Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Utilities to set up the control types
10 : ! **************************************************************************************************
11 : MODULE cp_control_utils
12 : USE bibliography, ONLY: &
13 : Andreussi2012, Asgeirsson2017, Bannwarth2019, Caldeweyher2017, Caldeweyher2020, Dewar1977, &
14 : Dewar1985, Elstner1998, Fattebert2002, Grimme2017, Hu2007, Krack2000, Lippert1997, &
15 : Lippert1999, Porezag1995, Pracht2019, Repasky2002, Rocha2006, Schenter2008, Seifert1996, &
16 : Souza2002, Stengel2009, Stewart1989, Stewart2007, Thiel1992, Umari2002, VanVoorhis2015, &
17 : VandeVondele2005a, VandeVondele2005b, Yin2017, Zhechkov2005, cite_reference
18 : USE cp_control_types, ONLY: &
19 : admm_control_create, admm_control_type, ddapc_control_create, ddapc_restraint_type, &
20 : dft_control_create, dft_control_type, efield_type, expot_control_create, &
21 : maxwell_control_create, qs_control_type, rixs_control_type, tddfpt2_control_type, &
22 : xtb_control_type
23 : USE cp_files, ONLY: close_file,&
24 : open_file
25 : USE cp_log_handling, ONLY: cp_get_default_logger,&
26 : cp_logger_type
27 : USE cp_output_handling, ONLY: cp_print_key_finished_output,&
28 : cp_print_key_unit_nr
29 : USE cp_parser_methods, ONLY: parser_read_line
30 : USE cp_parser_types, ONLY: cp_parser_type,&
31 : parser_create,&
32 : parser_release,&
33 : parser_reset
34 : USE cp_units, ONLY: cp_unit_from_cp2k,&
35 : cp_unit_to_cp2k
36 : USE eeq_input, ONLY: read_eeq_param
37 : USE force_fields_input, ONLY: read_gp_section
38 : USE input_constants, ONLY: &
39 : admm1_type, admm2_type, admmp_type, admmq_type, admms_type, constant_env, custom_env, &
40 : do_admm_aux_exch_func_bee, do_admm_aux_exch_func_bee_libxc, do_admm_aux_exch_func_default, &
41 : do_admm_aux_exch_func_default_libxc, do_admm_aux_exch_func_none, &
42 : do_admm_aux_exch_func_opt, do_admm_aux_exch_func_opt_libxc, do_admm_aux_exch_func_pbex, &
43 : do_admm_aux_exch_func_pbex_libxc, do_admm_aux_exch_func_sx_libxc, &
44 : do_admm_basis_projection, do_admm_blocked_projection, do_admm_blocking_purify_full, &
45 : do_admm_charge_constrained_projection, do_admm_exch_scaling_merlot, &
46 : do_admm_exch_scaling_none, do_admm_purify_cauchy, do_admm_purify_cauchy_subspace, &
47 : do_admm_purify_mcweeny, do_admm_purify_mo_diag, do_admm_purify_mo_no_diag, &
48 : do_admm_purify_none, do_admm_purify_none_dm, do_ddapc_constraint, do_ddapc_restraint, &
49 : do_method_am1, do_method_dftb, do_method_gapw, do_method_gapw_xc, do_method_gpw, &
50 : do_method_lrigpw, do_method_mndo, do_method_mndod, do_method_ofgpw, do_method_pdg, &
51 : do_method_pm3, do_method_pm6, do_method_pm6fm, do_method_pnnl, do_method_rigpw, &
52 : do_method_rm1, do_method_xtb, do_pwgrid_ns_fullspace, do_pwgrid_ns_halfspace, &
53 : do_pwgrid_spherical, do_s2_constraint, do_s2_restraint, do_se_is_kdso, do_se_is_kdso_d, &
54 : do_se_is_slater, do_se_lr_ewald, do_se_lr_ewald_gks, do_se_lr_ewald_r3, do_se_lr_none, &
55 : gapw_1c_large, gapw_1c_medium, gapw_1c_orb, gapw_1c_small, gapw_1c_very_large, &
56 : gaussian_env, no_admm_type, numerical, ramp_env, real_time_propagation, rtp_method_bse, &
57 : sccs_andreussi, sccs_derivative_cd3, sccs_derivative_cd5, sccs_derivative_cd7, &
58 : sccs_derivative_fft, sccs_fattebert_gygi, sic_ad, sic_eo, sic_list_all, sic_list_unpaired, &
59 : sic_mauri_spz, sic_mauri_us, sic_none, slater, tddfpt_dipole_length, tddfpt_kernel_stda, &
60 : use_mom_ref_user, xtb_vdw_type_d3, xtb_vdw_type_d4, xtb_vdw_type_none
61 : USE input_cp2k_check, ONLY: xc_functionals_expand
62 : USE input_cp2k_dft, ONLY: create_dft_section
63 : USE input_enumeration_types, ONLY: enum_i2c,&
64 : enumeration_type
65 : USE input_keyword_types, ONLY: keyword_get,&
66 : keyword_type
67 : USE input_section_types, ONLY: &
68 : section_get_ival, section_get_keyword, section_release, section_type, section_vals_get, &
69 : section_vals_get_subs_vals, section_vals_type, section_vals_val_get, section_vals_val_set
70 : USE kinds, ONLY: default_path_length,&
71 : default_string_length,&
72 : dp
73 : USE mathconstants, ONLY: fourpi
74 : USE pair_potential_types, ONLY: pair_potential_reallocate
75 : USE periodic_table, ONLY: get_ptable_info
76 : USE qs_cdft_utils, ONLY: read_cdft_control_section
77 : USE smeagol_control_types, ONLY: read_smeagol_control
78 : USE string_utilities, ONLY: uppercase
79 : USE util, ONLY: sort
80 : USE xas_tdp_types, ONLY: read_xas_tdp_control
81 : USE xc, ONLY: xc_uses_kinetic_energy_density,&
82 : xc_uses_norm_drho
83 : USE xc_input_constants, ONLY: xc_deriv_collocate
84 : USE xc_write_output, ONLY: xc_write
85 : #include "./base/base_uses.f90"
86 :
87 : IMPLICIT NONE
88 :
89 : PRIVATE
90 :
91 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'cp_control_utils'
92 :
93 : PUBLIC :: read_dft_control, &
94 : read_rixs_control, &
95 : read_mgrid_section, &
96 : read_qs_section, &
97 : read_tddfpt2_control, &
98 : write_dft_control, &
99 : write_qs_control, &
100 : write_admm_control, &
101 : read_ddapc_section
102 : CONTAINS
103 :
104 : ! **************************************************************************************************
105 : !> \brief ...
106 : !> \param dft_control ...
107 : !> \param dft_section ...
108 : ! **************************************************************************************************
109 111660 : SUBROUTINE read_dft_control(dft_control, dft_section)
110 : TYPE(dft_control_type), POINTER :: dft_control
111 : TYPE(section_vals_type), POINTER :: dft_section
112 :
113 : CHARACTER(len=default_path_length) :: basis_set_file_name, &
114 : intensities_file_name, &
115 : potential_file_name
116 : CHARACTER(LEN=default_string_length), &
117 7444 : DIMENSION(:), POINTER :: tmpstringlist
118 : INTEGER :: admmtype, irep, isize, method_id, nrep, &
119 : xc_deriv_method_id
120 : LOGICAL :: at_end, do_hfx, do_ot, do_rpa_admm, do_rtp, exopt1, exopt2, exopt3, explicit, &
121 : is_present, l_param, local_moment_possible, not_SE, was_present
122 : REAL(KIND=dp) :: density_cut, gradient_cut, tau_cut
123 7444 : REAL(KIND=dp), DIMENSION(:), POINTER :: pol
124 : TYPE(cp_logger_type), POINTER :: logger
125 : TYPE(cp_parser_type) :: parser
126 : TYPE(section_vals_type), POINTER :: hairy_probes_section, hfx_section, maxwell_section, &
127 : sccs_section, scf_section, tmp_section, xc_fun_section, xc_section
128 :
129 7444 : was_present = .FALSE.
130 :
131 7444 : logger => cp_get_default_logger()
132 :
133 7444 : NULLIFY (tmp_section, xc_fun_section, xc_section)
134 7444 : ALLOCATE (dft_control)
135 7444 : CALL dft_control_create(dft_control)
136 : ! determine wheather this is a semiempirical or DFTB run
137 : ! --> (no XC section needs to be provided)
138 7444 : not_SE = .TRUE.
139 7444 : CALL section_vals_val_get(dft_section, "QS%METHOD", i_val=method_id)
140 2164 : SELECT CASE (method_id)
141 : CASE (do_method_dftb, do_method_xtb, do_method_mndo, do_method_am1, do_method_pm3, do_method_pnnl, &
142 : do_method_pm6, do_method_pm6fm, do_method_pdg, do_method_rm1, do_method_mndod)
143 7444 : not_SE = .FALSE.
144 : END SELECT
145 : ! Check for XC section and XC_FUNCTIONAL section
146 7444 : xc_section => section_vals_get_subs_vals(dft_section, "XC")
147 7444 : CALL section_vals_get(xc_section, explicit=is_present)
148 7444 : IF (.NOT. is_present .AND. not_SE) THEN
149 0 : CPABORT("XC section missing.")
150 : END IF
151 7444 : IF (is_present) THEN
152 5296 : CALL section_vals_val_get(xc_section, "density_cutoff", r_val=density_cut)
153 5296 : CALL section_vals_val_get(xc_section, "gradient_cutoff", r_val=gradient_cut)
154 5296 : CALL section_vals_val_get(xc_section, "tau_cutoff", r_val=tau_cut)
155 : ! Perform numerical stability checks and possibly correct the issues
156 5296 : IF (density_cut <= EPSILON(0.0_dp)*100.0_dp) &
157 : CALL cp_warn(__LOCATION__, &
158 : "DENSITY_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
159 0 : "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
160 5296 : density_cut = MAX(EPSILON(0.0_dp)*100.0_dp, density_cut)
161 5296 : IF (gradient_cut <= EPSILON(0.0_dp)*100.0_dp) &
162 : CALL cp_warn(__LOCATION__, &
163 : "GRADIENT_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
164 0 : "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
165 5296 : gradient_cut = MAX(EPSILON(0.0_dp)*100.0_dp, gradient_cut)
166 5296 : IF (tau_cut <= EPSILON(0.0_dp)*100.0_dp) &
167 : CALL cp_warn(__LOCATION__, &
168 : "TAU_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
169 0 : "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
170 5296 : tau_cut = MAX(EPSILON(0.0_dp)*100.0_dp, tau_cut)
171 5296 : CALL section_vals_val_set(xc_section, "density_cutoff", r_val=density_cut)
172 5296 : CALL section_vals_val_set(xc_section, "gradient_cutoff", r_val=gradient_cut)
173 5296 : CALL section_vals_val_set(xc_section, "tau_cutoff", r_val=tau_cut)
174 : END IF
175 7444 : xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
176 7444 : CALL section_vals_get(xc_fun_section, explicit=is_present)
177 7444 : IF (.NOT. is_present .AND. not_SE) THEN
178 0 : CPABORT("XC_FUNCTIONAL section missing.")
179 : END IF
180 7444 : scf_section => section_vals_get_subs_vals(dft_section, "SCF")
181 7444 : CALL section_vals_val_get(dft_section, "UKS", l_val=dft_control%uks)
182 7444 : CALL section_vals_val_get(dft_section, "ROKS", l_val=dft_control%roks)
183 7444 : IF (dft_control%uks .OR. dft_control%roks) THEN
184 1629 : dft_control%nspins = 2
185 : ELSE
186 5815 : dft_control%nspins = 1
187 : END IF
188 :
189 7444 : dft_control%lsd = (dft_control%nspins > 1)
190 7444 : dft_control%use_kinetic_energy_density = xc_uses_kinetic_energy_density(xc_fun_section, dft_control%lsd)
191 :
192 7444 : xc_deriv_method_id = section_get_ival(xc_section, "XC_GRID%XC_DERIV")
193 : dft_control%drho_by_collocation = (xc_uses_norm_drho(xc_fun_section, dft_control%lsd) &
194 7444 : .AND. (xc_deriv_method_id == xc_deriv_collocate))
195 7444 : IF (dft_control%drho_by_collocation) THEN
196 0 : CPABORT("derivatives by collocation not implemented")
197 : END IF
198 :
199 : ! Automatic auxiliary basis set generation
200 7444 : CALL section_vals_val_get(dft_section, "AUTO_BASIS", n_rep_val=nrep)
201 14888 : DO irep = 1, nrep
202 7444 : CALL section_vals_val_get(dft_section, "AUTO_BASIS", i_rep_val=irep, c_vals=tmpstringlist)
203 14888 : IF (SIZE(tmpstringlist) == 2) THEN
204 7444 : CALL uppercase(tmpstringlist(2))
205 7444 : SELECT CASE (tmpstringlist(2))
206 : CASE ("X")
207 88 : isize = -1
208 : CASE ("SMALL")
209 88 : isize = 0
210 : CASE ("MEDIUM")
211 54 : isize = 1
212 : CASE ("LARGE")
213 0 : isize = 2
214 : CASE ("HUGE")
215 6 : isize = 3
216 : CASE DEFAULT
217 7444 : CPWARN("Unknown basis size in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
218 : END SELECT
219 : !
220 7446 : SELECT CASE (tmpstringlist(1))
221 : CASE ("X")
222 : CASE ("RI_AUX")
223 2 : dft_control%auto_basis_ri_aux = isize
224 : CASE ("AUX_FIT")
225 0 : dft_control%auto_basis_aux_fit = isize
226 : CASE ("LRI_AUX")
227 0 : dft_control%auto_basis_lri_aux = isize
228 : CASE ("P_LRI_AUX")
229 0 : dft_control%auto_basis_p_lri_aux = isize
230 : CASE ("RI_HXC")
231 0 : dft_control%auto_basis_ri_hxc = isize
232 : CASE ("RI_XAS")
233 60 : dft_control%auto_basis_ri_xas = isize
234 : CASE ("RI_HFX")
235 86 : dft_control%auto_basis_ri_hfx = isize
236 : CASE DEFAULT
237 7444 : CPWARN("Unknown basis type in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
238 : END SELECT
239 : ELSE
240 : CALL cp_abort(__LOCATION__, &
241 0 : "AUTO_BASIS keyword in &DFT section has a wrong number of arguments.")
242 : END IF
243 : END DO
244 :
245 : !! check if we do wavefunction fitting
246 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD")
247 7444 : CALL section_vals_get(tmp_section, explicit=is_present)
248 : !
249 7444 : hfx_section => section_vals_get_subs_vals(xc_section, "HF")
250 7444 : CALL section_vals_get(hfx_section, explicit=do_hfx)
251 7444 : CALL section_vals_val_get(xc_section, "WF_CORRELATION%RI_RPA%ADMM", l_val=do_rpa_admm)
252 7444 : is_present = is_present .AND. (do_hfx .OR. do_rpa_admm)
253 : !
254 7444 : dft_control%do_admm = is_present
255 7444 : dft_control%do_admm_mo = .FALSE.
256 7444 : dft_control%do_admm_dm = .FALSE.
257 7444 : IF (is_present) THEN
258 : do_ot = .FALSE.
259 464 : CALL section_vals_val_get(scf_section, "OT%_SECTION_PARAMETERS_", l_val=do_ot)
260 464 : CALL admm_control_create(dft_control%admm_control)
261 :
262 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_TYPE", i_val=admmtype)
263 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", explicit=exopt1)
264 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%METHOD", explicit=exopt2)
265 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_SCALING_MODEL", explicit=exopt3)
266 464 : dft_control%admm_control%admm_type = admmtype
267 454 : SELECT CASE (admmtype)
268 : CASE (no_admm_type)
269 454 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", i_val=method_id)
270 454 : dft_control%admm_control%purification_method = method_id
271 454 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%METHOD", i_val=method_id)
272 454 : dft_control%admm_control%method = method_id
273 454 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_SCALING_MODEL", i_val=method_id)
274 454 : dft_control%admm_control%scaling_model = method_id
275 : CASE (admm1_type)
276 : ! METHOD BASIS_PROJECTION
277 : ! ADMM_PURIFICATION_METHOD choose
278 : ! EXCH_SCALING_MODEL NONE
279 2 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", i_val=method_id)
280 2 : dft_control%admm_control%purification_method = method_id
281 2 : dft_control%admm_control%method = do_admm_basis_projection
282 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
283 : CASE (admm2_type)
284 : ! METHOD BASIS_PROJECTION
285 : ! ADMM_PURIFICATION_METHOD NONE
286 : ! EXCH_SCALING_MODEL NONE
287 2 : dft_control%admm_control%purification_method = do_admm_purify_none
288 2 : dft_control%admm_control%method = do_admm_basis_projection
289 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
290 : CASE (admms_type)
291 : ! ADMM_PURIFICATION_METHOD NONE
292 : ! METHOD CHARGE_CONSTRAINED_PROJECTION
293 : ! EXCH_SCALING_MODEL MERLOT
294 2 : dft_control%admm_control%purification_method = do_admm_purify_none
295 2 : dft_control%admm_control%method = do_admm_charge_constrained_projection
296 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_merlot
297 : CASE (admmp_type)
298 : ! ADMM_PURIFICATION_METHOD NONE
299 : ! METHOD BASIS_PROJECTION
300 : ! EXCH_SCALING_MODEL MERLOT
301 2 : dft_control%admm_control%purification_method = do_admm_purify_none
302 2 : dft_control%admm_control%method = do_admm_basis_projection
303 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_merlot
304 : CASE (admmq_type)
305 : ! ADMM_PURIFICATION_METHOD NONE
306 : ! METHOD CHARGE_CONSTRAINED_PROJECTION
307 : ! EXCH_SCALING_MODEL NONE
308 2 : dft_control%admm_control%purification_method = do_admm_purify_none
309 2 : dft_control%admm_control%method = do_admm_charge_constrained_projection
310 2 : dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
311 : CASE DEFAULT
312 : CALL cp_abort(__LOCATION__, &
313 464 : "ADMM_TYPE keyword in &AUXILIARY_DENSITY_MATRIX_METHOD section has a wrong value.")
314 : END SELECT
315 :
316 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EPS_FILTER", &
317 464 : r_val=dft_control%admm_control%eps_filter)
318 :
319 464 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_CORRECTION_FUNC", i_val=method_id)
320 464 : dft_control%admm_control%aux_exch_func = method_id
321 :
322 : ! parameters for X functional
323 464 : dft_control%admm_control%aux_exch_func_param = .FALSE.
324 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_A1", explicit=explicit, &
325 464 : r_val=dft_control%admm_control%aux_x_param(1))
326 464 : IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
327 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_A2", explicit=explicit, &
328 464 : r_val=dft_control%admm_control%aux_x_param(2))
329 464 : IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
330 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_GAMMA", explicit=explicit, &
331 464 : r_val=dft_control%admm_control%aux_x_param(3))
332 464 : IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
333 :
334 464 : CALL read_admm_block_list(dft_control%admm_control, dft_section)
335 :
336 : ! check for double assignments
337 2 : SELECT CASE (admmtype)
338 : CASE (admm2_type)
339 2 : IF (exopt2) CALL cp_warn(__LOCATION__, &
340 0 : "Value of ADMM_PURIFICATION_METHOD keyword will be overwritten with ADMM_TYPE selections.")
341 2 : IF (exopt3) CALL cp_warn(__LOCATION__, &
342 0 : "Value of EXCH_SCALING_MODEL keyword will be overwritten with ADMM_TYPE selections.")
343 : CASE (admm1_type, admms_type, admmp_type, admmq_type)
344 8 : IF (exopt1) CALL cp_warn(__LOCATION__, &
345 0 : "Value of METHOD keyword will be overwritten with ADMM_TYPE selections.")
346 8 : IF (exopt2) CALL cp_warn(__LOCATION__, &
347 0 : "Value of METHOD keyword will be overwritten with ADMM_TYPE selections.")
348 8 : IF (exopt3) CALL cp_warn(__LOCATION__, &
349 464 : "Value of EXCH_SCALING_MODEL keyword will be overwritten with ADMM_TYPE selections.")
350 : END SELECT
351 :
352 : ! In the case of charge-constrained projection (e.g. according to Merlot),
353 : ! there is no purification needed and hence, do_admm_purify_none has to be set.
354 :
355 : IF ((dft_control%admm_control%method == do_admm_blocking_purify_full .OR. &
356 : dft_control%admm_control%method == do_admm_blocked_projection) &
357 464 : .AND. dft_control%admm_control%scaling_model == do_admm_exch_scaling_merlot) THEN
358 0 : CPABORT("ADMM: Blocking and Merlot scaling are mutually exclusive.")
359 : END IF
360 :
361 464 : IF (dft_control%admm_control%method == do_admm_charge_constrained_projection .AND. &
362 : dft_control%admm_control%purification_method /= do_admm_purify_none) THEN
363 : CALL cp_abort(__LOCATION__, &
364 : "ADMM: In the case of METHOD=CHARGE_CONSTRAINED_PROJECTION, "// &
365 0 : "ADMM_PURIFICATION_METHOD=NONE has to be set.")
366 : END IF
367 :
368 464 : IF (dft_control%admm_control%purification_method == do_admm_purify_mo_diag .OR. &
369 : dft_control%admm_control%purification_method == do_admm_purify_mo_no_diag) THEN
370 62 : IF (dft_control%admm_control%method /= do_admm_basis_projection) &
371 0 : CPABORT("ADMM: Chosen purification requires BASIS_PROJECTION")
372 :
373 62 : IF (.NOT. do_ot) CPABORT("ADMM: MO-based purification requires OT.")
374 : END IF
375 :
376 464 : IF (dft_control%admm_control%purification_method == do_admm_purify_none_dm .OR. &
377 : dft_control%admm_control%purification_method == do_admm_purify_mcweeny) THEN
378 14 : dft_control%do_admm_dm = .TRUE.
379 : ELSE
380 450 : dft_control%do_admm_mo = .TRUE.
381 : END IF
382 : END IF
383 :
384 : ! Set restricted to true, if both OT and ROKS are requested
385 : !MK in principle dft_control%restricted could be dropped completely like the
386 : !MK input key by using only dft_control%roks now
387 7444 : CALL section_vals_val_get(scf_section, "OT%_SECTION_PARAMETERS_", l_val=l_param)
388 7444 : dft_control%restricted = (dft_control%roks .AND. l_param)
389 :
390 7444 : CALL section_vals_val_get(dft_section, "CHARGE", i_val=dft_control%charge)
391 7444 : CALL section_vals_val_get(dft_section, "MULTIPLICITY", i_val=dft_control%multiplicity)
392 7444 : CALL section_vals_val_get(dft_section, "RELAX_MULTIPLICITY", r_val=dft_control%relax_multiplicity)
393 7444 : IF (dft_control%relax_multiplicity > 0.0_dp) THEN
394 8 : IF (.NOT. dft_control%uks) &
395 : CALL cp_abort(__LOCATION__, "The option RELAX_MULTIPLICITY is only valid for "// &
396 0 : "unrestricted Kohn-Sham (UKS) calculations")
397 : END IF
398 :
399 : !Read the HAIR PROBES input section if present
400 7444 : hairy_probes_section => section_vals_get_subs_vals(dft_section, "HAIRY_PROBES")
401 7444 : CALL section_vals_get(hairy_probes_section, n_repetition=nrep, explicit=is_present)
402 :
403 7444 : IF (is_present) THEN
404 4 : dft_control%hairy_probes = .TRUE.
405 20 : ALLOCATE (dft_control%probe(nrep))
406 4 : CALL read_hairy_probes_sections(dft_control, hairy_probes_section)
407 : END IF
408 :
409 : ! check for the presence of the low spin roks section
410 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "LOW_SPIN_ROKS")
411 7444 : CALL section_vals_get(tmp_section, explicit=dft_control%low_spin_roks)
412 :
413 7444 : dft_control%sic_method_id = sic_none
414 7444 : dft_control%sic_scaling_a = 1.0_dp
415 7444 : dft_control%sic_scaling_b = 1.0_dp
416 :
417 : ! DFT+U
418 7444 : dft_control%dft_plus_u = .FALSE.
419 7444 : CALL section_vals_val_get(dft_section, "PLUS_U_METHOD", i_val=method_id)
420 7444 : dft_control%plus_u_method_id = method_id
421 :
422 : ! Smearing in use
423 7444 : dft_control%smear = .FALSE.
424 :
425 : ! Surface dipole correction
426 7444 : dft_control%correct_surf_dip = .FALSE.
427 7444 : CALL section_vals_val_get(dft_section, "SURFACE_DIPOLE_CORRECTION", l_val=dft_control%correct_surf_dip)
428 7444 : CALL section_vals_val_get(dft_section, "SURF_DIP_DIR", i_val=dft_control%dir_surf_dip)
429 7444 : dft_control%pos_dir_surf_dip = -1.0_dp
430 7444 : CALL section_vals_val_get(dft_section, "SURF_DIP_POS", r_val=dft_control%pos_dir_surf_dip)
431 : ! another logical variable, surf_dip_correct_switch, is introduced for
432 : ! implementation of "SURF_DIP_SWITCH" [SGh]
433 7444 : dft_control%switch_surf_dip = .FALSE.
434 7444 : dft_control%surf_dip_correct_switch = dft_control%correct_surf_dip
435 7444 : CALL section_vals_val_get(dft_section, "SURF_DIP_SWITCH", l_val=dft_control%switch_surf_dip)
436 7444 : dft_control%correct_el_density_dip = .FALSE.
437 7444 : CALL section_vals_val_get(dft_section, "CORE_CORR_DIP", l_val=dft_control%correct_el_density_dip)
438 7444 : IF (dft_control%correct_el_density_dip) THEN
439 4 : IF (dft_control%correct_surf_dip) THEN
440 : ! Do nothing, move on
441 : ELSE
442 0 : dft_control%correct_el_density_dip = .FALSE.
443 0 : CPWARN("CORE_CORR_DIP keyword is activated only if SURFACE_DIPOLE_CORRECTION is TRUE")
444 : END IF
445 : END IF
446 :
447 : CALL section_vals_val_get(dft_section, "BASIS_SET_FILE_NAME", &
448 7444 : c_val=basis_set_file_name)
449 : CALL section_vals_val_get(dft_section, "POTENTIAL_FILE_NAME", &
450 7444 : c_val=potential_file_name)
451 :
452 : ! Read the input section
453 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "sic")
454 : CALL section_vals_val_get(tmp_section, "SIC_METHOD", &
455 7444 : i_val=dft_control%sic_method_id)
456 : CALL section_vals_val_get(tmp_section, "ORBITAL_SET", &
457 7444 : i_val=dft_control%sic_list_id)
458 : CALL section_vals_val_get(tmp_section, "SIC_SCALING_A", &
459 7444 : r_val=dft_control%sic_scaling_a)
460 : CALL section_vals_val_get(tmp_section, "SIC_SCALING_B", &
461 7444 : r_val=dft_control%sic_scaling_b)
462 :
463 7444 : do_rtp = .FALSE.
464 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "REAL_TIME_PROPAGATION")
465 7444 : CALL section_vals_get(tmp_section, explicit=is_present)
466 7444 : IF (is_present) THEN
467 248 : CALL read_rtp_section(dft_control, tmp_section)
468 248 : do_rtp = .TRUE.
469 : END IF
470 :
471 : ! Read the input section
472 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "XAS")
473 7444 : CALL section_vals_get(tmp_section, explicit=dft_control%do_xas_calculation)
474 7444 : IF (dft_control%do_xas_calculation) THEN
475 : ! Override with section parameter
476 : CALL section_vals_val_get(tmp_section, "_SECTION_PARAMETERS_", &
477 42 : l_val=dft_control%do_xas_calculation)
478 : END IF
479 :
480 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "XAS_TDP")
481 7444 : CALL section_vals_get(tmp_section, explicit=dft_control%do_xas_tdp_calculation)
482 7444 : IF (dft_control%do_xas_tdp_calculation) THEN
483 : ! Override with section parameter
484 : CALL section_vals_val_get(tmp_section, "_SECTION_PARAMETERS_", &
485 50 : l_val=dft_control%do_xas_tdp_calculation)
486 : END IF
487 :
488 : ! Read the finite field input section
489 7444 : dft_control%apply_efield = .FALSE.
490 7444 : dft_control%apply_efield_field = .FALSE. !this is for RTP
491 7444 : dft_control%apply_vector_potential = .FALSE. !this is for RTP
492 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "EFIELD")
493 7444 : CALL section_vals_get(tmp_section, n_repetition=nrep, explicit=is_present)
494 7444 : IF (is_present) THEN
495 1048 : ALLOCATE (dft_control%efield_fields(nrep))
496 262 : CALL read_efield_sections(dft_control, tmp_section)
497 262 : IF (do_rtp) THEN
498 22 : IF (.NOT. dft_control%rtp_control%velocity_gauge) THEN
499 14 : dft_control%apply_efield_field = .TRUE.
500 : ELSE
501 8 : dft_control%apply_vector_potential = .TRUE.
502 : ! Use this input value of vector potential to (re)start RTP
503 32 : dft_control%rtp_control%vec_pot = dft_control%efield_fields(1)%efield%vec_pot_initial
504 : END IF
505 : ELSE
506 240 : dft_control%apply_efield = .TRUE.
507 240 : CPASSERT(nrep == 1)
508 : END IF
509 : END IF
510 :
511 : ! Now, can try to guess polarisation in rtp
512 7444 : IF (do_rtp) THEN
513 : ! tmp_section => section_vals_get_subs_vals(dft_section, "REAL_TIME_PROPAGATION%PRINT%POLARIZABILITY")
514 : ! CALL section_vals_get(tmp_section, explicit=is_present)
515 : local_moment_possible = (dft_control%rtp_control%rtp_method == rtp_method_bse) .OR. &
516 248 : ((.NOT. dft_control%rtp_control%periodic) .AND. dft_control%rtp_control%linear_scaling)
517 30 : IF (local_moment_possible .AND. (.NOT. ASSOCIATED(dft_control%rtp_control%print_pol_elements))) THEN
518 30 : tmp_section => section_vals_get_subs_vals(dft_section, "REAL_TIME_PROPAGATION")
519 : CALL guess_pol_elements(dft_control, &
520 30 : dft_control%rtp_control%print_pol_elements)
521 : END IF
522 : END IF
523 :
524 : ! Read the finite field input section for periodic fields
525 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "PERIODIC_EFIELD")
526 7444 : CALL section_vals_get(tmp_section, explicit=dft_control%apply_period_efield)
527 7444 : IF (dft_control%apply_period_efield) THEN
528 532 : ALLOCATE (dft_control%period_efield)
529 76 : CALL section_vals_val_get(tmp_section, "POLARISATION", r_vals=pol)
530 532 : dft_control%period_efield%polarisation(1:3) = pol(1:3)
531 76 : CALL section_vals_val_get(tmp_section, "D_FILTER", r_vals=pol)
532 532 : dft_control%period_efield%d_filter(1:3) = pol(1:3)
533 : CALL section_vals_val_get(tmp_section, "INTENSITY", &
534 76 : r_val=dft_control%period_efield%strength)
535 76 : dft_control%period_efield%displacement_field = .FALSE.
536 : CALL section_vals_val_get(tmp_section, "DISPLACEMENT_FIELD", &
537 76 : l_val=dft_control%period_efield%displacement_field)
538 :
539 76 : CALL section_vals_val_get(tmp_section, "INTENSITY_LIST", r_vals=pol)
540 :
541 76 : CALL section_vals_val_get(tmp_section, "INTENSITIES_FILE_NAME", c_val=intensities_file_name)
542 :
543 76 : IF (SIZE(pol) > 1 .OR. pol(1) /= 0.0_dp) THEN
544 : ! if INTENSITY_LIST is present, INTENSITY and INTENSITIES_FILE_NAME must not be present
545 2 : IF (dft_control%period_efield%strength /= 0.0_dp .OR. intensities_file_name /= "") THEN
546 : CALL cp_abort(__LOCATION__, "[PERIODIC FIELD] Only one of INTENSITY, INTENSITY_LIST "// &
547 0 : "or INTENSITIES_FILE_NAME can be specified.")
548 : END IF
549 :
550 6 : ALLOCATE (dft_control%period_efield%strength_list(SIZE(pol)))
551 50 : dft_control%period_efield%strength_list(1:SIZE(pol)) = pol(1:SIZE(pol))
552 : END IF
553 :
554 76 : IF (intensities_file_name /= "") THEN
555 : ! if INTENSITIES_FILE_NAME is present, INTENSITY must not be present
556 2 : IF (dft_control%period_efield%strength /= 0.0_dp) THEN
557 : CALL cp_abort(__LOCATION__, "[PERIODIC FIELD] Only one of INTENSITY, INTENSITY_LIST "// &
558 0 : "or INTENSITIES_FILE_NAME can be specified.")
559 : END IF
560 :
561 2 : CALL parser_create(parser, intensities_file_name)
562 :
563 2 : nrep = 0
564 24 : DO WHILE (.TRUE.)
565 26 : CALL parser_read_line(parser, 1, at_end)
566 26 : IF (at_end) EXIT
567 24 : nrep = nrep + 1
568 : END DO
569 :
570 2 : IF (nrep == 0) THEN
571 0 : CPABORT("[PERIODIC FIELD] No intensities found in INTENSITIES_FILE_NAME")
572 : END IF
573 :
574 6 : ALLOCATE (dft_control%period_efield%strength_list(nrep))
575 :
576 2 : CALL parser_reset(parser)
577 26 : DO irep = 1, nrep
578 24 : CALL parser_read_line(parser, 1)
579 26 : READ (parser%input_line, *) dft_control%period_efield%strength_list(irep)
580 : END DO
581 :
582 4 : CALL parser_release(parser)
583 : END IF
584 :
585 : CALL section_vals_val_get(tmp_section, "START_FRAME", &
586 76 : i_val=dft_control%period_efield%start_frame)
587 : CALL section_vals_val_get(tmp_section, "END_FRAME", &
588 76 : i_val=dft_control%period_efield%end_frame)
589 :
590 76 : IF (dft_control%period_efield%end_frame /= -1) THEN
591 : ! check if valid bounds are given
592 : ! if an end frame is given, the number of active frames must be a
593 : ! multiple of the number of intensities
594 4 : IF (dft_control%period_efield%start_frame > dft_control%period_efield%end_frame) THEN
595 0 : CPABORT("[PERIODIC FIELD] START_FRAME > END_FRAME")
596 4 : ELSE IF (dft_control%period_efield%start_frame < 1) THEN
597 0 : CPABORT("[PERIODIC FIELD] START_FRAME < 1")
598 4 : ELSE IF (MOD(dft_control%period_efield%end_frame - &
599 : dft_control%period_efield%start_frame + 1, SIZE(pol)) /= 0) THEN
600 : CALL cp_abort(__LOCATION__, &
601 0 : "[PERIODIC FIELD] Number of active frames must be a multiple of the number of intensities")
602 : END IF
603 : END IF
604 :
605 : ! periodic fields don't work with RTP
606 76 : CPASSERT(.NOT. do_rtp)
607 76 : IF (dft_control%period_efield%displacement_field) THEN
608 16 : CALL cite_reference(Stengel2009)
609 : ELSE
610 60 : CALL cite_reference(Souza2002)
611 60 : CALL cite_reference(Umari2002)
612 : END IF
613 : END IF
614 :
615 : ! Read the external potential input section
616 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_POTENTIAL")
617 7444 : CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_potential)
618 7444 : IF (dft_control%apply_external_potential) THEN
619 16 : CALL expot_control_create(dft_control%expot_control)
620 : CALL section_vals_val_get(tmp_section, "READ_FROM_CUBE", &
621 16 : l_val=dft_control%expot_control%read_from_cube)
622 : CALL section_vals_val_get(tmp_section, "STATIC", &
623 16 : l_val=dft_control%expot_control%static)
624 : CALL section_vals_val_get(tmp_section, "SCALING_FACTOR", &
625 16 : r_val=dft_control%expot_control%scaling_factor)
626 : ! External potential using Maxwell equation
627 16 : maxwell_section => section_vals_get_subs_vals(tmp_section, "MAXWELL")
628 16 : CALL section_vals_get(maxwell_section, explicit=is_present)
629 16 : IF (is_present) THEN
630 0 : dft_control%expot_control%maxwell_solver = .TRUE.
631 0 : CALL maxwell_control_create(dft_control%maxwell_control)
632 : ! read the input values from Maxwell section
633 : CALL section_vals_val_get(maxwell_section, "TEST_REAL", &
634 0 : r_val=dft_control%maxwell_control%real_test)
635 : CALL section_vals_val_get(maxwell_section, "TEST_INTEGER", &
636 0 : i_val=dft_control%maxwell_control%int_test)
637 : CALL section_vals_val_get(maxwell_section, "TEST_LOGICAL", &
638 0 : l_val=dft_control%maxwell_control%log_test)
639 : ELSE
640 16 : dft_control%expot_control%maxwell_solver = .FALSE.
641 : END IF
642 : END IF
643 :
644 : ! Read the SCCS input section if present
645 7444 : sccs_section => section_vals_get_subs_vals(dft_section, "SCCS")
646 7444 : CALL section_vals_get(sccs_section, explicit=is_present)
647 7444 : IF (is_present) THEN
648 : ! Check section parameter if SCCS is activated
649 : CALL section_vals_val_get(sccs_section, "_SECTION_PARAMETERS_", &
650 10 : l_val=dft_control%do_sccs)
651 10 : IF (dft_control%do_sccs) THEN
652 10 : ALLOCATE (dft_control%sccs_control)
653 : CALL section_vals_val_get(sccs_section, "RELATIVE_PERMITTIVITY", &
654 10 : r_val=dft_control%sccs_control%epsilon_solvent)
655 : CALL section_vals_val_get(sccs_section, "ALPHA", &
656 10 : r_val=dft_control%sccs_control%alpha_solvent)
657 : CALL section_vals_val_get(sccs_section, "BETA", &
658 10 : r_val=dft_control%sccs_control%beta_solvent)
659 : CALL section_vals_val_get(sccs_section, "DELTA_RHO", &
660 10 : r_val=dft_control%sccs_control%delta_rho)
661 : CALL section_vals_val_get(sccs_section, "DERIVATIVE_METHOD", &
662 10 : i_val=dft_control%sccs_control%derivative_method)
663 : CALL section_vals_val_get(sccs_section, "METHOD", &
664 10 : i_val=dft_control%sccs_control%method_id)
665 : CALL section_vals_val_get(sccs_section, "EPS_SCCS", &
666 10 : r_val=dft_control%sccs_control%eps_sccs)
667 : CALL section_vals_val_get(sccs_section, "EPS_SCF", &
668 10 : r_val=dft_control%sccs_control%eps_scf)
669 : CALL section_vals_val_get(sccs_section, "GAMMA", &
670 10 : r_val=dft_control%sccs_control%gamma_solvent)
671 : CALL section_vals_val_get(sccs_section, "MAX_ITER", &
672 10 : i_val=dft_control%sccs_control%max_iter)
673 : CALL section_vals_val_get(sccs_section, "MIXING", &
674 10 : r_val=dft_control%sccs_control%mixing)
675 18 : SELECT CASE (dft_control%sccs_control%method_id)
676 : CASE (sccs_andreussi)
677 8 : tmp_section => section_vals_get_subs_vals(sccs_section, "ANDREUSSI")
678 : CALL section_vals_val_get(tmp_section, "RHO_MAX", &
679 8 : r_val=dft_control%sccs_control%rho_max)
680 : CALL section_vals_val_get(tmp_section, "RHO_MIN", &
681 8 : r_val=dft_control%sccs_control%rho_min)
682 8 : IF (dft_control%sccs_control%rho_max < dft_control%sccs_control%rho_min) THEN
683 : CALL cp_abort(__LOCATION__, &
684 : "The SCCS parameter RHO_MAX is smaller than RHO_MIN. "// &
685 0 : "Please, check your input!")
686 : END IF
687 8 : CALL cite_reference(Andreussi2012)
688 : CASE (sccs_fattebert_gygi)
689 2 : tmp_section => section_vals_get_subs_vals(sccs_section, "FATTEBERT-GYGI")
690 : CALL section_vals_val_get(tmp_section, "BETA", &
691 2 : r_val=dft_control%sccs_control%beta)
692 2 : IF (dft_control%sccs_control%beta < 0.5_dp) THEN
693 : CALL cp_abort(__LOCATION__, &
694 : "A value smaller than 0.5 for the SCCS parameter beta "// &
695 0 : "causes numerical problems. Please, check your input!")
696 : END IF
697 : CALL section_vals_val_get(tmp_section, "RHO_ZERO", &
698 2 : r_val=dft_control%sccs_control%rho_zero)
699 2 : CALL cite_reference(Fattebert2002)
700 : CASE DEFAULT
701 10 : CPABORT("Invalid SCCS model specified. Please, check your input!")
702 : END SELECT
703 10 : CALL cite_reference(Yin2017)
704 : END IF
705 : END IF
706 :
707 : ! ZMP added input sections
708 : ! Read the external density input section
709 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_DENSITY")
710 7444 : CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_density)
711 :
712 : ! Read the external vxc input section
713 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_VXC")
714 7444 : CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_vxc)
715 :
716 : ! SMEAGOL interface
717 7444 : tmp_section => section_vals_get_subs_vals(dft_section, "SMEAGOL")
718 7444 : CALL read_smeagol_control(dft_control%smeagol_control, tmp_section)
719 :
720 22332 : END SUBROUTINE read_dft_control
721 :
722 : ! **************************************************************************************************
723 : !> \brief Reads the input and stores in the rixs_control_type
724 : !> \param rixs_control ...
725 : !> \param rixs_section ...
726 : !> \param qs_control ...
727 : ! **************************************************************************************************
728 28 : SUBROUTINE read_rixs_control(rixs_control, rixs_section, qs_control)
729 : TYPE(rixs_control_type), POINTER :: rixs_control
730 : TYPE(section_vals_type), POINTER :: rixs_section
731 : TYPE(qs_control_type), POINTER :: qs_control
732 :
733 : TYPE(section_vals_type), POINTER :: td_section, xas_section
734 :
735 28 : td_section => section_vals_get_subs_vals(rixs_section, "TDDFPT")
736 28 : CALL read_tddfpt2_control(rixs_control%tddfpt2_control, td_section, qs_control)
737 :
738 28 : xas_section => section_vals_get_subs_vals(rixs_section, "XAS_TDP")
739 28 : CALL read_xas_tdp_control(rixs_control%xas_tdp_control, xas_section)
740 :
741 28 : END SUBROUTINE read_rixs_control
742 :
743 : ! **************************************************************************************************
744 : !> \brief ...
745 : !> \param qs_control ...
746 : !> \param dft_section ...
747 : ! **************************************************************************************************
748 7444 : SUBROUTINE read_mgrid_section(qs_control, dft_section)
749 :
750 : TYPE(qs_control_type), INTENT(INOUT) :: qs_control
751 : TYPE(section_vals_type), POINTER :: dft_section
752 :
753 : CHARACTER(len=*), PARAMETER :: routineN = 'read_mgrid_section'
754 :
755 : INTEGER :: handle, igrid_level, ngrid_level
756 : LOGICAL :: explicit, multigrid_set
757 : REAL(dp) :: cutoff
758 7444 : REAL(dp), DIMENSION(:), POINTER :: cutofflist
759 : TYPE(section_vals_type), POINTER :: mgrid_section
760 :
761 7444 : CALL timeset(routineN, handle)
762 :
763 7444 : NULLIFY (mgrid_section, cutofflist)
764 7444 : mgrid_section => section_vals_get_subs_vals(dft_section, "MGRID")
765 :
766 7444 : CALL section_vals_val_get(mgrid_section, "NGRIDS", i_val=ngrid_level)
767 7444 : CALL section_vals_val_get(mgrid_section, "MULTIGRID_SET", l_val=multigrid_set)
768 7444 : CALL section_vals_val_get(mgrid_section, "CUTOFF", r_val=cutoff)
769 7444 : CALL section_vals_val_get(mgrid_section, "PROGRESSION_FACTOR", r_val=qs_control%progression_factor)
770 7444 : CALL section_vals_val_get(mgrid_section, "COMMENSURATE", l_val=qs_control%commensurate_mgrids)
771 7444 : CALL section_vals_val_get(mgrid_section, "REALSPACE", l_val=qs_control%realspace_mgrids)
772 7444 : CALL section_vals_val_get(mgrid_section, "REL_CUTOFF", r_val=qs_control%relative_cutoff)
773 : CALL section_vals_val_get(mgrid_section, "SKIP_LOAD_BALANCE_DISTRIBUTED", &
774 7444 : l_val=qs_control%skip_load_balance_distributed)
775 :
776 : ! For SE and DFTB possibly override with new defaults
777 7444 : IF (qs_control%semi_empirical .OR. qs_control%dftb .OR. qs_control%xtb) THEN
778 2164 : ngrid_level = 1
779 2164 : multigrid_set = .FALSE.
780 : ! Override default cutoff value unless user specified an explicit argument..
781 2164 : CALL section_vals_val_get(mgrid_section, "CUTOFF", explicit=explicit, r_val=cutoff)
782 2164 : IF (.NOT. explicit) cutoff = 1.0_dp
783 : END IF
784 :
785 22332 : ALLOCATE (qs_control%e_cutoff(ngrid_level))
786 7444 : qs_control%cutoff = cutoff
787 :
788 7444 : IF (multigrid_set) THEN
789 : ! Read the values from input
790 4 : IF (qs_control%commensurate_mgrids) THEN
791 0 : CPABORT("Do not specify cutoffs for the commensurate grids (NYI)")
792 : END IF
793 :
794 4 : CALL section_vals_val_get(mgrid_section, "MULTIGRID_CUTOFF", r_vals=cutofflist)
795 4 : IF (ASSOCIATED(cutofflist)) THEN
796 4 : IF (SIZE(cutofflist, 1) /= ngrid_level) THEN
797 0 : CPABORT("Number of multi-grids requested and number of cutoff values do not match")
798 : END IF
799 20 : DO igrid_level = 1, ngrid_level
800 20 : qs_control%e_cutoff(igrid_level) = cutofflist(igrid_level)
801 : END DO
802 : END IF
803 : ! set cutoff to smallest value in multgrid available with >= cutoff
804 20 : DO igrid_level = ngrid_level, 1, -1
805 16 : IF (qs_control%cutoff <= qs_control%e_cutoff(igrid_level)) THEN
806 0 : qs_control%cutoff = qs_control%e_cutoff(igrid_level)
807 0 : EXIT
808 : END IF
809 : ! set largest grid value to cutoff
810 20 : IF (igrid_level == 1) THEN
811 4 : qs_control%cutoff = qs_control%e_cutoff(1)
812 : END IF
813 : END DO
814 : ELSE
815 7440 : IF (qs_control%commensurate_mgrids) qs_control%progression_factor = 4.0_dp
816 7440 : qs_control%e_cutoff(1) = qs_control%cutoff
817 23120 : DO igrid_level = 2, ngrid_level
818 : qs_control%e_cutoff(igrid_level) = qs_control%e_cutoff(igrid_level - 1)/ &
819 23120 : qs_control%progression_factor
820 : END DO
821 : END IF
822 : ! check that multigrids are ordered
823 23136 : DO igrid_level = 2, ngrid_level
824 23136 : IF (qs_control%e_cutoff(igrid_level) > qs_control%e_cutoff(igrid_level - 1)) THEN
825 0 : CPABORT("The cutoff values for the multi-grids are not ordered from large to small")
826 15692 : ELSE IF (qs_control%e_cutoff(igrid_level) == qs_control%e_cutoff(igrid_level - 1)) THEN
827 0 : CPABORT("The same cutoff value was specified for two multi-grids")
828 : END IF
829 : END DO
830 7444 : CALL timestop(handle)
831 14888 : END SUBROUTINE read_mgrid_section
832 :
833 : ! **************************************************************************************************
834 : !> \brief ...
835 : !> \param qs_control ...
836 : !> \param qs_section ...
837 : ! **************************************************************************************************
838 119104 : SUBROUTINE read_qs_section(qs_control, qs_section)
839 :
840 : TYPE(qs_control_type), INTENT(INOUT) :: qs_control
841 : TYPE(section_vals_type), POINTER :: qs_section
842 :
843 : CHARACTER(len=*), PARAMETER :: routineN = 'read_qs_section'
844 :
845 : CHARACTER(LEN=default_string_length) :: cval
846 : CHARACTER(LEN=default_string_length), &
847 7444 : DIMENSION(:), POINTER :: clist
848 : INTEGER :: handle, itmp, j, jj, k, n_rep, n_var, &
849 : ngauss, ngp, nrep
850 7444 : INTEGER, DIMENSION(:), POINTER :: tmplist
851 : LOGICAL :: explicit, was_present
852 : REAL(dp) :: tmp, tmpsqrt, value
853 7444 : REAL(dp), POINTER :: scal(:)
854 : TYPE(section_vals_type), POINTER :: cdft_control_section, ddapc_restraint_section, &
855 : dftb_parameter, dftb_section, eeq_section, genpot_section, lri_optbas_section, &
856 : mull_section, nonbonded_section, s2_restraint_section, se_section, xtb_parameter, &
857 : xtb_section, xtb_tblite
858 :
859 7444 : CALL timeset(routineN, handle)
860 :
861 7444 : was_present = .FALSE.
862 7444 : NULLIFY (mull_section, ddapc_restraint_section, s2_restraint_section, &
863 7444 : se_section, dftb_section, xtb_section, dftb_parameter, xtb_parameter, lri_optbas_section, &
864 7444 : cdft_control_section, genpot_section, eeq_section)
865 :
866 7444 : mull_section => section_vals_get_subs_vals(qs_section, "MULLIKEN_RESTRAINT")
867 7444 : ddapc_restraint_section => section_vals_get_subs_vals(qs_section, "DDAPC_RESTRAINT")
868 7444 : s2_restraint_section => section_vals_get_subs_vals(qs_section, "S2_RESTRAINT")
869 7444 : se_section => section_vals_get_subs_vals(qs_section, "SE")
870 7444 : dftb_section => section_vals_get_subs_vals(qs_section, "DFTB")
871 7444 : xtb_section => section_vals_get_subs_vals(qs_section, "xTB")
872 7444 : dftb_parameter => section_vals_get_subs_vals(dftb_section, "PARAMETER")
873 7444 : xtb_parameter => section_vals_get_subs_vals(xtb_section, "PARAMETER")
874 7444 : eeq_section => section_vals_get_subs_vals(xtb_section, "EEQ")
875 7444 : lri_optbas_section => section_vals_get_subs_vals(qs_section, "OPTIMIZE_LRI_BASIS")
876 7444 : cdft_control_section => section_vals_get_subs_vals(qs_section, "CDFT")
877 7444 : nonbonded_section => section_vals_get_subs_vals(xtb_section, "NONBONDED")
878 7444 : genpot_section => section_vals_get_subs_vals(nonbonded_section, "GENPOT")
879 7444 : xtb_tblite => section_vals_get_subs_vals(xtb_section, "TBLITE")
880 :
881 : ! Setup all defaults values and overwrite input parameters
882 : ! EPS_DEFAULT should set the target accuracy in the total energy (~per electron) or a closely related value
883 7444 : CALL section_vals_val_get(qs_section, "EPS_DEFAULT", r_val=value)
884 7444 : tmpsqrt = SQRT(value) ! a trick to work around a NAG 5.1 optimizer bug
885 :
886 : ! random choice ?
887 7444 : qs_control%eps_core_charge = value/100.0_dp
888 : ! correct if all Gaussians would have the same radius (overlap will be smaller than eps_pgf_orb**2).
889 : ! Can be significantly in error if not... requires fully new screening/pairlist procedures
890 7444 : qs_control%eps_pgf_orb = tmpsqrt
891 7444 : qs_control%eps_kg_orb = qs_control%eps_pgf_orb
892 : ! consistent since also a kind of overlap
893 7444 : qs_control%eps_ppnl = qs_control%eps_pgf_orb/100.0_dp
894 : ! accuracy is basically set by the overlap, this sets an empirical shift
895 7444 : qs_control%eps_ppl = 1.0E-2_dp
896 : !
897 7444 : qs_control%gapw_control%eps_cpc = value
898 : ! expexted error in the density
899 7444 : qs_control%eps_rho_gspace = value
900 7444 : qs_control%eps_rho_rspace = value
901 : ! error in the gradient, can be the sqrt of the error in the energy, ignored if map_consistent
902 7444 : qs_control%eps_gvg_rspace = tmpsqrt
903 : !
904 7444 : CALL section_vals_val_get(qs_section, "EPS_CORE_CHARGE", n_rep_val=n_rep)
905 7444 : IF (n_rep /= 0) THEN
906 0 : CALL section_vals_val_get(qs_section, "EPS_CORE_CHARGE", r_val=qs_control%eps_core_charge)
907 : END IF
908 7444 : CALL section_vals_val_get(qs_section, "EPS_GVG_RSPACE", n_rep_val=n_rep)
909 7444 : IF (n_rep /= 0) THEN
910 138 : CALL section_vals_val_get(qs_section, "EPS_GVG_RSPACE", r_val=qs_control%eps_gvg_rspace)
911 : END IF
912 7444 : CALL section_vals_val_get(qs_section, "EPS_PGF_ORB", n_rep_val=n_rep)
913 7444 : IF (n_rep /= 0) THEN
914 606 : CALL section_vals_val_get(qs_section, "EPS_PGF_ORB", r_val=qs_control%eps_pgf_orb)
915 : END IF
916 7444 : CALL section_vals_val_get(qs_section, "EPS_KG_ORB", n_rep_val=n_rep)
917 7444 : IF (n_rep /= 0) THEN
918 62 : CALL section_vals_val_get(qs_section, "EPS_KG_ORB", r_val=tmp)
919 62 : qs_control%eps_kg_orb = SQRT(tmp)
920 : END IF
921 7444 : CALL section_vals_val_get(qs_section, "EPS_PPL", n_rep_val=n_rep)
922 7444 : IF (n_rep /= 0) THEN
923 7444 : CALL section_vals_val_get(qs_section, "EPS_PPL", r_val=qs_control%eps_ppl)
924 : END IF
925 7444 : CALL section_vals_val_get(qs_section, "EPS_PPNL", n_rep_val=n_rep)
926 7444 : IF (n_rep /= 0) THEN
927 0 : CALL section_vals_val_get(qs_section, "EPS_PPNL", r_val=qs_control%eps_ppnl)
928 : END IF
929 7444 : CALL section_vals_val_get(qs_section, "EPS_RHO", n_rep_val=n_rep)
930 7444 : IF (n_rep /= 0) THEN
931 30 : CALL section_vals_val_get(qs_section, "EPS_RHO", r_val=qs_control%eps_rho_gspace)
932 30 : qs_control%eps_rho_rspace = qs_control%eps_rho_gspace
933 : END IF
934 7444 : CALL section_vals_val_get(qs_section, "EPS_RHO_RSPACE", n_rep_val=n_rep)
935 7444 : IF (n_rep /= 0) THEN
936 2 : CALL section_vals_val_get(qs_section, "EPS_RHO_RSPACE", r_val=qs_control%eps_rho_rspace)
937 : END IF
938 7444 : CALL section_vals_val_get(qs_section, "EPS_RHO_GSPACE", n_rep_val=n_rep)
939 7444 : IF (n_rep /= 0) THEN
940 2 : CALL section_vals_val_get(qs_section, "EPS_RHO_GSPACE", r_val=qs_control%eps_rho_gspace)
941 : END IF
942 7444 : CALL section_vals_val_get(qs_section, "EPS_FILTER_MATRIX", n_rep_val=n_rep)
943 7444 : IF (n_rep /= 0) THEN
944 7444 : CALL section_vals_val_get(qs_section, "EPS_FILTER_MATRIX", r_val=qs_control%eps_filter_matrix)
945 : END IF
946 7444 : CALL section_vals_val_get(qs_section, "EPS_CPC", n_rep_val=n_rep)
947 7444 : IF (n_rep /= 0) THEN
948 0 : CALL section_vals_val_get(qs_section, "EPS_CPC", r_val=qs_control%gapw_control%eps_cpc)
949 : END IF
950 :
951 7444 : CALL section_vals_val_get(qs_section, "EPSFIT", r_val=qs_control%gapw_control%eps_fit)
952 7444 : CALL section_vals_val_get(qs_section, "EPSISO", r_val=qs_control%gapw_control%eps_iso)
953 7444 : CALL section_vals_val_get(qs_section, "EPSSVD", r_val=qs_control%gapw_control%eps_svd)
954 7444 : CALL section_vals_val_get(qs_section, "EPSRHO0", r_val=qs_control%gapw_control%eps_Vrho0)
955 7444 : CALL section_vals_val_get(qs_section, "ALPHA0_HARD", r_val=qs_control%gapw_control%alpha0_hard)
956 7444 : qs_control%gapw_control%alpha0_hard_from_input = .FALSE.
957 7444 : IF (qs_control%gapw_control%alpha0_hard /= 0.0_dp) qs_control%gapw_control%alpha0_hard_from_input = .TRUE.
958 7444 : CALL section_vals_val_get(qs_section, "FORCE_PAW", l_val=qs_control%gapw_control%force_paw)
959 7444 : CALL section_vals_val_get(qs_section, "MAX_RAD_LOCAL", r_val=qs_control%gapw_control%max_rad_local)
960 :
961 7444 : CALL section_vals_val_get(qs_section, "MIN_PAIR_LIST_RADIUS", r_val=qs_control%pairlist_radius)
962 :
963 7444 : CALL section_vals_val_get(qs_section, "LS_SCF", l_val=qs_control%do_ls_scf)
964 7444 : CALL section_vals_val_get(qs_section, "ALMO_SCF", l_val=qs_control%do_almo_scf)
965 7444 : CALL section_vals_val_get(qs_section, "KG_METHOD", l_val=qs_control%do_kg)
966 :
967 : ! Logicals
968 7444 : CALL section_vals_val_get(qs_section, "REF_EMBED_SUBSYS", l_val=qs_control%ref_embed_subsys)
969 7444 : CALL section_vals_val_get(qs_section, "CLUSTER_EMBED_SUBSYS", l_val=qs_control%cluster_embed_subsys)
970 7444 : CALL section_vals_val_get(qs_section, "HIGH_LEVEL_EMBED_SUBSYS", l_val=qs_control%high_level_embed_subsys)
971 7444 : CALL section_vals_val_get(qs_section, "DFET_EMBEDDED", l_val=qs_control%dfet_embedded)
972 7444 : CALL section_vals_val_get(qs_section, "DMFET_EMBEDDED", l_val=qs_control%dmfet_embedded)
973 :
974 : ! Integers gapw
975 7444 : CALL section_vals_val_get(qs_section, "LMAXN1", i_val=qs_control%gapw_control%lmax_sphere)
976 7444 : CALL section_vals_val_get(qs_section, "LMAXN0", i_val=qs_control%gapw_control%lmax_rho0)
977 7444 : CALL section_vals_val_get(qs_section, "LADDN0", i_val=qs_control%gapw_control%ladd_rho0)
978 7444 : CALL section_vals_val_get(qs_section, "QUADRATURE", i_val=qs_control%gapw_control%quadrature)
979 : ! GAPW 1c basis
980 7444 : CALL section_vals_val_get(qs_section, "GAPW_1C_BASIS", i_val=qs_control%gapw_control%basis_1c)
981 7444 : IF (qs_control%gapw_control%basis_1c /= gapw_1c_orb) THEN
982 18 : qs_control%gapw_control%eps_svd = MAX(qs_control%gapw_control%eps_svd, 1.E-12_dp)
983 : END IF
984 :
985 : ! Integers grids
986 7444 : CALL section_vals_val_get(qs_section, "PW_GRID", i_val=itmp)
987 0 : SELECT CASE (itmp)
988 : CASE (do_pwgrid_spherical)
989 0 : qs_control%pw_grid_opt%spherical = .TRUE.
990 0 : qs_control%pw_grid_opt%fullspace = .FALSE.
991 : CASE (do_pwgrid_ns_fullspace)
992 7444 : qs_control%pw_grid_opt%spherical = .FALSE.
993 7444 : qs_control%pw_grid_opt%fullspace = .TRUE.
994 : CASE (do_pwgrid_ns_halfspace)
995 0 : qs_control%pw_grid_opt%spherical = .FALSE.
996 7444 : qs_control%pw_grid_opt%fullspace = .FALSE.
997 : END SELECT
998 :
999 : ! Method for PPL calculation
1000 7444 : CALL section_vals_val_get(qs_section, "CORE_PPL", i_val=itmp)
1001 7444 : qs_control%do_ppl_method = itmp
1002 :
1003 7444 : CALL section_vals_val_get(qs_section, "PW_GRID_LAYOUT", i_vals=tmplist)
1004 22332 : qs_control%pw_grid_opt%distribution_layout = tmplist
1005 7444 : CALL section_vals_val_get(qs_section, "PW_GRID_BLOCKED", i_val=qs_control%pw_grid_opt%blocked)
1006 :
1007 : !Integers extrapolation
1008 7444 : CALL section_vals_val_get(qs_section, "EXTRAPOLATION", i_val=qs_control%wf_interpolation_method_nr)
1009 7444 : CALL section_vals_val_get(qs_section, "EXTRAPOLATION_ORDER", i_val=qs_control%wf_extrapolation_order)
1010 :
1011 : !Method
1012 7444 : CALL section_vals_val_get(qs_section, "METHOD", i_val=qs_control%method_id)
1013 7444 : qs_control%gapw = .FALSE.
1014 7444 : qs_control%gapw_xc = .FALSE.
1015 7444 : qs_control%gpw = .FALSE.
1016 7444 : qs_control%pao = .FALSE.
1017 7444 : qs_control%dftb = .FALSE.
1018 7444 : qs_control%xtb = .FALSE.
1019 7444 : qs_control%semi_empirical = .FALSE.
1020 7444 : qs_control%ofgpw = .FALSE.
1021 7444 : qs_control%lrigpw = .FALSE.
1022 7444 : qs_control%rigpw = .FALSE.
1023 8316 : SELECT CASE (qs_control%method_id)
1024 : CASE (do_method_gapw)
1025 872 : CALL cite_reference(Lippert1999)
1026 872 : CALL cite_reference(Krack2000)
1027 872 : qs_control%gapw = .TRUE.
1028 : CASE (do_method_gapw_xc)
1029 124 : qs_control%gapw_xc = .TRUE.
1030 : CASE (do_method_gpw)
1031 4244 : CALL cite_reference(Lippert1997)
1032 4244 : CALL cite_reference(VandeVondele2005a)
1033 4244 : qs_control%gpw = .TRUE.
1034 : CASE (do_method_ofgpw)
1035 0 : qs_control%ofgpw = .TRUE.
1036 : CASE (do_method_lrigpw)
1037 40 : qs_control%lrigpw = .TRUE.
1038 : CASE (do_method_rigpw)
1039 0 : qs_control%rigpw = .TRUE.
1040 : CASE (do_method_dftb)
1041 222 : qs_control%dftb = .TRUE.
1042 222 : CALL cite_reference(Porezag1995)
1043 222 : CALL cite_reference(Seifert1996)
1044 : CASE (do_method_xtb)
1045 944 : qs_control%xtb = .TRUE.
1046 944 : CALL cite_reference(Grimme2017)
1047 944 : CALL cite_reference(Pracht2019)
1048 : CASE (do_method_mndo)
1049 52 : CALL cite_reference(Dewar1977)
1050 52 : qs_control%semi_empirical = .TRUE.
1051 : CASE (do_method_am1)
1052 112 : CALL cite_reference(Dewar1985)
1053 112 : qs_control%semi_empirical = .TRUE.
1054 : CASE (do_method_pm3)
1055 46 : CALL cite_reference(Stewart1989)
1056 46 : qs_control%semi_empirical = .TRUE.
1057 : CASE (do_method_pnnl)
1058 14 : CALL cite_reference(Schenter2008)
1059 14 : qs_control%semi_empirical = .TRUE.
1060 : CASE (do_method_pm6)
1061 754 : CALL cite_reference(Stewart2007)
1062 754 : qs_control%semi_empirical = .TRUE.
1063 : CASE (do_method_pm6fm)
1064 0 : CALL cite_reference(VanVoorhis2015)
1065 0 : qs_control%semi_empirical = .TRUE.
1066 : CASE (do_method_pdg)
1067 2 : CALL cite_reference(Repasky2002)
1068 2 : qs_control%semi_empirical = .TRUE.
1069 : CASE (do_method_rm1)
1070 2 : CALL cite_reference(Rocha2006)
1071 2 : qs_control%semi_empirical = .TRUE.
1072 : CASE (do_method_mndod)
1073 16 : CALL cite_reference(Dewar1977)
1074 16 : CALL cite_reference(Thiel1992)
1075 7460 : qs_control%semi_empirical = .TRUE.
1076 : END SELECT
1077 :
1078 7444 : CALL section_vals_get(mull_section, explicit=qs_control%mulliken_restraint)
1079 :
1080 7444 : IF (qs_control%mulliken_restraint) THEN
1081 2 : CALL section_vals_val_get(mull_section, "STRENGTH", r_val=qs_control%mulliken_restraint_control%strength)
1082 2 : CALL section_vals_val_get(mull_section, "TARGET", r_val=qs_control%mulliken_restraint_control%target)
1083 2 : CALL section_vals_val_get(mull_section, "ATOMS", n_rep_val=n_rep)
1084 2 : jj = 0
1085 4 : DO k = 1, n_rep
1086 2 : CALL section_vals_val_get(mull_section, "ATOMS", i_rep_val=k, i_vals=tmplist)
1087 4 : jj = jj + SIZE(tmplist)
1088 : END DO
1089 2 : qs_control%mulliken_restraint_control%natoms = jj
1090 2 : IF (qs_control%mulliken_restraint_control%natoms < 1) &
1091 0 : CPABORT("Need at least 1 atom to use mulliken constraints")
1092 6 : ALLOCATE (qs_control%mulliken_restraint_control%atoms(qs_control%mulliken_restraint_control%natoms))
1093 2 : jj = 0
1094 6 : DO k = 1, n_rep
1095 2 : CALL section_vals_val_get(mull_section, "ATOMS", i_rep_val=k, i_vals=tmplist)
1096 6 : DO j = 1, SIZE(tmplist)
1097 2 : jj = jj + 1
1098 4 : qs_control%mulliken_restraint_control%atoms(jj) = tmplist(j)
1099 : END DO
1100 : END DO
1101 : END IF
1102 7444 : CALL section_vals_get(ddapc_restraint_section, n_repetition=nrep, explicit=qs_control%ddapc_restraint)
1103 7444 : IF (qs_control%ddapc_restraint) THEN
1104 60 : ALLOCATE (qs_control%ddapc_restraint_control(nrep))
1105 14 : CALL read_ddapc_section(qs_control, qs_section=qs_section)
1106 14 : qs_control%ddapc_restraint_is_spin = .FALSE.
1107 14 : qs_control%ddapc_explicit_potential = .FALSE.
1108 : END IF
1109 :
1110 7444 : CALL section_vals_get(s2_restraint_section, explicit=qs_control%s2_restraint)
1111 7444 : IF (qs_control%s2_restraint) THEN
1112 : CALL section_vals_val_get(s2_restraint_section, "STRENGTH", &
1113 0 : r_val=qs_control%s2_restraint_control%strength)
1114 : CALL section_vals_val_get(s2_restraint_section, "TARGET", &
1115 0 : r_val=qs_control%s2_restraint_control%target)
1116 : CALL section_vals_val_get(s2_restraint_section, "FUNCTIONAL_FORM", &
1117 0 : i_val=qs_control%s2_restraint_control%functional_form)
1118 : END IF
1119 :
1120 7444 : CALL section_vals_get(cdft_control_section, explicit=qs_control%cdft)
1121 7444 : IF (qs_control%cdft) THEN
1122 264 : CALL read_cdft_control_section(qs_control, cdft_control_section)
1123 : END IF
1124 :
1125 : ! Semi-empirical code
1126 7444 : IF (qs_control%semi_empirical) THEN
1127 : CALL section_vals_val_get(se_section, "ORTHOGONAL_BASIS", &
1128 998 : l_val=qs_control%se_control%orthogonal_basis)
1129 : CALL section_vals_val_get(se_section, "DELTA", &
1130 998 : r_val=qs_control%se_control%delta)
1131 : CALL section_vals_val_get(se_section, "ANALYTICAL_GRADIENTS", &
1132 998 : l_val=qs_control%se_control%analytical_gradients)
1133 : CALL section_vals_val_get(se_section, "FORCE_KDSO-D_EXCHANGE", &
1134 998 : l_val=qs_control%se_control%force_kdsod_EX)
1135 : ! Integral Screening
1136 : CALL section_vals_val_get(se_section, "INTEGRAL_SCREENING", &
1137 998 : i_val=qs_control%se_control%integral_screening)
1138 998 : IF (qs_control%method_id == do_method_pnnl) THEN
1139 14 : IF (qs_control%se_control%integral_screening /= do_se_IS_slater) &
1140 : CALL cp_warn(__LOCATION__, &
1141 : "PNNL semi-empirical parameterization supports only the Slater type "// &
1142 0 : "integral scheme. Revert to Slater and continue the calculation.")
1143 14 : qs_control%se_control%integral_screening = do_se_IS_slater
1144 : END IF
1145 : ! Global Arrays variable
1146 : CALL section_vals_val_get(se_section, "GA%NCELLS", &
1147 998 : i_val=qs_control%se_control%ga_ncells)
1148 : ! Long-Range correction
1149 : CALL section_vals_val_get(se_section, "LR_CORRECTION%CUTOFF", &
1150 998 : r_val=qs_control%se_control%cutoff_lrc)
1151 998 : qs_control%se_control%taper_lrc = qs_control%se_control%cutoff_lrc
1152 : CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_TAPER", &
1153 998 : explicit=explicit)
1154 998 : IF (explicit) THEN
1155 : CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_TAPER", &
1156 0 : r_val=qs_control%se_control%taper_lrc)
1157 : END IF
1158 : CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_RANGE", &
1159 998 : r_val=qs_control%se_control%range_lrc)
1160 : ! Coulomb
1161 : CALL section_vals_val_get(se_section, "COULOMB%CUTOFF", &
1162 998 : r_val=qs_control%se_control%cutoff_cou)
1163 998 : qs_control%se_control%taper_cou = qs_control%se_control%cutoff_cou
1164 : CALL section_vals_val_get(se_section, "COULOMB%RC_TAPER", &
1165 998 : explicit=explicit)
1166 998 : IF (explicit) THEN
1167 : CALL section_vals_val_get(se_section, "COULOMB%RC_TAPER", &
1168 0 : r_val=qs_control%se_control%taper_cou)
1169 : END IF
1170 : CALL section_vals_val_get(se_section, "COULOMB%RC_RANGE", &
1171 998 : r_val=qs_control%se_control%range_cou)
1172 : ! Exchange
1173 : CALL section_vals_val_get(se_section, "EXCHANGE%CUTOFF", &
1174 998 : r_val=qs_control%se_control%cutoff_exc)
1175 998 : qs_control%se_control%taper_exc = qs_control%se_control%cutoff_exc
1176 : CALL section_vals_val_get(se_section, "EXCHANGE%RC_TAPER", &
1177 998 : explicit=explicit)
1178 998 : IF (explicit) THEN
1179 : CALL section_vals_val_get(se_section, "EXCHANGE%RC_TAPER", &
1180 38 : r_val=qs_control%se_control%taper_exc)
1181 : END IF
1182 : CALL section_vals_val_get(se_section, "EXCHANGE%RC_RANGE", &
1183 998 : r_val=qs_control%se_control%range_exc)
1184 : ! Screening (only if the integral scheme is of dumped type)
1185 998 : IF (qs_control%se_control%integral_screening == do_se_IS_kdso_d) THEN
1186 : CALL section_vals_val_get(se_section, "SCREENING%RC_TAPER", &
1187 14 : r_val=qs_control%se_control%taper_scr)
1188 : CALL section_vals_val_get(se_section, "SCREENING%RC_RANGE", &
1189 14 : r_val=qs_control%se_control%range_scr)
1190 : END IF
1191 : ! Periodic Type Calculation
1192 : CALL section_vals_val_get(se_section, "PERIODIC", &
1193 998 : i_val=qs_control%se_control%periodic_type)
1194 1964 : SELECT CASE (qs_control%se_control%periodic_type)
1195 : CASE (do_se_lr_none)
1196 966 : qs_control%se_control%do_ewald = .FALSE.
1197 966 : qs_control%se_control%do_ewald_r3 = .FALSE.
1198 966 : qs_control%se_control%do_ewald_gks = .FALSE.
1199 : CASE (do_se_lr_ewald)
1200 30 : qs_control%se_control%do_ewald = .TRUE.
1201 30 : qs_control%se_control%do_ewald_r3 = .FALSE.
1202 30 : qs_control%se_control%do_ewald_gks = .FALSE.
1203 : CASE (do_se_lr_ewald_gks)
1204 2 : qs_control%se_control%do_ewald = .FALSE.
1205 2 : qs_control%se_control%do_ewald_r3 = .FALSE.
1206 2 : qs_control%se_control%do_ewald_gks = .TRUE.
1207 2 : IF (qs_control%method_id /= do_method_pnnl) &
1208 : CALL cp_abort(__LOCATION__, &
1209 : "A periodic semi-empirical calculation was requested with a long-range "// &
1210 : "summation on the single integral evaluation. This scheme is supported "// &
1211 0 : "only by the PNNL parameterization.")
1212 : CASE (do_se_lr_ewald_r3)
1213 0 : qs_control%se_control%do_ewald = .TRUE.
1214 0 : qs_control%se_control%do_ewald_r3 = .TRUE.
1215 0 : qs_control%se_control%do_ewald_gks = .FALSE.
1216 0 : IF (qs_control%se_control%integral_screening /= do_se_IS_kdso) &
1217 : CALL cp_abort(__LOCATION__, &
1218 : "A periodic semi-empirical calculation was requested with a long-range "// &
1219 : "summation for the slowly convergent part 1/R^3, which is not congruent "// &
1220 : "with the integral screening chosen. The only integral screening supported "// &
1221 998 : "by this periodic type calculation is the standard Klopman-Dewar-Sabelli-Ohno.")
1222 : END SELECT
1223 :
1224 : ! dispersion pair potentials
1225 : CALL section_vals_val_get(se_section, "DISPERSION", &
1226 998 : l_val=qs_control%se_control%dispersion)
1227 : CALL section_vals_val_get(se_section, "DISPERSION_RADIUS", &
1228 998 : r_val=qs_control%se_control%rcdisp)
1229 : CALL section_vals_val_get(se_section, "COORDINATION_CUTOFF", &
1230 998 : r_val=qs_control%se_control%epscn)
1231 998 : CALL section_vals_val_get(se_section, "D3_SCALING", r_vals=scal)
1232 998 : qs_control%se_control%sd3(1) = scal(1)
1233 998 : qs_control%se_control%sd3(2) = scal(2)
1234 998 : qs_control%se_control%sd3(3) = scal(3)
1235 : CALL section_vals_val_get(se_section, "DISPERSION_PARAMETER_FILE", &
1236 998 : c_val=qs_control%se_control%dispersion_parameter_file)
1237 :
1238 : ! Stop the execution for non-implemented features
1239 998 : IF (qs_control%se_control%periodic_type == do_se_lr_ewald_r3) THEN
1240 0 : CPABORT("EWALD_R3 not implemented yet!")
1241 : END IF
1242 :
1243 : IF (qs_control%method_id == do_method_mndo .OR. &
1244 : qs_control%method_id == do_method_am1 .OR. &
1245 : qs_control%method_id == do_method_mndod .OR. &
1246 : qs_control%method_id == do_method_pdg .OR. &
1247 : qs_control%method_id == do_method_pm3 .OR. &
1248 : qs_control%method_id == do_method_pm6 .OR. &
1249 : qs_control%method_id == do_method_pm6fm .OR. &
1250 998 : qs_control%method_id == do_method_pnnl .OR. &
1251 : qs_control%method_id == do_method_rm1) THEN
1252 998 : qs_control%se_control%orthogonal_basis = .TRUE.
1253 : END IF
1254 : END IF
1255 :
1256 : ! DFTB code
1257 7444 : IF (qs_control%dftb) THEN
1258 : CALL section_vals_val_get(dftb_section, "ORTHOGONAL_BASIS", &
1259 222 : l_val=qs_control%dftb_control%orthogonal_basis)
1260 : CALL section_vals_val_get(dftb_section, "SELF_CONSISTENT", &
1261 222 : l_val=qs_control%dftb_control%self_consistent)
1262 : CALL section_vals_val_get(dftb_section, "DISPERSION", &
1263 222 : l_val=qs_control%dftb_control%dispersion)
1264 : CALL section_vals_val_get(dftb_section, "DIAGONAL_DFTB3", &
1265 222 : l_val=qs_control%dftb_control%dftb3_diagonal)
1266 : CALL section_vals_val_get(dftb_section, "HB_SR_GAMMA", &
1267 222 : l_val=qs_control%dftb_control%hb_sr_damp)
1268 : CALL section_vals_val_get(dftb_section, "EPS_DISP", &
1269 222 : r_val=qs_control%dftb_control%eps_disp)
1270 222 : CALL section_vals_val_get(dftb_section, "DO_EWALD", explicit=explicit)
1271 222 : IF (explicit) THEN
1272 : CALL section_vals_val_get(dftb_section, "DO_EWALD", &
1273 166 : l_val=qs_control%dftb_control%do_ewald)
1274 : ELSE
1275 56 : qs_control%dftb_control%do_ewald = (qs_control%periodicity /= 0)
1276 : END IF
1277 : CALL section_vals_val_get(dftb_parameter, "PARAM_FILE_PATH", &
1278 222 : c_val=qs_control%dftb_control%sk_file_path)
1279 : CALL section_vals_val_get(dftb_parameter, "PARAM_FILE_NAME", &
1280 222 : c_val=qs_control%dftb_control%sk_file_list)
1281 : CALL section_vals_val_get(dftb_parameter, "HB_SR_PARAM", &
1282 222 : r_val=qs_control%dftb_control%hb_sr_para)
1283 222 : CALL section_vals_val_get(dftb_parameter, "SK_FILE", n_rep_val=n_var)
1284 470 : ALLOCATE (qs_control%dftb_control%sk_pair_list(3, n_var))
1285 284 : DO k = 1, n_var
1286 : CALL section_vals_val_get(dftb_parameter, "SK_FILE", i_rep_val=k, &
1287 62 : c_vals=clist)
1288 470 : qs_control%dftb_control%sk_pair_list(1:3, k) = clist(1:3)
1289 : END DO
1290 : ! Dispersion type
1291 : CALL section_vals_val_get(dftb_parameter, "DISPERSION_TYPE", &
1292 222 : i_val=qs_control%dftb_control%dispersion_type)
1293 : CALL section_vals_val_get(dftb_parameter, "UFF_FORCE_FIELD", &
1294 222 : c_val=qs_control%dftb_control%uff_force_field)
1295 : ! D3 Dispersion
1296 : CALL section_vals_val_get(dftb_parameter, "DISPERSION_RADIUS", &
1297 222 : r_val=qs_control%dftb_control%rcdisp)
1298 : CALL section_vals_val_get(dftb_parameter, "COORDINATION_CUTOFF", &
1299 222 : r_val=qs_control%dftb_control%epscn)
1300 : CALL section_vals_val_get(dftb_parameter, "D2_EXP_PRE", &
1301 222 : r_val=qs_control%dftb_control%exp_pre)
1302 : CALL section_vals_val_get(dftb_parameter, "D2_SCALING", &
1303 222 : r_val=qs_control%dftb_control%scaling)
1304 222 : CALL section_vals_val_get(dftb_parameter, "D3_SCALING", r_vals=scal)
1305 222 : qs_control%dftb_control%sd3(1) = scal(1)
1306 222 : qs_control%dftb_control%sd3(2) = scal(2)
1307 222 : qs_control%dftb_control%sd3(3) = scal(3)
1308 222 : CALL section_vals_val_get(dftb_parameter, "D3BJ_SCALING", r_vals=scal)
1309 222 : qs_control%dftb_control%sd3bj(1) = scal(1)
1310 222 : qs_control%dftb_control%sd3bj(2) = scal(2)
1311 222 : qs_control%dftb_control%sd3bj(3) = scal(3)
1312 222 : qs_control%dftb_control%sd3bj(4) = scal(4)
1313 : CALL section_vals_val_get(dftb_parameter, "DISPERSION_PARAMETER_FILE", &
1314 222 : c_val=qs_control%dftb_control%dispersion_parameter_file)
1315 :
1316 222 : IF (qs_control%dftb_control%dispersion) CALL cite_reference(Zhechkov2005)
1317 222 : IF (qs_control%dftb_control%self_consistent) CALL cite_reference(Elstner1998)
1318 666 : IF (qs_control%dftb_control%hb_sr_damp) CALL cite_reference(Hu2007)
1319 : END IF
1320 :
1321 : ! xTB code
1322 7444 : IF (qs_control%xtb) THEN
1323 944 : CALL section_vals_val_get(xtb_section, "GFN_TYPE", i_val=qs_control%xtb_control%gfn_type)
1324 944 : CALL section_vals_val_get(xtb_section, "DO_EWALD", explicit=explicit)
1325 944 : IF (explicit) THEN
1326 : CALL section_vals_val_get(xtb_section, "DO_EWALD", &
1327 760 : l_val=qs_control%xtb_control%do_ewald)
1328 : ELSE
1329 184 : qs_control%xtb_control%do_ewald = (qs_control%periodicity /= 0)
1330 : END IF
1331 : ! vdW
1332 944 : CALL section_vals_val_get(xtb_section, "VDW_POTENTIAL", explicit=explicit)
1333 944 : IF (explicit) THEN
1334 660 : CALL section_vals_val_get(xtb_section, "VDW_POTENTIAL", c_val=cval)
1335 660 : CALL uppercase(cval)
1336 0 : SELECT CASE (cval)
1337 : CASE ("NONE")
1338 0 : qs_control%xtb_control%vdw_type = xtb_vdw_type_none
1339 : CASE ("DFTD3")
1340 36 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d3
1341 : CASE ("DFTD4")
1342 624 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
1343 : CASE DEFAULT
1344 660 : CPABORT("vdW type")
1345 : END SELECT
1346 : ELSE
1347 300 : SELECT CASE (qs_control%xtb_control%gfn_type)
1348 : CASE (0)
1349 16 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
1350 : CASE (1)
1351 268 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d3
1352 : CASE (2)
1353 0 : qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
1354 0 : CPABORT("gfn2-xtb tbd")
1355 : CASE DEFAULT
1356 284 : CPABORT("GFN type")
1357 : END SELECT
1358 : END IF
1359 : !
1360 944 : CALL section_vals_val_get(xtb_section, "STO_NG", i_val=ngauss)
1361 944 : qs_control%xtb_control%sto_ng = ngauss
1362 944 : CALL section_vals_val_get(xtb_section, "HYDROGEN_STO_NG", i_val=ngauss)
1363 944 : qs_control%xtb_control%h_sto_ng = ngauss
1364 : CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_PATH", &
1365 944 : c_val=qs_control%xtb_control%parameter_file_path)
1366 944 : CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_NAME", explicit=explicit)
1367 944 : IF (explicit) THEN
1368 : CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_NAME", &
1369 0 : c_val=qs_control%xtb_control%parameter_file_name)
1370 : ELSE
1371 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1372 : CASE (0)
1373 674 : qs_control%xtb_control%parameter_file_name = "xTB0_parameters"
1374 : CASE (1)
1375 270 : qs_control%xtb_control%parameter_file_name = "xTB1_parameters"
1376 : CASE (2)
1377 0 : CPABORT("gfn2-xtb tbd")
1378 : CASE DEFAULT
1379 944 : CPABORT("GFN type")
1380 : END SELECT
1381 : END IF
1382 : ! D3 Dispersion
1383 : CALL section_vals_val_get(xtb_parameter, "DISPERSION_RADIUS", &
1384 944 : r_val=qs_control%xtb_control%rcdisp)
1385 : CALL section_vals_val_get(xtb_parameter, "COORDINATION_CUTOFF", &
1386 944 : r_val=qs_control%xtb_control%epscn)
1387 944 : CALL section_vals_val_get(xtb_parameter, "D3BJ_SCALING", explicit=explicit)
1388 944 : IF (explicit) THEN
1389 0 : CALL section_vals_val_get(xtb_parameter, "D3BJ_SCALING", r_vals=scal)
1390 0 : qs_control%xtb_control%s6 = scal(1)
1391 0 : qs_control%xtb_control%s8 = scal(2)
1392 : ELSE
1393 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1394 : CASE (0)
1395 674 : qs_control%xtb_control%s6 = 1.00_dp
1396 674 : qs_control%xtb_control%s8 = 2.85_dp
1397 : CASE (1)
1398 270 : qs_control%xtb_control%s6 = 1.00_dp
1399 270 : qs_control%xtb_control%s8 = 2.40_dp
1400 : CASE (2)
1401 0 : CPABORT("gfn2-xtb tbd")
1402 : CASE DEFAULT
1403 944 : CPABORT("GFN type")
1404 : END SELECT
1405 : END IF
1406 944 : CALL section_vals_val_get(xtb_parameter, "D3BJ_PARAM", explicit=explicit)
1407 944 : IF (explicit) THEN
1408 0 : CALL section_vals_val_get(xtb_parameter, "D3BJ_PARAM", r_vals=scal)
1409 0 : qs_control%xtb_control%a1 = scal(1)
1410 0 : qs_control%xtb_control%a2 = scal(2)
1411 : ELSE
1412 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1413 : CASE (0)
1414 674 : qs_control%xtb_control%a1 = 0.80_dp
1415 674 : qs_control%xtb_control%a2 = 4.60_dp
1416 : CASE (1)
1417 270 : qs_control%xtb_control%a1 = 0.63_dp
1418 270 : qs_control%xtb_control%a2 = 5.00_dp
1419 : CASE (2)
1420 0 : CPABORT("gfn2-xtb tbd")
1421 : CASE DEFAULT
1422 944 : CPABORT("GFN type")
1423 : END SELECT
1424 : END IF
1425 : CALL section_vals_val_get(xtb_parameter, "DISPERSION_PARAMETER_FILE", &
1426 944 : c_val=qs_control%xtb_control%dispersion_parameter_file)
1427 : ! global parameters
1428 944 : CALL section_vals_val_get(xtb_parameter, "HUCKEL_CONSTANTS", explicit=explicit)
1429 944 : IF (explicit) THEN
1430 0 : CALL section_vals_val_get(xtb_parameter, "HUCKEL_CONSTANTS", r_vals=scal)
1431 0 : qs_control%xtb_control%ks = scal(1)
1432 0 : qs_control%xtb_control%kp = scal(2)
1433 0 : qs_control%xtb_control%kd = scal(3)
1434 0 : qs_control%xtb_control%ksp = scal(4)
1435 0 : qs_control%xtb_control%k2sh = scal(5)
1436 0 : IF (qs_control%xtb_control%gfn_type == 0) THEN
1437 : ! enforce ksp for gfn0
1438 0 : qs_control%xtb_control%ksp = 0.5_dp*(scal(1) + scal(2))
1439 : END IF
1440 : ELSE
1441 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1442 : CASE (0)
1443 674 : qs_control%xtb_control%ks = 2.00_dp
1444 674 : qs_control%xtb_control%kp = 2.4868_dp
1445 674 : qs_control%xtb_control%kd = 2.27_dp
1446 674 : qs_control%xtb_control%ksp = 2.2434_dp
1447 674 : qs_control%xtb_control%k2sh = 1.1241_dp
1448 : CASE (1)
1449 270 : qs_control%xtb_control%ks = 1.85_dp
1450 270 : qs_control%xtb_control%kp = 2.25_dp
1451 270 : qs_control%xtb_control%kd = 2.00_dp
1452 270 : qs_control%xtb_control%ksp = 2.08_dp
1453 270 : qs_control%xtb_control%k2sh = 2.85_dp
1454 : CASE (2)
1455 0 : CPABORT("gfn2-xtb tbd")
1456 : CASE DEFAULT
1457 944 : CPABORT("GFN type")
1458 : END SELECT
1459 : END IF
1460 944 : CALL section_vals_val_get(xtb_parameter, "COULOMB_CONSTANTS", explicit=explicit)
1461 944 : IF (explicit) THEN
1462 0 : CALL section_vals_val_get(xtb_parameter, "COULOMB_CONSTANTS", r_vals=scal)
1463 0 : qs_control%xtb_control%kg = scal(1)
1464 0 : qs_control%xtb_control%kf = scal(2)
1465 : ELSE
1466 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1467 : CASE (0)
1468 674 : qs_control%xtb_control%kg = 2.00_dp
1469 674 : qs_control%xtb_control%kf = 1.50_dp
1470 : CASE (1)
1471 270 : qs_control%xtb_control%kg = 2.00_dp
1472 270 : qs_control%xtb_control%kf = 1.50_dp
1473 : CASE (2)
1474 0 : CPABORT("gfn2-xtb tbd")
1475 : CASE DEFAULT
1476 944 : CPABORT("GFN type")
1477 : END SELECT
1478 : END IF
1479 944 : CALL section_vals_val_get(xtb_parameter, "CN_CONSTANTS", r_vals=scal)
1480 944 : qs_control%xtb_control%kcns = scal(1)
1481 944 : qs_control%xtb_control%kcnp = scal(2)
1482 944 : qs_control%xtb_control%kcnd = scal(3)
1483 : !
1484 944 : CALL section_vals_val_get(xtb_parameter, "EN_CONSTANTS", explicit=explicit)
1485 944 : IF (explicit) THEN
1486 0 : CALL section_vals_val_get(xtb_parameter, "EN_CONSTANTS", r_vals=scal)
1487 0 : SELECT CASE (qs_control%xtb_control%gfn_type)
1488 : CASE (0)
1489 0 : qs_control%xtb_control%ksen = scal(1)
1490 0 : qs_control%xtb_control%kpen = scal(2)
1491 0 : qs_control%xtb_control%kden = scal(3)
1492 : CASE (1)
1493 0 : qs_control%xtb_control%ken = scal(1)
1494 : CASE (2)
1495 0 : CPABORT("gfn2-xtb tbd")
1496 : CASE DEFAULT
1497 0 : CPABORT("GFN type")
1498 : END SELECT
1499 : ELSE
1500 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1501 : CASE (0)
1502 674 : qs_control%xtb_control%ksen = 0.006_dp
1503 674 : qs_control%xtb_control%kpen = -0.001_dp
1504 674 : qs_control%xtb_control%kden = -0.002_dp
1505 : CASE (1)
1506 270 : qs_control%xtb_control%ken = -0.007_dp
1507 : CASE (2)
1508 0 : CPABORT("gfn2-xtb tbd")
1509 : CASE DEFAULT
1510 944 : CPABORT("GFN type")
1511 : END SELECT
1512 : END IF
1513 : ! ben
1514 944 : CALL section_vals_val_get(xtb_parameter, "BEN_CONSTANT", r_vals=scal)
1515 944 : qs_control%xtb_control%ben = scal(1)
1516 : ! enscale (hidden parameter in repulsion
1517 944 : CALL section_vals_val_get(xtb_parameter, "ENSCALE", explicit=explicit)
1518 944 : IF (explicit) THEN
1519 : CALL section_vals_val_get(xtb_parameter, "ENSCALE", &
1520 0 : r_val=qs_control%xtb_control%enscale)
1521 : ELSE
1522 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1523 : CASE (0)
1524 674 : qs_control%xtb_control%enscale = -0.09_dp
1525 : CASE (1)
1526 270 : qs_control%xtb_control%enscale = 0._dp
1527 : CASE (2)
1528 0 : CPABORT("gfn2-xtb tbd")
1529 : CASE DEFAULT
1530 944 : CPABORT("GFN type")
1531 : END SELECT
1532 : END IF
1533 : ! XB
1534 : CALL section_vals_val_get(xtb_section, "USE_HALOGEN_CORRECTION", &
1535 944 : l_val=qs_control%xtb_control%xb_interaction)
1536 944 : CALL section_vals_val_get(xtb_parameter, "HALOGEN_BINDING", r_vals=scal)
1537 944 : qs_control%xtb_control%kxr = scal(1)
1538 944 : qs_control%xtb_control%kx2 = scal(2)
1539 : ! NONBONDED interactions
1540 : CALL section_vals_val_get(xtb_section, "DO_NONBONDED", &
1541 944 : l_val=qs_control%xtb_control%do_nonbonded)
1542 944 : CALL section_vals_get(nonbonded_section, explicit=explicit)
1543 944 : IF (explicit .AND. qs_control%xtb_control%do_nonbonded) THEN
1544 6 : CALL section_vals_get(genpot_section, explicit=explicit, n_repetition=ngp)
1545 6 : IF (explicit) THEN
1546 6 : CALL pair_potential_reallocate(qs_control%xtb_control%nonbonded, 1, ngp, gp=.TRUE.)
1547 6 : CALL read_gp_section(qs_control%xtb_control%nonbonded, genpot_section, 0)
1548 : END IF
1549 : END IF !nonbonded
1550 : CALL section_vals_val_get(xtb_section, "EPS_PAIRPOTENTIAL", &
1551 944 : r_val=qs_control%xtb_control%eps_pair)
1552 : ! SR Coulomb
1553 944 : CALL section_vals_val_get(xtb_parameter, "COULOMB_SR_CUT", r_vals=scal)
1554 944 : qs_control%xtb_control%coulomb_sr_cut = scal(1)
1555 944 : CALL section_vals_val_get(xtb_parameter, "COULOMB_SR_EPS", r_vals=scal)
1556 944 : qs_control%xtb_control%coulomb_sr_eps = scal(1)
1557 : ! XB_radius
1558 944 : CALL section_vals_val_get(xtb_parameter, "XB_RADIUS", r_val=qs_control%xtb_control%xb_radius)
1559 : ! Kab
1560 944 : CALL section_vals_val_get(xtb_parameter, "KAB_PARAM", n_rep_val=n_rep)
1561 : ! Coulomb
1562 1618 : SELECT CASE (qs_control%xtb_control%gfn_type)
1563 : CASE (0)
1564 674 : qs_control%xtb_control%coulomb_interaction = .FALSE.
1565 674 : qs_control%xtb_control%coulomb_lr = .FALSE.
1566 674 : qs_control%xtb_control%tb3_interaction = .FALSE.
1567 674 : qs_control%xtb_control%check_atomic_charges = .FALSE.
1568 : CALL section_vals_val_get(xtb_section, "VARIATIONAL_DIPOLE", &
1569 674 : l_val=qs_control%xtb_control%var_dipole)
1570 : CASE (1)
1571 : ! For debugging purposes
1572 : CALL section_vals_val_get(xtb_section, "COULOMB_INTERACTION", &
1573 270 : l_val=qs_control%xtb_control%coulomb_interaction)
1574 : CALL section_vals_val_get(xtb_section, "COULOMB_LR", &
1575 270 : l_val=qs_control%xtb_control%coulomb_lr)
1576 : CALL section_vals_val_get(xtb_section, "TB3_INTERACTION", &
1577 270 : l_val=qs_control%xtb_control%tb3_interaction)
1578 : ! Check for bad atomic charges
1579 : CALL section_vals_val_get(xtb_section, "CHECK_ATOMIC_CHARGES", &
1580 270 : l_val=qs_control%xtb_control%check_atomic_charges)
1581 270 : qs_control%xtb_control%var_dipole = .FALSE.
1582 : CASE (2)
1583 0 : CPABORT("gfn2-xtb tbd")
1584 : CASE DEFAULT
1585 944 : CPABORT("GFN type")
1586 : END SELECT
1587 944 : qs_control%xtb_control%kab_nval = n_rep
1588 944 : IF (n_rep > 0) THEN
1589 6 : ALLOCATE (qs_control%xtb_control%kab_param(3, n_rep))
1590 6 : ALLOCATE (qs_control%xtb_control%kab_types(2, n_rep))
1591 6 : ALLOCATE (qs_control%xtb_control%kab_vals(n_rep))
1592 4 : DO j = 1, n_rep
1593 2 : CALL section_vals_val_get(xtb_parameter, "KAB_PARAM", i_rep_val=j, c_vals=clist)
1594 2 : qs_control%xtb_control%kab_param(1, j) = clist(1)
1595 : CALL get_ptable_info(clist(1), &
1596 2 : ielement=qs_control%xtb_control%kab_types(1, j))
1597 2 : qs_control%xtb_control%kab_param(2, j) = clist(2)
1598 : CALL get_ptable_info(clist(2), &
1599 2 : ielement=qs_control%xtb_control%kab_types(2, j))
1600 2 : qs_control%xtb_control%kab_param(3, j) = clist(3)
1601 4 : READ (clist(3), '(F10.0)') qs_control%xtb_control%kab_vals(j)
1602 : END DO
1603 : END IF
1604 :
1605 944 : IF (qs_control%xtb_control%gfn_type == 0) THEN
1606 674 : CALL section_vals_val_get(xtb_parameter, "SRB_PARAMETER", r_vals=scal)
1607 674 : qs_control%xtb_control%ksrb = scal(1)
1608 674 : qs_control%xtb_control%esrb = scal(2)
1609 674 : qs_control%xtb_control%gscal = scal(3)
1610 674 : qs_control%xtb_control%c1srb = scal(4)
1611 674 : qs_control%xtb_control%c2srb = scal(5)
1612 674 : qs_control%xtb_control%shift = scal(6)
1613 : END IF
1614 :
1615 944 : CALL section_vals_val_get(xtb_section, "EN_SHIFT_TYPE", c_val=cval)
1616 944 : CALL uppercase(cval)
1617 944 : SELECT CASE (TRIM(cval))
1618 : CASE ("SELECT")
1619 0 : qs_control%xtb_control%enshift_type = 0
1620 : CASE ("MOLECULE")
1621 944 : qs_control%xtb_control%enshift_type = 1
1622 : CASE ("CRYSTAL")
1623 0 : qs_control%xtb_control%enshift_type = 2
1624 : CASE DEFAULT
1625 944 : CPABORT("Unknown value for EN_SHIFT_TYPE")
1626 : END SELECT
1627 :
1628 : ! EEQ solver params
1629 944 : CALL read_eeq_param(eeq_section, qs_control%xtb_control%eeq_sparam)
1630 :
1631 : END IF
1632 :
1633 : ! Optimize LRI basis set
1634 7444 : CALL section_vals_get(lri_optbas_section, explicit=qs_control%lri_optbas)
1635 :
1636 : ! Use instead the tblite
1637 : CALL section_vals_val_get(xtb_tblite, "_SECTION_PARAMETERS_", &
1638 7444 : l_val=qs_control%xtb_control%do_tblite)
1639 : CALL section_vals_val_get(xtb_tblite, "METHOD", &
1640 7444 : i_val=qs_control%xtb_control%tblite_method)
1641 7444 : IF (qs_control%xtb_control%do_tblite) THEN
1642 0 : CALL cite_reference(Caldeweyher2017)
1643 0 : CALL cite_reference(Caldeweyher2020)
1644 0 : CALL cite_reference(Asgeirsson2017)
1645 0 : CALL cite_reference(Grimme2017)
1646 0 : CALL cite_reference(Bannwarth2019)
1647 : !Ewald sum included in tblite
1648 0 : qs_control%xtb_control%do_ewald = .FALSE.
1649 : END IF
1650 :
1651 7444 : CALL timestop(handle)
1652 7444 : END SUBROUTINE read_qs_section
1653 :
1654 : ! **************************************************************************************************
1655 : !> \brief Read TDDFPT-related input parameters.
1656 : !> \param t_control TDDFPT control parameters
1657 : !> \param t_section TDDFPT input section
1658 : !> \param qs_control Quickstep control parameters
1659 : ! **************************************************************************************************
1660 7472 : SUBROUTINE read_tddfpt2_control(t_control, t_section, qs_control)
1661 : TYPE(tddfpt2_control_type), POINTER :: t_control
1662 : TYPE(section_vals_type), POINTER :: t_section
1663 : TYPE(qs_control_type), POINTER :: qs_control
1664 :
1665 : CHARACTER(LEN=*), PARAMETER :: routineN = 'read_tddfpt2_control'
1666 :
1667 : CHARACTER(LEN=default_string_length), &
1668 7472 : DIMENSION(:), POINTER :: tmpstringlist
1669 : INTEGER :: handle, irep, isize, nrep
1670 7472 : INTEGER, ALLOCATABLE, DIMENSION(:) :: inds
1671 : LOGICAL :: do_ewald, do_exchange, expl, explicit, &
1672 : multigrid_set
1673 : REAL(KIND=dp) :: filter, fval, hfx
1674 : TYPE(section_vals_type), POINTER :: dipole_section, mgrid_section, &
1675 : soc_section, stda_section, xc_func, &
1676 : xc_section
1677 :
1678 7472 : CALL timeset(routineN, handle)
1679 :
1680 7472 : CALL section_vals_val_get(t_section, "_SECTION_PARAMETERS_", l_val=t_control%enabled)
1681 :
1682 7472 : CALL section_vals_val_get(t_section, "NSTATES", i_val=t_control%nstates)
1683 7472 : CALL section_vals_val_get(t_section, "MAX_ITER", i_val=t_control%niters)
1684 7472 : CALL section_vals_val_get(t_section, "MAX_KV", i_val=t_control%nkvs)
1685 7472 : CALL section_vals_val_get(t_section, "NLUMO", i_val=t_control%nlumo)
1686 7472 : CALL section_vals_val_get(t_section, "NPROC_STATE", i_val=t_control%nprocs)
1687 7472 : CALL section_vals_val_get(t_section, "KERNEL", i_val=t_control%kernel)
1688 7472 : CALL section_vals_val_get(t_section, "SPINFLIP", i_val=t_control%spinflip)
1689 7472 : CALL section_vals_val_get(t_section, "OE_CORR", i_val=t_control%oe_corr)
1690 7472 : CALL section_vals_val_get(t_section, "EV_SHIFT", r_val=t_control%ev_shift)
1691 7472 : CALL section_vals_val_get(t_section, "EOS_SHIFT", r_val=t_control%eos_shift)
1692 :
1693 7472 : CALL section_vals_val_get(t_section, "CONVERGENCE", r_val=t_control%conv)
1694 7472 : CALL section_vals_val_get(t_section, "MIN_AMPLITUDE", r_val=t_control%min_excitation_amplitude)
1695 7472 : CALL section_vals_val_get(t_section, "ORTHOGONAL_EPS", r_val=t_control%orthogonal_eps)
1696 :
1697 7472 : CALL section_vals_val_get(t_section, "RESTART", l_val=t_control%is_restart)
1698 7472 : CALL section_vals_val_get(t_section, "RKS_TRIPLETS", l_val=t_control%rks_triplets)
1699 7472 : CALL section_vals_val_get(t_section, "DO_LRIGPW", l_val=t_control%do_lrigpw)
1700 7472 : CALL section_vals_val_get(t_section, "DO_SMEARING", l_val=t_control%do_smearing)
1701 7472 : CALL section_vals_val_get(t_section, "DO_BSE", l_val=t_control%do_bse)
1702 7472 : CALL section_vals_val_get(t_section, "ADMM_KERNEL_CORRECTION_SYMMETRIC", l_val=t_control%admm_symm)
1703 7472 : CALL section_vals_val_get(t_section, "ADMM_KERNEL_XC_CORRECTION", l_val=t_control%admm_xc_correction)
1704 7472 : CALL section_vals_val_get(t_section, "EXCITON_DESCRIPTORS", l_val=t_control%do_exciton_descriptors)
1705 7472 : CALL section_vals_val_get(t_section, "DIRECTIONAL_EXCITON_DESCRIPTORS", l_val=t_control%do_directional_exciton_descriptors)
1706 :
1707 : ! read automatically generated auxiliary basis for LRI
1708 7472 : CALL section_vals_val_get(t_section, "AUTO_BASIS", n_rep_val=nrep)
1709 14944 : DO irep = 1, nrep
1710 7472 : CALL section_vals_val_get(t_section, "AUTO_BASIS", i_rep_val=irep, c_vals=tmpstringlist)
1711 14944 : IF (SIZE(tmpstringlist) == 2) THEN
1712 7472 : CALL uppercase(tmpstringlist(2))
1713 7472 : SELECT CASE (tmpstringlist(2))
1714 : CASE ("X")
1715 0 : isize = -1
1716 : CASE ("SMALL")
1717 0 : isize = 0
1718 : CASE ("MEDIUM")
1719 0 : isize = 1
1720 : CASE ("LARGE")
1721 0 : isize = 2
1722 : CASE ("HUGE")
1723 0 : isize = 3
1724 : CASE DEFAULT
1725 7472 : CPABORT("Unknown basis size in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
1726 : END SELECT
1727 : !
1728 7472 : SELECT CASE (tmpstringlist(1))
1729 : CASE ("X")
1730 : CASE ("P_LRI_AUX")
1731 0 : t_control%auto_basis_p_lri_aux = isize
1732 : CASE DEFAULT
1733 7472 : CPABORT("Unknown basis type in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
1734 : END SELECT
1735 : ELSE
1736 : CALL cp_abort(__LOCATION__, &
1737 0 : "AUTO_BASIS keyword in &PROPERTIES &TDDFT section has a wrong number of arguments.")
1738 : END IF
1739 : END DO
1740 :
1741 7472 : IF (t_control%conv < 0) &
1742 0 : t_control%conv = ABS(t_control%conv)
1743 :
1744 : ! DIPOLE_MOMENTS subsection
1745 7472 : dipole_section => section_vals_get_subs_vals(t_section, "DIPOLE_MOMENTS")
1746 7472 : CALL section_vals_val_get(dipole_section, "DIPOLE_FORM", explicit=explicit)
1747 7472 : IF (explicit) THEN
1748 10 : CALL section_vals_val_get(dipole_section, "DIPOLE_FORM", i_val=t_control%dipole_form)
1749 : ELSE
1750 7462 : t_control%dipole_form = 0
1751 : END IF
1752 7472 : CALL section_vals_val_get(dipole_section, "REFERENCE", i_val=t_control%dipole_reference)
1753 7472 : CALL section_vals_val_get(dipole_section, "REFERENCE_POINT", explicit=explicit)
1754 7472 : IF (explicit) THEN
1755 0 : CALL section_vals_val_get(dipole_section, "REFERENCE_POINT", r_vals=t_control%dipole_ref_point)
1756 : ELSE
1757 7472 : NULLIFY (t_control%dipole_ref_point)
1758 7472 : IF (t_control%dipole_form == tddfpt_dipole_length .AND. t_control%dipole_reference == use_mom_ref_user) THEN
1759 0 : CPABORT("User-defined reference point should be given explicitly")
1760 : END IF
1761 : END IF
1762 :
1763 : !SOC subsection
1764 7472 : soc_section => section_vals_get_subs_vals(t_section, "SOC")
1765 7472 : CALL section_vals_get(soc_section, explicit=explicit)
1766 7472 : IF (explicit) THEN
1767 8 : t_control%do_soc = .TRUE.
1768 : END IF
1769 :
1770 : ! MGRID subsection
1771 7472 : mgrid_section => section_vals_get_subs_vals(t_section, "MGRID")
1772 7472 : CALL section_vals_get(mgrid_section, explicit=t_control%mgrid_is_explicit)
1773 :
1774 7472 : IF (t_control%mgrid_is_explicit) THEN
1775 10 : CALL section_vals_val_get(mgrid_section, "NGRIDS", i_val=t_control%mgrid_ngrids, explicit=explicit)
1776 10 : IF (.NOT. explicit) t_control%mgrid_ngrids = SIZE(qs_control%e_cutoff)
1777 :
1778 10 : CALL section_vals_val_get(mgrid_section, "CUTOFF", r_val=t_control%mgrid_cutoff, explicit=explicit)
1779 10 : IF (.NOT. explicit) t_control%mgrid_cutoff = qs_control%cutoff
1780 :
1781 : CALL section_vals_val_get(mgrid_section, "PROGRESSION_FACTOR", &
1782 10 : r_val=t_control%mgrid_progression_factor, explicit=explicit)
1783 10 : IF (explicit) THEN
1784 0 : IF (t_control%mgrid_progression_factor <= 1.0_dp) &
1785 : CALL cp_abort(__LOCATION__, &
1786 0 : "Progression factor should be greater then 1.0 to ensure multi-grid ordering")
1787 : ELSE
1788 10 : t_control%mgrid_progression_factor = qs_control%progression_factor
1789 : END IF
1790 :
1791 10 : CALL section_vals_val_get(mgrid_section, "COMMENSURATE", l_val=t_control%mgrid_commensurate_mgrids, explicit=explicit)
1792 10 : IF (.NOT. explicit) t_control%mgrid_commensurate_mgrids = qs_control%commensurate_mgrids
1793 10 : IF (t_control%mgrid_commensurate_mgrids) THEN
1794 0 : IF (explicit) THEN
1795 0 : t_control%mgrid_progression_factor = 4.0_dp
1796 : ELSE
1797 0 : t_control%mgrid_progression_factor = qs_control%progression_factor
1798 : END IF
1799 : END IF
1800 :
1801 10 : CALL section_vals_val_get(mgrid_section, "REL_CUTOFF", r_val=t_control%mgrid_relative_cutoff, explicit=explicit)
1802 10 : IF (.NOT. explicit) t_control%mgrid_relative_cutoff = qs_control%relative_cutoff
1803 :
1804 10 : CALL section_vals_val_get(mgrid_section, "MULTIGRID_SET", l_val=multigrid_set, explicit=explicit)
1805 10 : IF (.NOT. explicit) multigrid_set = .FALSE.
1806 10 : IF (multigrid_set) THEN
1807 0 : CALL section_vals_val_get(mgrid_section, "MULTIGRID_CUTOFF", r_vals=t_control%mgrid_e_cutoff)
1808 : ELSE
1809 10 : NULLIFY (t_control%mgrid_e_cutoff)
1810 : END IF
1811 :
1812 10 : CALL section_vals_val_get(mgrid_section, "REALSPACE", l_val=t_control%mgrid_realspace_mgrids, explicit=explicit)
1813 10 : IF (.NOT. explicit) t_control%mgrid_realspace_mgrids = qs_control%realspace_mgrids
1814 :
1815 : CALL section_vals_val_get(mgrid_section, "SKIP_LOAD_BALANCE_DISTRIBUTED", &
1816 10 : l_val=t_control%mgrid_skip_load_balance, explicit=explicit)
1817 10 : IF (.NOT. explicit) t_control%mgrid_skip_load_balance = qs_control%skip_load_balance_distributed
1818 :
1819 10 : IF (ASSOCIATED(t_control%mgrid_e_cutoff)) THEN
1820 0 : IF (SIZE(t_control%mgrid_e_cutoff) /= t_control%mgrid_ngrids) &
1821 0 : CPABORT("Inconsistent values for number of multi-grids")
1822 :
1823 : ! sort multi-grids in descending order according to their cutoff values
1824 0 : t_control%mgrid_e_cutoff = -t_control%mgrid_e_cutoff
1825 0 : ALLOCATE (inds(t_control%mgrid_ngrids))
1826 0 : CALL sort(t_control%mgrid_e_cutoff, t_control%mgrid_ngrids, inds)
1827 0 : DEALLOCATE (inds)
1828 0 : t_control%mgrid_e_cutoff = -t_control%mgrid_e_cutoff
1829 : END IF
1830 : END IF
1831 :
1832 : ! expand XC subsection (if given explicitly)
1833 7472 : xc_section => section_vals_get_subs_vals(t_section, "XC")
1834 7472 : xc_func => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
1835 7472 : CALL section_vals_get(xc_func, explicit=explicit)
1836 7472 : IF (explicit) &
1837 216 : CALL xc_functionals_expand(xc_func, xc_section)
1838 :
1839 : ! sTDA subsection
1840 7472 : stda_section => section_vals_get_subs_vals(t_section, "STDA")
1841 7472 : IF (t_control%kernel == tddfpt_kernel_stda) THEN
1842 118 : t_control%stda_control%hfx_fraction = 0.0_dp
1843 118 : t_control%stda_control%do_exchange = .TRUE.
1844 118 : t_control%stda_control%eps_td_filter = 1.e-10_dp
1845 118 : t_control%stda_control%mn_alpha = -99.0_dp
1846 118 : t_control%stda_control%mn_beta = -99.0_dp
1847 : ! set default for Ewald method (on/off) dependent on periodicity
1848 212 : SELECT CASE (qs_control%periodicity)
1849 : CASE (0)
1850 94 : t_control%stda_control%do_ewald = .FALSE.
1851 : CASE (1)
1852 0 : t_control%stda_control%do_ewald = .TRUE.
1853 : CASE (2)
1854 0 : t_control%stda_control%do_ewald = .TRUE.
1855 : CASE (3)
1856 24 : t_control%stda_control%do_ewald = .TRUE.
1857 : CASE DEFAULT
1858 118 : CPABORT("Illegal value for periodiciy")
1859 : END SELECT
1860 118 : CALL section_vals_get(stda_section, explicit=explicit)
1861 118 : IF (explicit) THEN
1862 104 : CALL section_vals_val_get(stda_section, "HFX_FRACTION", r_val=hfx, explicit=expl)
1863 104 : IF (expl) t_control%stda_control%hfx_fraction = hfx
1864 104 : CALL section_vals_val_get(stda_section, "EPS_TD_FILTER", r_val=filter, explicit=expl)
1865 104 : IF (expl) t_control%stda_control%eps_td_filter = filter
1866 104 : CALL section_vals_val_get(stda_section, "DO_EWALD", l_val=do_ewald, explicit=expl)
1867 104 : IF (expl) t_control%stda_control%do_ewald = do_ewald
1868 104 : CALL section_vals_val_get(stda_section, "DO_EXCHANGE", l_val=do_exchange, explicit=expl)
1869 104 : IF (expl) t_control%stda_control%do_exchange = do_exchange
1870 104 : CALL section_vals_val_get(stda_section, "MATAGA_NISHIMOTO_CEXP", r_val=fval)
1871 104 : t_control%stda_control%mn_alpha = fval
1872 104 : CALL section_vals_val_get(stda_section, "MATAGA_NISHIMOTO_XEXP", r_val=fval)
1873 104 : t_control%stda_control%mn_beta = fval
1874 : END IF
1875 118 : CALL section_vals_val_get(stda_section, "COULOMB_SR_CUT", r_val=fval)
1876 118 : t_control%stda_control%coulomb_sr_cut = fval
1877 118 : CALL section_vals_val_get(stda_section, "COULOMB_SR_EPS", r_val=fval)
1878 118 : t_control%stda_control%coulomb_sr_eps = fval
1879 : END IF
1880 :
1881 7472 : CALL timestop(handle)
1882 7472 : END SUBROUTINE read_tddfpt2_control
1883 :
1884 : ! **************************************************************************************************
1885 : !> \brief Write the DFT control parameters to the output unit.
1886 : !> \param dft_control ...
1887 : !> \param dft_section ...
1888 : ! **************************************************************************************************
1889 12716 : SUBROUTINE write_dft_control(dft_control, dft_section)
1890 : TYPE(dft_control_type), POINTER :: dft_control
1891 : TYPE(section_vals_type), POINTER :: dft_section
1892 :
1893 : CHARACTER(len=*), PARAMETER :: routineN = 'write_dft_control'
1894 :
1895 : CHARACTER(LEN=20) :: tmpStr
1896 : INTEGER :: handle, i, i_rep, n_rep, output_unit
1897 : REAL(kind=dp) :: density_cut, density_smooth_cut_range, &
1898 : gradient_cut, tau_cut
1899 : TYPE(cp_logger_type), POINTER :: logger
1900 : TYPE(enumeration_type), POINTER :: enum
1901 : TYPE(keyword_type), POINTER :: keyword
1902 : TYPE(section_type), POINTER :: section
1903 : TYPE(section_vals_type), POINTER :: xc_section
1904 :
1905 8600 : IF (dft_control%qs_control%semi_empirical) RETURN
1906 6440 : IF (dft_control%qs_control%dftb) RETURN
1907 6218 : IF (dft_control%qs_control%xtb) THEN
1908 940 : CALL write_xtb_control(dft_control%qs_control%xtb_control, dft_section)
1909 940 : RETURN
1910 : END IF
1911 5278 : CALL timeset(routineN, handle)
1912 :
1913 5278 : NULLIFY (logger)
1914 5278 : logger => cp_get_default_logger()
1915 :
1916 : output_unit = cp_print_key_unit_nr(logger, dft_section, &
1917 5278 : "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
1918 :
1919 5278 : IF (output_unit > 0) THEN
1920 :
1921 1356 : xc_section => section_vals_get_subs_vals(dft_section, "XC")
1922 :
1923 1356 : IF (dft_control%uks) THEN
1924 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T78,A)") &
1925 412 : "DFT| Spin unrestricted (spin-polarized) Kohn-Sham calculation", "UKS"
1926 944 : ELSE IF (dft_control%roks) THEN
1927 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T77,A)") &
1928 15 : "DFT| Spin restricted open Kohn-Sham calculation", "ROKS"
1929 : ELSE
1930 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T78,A)") &
1931 929 : "DFT| Spin restricted Kohn-Sham (RKS) calculation", "RKS"
1932 : END IF
1933 :
1934 : WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
1935 1356 : "DFT| Multiplicity", dft_control%multiplicity
1936 : WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
1937 1356 : "DFT| Number of spin states", dft_control%nspins
1938 :
1939 : WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
1940 1356 : "DFT| Charge", dft_control%charge
1941 :
1942 1356 : IF (dft_control%sic_method_id /= sic_none) CALL cite_reference(VandeVondele2005b)
1943 2698 : SELECT CASE (dft_control%sic_method_id)
1944 : CASE (sic_none)
1945 1342 : tmpstr = "NO"
1946 : CASE (sic_mauri_spz)
1947 6 : tmpstr = "SPZ/MAURI SIC"
1948 : CASE (sic_mauri_us)
1949 3 : tmpstr = "US/MAURI SIC"
1950 : CASE (sic_ad)
1951 3 : tmpstr = "AD SIC"
1952 : CASE (sic_eo)
1953 2 : tmpstr = "Explicit Orbital SIC"
1954 : CASE DEFAULT
1955 : ! fix throughout the cp2k for this option
1956 1356 : CPABORT("SIC option unknown")
1957 : END SELECT
1958 :
1959 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
1960 1356 : "DFT| Self-interaction correction (SIC)", ADJUSTR(TRIM(tmpstr))
1961 :
1962 1356 : IF (dft_control%sic_method_id /= sic_none) THEN
1963 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,ES15.6)") &
1964 14 : "DFT| SIC scaling parameter a", dft_control%sic_scaling_a, &
1965 28 : "DFT| SIC scaling parameter b", dft_control%sic_scaling_b
1966 : END IF
1967 :
1968 1356 : IF (dft_control%sic_method_id == sic_eo) THEN
1969 2 : IF (dft_control%sic_list_id == sic_list_all) THEN
1970 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,A)") &
1971 1 : "DFT| SIC orbitals", "ALL"
1972 : END IF
1973 2 : IF (dft_control%sic_list_id == sic_list_unpaired) THEN
1974 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,A)") &
1975 1 : "DFT| SIC orbitals", "UNPAIRED"
1976 : END IF
1977 : END IF
1978 :
1979 1356 : CALL section_vals_val_get(xc_section, "density_cutoff", r_val=density_cut)
1980 1356 : CALL section_vals_val_get(xc_section, "gradient_cutoff", r_val=gradient_cut)
1981 1356 : CALL section_vals_val_get(xc_section, "tau_cutoff", r_val=tau_cut)
1982 1356 : CALL section_vals_val_get(xc_section, "density_smooth_cutoff_range", r_val=density_smooth_cut_range)
1983 :
1984 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,ES15.6)") &
1985 1356 : "DFT| Cutoffs: density ", density_cut, &
1986 1356 : "DFT| gradient", gradient_cut, &
1987 1356 : "DFT| tau ", tau_cut, &
1988 2712 : "DFT| cutoff_smoothing_range", density_smooth_cut_range
1989 : CALL section_vals_val_get(xc_section, "XC_GRID%XC_SMOOTH_RHO", &
1990 1356 : c_val=tmpStr)
1991 : WRITE (output_unit, '( A, T61, A )') &
1992 1356 : " DFT| XC density smoothing ", ADJUSTR(tmpStr)
1993 : CALL section_vals_val_get(xc_section, "XC_GRID%XC_DERIV", &
1994 1356 : c_val=tmpStr)
1995 : WRITE (output_unit, '( A, T61, A )') &
1996 1356 : " DFT| XC derivatives ", ADJUSTR(tmpStr)
1997 1356 : IF (dft_control%dft_plus_u) THEN
1998 16 : NULLIFY (enum, keyword, section)
1999 16 : CALL create_dft_section(section)
2000 16 : keyword => section_get_keyword(section, "PLUS_U_METHOD")
2001 16 : CALL keyword_get(keyword, enum=enum)
2002 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T41,A40)") &
2003 16 : "DFT+U| Method", ADJUSTR(TRIM(enum_i2c(enum, dft_control%plus_u_method_id)))
2004 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2005 16 : "DFT+U| Check atomic kind information for details"
2006 16 : CALL section_release(section)
2007 : END IF
2008 :
2009 1356 : WRITE (UNIT=output_unit, FMT="(A)") ""
2010 1356 : CALL xc_write(output_unit, xc_section, dft_control%lsd)
2011 :
2012 1356 : IF (dft_control%apply_period_efield) THEN
2013 6 : WRITE (UNIT=output_unit, FMT="(A)") ""
2014 6 : IF (dft_control%period_efield%displacement_field) THEN
2015 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2016 0 : "PERIODIC_EFIELD| Use displacement field formulation"
2017 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
2018 0 : "PERIODIC_EFIELD| Displacement field filter: x", &
2019 0 : dft_control%period_efield%d_filter(1), &
2020 0 : "PERIODIC_EFIELD| y", &
2021 0 : dft_control%period_efield%d_filter(2), &
2022 0 : "PERIODIC_EFIELD| z", &
2023 0 : dft_control%period_efield%d_filter(3)
2024 : END IF
2025 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
2026 6 : "PERIODIC_EFIELD| Polarisation vector: x", &
2027 6 : dft_control%period_efield%polarisation(1), &
2028 6 : "PERIODIC_EFIELD| y", &
2029 6 : dft_control%period_efield%polarisation(2), &
2030 6 : "PERIODIC_EFIELD| z", &
2031 12 : dft_control%period_efield%polarisation(3)
2032 :
2033 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,I14)") &
2034 6 : "PERIODIC_EFIELD| Start Frame:", &
2035 6 : dft_control%period_efield%start_frame, &
2036 6 : "PERIODIC_EFIELD| End Frame:", &
2037 12 : dft_control%period_efield%end_frame
2038 :
2039 6 : IF (ALLOCATED(dft_control%period_efield%strength_list)) THEN
2040 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,I14)") &
2041 2 : "PERIODIC_EFIELD| Number of Intensities:", &
2042 4 : SIZE(dft_control%period_efield%strength_list)
2043 : WRITE (UNIT=output_unit, FMT="(T2,A,I10,T66,1X,ES14.6)") &
2044 2 : "PERIODIC_EFIELD| Intensity List [a.u.] ", &
2045 4 : 1, dft_control%period_efield%strength_list(1)
2046 24 : DO i = 2, SIZE(dft_control%period_efield%strength_list)
2047 : WRITE (UNIT=output_unit, FMT="(T2,A,I10,T66,1X,ES14.6)") &
2048 22 : "PERIODIC_EFIELD| ", &
2049 46 : i, dft_control%period_efield%strength_list(i)
2050 : END DO
2051 : ELSE
2052 : WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
2053 4 : "PERIODIC_EFIELD| Intensity [a.u.]:", &
2054 8 : dft_control%period_efield%strength
2055 : END IF
2056 :
2057 24 : IF (SQRT(DOT_PRODUCT(dft_control%period_efield%polarisation, &
2058 : dft_control%period_efield%polarisation)) < EPSILON(0.0_dp)) THEN
2059 0 : CPABORT("Invalid (too small) polarisation vector specified for PERIODIC_EFIELD")
2060 : END IF
2061 : END IF
2062 :
2063 1356 : IF (dft_control%do_sccs) THEN
2064 : WRITE (UNIT=output_unit, FMT="(/,T2,A)") &
2065 5 : "SCCS| Self-consistent continuum solvation model"
2066 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2067 5 : "SCCS| Relative permittivity of the solvent (medium)", &
2068 5 : dft_control%sccs_control%epsilon_solvent, &
2069 5 : "SCCS| Absolute permittivity [a.u.]", &
2070 10 : dft_control%sccs_control%epsilon_solvent/fourpi
2071 9 : SELECT CASE (dft_control%sccs_control%method_id)
2072 : CASE (sccs_andreussi)
2073 : WRITE (UNIT=output_unit, FMT="(T2,A,/,(T2,A,T61,ES20.6))") &
2074 4 : "SCCS| Dielectric function proposed by Andreussi et al.", &
2075 4 : "SCCS| rho_max", dft_control%sccs_control%rho_max, &
2076 8 : "SCCS| rho_min", dft_control%sccs_control%rho_min
2077 : CASE (sccs_fattebert_gygi)
2078 : WRITE (UNIT=output_unit, FMT="(T2,A,/,(T2,A,T61,ES20.6))") &
2079 1 : "SCCS| Dielectric function proposed by Fattebert and Gygi", &
2080 1 : "SCCS| beta", dft_control%sccs_control%beta, &
2081 2 : "SCCS| rho_zero", dft_control%sccs_control%rho_zero
2082 : CASE DEFAULT
2083 5 : CPABORT("Invalid SCCS model specified. Please, check your input!")
2084 : END SELECT
2085 6 : SELECT CASE (dft_control%sccs_control%derivative_method)
2086 : CASE (sccs_derivative_fft)
2087 : WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
2088 1 : "SCCS| Numerical derivative calculation", &
2089 2 : ADJUSTR("FFT")
2090 : CASE (sccs_derivative_cd3)
2091 : WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
2092 0 : "SCCS| Numerical derivative calculation", &
2093 0 : ADJUSTR("3-point stencil central differences")
2094 : CASE (sccs_derivative_cd5)
2095 : WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
2096 4 : "SCCS| Numerical derivative calculation", &
2097 8 : ADJUSTR("5-point stencil central differences")
2098 : CASE (sccs_derivative_cd7)
2099 : WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
2100 0 : "SCCS| Numerical derivative calculation", &
2101 0 : ADJUSTR("7-point stencil central differences")
2102 : CASE DEFAULT
2103 : CALL cp_abort(__LOCATION__, &
2104 : "Invalid derivative method specified for SCCS model. "// &
2105 5 : "Please, check your input!")
2106 : END SELECT
2107 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2108 5 : "SCCS| Repulsion parameter alpha [mN/m] = [dyn/cm]", &
2109 10 : cp_unit_from_cp2k(dft_control%sccs_control%alpha_solvent, "mN/m")
2110 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2111 5 : "SCCS| Dispersion parameter beta [GPa]", &
2112 10 : cp_unit_from_cp2k(dft_control%sccs_control%beta_solvent, "GPa")
2113 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2114 5 : "SCCS| Surface tension gamma [mN/m] = [dyn/cm]", &
2115 10 : cp_unit_from_cp2k(dft_control%sccs_control%gamma_solvent, "mN/m")
2116 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2117 5 : "SCCS| Mixing parameter applied during the iteration cycle", &
2118 10 : dft_control%sccs_control%mixing
2119 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2120 5 : "SCCS| Tolerance for the convergence of the SCCS iteration cycle", &
2121 10 : dft_control%sccs_control%eps_sccs
2122 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,I20)") &
2123 5 : "SCCS| Maximum number of iteration steps", &
2124 10 : dft_control%sccs_control%max_iter
2125 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2126 5 : "SCCS| SCF convergence threshold for starting the SCCS iteration", &
2127 10 : dft_control%sccs_control%eps_scf
2128 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2129 5 : "SCCS| Numerical increment for the cavity surface calculation", &
2130 10 : dft_control%sccs_control%delta_rho
2131 : END IF
2132 :
2133 1356 : WRITE (UNIT=output_unit, FMT="(A)") ""
2134 :
2135 : END IF
2136 :
2137 5278 : IF (dft_control%hairy_probes .EQV. .TRUE.) THEN
2138 4 : n_rep = SIZE(dft_control%probe)
2139 4 : IF (output_unit > 0) THEN
2140 6 : DO i_rep = 1, n_rep
2141 : WRITE (UNIT=output_unit, FMT="(T2,A,I5)") &
2142 4 : "HP | hair probe set", i_rep
2143 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,*(I5))") &
2144 4 : "HP| atom indexes", &
2145 12 : (dft_control%probe(i_rep)%atom_ids(i), i=1, dft_control%probe(i_rep)%natoms)
2146 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2147 4 : "HP| potential", dft_control%probe(i_rep)%mu
2148 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,F20.2)") &
2149 4 : "HP| temperature", dft_control%probe(i_rep)%T
2150 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
2151 6 : "HP| eps_hp", dft_control%probe(i_rep)%eps_hp
2152 : END DO
2153 : END IF
2154 : END IF
2155 :
2156 : CALL cp_print_key_finished_output(output_unit, logger, dft_section, &
2157 5278 : "PRINT%DFT_CONTROL_PARAMETERS")
2158 :
2159 5278 : CALL timestop(handle)
2160 :
2161 : END SUBROUTINE write_dft_control
2162 :
2163 : ! **************************************************************************************************
2164 : !> \brief Write the ADMM control parameters to the output unit.
2165 : !> \param admm_control ...
2166 : !> \param dft_section ...
2167 : ! **************************************************************************************************
2168 464 : SUBROUTINE write_admm_control(admm_control, dft_section)
2169 : TYPE(admm_control_type), POINTER :: admm_control
2170 : TYPE(section_vals_type), POINTER :: dft_section
2171 :
2172 : INTEGER :: iounit
2173 : TYPE(cp_logger_type), POINTER :: logger
2174 :
2175 464 : NULLIFY (logger)
2176 464 : logger => cp_get_default_logger()
2177 :
2178 : iounit = cp_print_key_unit_nr(logger, dft_section, &
2179 464 : "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
2180 :
2181 464 : IF (iounit > 0) THEN
2182 :
2183 235 : SELECT CASE (admm_control%admm_type)
2184 : CASE (no_admm_type)
2185 115 : WRITE (UNIT=iounit, FMT="(/,T2,A,T77,A)") "ADMM| Specific ADMM type specified", "NONE"
2186 : CASE (admm1_type)
2187 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMM1"
2188 : CASE (admm2_type)
2189 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMM2"
2190 : CASE (admms_type)
2191 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMS"
2192 : CASE (admmp_type)
2193 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMP"
2194 : CASE (admmq_type)
2195 1 : WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMQ"
2196 : CASE DEFAULT
2197 120 : CPABORT("admm_type")
2198 : END SELECT
2199 :
2200 191 : SELECT CASE (admm_control%purification_method)
2201 : CASE (do_admm_purify_none)
2202 71 : WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Density matrix purification method", "NONE"
2203 : CASE (do_admm_purify_cauchy)
2204 9 : WRITE (UNIT=iounit, FMT="(T2,A,T75,A)") "ADMM| Density matrix purification method", "Cauchy"
2205 : CASE (do_admm_purify_cauchy_subspace)
2206 5 : WRITE (UNIT=iounit, FMT="(T2,A,T66,A)") "ADMM| Density matrix purification method", "Cauchy subspace"
2207 : CASE (do_admm_purify_mo_diag)
2208 25 : WRITE (UNIT=iounit, FMT="(T2,A,T63,A)") "ADMM| Density matrix purification method", "MO diagonalization"
2209 : CASE (do_admm_purify_mo_no_diag)
2210 3 : WRITE (UNIT=iounit, FMT="(T2,A,T71,A)") "ADMM| Density matrix purification method", "MO no diag"
2211 : CASE (do_admm_purify_mcweeny)
2212 1 : WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Density matrix purification method", "McWeeny"
2213 : CASE (do_admm_purify_none_dm)
2214 6 : WRITE (UNIT=iounit, FMT="(T2,A,T73,A)") "ADMM| Density matrix purification method", "NONE(DM)"
2215 : CASE DEFAULT
2216 120 : CPABORT("admm_purification_method")
2217 : END SELECT
2218 :
2219 215 : SELECT CASE (admm_control%method)
2220 : CASE (do_admm_basis_projection)
2221 95 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Orbital projection on ADMM basis"
2222 : CASE (do_admm_blocking_purify_full)
2223 3 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Blocked Fock matrix projection with full purification"
2224 : CASE (do_admm_blocked_projection)
2225 6 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Blocked Fock matrix projection"
2226 : CASE (do_admm_charge_constrained_projection)
2227 16 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Orbital projection with charge constrain"
2228 : CASE DEFAULT
2229 120 : CPABORT("admm method")
2230 : END SELECT
2231 :
2232 138 : SELECT CASE (admm_control%scaling_model)
2233 : CASE (do_admm_exch_scaling_none)
2234 : CASE (do_admm_exch_scaling_merlot)
2235 18 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Use Merlot (2014) scaling model"
2236 : CASE DEFAULT
2237 120 : CPABORT("admm scaling_model")
2238 : END SELECT
2239 :
2240 120 : WRITE (UNIT=iounit, FMT="(T2,A,T61,G20.10)") "ADMM| eps_filter", admm_control%eps_filter
2241 :
2242 128 : SELECT CASE (admm_control%aux_exch_func)
2243 : CASE (do_admm_aux_exch_func_none)
2244 8 : WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| No exchange functional correction term used"
2245 : CASE (do_admm_aux_exch_func_default, do_admm_aux_exch_func_default_libxc)
2246 85 : WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "(W)PBEX"
2247 : CASE (do_admm_aux_exch_func_pbex, do_admm_aux_exch_func_pbex_libxc)
2248 18 : WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Exchange functional in correction term", "PBEX"
2249 : CASE (do_admm_aux_exch_func_opt, do_admm_aux_exch_func_opt_libxc)
2250 8 : WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Exchange functional in correction term", "OPTX"
2251 : CASE (do_admm_aux_exch_func_bee, do_admm_aux_exch_func_bee_libxc)
2252 1 : WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "Becke88"
2253 : CASE (do_admm_aux_exch_func_sx_libxc)
2254 0 : WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "SlaterX"
2255 : CASE DEFAULT
2256 120 : CPABORT("admm aux_exch_func")
2257 : END SELECT
2258 :
2259 120 : WRITE (UNIT=iounit, FMT="(A)") ""
2260 :
2261 : END IF
2262 :
2263 : CALL cp_print_key_finished_output(iounit, logger, dft_section, &
2264 464 : "PRINT%DFT_CONTROL_PARAMETERS")
2265 464 : END SUBROUTINE write_admm_control
2266 :
2267 : ! **************************************************************************************************
2268 : !> \brief Write the xTB control parameters to the output unit.
2269 : !> \param xtb_control ...
2270 : !> \param dft_section ...
2271 : ! **************************************************************************************************
2272 940 : SUBROUTINE write_xtb_control(xtb_control, dft_section)
2273 : TYPE(xtb_control_type), POINTER :: xtb_control
2274 : TYPE(section_vals_type), POINTER :: dft_section
2275 :
2276 : CHARACTER(len=*), PARAMETER :: routineN = 'write_xtb_control'
2277 :
2278 : INTEGER :: handle, output_unit
2279 : TYPE(cp_logger_type), POINTER :: logger
2280 :
2281 940 : CALL timeset(routineN, handle)
2282 940 : NULLIFY (logger)
2283 940 : logger => cp_get_default_logger()
2284 :
2285 : output_unit = cp_print_key_unit_nr(logger, dft_section, &
2286 940 : "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
2287 :
2288 940 : IF (output_unit > 0) THEN
2289 :
2290 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T31,A50)") &
2291 39 : "xTB| Parameter file", ADJUSTR(TRIM(xtb_control%parameter_file_name))
2292 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2293 39 : "xTB| Basis expansion STO-NG", xtb_control%sto_ng
2294 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2295 39 : "xTB| Basis expansion STO-NG for Hydrogen", xtb_control%h_sto_ng
2296 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,E10.4)") &
2297 39 : "xTB| Repulsive pair potential accuracy", xtb_control%eps_pair
2298 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.6)") &
2299 39 : "xTB| Repulsive enhancement factor", xtb_control%enscale
2300 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,L10)") &
2301 39 : "xTB| Halogen interaction potential", xtb_control%xb_interaction
2302 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
2303 39 : "xTB| Halogen interaction potential cutoff radius", xtb_control%xb_radius
2304 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,L10)") &
2305 39 : "xTB| Nonbonded interactions", xtb_control%do_nonbonded
2306 39 : SELECT CASE (xtb_control%vdw_type)
2307 : CASE (xtb_vdw_type_none)
2308 0 : WRITE (UNIT=output_unit, FMT="(T2,A)") "xTB| No vdW potential selected"
2309 : CASE (xtb_vdw_type_d3)
2310 39 : WRITE (UNIT=output_unit, FMT="(T2,A,T72,A)") "xTB| vdW potential type:", "DFTD3(BJ)"
2311 : WRITE (UNIT=output_unit, FMT="(T2,A,T31,A50)") &
2312 39 : "xTB| D3 Dispersion: Parameter file", ADJUSTR(TRIM(xtb_control%dispersion_parameter_file))
2313 : CASE (xtb_vdw_type_d4)
2314 0 : WRITE (UNIT=output_unit, FMT="(T2,A,T76,A)") "xTB| vdW potential type:", "DFTD4"
2315 : WRITE (UNIT=output_unit, FMT="(T2,A,T31,A50)") &
2316 0 : "xTB| D4 Dispersion: Parameter file", ADJUSTR(TRIM(xtb_control%dispersion_parameter_file))
2317 : CASE DEFAULT
2318 39 : CPABORT("vdw type")
2319 : END SELECT
2320 : WRITE (UNIT=output_unit, FMT="(T2,A,T51,3F10.3)") &
2321 39 : "xTB| Huckel constants ks kp kd", xtb_control%ks, xtb_control%kp, xtb_control%kd
2322 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,2F10.3)") &
2323 39 : "xTB| Huckel constants ksp k2sh", xtb_control%ksp, xtb_control%k2sh
2324 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
2325 39 : "xTB| Mataga-Nishimoto exponent", xtb_control%kg
2326 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
2327 39 : "xTB| Repulsion potential exponent", xtb_control%kf
2328 : WRITE (UNIT=output_unit, FMT="(T2,A,T51,3F10.3)") &
2329 39 : "xTB| Coordination number scaling kcn(s) kcn(p) kcn(d)", &
2330 78 : xtb_control%kcns, xtb_control%kcnp, xtb_control%kcnd
2331 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
2332 39 : "xTB| Electronegativity scaling", xtb_control%ken
2333 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,2F10.3)") &
2334 39 : "xTB| Halogen potential scaling kxr kx2", xtb_control%kxr, xtb_control%kx2
2335 39 : WRITE (UNIT=output_unit, FMT="(/)")
2336 :
2337 : END IF
2338 :
2339 : CALL cp_print_key_finished_output(output_unit, logger, dft_section, &
2340 940 : "PRINT%DFT_CONTROL_PARAMETERS")
2341 :
2342 940 : CALL timestop(handle)
2343 :
2344 940 : END SUBROUTINE write_xtb_control
2345 :
2346 : ! **************************************************************************************************
2347 : !> \brief Purpose: Write the QS control parameters to the output unit.
2348 : !> \param qs_control ...
2349 : !> \param dft_section ...
2350 : ! **************************************************************************************************
2351 12716 : SUBROUTINE write_qs_control(qs_control, dft_section)
2352 : TYPE(qs_control_type), INTENT(IN) :: qs_control
2353 : TYPE(section_vals_type), POINTER :: dft_section
2354 :
2355 : CHARACTER(len=*), PARAMETER :: routineN = 'write_qs_control'
2356 :
2357 : CHARACTER(len=20) :: method, quadrature
2358 : INTEGER :: handle, i, igrid_level, ngrid_level, &
2359 : output_unit
2360 : TYPE(cp_logger_type), POINTER :: logger
2361 : TYPE(ddapc_restraint_type), POINTER :: ddapc_restraint_control
2362 : TYPE(enumeration_type), POINTER :: enum
2363 : TYPE(keyword_type), POINTER :: keyword
2364 : TYPE(section_type), POINTER :: qs_section
2365 : TYPE(section_vals_type), POINTER :: print_section_vals, qs_section_vals
2366 :
2367 8600 : IF (qs_control%semi_empirical) RETURN
2368 6440 : IF (qs_control%dftb) RETURN
2369 6218 : IF (qs_control%xtb) RETURN
2370 5278 : CALL timeset(routineN, handle)
2371 5278 : NULLIFY (logger, print_section_vals, qs_section, qs_section_vals)
2372 5278 : logger => cp_get_default_logger()
2373 5278 : print_section_vals => section_vals_get_subs_vals(dft_section, "PRINT")
2374 5278 : qs_section_vals => section_vals_get_subs_vals(dft_section, "QS")
2375 5278 : CALL section_vals_get(qs_section_vals, section=qs_section)
2376 :
2377 5278 : NULLIFY (enum, keyword)
2378 5278 : keyword => section_get_keyword(qs_section, "METHOD")
2379 5278 : CALL keyword_get(keyword, enum=enum)
2380 5278 : method = TRIM(enum_i2c(enum, qs_control%method_id))
2381 :
2382 5278 : NULLIFY (enum, keyword)
2383 5278 : keyword => section_get_keyword(qs_section, "QUADRATURE")
2384 5278 : CALL keyword_get(keyword, enum=enum)
2385 5278 : quadrature = TRIM(enum_i2c(enum, qs_control%gapw_control%quadrature))
2386 :
2387 : output_unit = cp_print_key_unit_nr(logger, print_section_vals, &
2388 5278 : "DFT_CONTROL_PARAMETERS", extension=".Log")
2389 5278 : IF (output_unit > 0) THEN
2390 1356 : ngrid_level = SIZE(qs_control%e_cutoff)
2391 : WRITE (UNIT=output_unit, FMT="(/,T2,A,T61,A20)") &
2392 1356 : "QS| Method:", ADJUSTR(method)
2393 1356 : IF (qs_control%pw_grid_opt%spherical) THEN
2394 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A)") &
2395 0 : "QS| Density plane wave grid type", " SPHERICAL HALFSPACE"
2396 1356 : ELSE IF (qs_control%pw_grid_opt%fullspace) THEN
2397 : WRITE (UNIT=output_unit, FMT="(T2,A,T57,A)") &
2398 1356 : "QS| Density plane wave grid type", " NON-SPHERICAL FULLSPACE"
2399 : ELSE
2400 : WRITE (UNIT=output_unit, FMT="(T2,A,T57,A)") &
2401 0 : "QS| Density plane wave grid type", " NON-SPHERICAL HALFSPACE"
2402 : END IF
2403 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2404 1356 : "QS| Number of grid levels:", SIZE(qs_control%e_cutoff)
2405 1356 : IF (ngrid_level == 1) THEN
2406 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2407 72 : "QS| Density cutoff [a.u.]:", qs_control%e_cutoff(1)
2408 : ELSE
2409 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2410 1284 : "QS| Density cutoff [a.u.]:", qs_control%cutoff
2411 1284 : IF (qs_control%commensurate_mgrids) &
2412 131 : WRITE (UNIT=output_unit, FMT="(T2,A)") "QS| Using commensurate multigrids"
2413 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2414 1284 : "QS| Multi grid cutoff [a.u.]: 1) grid level", qs_control%e_cutoff(1)
2415 : WRITE (UNIT=output_unit, FMT="(T2,A,I3,A,T71,F10.1)") &
2416 4017 : ("QS| ", igrid_level, ") grid level", &
2417 5301 : qs_control%e_cutoff(igrid_level), &
2418 6585 : igrid_level=2, SIZE(qs_control%e_cutoff))
2419 : END IF
2420 1356 : IF (qs_control%pao) THEN
2421 0 : WRITE (UNIT=output_unit, FMT="(T2,A)") "QS| PAO active"
2422 : END IF
2423 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2424 1356 : "QS| Grid level progression factor:", qs_control%progression_factor
2425 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
2426 1356 : "QS| Relative density cutoff [a.u.]:", qs_control%relative_cutoff
2427 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2428 1356 : "QS| Interaction thresholds: eps_pgf_orb:", &
2429 1356 : qs_control%eps_pgf_orb, &
2430 1356 : "QS| eps_filter_matrix:", &
2431 1356 : qs_control%eps_filter_matrix, &
2432 1356 : "QS| eps_core_charge:", &
2433 1356 : qs_control%eps_core_charge, &
2434 1356 : "QS| eps_rho_gspace:", &
2435 1356 : qs_control%eps_rho_gspace, &
2436 1356 : "QS| eps_rho_rspace:", &
2437 1356 : qs_control%eps_rho_rspace, &
2438 1356 : "QS| eps_gvg_rspace:", &
2439 1356 : qs_control%eps_gvg_rspace, &
2440 1356 : "QS| eps_ppl:", &
2441 1356 : qs_control%eps_ppl, &
2442 1356 : "QS| eps_ppnl:", &
2443 2712 : qs_control%eps_ppnl
2444 1356 : IF (qs_control%gapw) THEN
2445 408 : SELECT CASE (qs_control%gapw_control%basis_1c)
2446 : CASE (gapw_1c_orb)
2447 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2448 201 : "QS| GAPW| One center basis from orbital basis primitives"
2449 : CASE (gapw_1c_small)
2450 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2451 2 : "QS| GAPW| One center basis extended with primitives (small:s)"
2452 : CASE (gapw_1c_medium)
2453 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2454 1 : "QS| GAPW| One center basis extended with primitives (medium:sp)"
2455 : CASE (gapw_1c_large)
2456 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2457 2 : "QS| GAPW| One center basis extended with primitives (large:spd)"
2458 : CASE (gapw_1c_very_large)
2459 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2460 1 : "QS| GAPW| One center basis extended with primitives (very large:spdf)"
2461 : CASE DEFAULT
2462 207 : CPABORT("basis_1c incorrect")
2463 : END SELECT
2464 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2465 207 : "QS| GAPW| eps_fit:", &
2466 207 : qs_control%gapw_control%eps_fit, &
2467 207 : "QS| GAPW| eps_iso:", &
2468 207 : qs_control%gapw_control%eps_iso, &
2469 207 : "QS| GAPW| eps_svd:", &
2470 207 : qs_control%gapw_control%eps_svd, &
2471 207 : "QS| GAPW| eps_cpc:", &
2472 414 : qs_control%gapw_control%eps_cpc
2473 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2474 207 : "QS| GAPW| atom-r-grid: quadrature:", &
2475 414 : ADJUSTR(quadrature)
2476 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2477 207 : "QS| GAPW| atom-s-grid: max l :", &
2478 207 : qs_control%gapw_control%lmax_sphere, &
2479 207 : "QS| GAPW| max_l_rho0 :", &
2480 414 : qs_control%gapw_control%lmax_rho0
2481 207 : IF (qs_control%gapw_control%non_paw_atoms) THEN
2482 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2483 31 : "QS| GAPW| At least one kind is NOT PAW, i.e. it has only soft AO "
2484 : END IF
2485 207 : IF (qs_control%gapw_control%nopaw_as_gpw) THEN
2486 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2487 31 : "QS| GAPW| The NOT PAW atoms are treated fully GPW"
2488 : END IF
2489 : END IF
2490 1356 : IF (qs_control%gapw_xc) THEN
2491 50 : SELECT CASE (qs_control%gapw_control%basis_1c)
2492 : CASE (gapw_1c_orb)
2493 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2494 25 : "QS| GAPW_XC| One center basis from orbital basis primitives"
2495 : CASE (gapw_1c_small)
2496 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2497 0 : "QS| GAPW_XC| One center basis extended with primitives (small:s)"
2498 : CASE (gapw_1c_medium)
2499 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2500 0 : "QS| GAPW_XC| One center basis extended with primitives (medium:sp)"
2501 : CASE (gapw_1c_large)
2502 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2503 0 : "QS| GAPW_XC| One center basis extended with primitives (large:spd)"
2504 : CASE (gapw_1c_very_large)
2505 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
2506 0 : "QS| GAPW_XC| One center basis extended with primitives (very large:spdf)"
2507 : CASE DEFAULT
2508 25 : CPABORT("basis_1c incorrect")
2509 : END SELECT
2510 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2511 25 : "QS| GAPW_XC| eps_fit:", &
2512 25 : qs_control%gapw_control%eps_fit, &
2513 25 : "QS| GAPW_XC| eps_iso:", &
2514 25 : qs_control%gapw_control%eps_iso, &
2515 25 : "QS| GAPW_XC| eps_svd:", &
2516 50 : qs_control%gapw_control%eps_svd
2517 : WRITE (UNIT=output_unit, FMT="(T2,A,T55,A30)") &
2518 25 : "QS| GAPW_XC|atom-r-grid: quadrature:", &
2519 50 : enum_i2c(enum, qs_control%gapw_control%quadrature)
2520 : WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
2521 25 : "QS| GAPW_XC| atom-s-grid: max l :", &
2522 50 : qs_control%gapw_control%lmax_sphere
2523 : END IF
2524 1356 : IF (qs_control%mulliken_restraint) THEN
2525 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2526 1 : "QS| Mulliken restraint target", qs_control%mulliken_restraint_control%target
2527 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2528 1 : "QS| Mulliken restraint strength", qs_control%mulliken_restraint_control%strength
2529 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,I8)") &
2530 1 : "QS| Mulliken restraint atoms: ", qs_control%mulliken_restraint_control%natoms
2531 2 : WRITE (UNIT=output_unit, FMT="(5I8)") qs_control%mulliken_restraint_control%atoms
2532 : END IF
2533 1356 : IF (qs_control%ddapc_restraint) THEN
2534 14 : DO i = 1, SIZE(qs_control%ddapc_restraint_control)
2535 8 : ddapc_restraint_control => qs_control%ddapc_restraint_control(i)
2536 8 : IF (SIZE(qs_control%ddapc_restraint_control) > 1) &
2537 : WRITE (UNIT=output_unit, FMT="(T2,A,T3,I8)") &
2538 3 : "QS| parameters for DDAPC restraint number", i
2539 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2540 8 : "QS| ddapc restraint target", ddapc_restraint_control%target
2541 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2542 8 : "QS| ddapc restraint strength", ddapc_restraint_control%strength
2543 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,I8)") &
2544 8 : "QS| ddapc restraint atoms: ", ddapc_restraint_control%natoms
2545 17 : WRITE (UNIT=output_unit, FMT="(5I8)") ddapc_restraint_control%atoms
2546 8 : WRITE (UNIT=output_unit, FMT="(T2,A)") "Coefficients:"
2547 17 : WRITE (UNIT=output_unit, FMT="(5F6.2)") ddapc_restraint_control%coeff
2548 6 : SELECT CASE (ddapc_restraint_control%functional_form)
2549 : CASE (do_ddapc_restraint)
2550 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2551 3 : "QS| ddapc restraint functional form :", "RESTRAINT"
2552 : CASE (do_ddapc_constraint)
2553 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2554 5 : "QS| ddapc restraint functional form :", "CONSTRAINT"
2555 : CASE DEFAULT
2556 8 : CPABORT("Unknown ddapc restraint")
2557 : END SELECT
2558 : END DO
2559 : END IF
2560 1356 : IF (qs_control%s2_restraint) THEN
2561 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2562 0 : "QS| s2 restraint target", qs_control%s2_restraint_control%target
2563 : WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
2564 0 : "QS| s2 restraint strength", qs_control%s2_restraint_control%strength
2565 0 : SELECT CASE (qs_control%s2_restraint_control%functional_form)
2566 : CASE (do_s2_restraint)
2567 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2568 0 : "QS| s2 restraint functional form :", "RESTRAINT"
2569 0 : CPABORT("Not yet implemented")
2570 : CASE (do_s2_constraint)
2571 : WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
2572 0 : "QS| s2 restraint functional form :", "CONSTRAINT"
2573 : CASE DEFAULT
2574 0 : CPABORT("Unknown ddapc restraint")
2575 : END SELECT
2576 : END IF
2577 : END IF
2578 : CALL cp_print_key_finished_output(output_unit, logger, print_section_vals, &
2579 5278 : "DFT_CONTROL_PARAMETERS")
2580 :
2581 5278 : CALL timestop(handle)
2582 :
2583 : END SUBROUTINE write_qs_control
2584 :
2585 : ! **************************************************************************************************
2586 : !> \brief reads the input parameters needed for ddapc.
2587 : !> \param qs_control ...
2588 : !> \param qs_section ...
2589 : !> \param ddapc_restraint_section ...
2590 : !> \author fschiff
2591 : !> \note
2592 : !> either reads DFT%QS%DDAPC_RESTRAINT or PROPERTIES%ET_coupling
2593 : !> if(qs_section is present the DFT part is read, if ddapc_restraint_section
2594 : !> is present ET_COUPLING is read. Avoid having both!!!
2595 : ! **************************************************************************************************
2596 14 : SUBROUTINE read_ddapc_section(qs_control, qs_section, ddapc_restraint_section)
2597 :
2598 : TYPE(qs_control_type), INTENT(INOUT) :: qs_control
2599 : TYPE(section_vals_type), OPTIONAL, POINTER :: qs_section, ddapc_restraint_section
2600 :
2601 : INTEGER :: i, j, jj, k, n_rep
2602 14 : INTEGER, DIMENSION(:), POINTER :: tmplist
2603 14 : REAL(KIND=dp), DIMENSION(:), POINTER :: rtmplist
2604 : TYPE(ddapc_restraint_type), POINTER :: ddapc_restraint_control
2605 : TYPE(section_vals_type), POINTER :: ddapc_section
2606 :
2607 14 : IF (PRESENT(ddapc_restraint_section)) THEN
2608 0 : IF (ASSOCIATED(qs_control%ddapc_restraint_control)) THEN
2609 0 : IF (SIZE(qs_control%ddapc_restraint_control) >= 2) &
2610 0 : CPABORT("ET_COUPLING cannot be used in combination with a normal restraint")
2611 : ELSE
2612 0 : ddapc_section => ddapc_restraint_section
2613 0 : ALLOCATE (qs_control%ddapc_restraint_control(1))
2614 : END IF
2615 : END IF
2616 :
2617 14 : IF (PRESENT(qs_section)) THEN
2618 14 : NULLIFY (ddapc_section)
2619 : ddapc_section => section_vals_get_subs_vals(qs_section, &
2620 14 : "DDAPC_RESTRAINT")
2621 : END IF
2622 :
2623 32 : DO i = 1, SIZE(qs_control%ddapc_restraint_control)
2624 :
2625 18 : CALL ddapc_control_create(qs_control%ddapc_restraint_control(i))
2626 18 : ddapc_restraint_control => qs_control%ddapc_restraint_control(i)
2627 :
2628 : CALL section_vals_val_get(ddapc_section, "STRENGTH", i_rep_section=i, &
2629 18 : r_val=ddapc_restraint_control%strength)
2630 : CALL section_vals_val_get(ddapc_section, "TARGET", i_rep_section=i, &
2631 18 : r_val=ddapc_restraint_control%target)
2632 : CALL section_vals_val_get(ddapc_section, "FUNCTIONAL_FORM", i_rep_section=i, &
2633 18 : i_val=ddapc_restraint_control%functional_form)
2634 : CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
2635 18 : n_rep_val=n_rep)
2636 : CALL section_vals_val_get(ddapc_section, "TYPE_OF_DENSITY", i_rep_section=i, &
2637 18 : i_val=ddapc_restraint_control%density_type)
2638 :
2639 18 : jj = 0
2640 36 : DO k = 1, n_rep
2641 : CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
2642 18 : i_rep_val=k, i_vals=tmplist)
2643 56 : DO j = 1, SIZE(tmplist)
2644 38 : jj = jj + 1
2645 : END DO
2646 : END DO
2647 18 : IF (jj < 1) CPABORT("Need at least 1 atom to use ddapc constraints")
2648 18 : ddapc_restraint_control%natoms = jj
2649 18 : IF (ASSOCIATED(ddapc_restraint_control%atoms)) &
2650 0 : DEALLOCATE (ddapc_restraint_control%atoms)
2651 54 : ALLOCATE (ddapc_restraint_control%atoms(ddapc_restraint_control%natoms))
2652 18 : jj = 0
2653 36 : DO k = 1, n_rep
2654 : CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
2655 18 : i_rep_val=k, i_vals=tmplist)
2656 56 : DO j = 1, SIZE(tmplist)
2657 20 : jj = jj + 1
2658 38 : ddapc_restraint_control%atoms(jj) = tmplist(j)
2659 : END DO
2660 : END DO
2661 :
2662 18 : IF (ASSOCIATED(ddapc_restraint_control%coeff)) &
2663 0 : DEALLOCATE (ddapc_restraint_control%coeff)
2664 54 : ALLOCATE (ddapc_restraint_control%coeff(ddapc_restraint_control%natoms))
2665 38 : ddapc_restraint_control%coeff = 1.0_dp
2666 :
2667 : CALL section_vals_val_get(ddapc_section, "COEFF", i_rep_section=i, &
2668 18 : n_rep_val=n_rep)
2669 18 : jj = 0
2670 20 : DO k = 1, n_rep
2671 : CALL section_vals_val_get(ddapc_section, "COEFF", i_rep_section=i, &
2672 2 : i_rep_val=k, r_vals=rtmplist)
2673 22 : DO j = 1, SIZE(rtmplist)
2674 2 : jj = jj + 1
2675 2 : IF (jj > ddapc_restraint_control%natoms) &
2676 0 : CPABORT("Need the same number of coeff as there are atoms ")
2677 4 : ddapc_restraint_control%coeff(jj) = rtmplist(j)
2678 : END DO
2679 : END DO
2680 18 : IF (jj < ddapc_restraint_control%natoms .AND. jj /= 0) &
2681 50 : CPABORT("Need no or the same number of coeff as there are atoms.")
2682 : END DO
2683 14 : k = 0
2684 32 : DO i = 1, SIZE(qs_control%ddapc_restraint_control)
2685 18 : IF (qs_control%ddapc_restraint_control(i)%functional_form == &
2686 24 : do_ddapc_constraint) k = k + 1
2687 : END DO
2688 14 : IF (k == 2) CALL cp_abort(__LOCATION__, &
2689 0 : "Only a single constraint possible yet, try to use restraints instead ")
2690 :
2691 14 : END SUBROUTINE read_ddapc_section
2692 :
2693 : ! **************************************************************************************************
2694 : !> \brief ...
2695 : !> \param dft_control ...
2696 : !> \param efield_section ...
2697 : ! **************************************************************************************************
2698 262 : SUBROUTINE read_efield_sections(dft_control, efield_section)
2699 : TYPE(dft_control_type), POINTER :: dft_control
2700 : TYPE(section_vals_type), POINTER :: efield_section
2701 :
2702 : CHARACTER(len=default_path_length) :: file_name
2703 : INTEGER :: i, io, j, n, unit_nr
2704 262 : REAL(KIND=dp), DIMENSION(:), POINTER :: tmp_vals
2705 : TYPE(efield_type), POINTER :: efield
2706 : TYPE(section_vals_type), POINTER :: tmp_section
2707 :
2708 524 : DO i = 1, SIZE(dft_control%efield_fields)
2709 262 : NULLIFY (dft_control%efield_fields(i)%efield)
2710 1310 : ALLOCATE (dft_control%efield_fields(i)%efield)
2711 262 : efield => dft_control%efield_fields(i)%efield
2712 262 : NULLIFY (efield%envelop_i_vars, efield%envelop_r_vars)
2713 : CALL section_vals_val_get(efield_section, "INTENSITY", i_rep_section=i, &
2714 262 : r_val=efield%strength)
2715 :
2716 : CALL section_vals_val_get(efield_section, "POLARISATION", i_rep_section=i, &
2717 262 : r_vals=tmp_vals)
2718 786 : ALLOCATE (efield%polarisation(SIZE(tmp_vals)))
2719 2096 : efield%polarisation = tmp_vals
2720 : CALL section_vals_val_get(efield_section, "PHASE", i_rep_section=i, &
2721 262 : r_val=efield%phase_offset)
2722 : CALL section_vals_val_get(efield_section, "ENVELOP", i_rep_section=i, &
2723 262 : i_val=efield%envelop_id)
2724 : CALL section_vals_val_get(efield_section, "WAVELENGTH", i_rep_section=i, &
2725 262 : r_val=efield%wavelength)
2726 : CALL section_vals_val_get(efield_section, "VEC_POT_INITIAL", i_rep_section=i, &
2727 262 : r_vals=tmp_vals)
2728 2096 : efield%vec_pot_initial = tmp_vals
2729 :
2730 524 : IF (efield%envelop_id == constant_env) THEN
2731 252 : ALLOCATE (efield%envelop_i_vars(2))
2732 252 : tmp_section => section_vals_get_subs_vals(efield_section, "CONSTANT_ENV", i_rep_section=i)
2733 : CALL section_vals_val_get(tmp_section, "START_STEP", &
2734 252 : i_val=efield%envelop_i_vars(1))
2735 : CALL section_vals_val_get(tmp_section, "END_STEP", &
2736 252 : i_val=efield%envelop_i_vars(2))
2737 10 : ELSE IF (efield%envelop_id == gaussian_env) THEN
2738 6 : ALLOCATE (efield%envelop_r_vars(2))
2739 6 : tmp_section => section_vals_get_subs_vals(efield_section, "GAUSSIAN_ENV", i_rep_section=i)
2740 : CALL section_vals_val_get(tmp_section, "T0", &
2741 6 : r_val=efield%envelop_r_vars(1))
2742 : CALL section_vals_val_get(tmp_section, "SIGMA", &
2743 6 : r_val=efield%envelop_r_vars(2))
2744 4 : ELSE IF (efield%envelop_id == ramp_env) THEN
2745 2 : ALLOCATE (efield%envelop_i_vars(4))
2746 2 : tmp_section => section_vals_get_subs_vals(efield_section, "RAMP_ENV", i_rep_section=i)
2747 : CALL section_vals_val_get(tmp_section, "START_STEP_IN", &
2748 2 : i_val=efield%envelop_i_vars(1))
2749 : CALL section_vals_val_get(tmp_section, "END_STEP_IN", &
2750 2 : i_val=efield%envelop_i_vars(2))
2751 : CALL section_vals_val_get(tmp_section, "START_STEP_OUT", &
2752 2 : i_val=efield%envelop_i_vars(3))
2753 : CALL section_vals_val_get(tmp_section, "END_STEP_OUT", &
2754 2 : i_val=efield%envelop_i_vars(4))
2755 2 : ELSE IF (efield%envelop_id == custom_env) THEN
2756 2 : tmp_section => section_vals_get_subs_vals(efield_section, "CUSTOM_ENV", i_rep_section=i)
2757 2 : CALL section_vals_val_get(tmp_section, "EFIELD_FILE_NAME", c_val=file_name)
2758 2 : CALL open_file(file_name=TRIM(file_name), file_action="READ", file_status="OLD", unit_number=unit_nr)
2759 : !Determine the number of lines in file
2760 2 : n = 0
2761 10 : DO WHILE (.TRUE.)
2762 12 : READ (unit_nr, *, iostat=io)
2763 12 : IF (io /= 0) EXIT
2764 10 : n = n + 1
2765 : END DO
2766 2 : REWIND (unit_nr)
2767 6 : ALLOCATE (efield%envelop_r_vars(n + 1))
2768 : !Store the timestep of the list in the first entry of the r_vars
2769 2 : CALL section_vals_val_get(tmp_section, "TIMESTEP", r_val=efield%envelop_r_vars(1))
2770 : !Read the file
2771 12 : DO j = 2, n + 1
2772 10 : READ (unit_nr, *) efield%envelop_r_vars(j)
2773 12 : efield%envelop_r_vars(j) = cp_unit_to_cp2k(efield%envelop_r_vars(j), "volt/m")
2774 : END DO
2775 2 : CALL close_file(unit_nr)
2776 : END IF
2777 : END DO
2778 262 : END SUBROUTINE read_efield_sections
2779 :
2780 : ! **************************************************************************************************
2781 : !> \brief reads the input parameters needed real time propagation
2782 : !> \param dft_control ...
2783 : !> \param rtp_section ...
2784 : !> \author fschiff
2785 : ! **************************************************************************************************
2786 1488 : SUBROUTINE read_rtp_section(dft_control, rtp_section)
2787 :
2788 : TYPE(dft_control_type), INTENT(INOUT) :: dft_control
2789 : TYPE(section_vals_type), POINTER :: rtp_section
2790 :
2791 : INTEGER :: i, j, n_elems
2792 248 : INTEGER, DIMENSION(:), POINTER :: tmp
2793 : LOGICAL :: is_present, local_moment_possible
2794 : TYPE(section_vals_type), POINTER :: proj_mo_section, subsection
2795 :
2796 2976 : ALLOCATE (dft_control%rtp_control)
2797 : CALL section_vals_val_get(rtp_section, "MAX_ITER", &
2798 248 : i_val=dft_control%rtp_control%max_iter)
2799 : CALL section_vals_val_get(rtp_section, "MAT_EXP", &
2800 248 : i_val=dft_control%rtp_control%mat_exp)
2801 : CALL section_vals_val_get(rtp_section, "ASPC_ORDER", &
2802 248 : i_val=dft_control%rtp_control%aspc_order)
2803 : CALL section_vals_val_get(rtp_section, "EXP_ACCURACY", &
2804 248 : r_val=dft_control%rtp_control%eps_exp)
2805 : CALL section_vals_val_get(rtp_section, "RTBSE%_SECTION_PARAMETERS_", &
2806 248 : i_val=dft_control%rtp_control%rtp_method)
2807 : CALL section_vals_val_get(rtp_section, "RTBSE%RTBSE_HAMILTONIAN", &
2808 248 : i_val=dft_control%rtp_control%rtbse_ham)
2809 : CALL section_vals_val_get(rtp_section, "PROPAGATOR", &
2810 248 : i_val=dft_control%rtp_control%propagator)
2811 : CALL section_vals_val_get(rtp_section, "EPS_ITER", &
2812 248 : r_val=dft_control%rtp_control%eps_ener)
2813 : CALL section_vals_val_get(rtp_section, "INITIAL_WFN", &
2814 248 : i_val=dft_control%rtp_control%initial_wfn)
2815 : CALL section_vals_val_get(rtp_section, "HFX_BALANCE_IN_CORE", &
2816 248 : l_val=dft_control%rtp_control%hfx_redistribute)
2817 : CALL section_vals_val_get(rtp_section, "APPLY_WFN_MIX_INIT_RESTART", &
2818 248 : l_val=dft_control%rtp_control%apply_wfn_mix_init_restart)
2819 : CALL section_vals_val_get(rtp_section, "APPLY_DELTA_PULSE", &
2820 248 : l_val=dft_control%rtp_control%apply_delta_pulse)
2821 : CALL section_vals_val_get(rtp_section, "APPLY_DELTA_PULSE_MAG", &
2822 248 : l_val=dft_control%rtp_control%apply_delta_pulse_mag)
2823 : CALL section_vals_val_get(rtp_section, "VELOCITY_GAUGE", &
2824 248 : l_val=dft_control%rtp_control%velocity_gauge)
2825 : CALL section_vals_val_get(rtp_section, "VG_COM_NL", &
2826 248 : l_val=dft_control%rtp_control%nl_gauge_transform)
2827 : CALL section_vals_val_get(rtp_section, "PERIODIC", &
2828 248 : l_val=dft_control%rtp_control%periodic)
2829 : CALL section_vals_val_get(rtp_section, "DENSITY_PROPAGATION", &
2830 248 : l_val=dft_control%rtp_control%linear_scaling)
2831 : CALL section_vals_val_get(rtp_section, "MCWEENY_MAX_ITER", &
2832 248 : i_val=dft_control%rtp_control%mcweeny_max_iter)
2833 : CALL section_vals_val_get(rtp_section, "ACCURACY_REFINEMENT", &
2834 248 : i_val=dft_control%rtp_control%acc_ref)
2835 : CALL section_vals_val_get(rtp_section, "MCWEENY_EPS", &
2836 248 : r_val=dft_control%rtp_control%mcweeny_eps)
2837 : CALL section_vals_val_get(rtp_section, "DELTA_PULSE_SCALE", &
2838 248 : r_val=dft_control%rtp_control%delta_pulse_scale)
2839 : CALL section_vals_val_get(rtp_section, "DELTA_PULSE_DIRECTION", &
2840 248 : i_vals=tmp)
2841 992 : dft_control%rtp_control%delta_pulse_direction = tmp
2842 : CALL section_vals_val_get(rtp_section, "SC_CHECK_START", &
2843 248 : i_val=dft_control%rtp_control%sc_check_start)
2844 248 : proj_mo_section => section_vals_get_subs_vals(rtp_section, "PRINT%PROJECTION_MO")
2845 248 : CALL section_vals_get(proj_mo_section, explicit=is_present)
2846 248 : IF (is_present) THEN
2847 4 : IF (dft_control%rtp_control%linear_scaling) &
2848 : CALL cp_abort(__LOCATION__, &
2849 : "You have defined a time dependent projection of mos, but "// &
2850 : "only the density matrix is propagated (DENSITY_PROPAGATION "// &
2851 : ".TRUE.). Please either use MO-based real time DFT or do not "// &
2852 0 : "define any PRINT%PROJECTION_MO section")
2853 4 : dft_control%rtp_control%is_proj_mo = .TRUE.
2854 : ELSE
2855 244 : dft_control%rtp_control%is_proj_mo = .FALSE.
2856 : END IF
2857 : ! Moment trace
2858 : local_moment_possible = (dft_control%rtp_control%rtp_method == rtp_method_bse) .OR. &
2859 248 : ((.NOT. dft_control%rtp_control%periodic) .AND. dft_control%rtp_control%linear_scaling)
2860 : ! TODO : Implement for other moment operators
2861 248 : subsection => section_vals_get_subs_vals(rtp_section, "PRINT%MOMENTS")
2862 248 : CALL section_vals_get(subsection, explicit=is_present)
2863 : ! Trigger the flag
2864 : dft_control%rtp_control%save_local_moments = &
2865 248 : is_present .OR. dft_control%rtp_control%save_local_moments
2866 248 : IF (is_present .AND. (.NOT. local_moment_possible)) THEN
2867 : CALL cp_abort(__LOCATION__, "Moments trace printing only "// &
2868 : "implemented in non-periodic systems in linear scaling. "// &
2869 0 : "Please use DFT%PRINT%MOMENTS for other printing.")
2870 : END IF
2871 : CALL section_vals_val_get(rtp_section, "PRINT%MOMENTS%REFERENCE", &
2872 248 : i_val=dft_control%rtp_control%moment_trace_ref_type)
2873 : CALL section_vals_val_get(rtp_section, "PRINT%MOMENTS%REFERENCE_POINT", &
2874 248 : r_vals=dft_control%rtp_control%moment_trace_user_ref_point)
2875 : ! Moment Fourier transform
2876 248 : subsection => section_vals_get_subs_vals(rtp_section, "PRINT%MOMENTS_FT")
2877 248 : CALL section_vals_get(subsection, explicit=is_present)
2878 : ! Trigger the flag
2879 : dft_control%rtp_control%save_local_moments = &
2880 248 : is_present .OR. dft_control%rtp_control%save_local_moments
2881 248 : IF (is_present .AND. (.NOT. local_moment_possible)) THEN
2882 : ! Not implemented
2883 : CALL cp_abort(__LOCATION__, "Moments Fourier transform printing "// &
2884 0 : "implemented only for non-periodic systems in linear scaling.")
2885 : END IF
2886 : ! General FT settings
2887 : CALL section_vals_val_get(rtp_section, "FT%DAMPING", &
2888 248 : r_val=dft_control%rtp_control%ft_damping)
2889 : CALL section_vals_val_get(rtp_section, "FT%START_TIME", &
2890 248 : r_val=dft_control%rtp_control%ft_t0)
2891 : ! Padé settings
2892 248 : subsection => section_vals_get_subs_vals(rtp_section, "FT%PADE")
2893 : CALL section_vals_val_get(subsection, "_SECTION_PARAMETERS_", &
2894 248 : l_val=dft_control%rtp_control%pade_requested)
2895 : CALL section_vals_val_get(subsection, "E_MIN", &
2896 248 : r_val=dft_control%rtp_control%pade_e_min)
2897 : CALL section_vals_val_get(subsection, "E_STEP", &
2898 248 : r_val=dft_control%rtp_control%pade_e_step)
2899 : CALL section_vals_val_get(subsection, "E_MAX", &
2900 248 : r_val=dft_control%rtp_control%pade_e_max)
2901 : CALL section_vals_val_get(subsection, "FIT_E_MIN", &
2902 248 : r_val=dft_control%rtp_control%pade_fit_e_min)
2903 : CALL section_vals_val_get(subsection, "FIT_E_MAX", &
2904 248 : r_val=dft_control%rtp_control%pade_fit_e_max)
2905 : ! If default settings used for fit_e_min/max, rewrite with appropriate values
2906 248 : IF (dft_control%rtp_control%pade_fit_e_min < 0) THEN
2907 248 : dft_control%rtp_control%pade_fit_e_min = dft_control%rtp_control%pade_e_min
2908 : END IF
2909 248 : IF (dft_control%rtp_control%pade_fit_e_max < 0) THEN
2910 248 : dft_control%rtp_control%pade_fit_e_max = dft_control%rtp_control%pade_e_max
2911 : END IF
2912 : ! Polarizability settings
2913 248 : subsection => section_vals_get_subs_vals(rtp_section, "PRINT%POLARIZABILITY")
2914 248 : CALL section_vals_get(subsection, explicit=is_present)
2915 : ! Trigger the flag
2916 : dft_control%rtp_control%save_local_moments = &
2917 248 : is_present .OR. dft_control%rtp_control%save_local_moments
2918 248 : IF (is_present .AND. (.NOT. local_moment_possible)) THEN
2919 : ! Not implemented
2920 : CALL cp_abort(__LOCATION__, "Polarizability printing "// &
2921 0 : "implemented only for non-periodic systems.")
2922 : END IF
2923 248 : CALL section_vals_val_get(subsection, "ELEMENT", explicit=is_present, n_rep_val=n_elems)
2924 248 : NULLIFY (dft_control%rtp_control%print_pol_elements)
2925 248 : IF (is_present) THEN
2926 : ! Explicit list of elements
2927 : ! Allocate the array
2928 0 : ALLOCATE (dft_control%rtp_control%print_pol_elements(n_elems, 2))
2929 0 : DO i = 1, n_elems
2930 0 : CALL section_vals_val_get(subsection, "ELEMENT", i_vals=tmp, i_rep_val=i)
2931 0 : dft_control%rtp_control%print_pol_elements(i, :) = tmp(:)
2932 : END DO
2933 : ! Do basic sanity checks for pol_element
2934 0 : DO i = 1, n_elems
2935 0 : DO j = 1, 2
2936 0 : IF (dft_control%rtp_control%print_pol_elements(i, j) > 3 .OR. &
2937 : dft_control%rtp_control%print_pol_elements(i, j) < 1) &
2938 0 : CPABORT("Polarisation tensor element not 1,2 or 3 in at least one index")
2939 : END DO
2940 : END DO
2941 : END IF
2942 :
2943 : ! Finally, allow printing of FT observables also in the case when they are not explicitly
2944 : ! required, but they are available, i.e. non-periodic linear scaling calculation
2945 : dft_control%rtp_control%save_local_moments = &
2946 : dft_control%rtp_control%save_local_moments .OR. &
2947 248 : ((.NOT. dft_control%rtp_control%periodic) .AND. dft_control%rtp_control%linear_scaling)
2948 :
2949 248 : END SUBROUTINE read_rtp_section
2950 : ! **************************************************************************************************
2951 : !> \brief Tries to guess the elements of polarization to print
2952 : !> \param dftc DFT parameters
2953 : !> \param elems 2D array, where the guessed element indeces are stored
2954 : !> \date 11.2025
2955 : !> \author Stepan Marek
2956 : ! **************************************************************************************************
2957 30 : SUBROUTINE guess_pol_elements(dftc, elems)
2958 : TYPE(dft_control_type) :: dftc
2959 : INTEGER, DIMENSION(:, :), POINTER :: elems
2960 :
2961 : INTEGER :: i, i_nonzero, n_nonzero
2962 : LOGICAL :: pol_vector_known
2963 : REAL(kind=dp), DIMENSION(3) :: pol_vector
2964 :
2965 30 : pol_vector_known = .FALSE.
2966 :
2967 : ! TODO : More relevant elements for magnetic pulse?
2968 30 : IF (dftc%rtp_control%apply_delta_pulse .OR. dftc%rtp_control%apply_delta_pulse_mag) THEN
2969 104 : pol_vector(:) = REAL(dftc%rtp_control%delta_pulse_direction(:), kind=dp)
2970 : ELSE
2971 : ! Maybe RT field is applied?
2972 16 : pol_vector(:) = dftc%efield_fields(1)%efield%polarisation(:)
2973 : END IF
2974 120 : IF (DOT_PRODUCT(pol_vector, pol_vector) > 0.0_dp) pol_vector_known = .TRUE.
2975 :
2976 : IF (.NOT. pol_vector_known) THEN
2977 0 : CPABORT("Cannot guess polarization elements - please specify!")
2978 : ELSE
2979 : ! Check whether just one element is non-zero
2980 : n_nonzero = 0
2981 120 : DO i = 1, 3
2982 120 : IF (pol_vector(i) /= 0.0_dp) THEN
2983 30 : n_nonzero = n_nonzero + 1
2984 30 : i_nonzero = i
2985 : END IF
2986 : END DO
2987 30 : IF (n_nonzero > 1) THEN
2988 : CALL cp_abort(__LOCATION__, &
2989 : "More than one non-zero field elements - "// &
2990 0 : "cannot guess polarizability elements - please specify!")
2991 30 : ELSE IF (n_nonzero == 0) THEN
2992 : CALL cp_abort(__LOCATION__, &
2993 : "No non-zero field elements - "// &
2994 0 : "cannot guess polarizability elements - please specify!")
2995 : ELSE
2996 : ! Clear guess can be made
2997 : NULLIFY (elems)
2998 30 : ALLOCATE (elems(3, 2))
2999 120 : DO i = 1, 3
3000 90 : elems(i, 1) = i
3001 120 : elems(i, 2) = i_nonzero
3002 : END DO
3003 : END IF
3004 : END IF
3005 30 : END SUBROUTINE guess_pol_elements
3006 :
3007 : ! **************************************************************************************************
3008 : !> \brief Parses the BLOCK_LIST keywords from the ADMM section
3009 : !> \param admm_control ...
3010 : !> \param dft_section ...
3011 : ! **************************************************************************************************
3012 464 : SUBROUTINE read_admm_block_list(admm_control, dft_section)
3013 : TYPE(admm_control_type), POINTER :: admm_control
3014 : TYPE(section_vals_type), POINTER :: dft_section
3015 :
3016 : INTEGER :: irep, list_size, n_rep
3017 464 : INTEGER, DIMENSION(:), POINTER :: tmplist
3018 :
3019 464 : NULLIFY (tmplist)
3020 :
3021 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%BLOCK_LIST", &
3022 464 : n_rep_val=n_rep)
3023 :
3024 982 : ALLOCATE (admm_control%blocks(n_rep))
3025 :
3026 500 : DO irep = 1, n_rep
3027 : CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%BLOCK_LIST", &
3028 36 : i_rep_val=irep, i_vals=tmplist)
3029 36 : list_size = SIZE(tmplist)
3030 108 : ALLOCATE (admm_control%blocks(irep)%list(list_size))
3031 672 : admm_control%blocks(irep)%list(:) = tmplist(:)
3032 : END DO
3033 :
3034 464 : END SUBROUTINE read_admm_block_list
3035 :
3036 : ! **************************************************************************************************
3037 : !> \brief ...
3038 : !> \param dft_control ...
3039 : !> \param hairy_probes_section ...
3040 : !> \param
3041 : !> \param
3042 : ! **************************************************************************************************
3043 4 : SUBROUTINE read_hairy_probes_sections(dft_control, hairy_probes_section)
3044 : TYPE(dft_control_type), POINTER :: dft_control
3045 : TYPE(section_vals_type), POINTER :: hairy_probes_section
3046 :
3047 : INTEGER :: i, j, jj, kk, n_rep
3048 4 : INTEGER, DIMENSION(:), POINTER :: tmplist
3049 :
3050 12 : DO i = 1, SIZE(dft_control%probe)
3051 8 : NULLIFY (dft_control%probe(i)%atom_ids)
3052 :
3053 8 : CALL section_vals_val_get(hairy_probes_section, "ATOM_IDS", i_rep_section=i, n_rep_val=n_rep)
3054 8 : jj = 0
3055 16 : DO kk = 1, n_rep
3056 8 : CALL section_vals_val_get(hairy_probes_section, "ATOM_IDS", i_rep_section=i, i_rep_val=kk, i_vals=tmplist)
3057 16 : jj = jj + SIZE(tmplist)
3058 : END DO
3059 :
3060 8 : dft_control%probe(i)%natoms = jj
3061 8 : IF (dft_control%probe(i)%natoms < 1) &
3062 0 : CPABORT("Need at least 1 atom to use hair probes formalism")
3063 24 : ALLOCATE (dft_control%probe(i)%atom_ids(dft_control%probe(i)%natoms))
3064 :
3065 8 : jj = 0
3066 16 : DO kk = 1, n_rep
3067 8 : CALL section_vals_val_get(hairy_probes_section, "ATOM_IDS", i_rep_section=i, i_rep_val=kk, i_vals=tmplist)
3068 24 : DO j = 1, SIZE(tmplist)
3069 8 : jj = jj + 1
3070 16 : dft_control%probe(i)%atom_ids(jj) = tmplist(j)
3071 : END DO
3072 : END DO
3073 :
3074 8 : CALL section_vals_val_get(hairy_probes_section, "MU", i_rep_section=i, r_val=dft_control%probe(i)%mu)
3075 :
3076 8 : CALL section_vals_val_get(hairy_probes_section, "T", i_rep_section=i, r_val=dft_control%probe(i)%T)
3077 :
3078 8 : CALL section_vals_val_get(hairy_probes_section, "ALPHA", i_rep_section=i, r_val=dft_control%probe(i)%alpha)
3079 :
3080 20 : CALL section_vals_val_get(hairy_probes_section, "eps_hp", i_rep_section=i, r_val=dft_control%probe(i)%eps_hp)
3081 : END DO
3082 :
3083 4 : END SUBROUTINE read_hairy_probes_sections
3084 : ! **************************************************************************************************
3085 :
3086 : END MODULE cp_control_utils
|