MAX", &
2905 248 : r_val=dft_control%rtp_control%pade_e_max)
2906 : CALL section_vals_val_get(subsection, "FIT_E_MIN", &
2907 248 : r_val=dft_control%rtp_control%pade_fit_e_min)
2908 : CALL section_vals_val_get(subsection, "FIT_E_MAX", &
2909 248 : r_val=dft_control%rtp_control%pade_fit_e_max)
2910 : ! If default settings used for fit_e_min/max, rewrite with appropriate values
2911 248 : IF (dft_control%rtp_control%pade_fit_e_min < 0) THEN
2912 248 : dft_control%rtp_control%pade_fit_e_min = dft_control%rtp_control%pade_e_min
2913 : END IF
2914 248 : IF (dft_control%rtp_control%pade_fit_e_max < 0) THEN
2915 248 : dft_control%rtp_control%pade_fit_e_max = dft_control%rtp_control%pade_e_max
2916 : END IF
2917 : ! Polarizability settings
2918 248 : subsection => section_vals_get_subs_vals(rtp_section, "PRINT%POLARIZABILITY")
2919 248 : CALL section_vals_get(subsection, explicit=is_present)
2920 : ! Trigger the flag
2921 : dft_control%rtp_control%save_local_moments = &
2922 248 : is_present .OR. dft_control%rtp_control%save_local_moments
2923 248 : IF (is_present .AND. (.NOT. local_moment_possible)) THEN
2924 : ! Not implemented
2925 : CALL cp_abort(__LOCATION__, "Polarizability printing "// &
2926 0 : "implemented only for non-periodic systems.")
2927 : END IF
2928 248 : CALL section_vals_val_get(subsection, "ELEMENT", explicit=is_present, n_rep_val=n_elems)
2929 248 : NULLIFY (dft_control%rtp_control%print_pol_elements)
2930 248 : IF (is_present) THEN
2931 : ! Explicit list of elements
2932 : ! Allocate the array
2933 0 : ALLOCATE (dft_control%rtp_control%print_pol_elements(n_elems, 2))
2934 0 : DO i = 1, n_elems
2935 0 : CALL section_vals_val_get(subsection, "ELEMENT", i_vals=tmp, i_rep_val=i)
2936 0 : dft_control%rtp_control%print_pol_elements(i, :) = tmp(:)
2937 : END DO
2938 : ! Do basic sanity checks for pol_element
2939 0 : DO i = 1, n_elems
2940 0 : DO j = 1, 2
2941 0 : IF (dft_control%rtp_control%print_pol_elements(i, j) > 3 .OR. &
2942 : dft_control%rtp_control%print_pol_elements(i, j) < 1) &
2943 0 : CPABORT("Polarisation tensor element not 1,2 or 3 in at least one index")
2944 : END DO
2945 : END DO
2946 : END IF
2947 :
2948 : ! Finally, allow printing of FT observables also in the case when they are not explicitly
2949 : ! required, but they are available, i.e. non-periodic linear scaling calculation
2950 : dft_control%rtp_control%save_local_moments = &
2951 : dft_control%rtp_control%save_local_moments .OR. &
2952 248 : ((.NOT. dft_control%rtp_control%periodic) .AND. dft_control%rtp_control%linear_scaling)
2953 :
2954 248 : END SUBROUTINE read_rtp_section
2955 : ! **************************************************************************************************
2956 : !> \brief Tries to guess the elements of polarization to print
2957 : !> \param dftc DFT parameters
2958 : !> \param elems 2D array, where the guessed element indeces are stored
2959 : !> \date 11.2025
2960 : !> \author Stepan Marek
2961 : ! **************************************************************************************************
2962 30 : SUBROUTINE guess_pol_elements(dftc, elems)
2963 : TYPE(dft_control_type) :: dftc
2964 : INTEGER, DIMENSION(:, :), POINTER :: elems
2965 :
2966 : INTEGER :: i, i_nonzero, n_nonzero
2967 : LOGICAL :: pol_vector_known
2968 : REAL(kind=dp), DIMENSION(3) :: pol_vector
2969 :
2970 30 : pol_vector_known = .FALSE.
2971 :
2972 : ! TODO : More relevant elements for magnetic pulse?
2973 30 : IF (dftc%rtp_control%apply_delta_pulse .OR. dftc%rtp_control%apply_delta_pulse_mag) THEN
2974 104 : pol_vector(:) = REAL(dftc%rtp_control%delta_pulse_direction(:), kind=dp)
2975 : ELSE
2976 : ! Maybe RT field is applied?
2977 16 : pol_vector(:) = dftc%efield_fields(1)%efield%polarisation(:)
2978 : END IF
2979 120 : IF (DOT_PRODUCT(pol_vector, pol_vector) > 0.0_dp) pol_vector_known = .TRUE.
2980 :
2981 : IF (.NOT. pol_vector_known) THEN
2982 0 : CPABORT("Cannot guess polarization elements - please specify!")
2983 : ELSE
2984 : ! Check whether just one element is non-zero
2985 : n_nonzero = 0
2986 120 : DO i = 1, 3
2987 120 : IF (pol_vector(i) /= 0.0_dp) THEN
2988 30 : n_nonzero = n_nonzero + 1
2989 30 : i_nonzero = i
2990 : END IF
2991 : END DO
2992 30 : IF (n_nonzero > 1) THEN
2993 : CALL cp_abort(__LOCATION__, &
2994 : "More than one non-zero field elements - "// &
2995 0 : "cannot guess polarizability elements - please specify!")
2996 30 : ELSE IF (n_nonzero == 0) THEN
2997 : CALL cp_abort(__LOCATION__, &
2998 : "No non-zero field elements - "// &
2999 0 : "cannot guess polarizability elements - please specify!")
3000 : ELSE
3001 : ! Clear guess can be made
3002 : NULLIFY (elems)
3003 30 : ALLOCATE (elems(3, 2))
3004 120 : DO i = 1, 3
3005 90 : elems(i, 1) = i
3006 120 : elems(i, 2) = i_nonzero
3007 : END DO
3008 : END IF
3009 : END IF
3010 30 : END SUBROUTINE guess_pol_elements
3011 :
3012 : ! **************************************************************************************************
3013 : !> \brief Parses the BLOCK_LIST keywords from the ADMM section
3014 : !> \param admm_control ...
3015 : !> \param dft_section ...
3016 : ! **************************************************************************************************
3017 464 : SUBROUTINE read_admm_block_list(admm_control, dft_section)
3018 : TYPE(admm_control_type), POINTER :: admm_control
3019 : TYPE(section_vals_type), POINTER :: dft_section
3020 :
3021 : INTEGER :: irep, list_size, n_rep
3022 464 : INTEGER, DIMENSION(:), POINTER :: tmplist
3023 :
3024 464 : NULLIFY (tmplist)
3025 :
3026 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%BLOCK_LIST", &
3027 464 : n_rep_val=n_rep)
3028 :
3029 982 : ALLOCATE (admm_control%blocks(n_rep))
3030 :
3031 500 : DO irep = 1, n_rep
3032 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%BLOCK_LIST", &
3033 36 : i_rep_val=irep, i_vals=tmplist)
3034 36 : list_size = SIZE(tmplist)
3035 108 : ALLOCATE (admm_control%blocks(irep)%list(list_size))
3036 672 : admm_control%blocks(irep)%list(:) = tmplist(:)
3037 : END DO
3038 :
3039 464 : END SUBROUTINE read_admm_block_list
3040 :
3041 : ! **************************************************************************************************
3042 : !> \brief ...
3043 : !> \param dft_control ...
3044 : !> \param hairy_probes_section ...
3045 : !> \param
3046 : !> \param
3047 : ! **************************************************************************************************
3048 4 : SUBROUTINE read_hairy_probes_sections(dft_control, hairy_probes_section)
3049 : TYPE(dft_control_type), POINTER :: dft_control
3050 : TYPE(section_vals_type), POINTER :: hairy_probes_section
3051 :
3052 : INTEGER :: i, j, jj, kk, n_rep
3053 4 : INTEGER, DIMENSION(:), POINTER :: tmplist
3054 :
3055 12 : DO i = 1, SIZE(dft_control%probe)
3056 8 : NULLIFY (dft_control%probe(i)%atom_ids)
3057 :
3058 8 : CALL section_vals_val_get(hairy_probes_section, "ATOM_IDS", i_rep_section=i, n_rep_val=n_rep)
3059 8 : jj = 0
3060 16 : DO kk = 1, n_rep
3061 8 : CALL section_vals_val_get(hairy_probes_section, "ATOM_IDS", i_rep_section=i, i_rep_val=kk, i_vals=tmplist)
3062 16 : jj = jj + SIZE(tmplist)
3063 : END DO
3064 :
3065 8 : dft_control%probe(i)%natoms = jj
3066 8 : IF (dft_control%probe(i)%natoms < 1) &
3067 0 : CPABORT("Need at least 1 atom to use hair probes formalism")
3068 24 : ALLOCATE (dft_control%probe(i)%atom_ids(dft_control%probe(i)%natoms))
3069 :
3070 8 : jj = 0
3071 16 : DO kk = 1, n_rep
3072 8 : CALL section_vals_val_get(hairy_probes_section, "ATOM_IDS", i_rep_section=i, i_rep_val=kk, i_vals=tmplist)
3073 24 : DO j = 1, SIZE(tmplist)
3074 8 : jj = jj + 1
3075 16 : dft_control%probe(i)%atom_ids(jj) = tmplist(j)
3076 : END DO
3077 : END DO
3078 :
3079 8 : CALL section_vals_val_get(hairy_probes_section, "MU", i_rep_section=i, r_val=dft_control%probe(i)%mu)
3080 :
3081 8 : CALL section_vals_val_get(hairy_probes_section, "T", i_rep_section=i, r_val=dft_control%probe(i)%T)
3082 :
3083 8 : CALL section_vals_val_get(hairy_probes_section, "ALPHA", i_rep_section=i, r_val=dft_control%probe(i)%alpha)
3084 :
3085 20 : CALL section_vals_val_get(hairy_probes_section, "eps_hp", i_rep_section=i, r_val=dft_control%probe(i)%eps_hp)
3086 : END DO
3087 :
3088 4 : END SUBROUTINE read_hairy_probes_sections
3089 : ! **************************************************************************************************
3090 :
3091 : END MODULE cp_control_utils
|