Line data Source code
1 : /*----------------------------------------------------------------------------*/
2 : /* CP2K: A general program to perform molecular dynamics simulations */
3 : /* Copyright 2000-2025 CP2K developers group <https://cp2k.org> */
4 : /* */
5 : /* SPDX-License-Identifier: BSD-3-Clause */
6 : /*----------------------------------------------------------------------------*/
7 :
8 : #include "dbm_multiply_comm.h"
9 :
10 : #include <assert.h>
11 : #include <stdlib.h>
12 : #include <string.h>
13 :
14 : #include "dbm_hyperparams.h"
15 : #include "dbm_mempool.h"
16 : #include "dbm_mpi.h"
17 :
18 : /*******************************************************************************
19 : * \brief Private routine for computing greatest common divisor of two numbers.
20 : * \author Ole Schuett
21 : ******************************************************************************/
22 411994 : static int gcd(const int a, const int b) {
23 411994 : if (a == 0)
24 : return b;
25 214627 : return gcd(b % a, a); // Euclid's algorithm.
26 : }
27 :
28 : /*******************************************************************************
29 : * \brief Private routine for computing least common multiple of two numbers.
30 : * \author Ole Schuett
31 : ******************************************************************************/
32 197367 : static int lcm(const int a, const int b) { return (a * b) / gcd(a, b); }
33 :
34 : /*******************************************************************************
35 : * \brief Private routine for computing the sum of the given integers.
36 : * \author Ole Schuett
37 : ******************************************************************************/
38 824692 : static inline int isum(const int n, const int input[n]) {
39 824692 : int output = 0;
40 1755056 : for (int i = 0; i < n; i++) {
41 930364 : output += input[i];
42 : }
43 824692 : return output;
44 : }
45 :
46 : /*******************************************************************************
47 : * \brief Private routine for computing the cumulative sums of given numbers.
48 : * \author Ole Schuett
49 : ******************************************************************************/
50 2061730 : static inline void icumsum(const int n, const int input[n], int output[n]) {
51 2061730 : output[0] = 0;
52 2273074 : for (int i = 1; i < n; i++) {
53 211344 : output[i] = output[i - 1] + input[i - 1];
54 : }
55 2061730 : }
56 :
57 : /*******************************************************************************
58 : * \brief Private struct used for planing during pack_matrix.
59 : * \author Ole Schuett
60 : ******************************************************************************/
61 : typedef struct {
62 : const dbm_block_t *blk; // source block
63 : int rank; // target mpi rank
64 : int row_size;
65 : int col_size;
66 : } plan_t;
67 :
68 : /*******************************************************************************
69 : * \brief Private routine for planing packs.
70 : * \author Ole Schuett
71 : ******************************************************************************/
72 394734 : static void create_pack_plans(const bool trans_matrix, const bool trans_dist,
73 : const dbm_matrix_t *matrix,
74 : const dbm_mpi_comm_t comm,
75 : const dbm_dist_1d_t *dist_indices,
76 : const dbm_dist_1d_t *dist_ticks, const int nticks,
77 : const int npacks, plan_t *plans_per_pack[npacks],
78 : int nblks_per_pack[npacks],
79 : int ndata_per_pack[npacks]) {
80 :
81 394734 : memset(nblks_per_pack, 0, npacks * sizeof(int));
82 394734 : memset(ndata_per_pack, 0, npacks * sizeof(int));
83 :
84 394734 : #pragma omp parallel
85 : {
86 : // 1st pass: Compute number of blocks that will be send in each pack.
87 : int nblks_mythread[npacks];
88 : memset(nblks_mythread, 0, npacks * sizeof(int));
89 : #pragma omp for schedule(static)
90 : for (int ishard = 0; ishard < dbm_get_num_shards(matrix); ishard++) {
91 : dbm_shard_t *shard = &matrix->shards[ishard];
92 : for (int iblock = 0; iblock < shard->nblocks; iblock++) {
93 : const dbm_block_t *blk = &shard->blocks[iblock];
94 : const int sum_index = (trans_matrix) ? blk->row : blk->col;
95 : const int itick = (1021 * sum_index) % nticks; // 1021 = a random prime
96 : const int ipack = itick / dist_ticks->nranks;
97 : nblks_mythread[ipack]++;
98 : }
99 : }
100 :
101 : // Sum nblocks across threads and allocate arrays for plans.
102 : #pragma omp critical
103 : for (int ipack = 0; ipack < npacks; ipack++) {
104 : nblks_per_pack[ipack] += nblks_mythread[ipack];
105 : nblks_mythread[ipack] = nblks_per_pack[ipack];
106 : }
107 : #pragma omp barrier
108 : #pragma omp for
109 : for (int ipack = 0; ipack < npacks; ipack++) {
110 : plans_per_pack[ipack] = malloc(nblks_per_pack[ipack] * sizeof(plan_t));
111 : assert(plans_per_pack[ipack] != NULL);
112 : }
113 :
114 : // 2nd pass: Plan where to send each block.
115 : int ndata_mythread[npacks];
116 : memset(ndata_mythread, 0, npacks * sizeof(int));
117 : #pragma omp for schedule(static) // Need static to match previous loop.
118 : for (int ishard = 0; ishard < dbm_get_num_shards(matrix); ishard++) {
119 : dbm_shard_t *shard = &matrix->shards[ishard];
120 : for (int iblock = 0; iblock < shard->nblocks; iblock++) {
121 : const dbm_block_t *blk = &shard->blocks[iblock];
122 : const int free_index = (trans_matrix) ? blk->col : blk->row;
123 : const int sum_index = (trans_matrix) ? blk->row : blk->col;
124 : const int itick = (1021 * sum_index) % nticks; // Same mapping as above.
125 : const int ipack = itick / dist_ticks->nranks;
126 : // Compute rank to which this block should be sent.
127 : const int coord_free_idx = dist_indices->index2coord[free_index];
128 : const int coord_sum_idx = itick % dist_ticks->nranks;
129 : const int coords[2] = {(trans_dist) ? coord_sum_idx : coord_free_idx,
130 : (trans_dist) ? coord_free_idx : coord_sum_idx};
131 : const int rank = dbm_mpi_cart_rank(comm, coords);
132 : const int row_size = matrix->row_sizes[blk->row];
133 : const int col_size = matrix->col_sizes[blk->col];
134 : ndata_mythread[ipack] += row_size * col_size;
135 : // Create plan.
136 : const int iplan = --nblks_mythread[ipack];
137 : plans_per_pack[ipack][iplan].blk = blk;
138 : plans_per_pack[ipack][iplan].rank = rank;
139 : plans_per_pack[ipack][iplan].row_size = row_size;
140 : plans_per_pack[ipack][iplan].col_size = col_size;
141 : }
142 : }
143 : #pragma omp critical
144 : for (int ipack = 0; ipack < npacks; ipack++) {
145 : ndata_per_pack[ipack] += ndata_mythread[ipack];
146 : }
147 : } // end of omp parallel region
148 394734 : }
149 :
150 : /*******************************************************************************
151 : * \brief Private routine for filling send buffers.
152 : * \author Ole Schuett
153 : ******************************************************************************/
154 412346 : static void fill_send_buffers(
155 : const dbm_matrix_t *matrix, const bool trans_matrix, const int nblks_send,
156 : const int ndata_send, plan_t plans[nblks_send], const int nranks,
157 : int blks_send_count[nranks], int data_send_count[nranks],
158 : int blks_send_displ[nranks], int data_send_displ[nranks],
159 : dbm_pack_block_t blks_send[nblks_send], double data_send[ndata_send]) {
160 :
161 412346 : memset(blks_send_count, 0, nranks * sizeof(int));
162 412346 : memset(data_send_count, 0, nranks * sizeof(int));
163 :
164 412346 : #pragma omp parallel
165 : {
166 : // 3th pass: Compute per rank nblks and ndata.
167 : int nblks_mythread[nranks], ndata_mythread[nranks];
168 : memset(nblks_mythread, 0, nranks * sizeof(int));
169 : memset(ndata_mythread, 0, nranks * sizeof(int));
170 : #pragma omp for schedule(static)
171 : for (int iblock = 0; iblock < nblks_send; iblock++) {
172 : const plan_t *plan = &plans[iblock];
173 : nblks_mythread[plan->rank] += 1;
174 : ndata_mythread[plan->rank] += plan->row_size * plan->col_size;
175 : }
176 :
177 : // Sum nblks and ndata across threads.
178 : #pragma omp critical
179 : for (int irank = 0; irank < nranks; irank++) {
180 : blks_send_count[irank] += nblks_mythread[irank];
181 : data_send_count[irank] += ndata_mythread[irank];
182 : nblks_mythread[irank] = blks_send_count[irank];
183 : ndata_mythread[irank] = data_send_count[irank];
184 : }
185 : #pragma omp barrier
186 :
187 : // Compute send displacements.
188 : #pragma omp master
189 : {
190 : icumsum(nranks, blks_send_count, blks_send_displ);
191 : icumsum(nranks, data_send_count, data_send_displ);
192 : const int m = nranks - 1;
193 : assert(nblks_send == blks_send_displ[m] + blks_send_count[m]);
194 : assert(ndata_send == data_send_displ[m] + data_send_count[m]);
195 : }
196 : #pragma omp barrier
197 :
198 : // 4th pass: Fill blks_send and data_send arrays.
199 : #pragma omp for schedule(static) // Need static to match previous loop.
200 : for (int iblock = 0; iblock < nblks_send; iblock++) {
201 : const plan_t *plan = &plans[iblock];
202 : const dbm_block_t *blk = plan->blk;
203 : const int ishard = dbm_get_shard_index(matrix, blk->row, blk->col);
204 : const dbm_shard_t *shard = &matrix->shards[ishard];
205 : const double *blk_data = &shard->data[blk->offset];
206 : const int row_size = plan->row_size, col_size = plan->col_size;
207 : const int plan_size = row_size * col_size;
208 : const int irank = plan->rank;
209 :
210 : // The blk_send_data is ordered by rank, thread, and block.
211 : // data_send_displ[irank]: Start of data for irank within blk_send_data.
212 : // ndata_mythread[irank]: Current threads offset within data for irank.
213 : nblks_mythread[irank] -= 1;
214 : ndata_mythread[irank] -= plan_size;
215 : const int offset = data_send_displ[irank] + ndata_mythread[irank];
216 : const int jblock = blks_send_displ[irank] + nblks_mythread[irank];
217 :
218 : double norm = 0.0; // Compute norm as double...
219 : if (trans_matrix) {
220 : // Transpose block to allow for outer-product style multiplication.
221 : for (int i = 0; i < row_size; i++) {
222 : for (int j = 0; j < col_size; j++) {
223 : const double element = blk_data[j * row_size + i];
224 : data_send[offset + i * col_size + j] = element;
225 : norm += element * element;
226 : }
227 : }
228 : blks_send[jblock].free_index = plan->blk->col;
229 : blks_send[jblock].sum_index = plan->blk->row;
230 : } else {
231 : for (int i = 0; i < plan_size; i++) {
232 : const double element = blk_data[i];
233 : data_send[offset + i] = element;
234 : norm += element * element;
235 : }
236 : blks_send[jblock].free_index = plan->blk->row;
237 : blks_send[jblock].sum_index = plan->blk->col;
238 : }
239 : blks_send[jblock].norm = (float)norm; // ...store norm as float.
240 :
241 : // After the block exchange data_recv_displ will be added to the offsets.
242 : blks_send[jblock].offset = offset - data_send_displ[irank];
243 : }
244 : } // end of omp parallel region
245 412346 : }
246 :
247 : /*******************************************************************************
248 : * \brief Private comperator passed to qsort to compare two blocks by sum_index.
249 : * \author Ole Schuett
250 : ******************************************************************************/
251 81296509 : static int compare_pack_blocks_by_sum_index(const void *a, const void *b) {
252 81296509 : const dbm_pack_block_t *blk_a = (const dbm_pack_block_t *)a;
253 81296509 : const dbm_pack_block_t *blk_b = (const dbm_pack_block_t *)b;
254 81296509 : return blk_a->sum_index - blk_b->sum_index;
255 : }
256 :
257 : /*******************************************************************************
258 : * \brief Private routine for post-processing received blocks.
259 : * \author Ole Schuett
260 : ******************************************************************************/
261 412346 : static void postprocess_received_blocks(
262 : const int nranks, const int nshards, const int nblocks_recv,
263 : const int blks_recv_count[nranks], const int blks_recv_displ[nranks],
264 : const int data_recv_displ[nranks],
265 412346 : dbm_pack_block_t blks_recv[nblocks_recv]) {
266 :
267 412346 : int nblocks_per_shard[nshards], shard_start[nshards];
268 412346 : memset(nblocks_per_shard, 0, nshards * sizeof(int));
269 412346 : dbm_pack_block_t *blocks_tmp =
270 412346 : malloc(nblocks_recv * sizeof(dbm_pack_block_t));
271 412346 : assert(blocks_tmp != NULL);
272 :
273 412346 : #pragma omp parallel
274 : {
275 : // Add data_recv_displ to recveived block offsets.
276 : for (int irank = 0; irank < nranks; irank++) {
277 : #pragma omp for
278 : for (int i = 0; i < blks_recv_count[irank]; i++) {
279 : blks_recv[blks_recv_displ[irank] + i].offset += data_recv_displ[irank];
280 : }
281 : }
282 :
283 : // First use counting sort to group blocks by their free_index shard.
284 : int nblocks_mythread[nshards];
285 : memset(nblocks_mythread, 0, nshards * sizeof(int));
286 : #pragma omp for schedule(static)
287 : for (int iblock = 0; iblock < nblocks_recv; iblock++) {
288 : blocks_tmp[iblock] = blks_recv[iblock];
289 : const int ishard = blks_recv[iblock].free_index % nshards;
290 : nblocks_mythread[ishard]++;
291 : }
292 : #pragma omp critical
293 : for (int ishard = 0; ishard < nshards; ishard++) {
294 : nblocks_per_shard[ishard] += nblocks_mythread[ishard];
295 : nblocks_mythread[ishard] = nblocks_per_shard[ishard];
296 : }
297 : #pragma omp barrier
298 : #pragma omp master
299 : icumsum(nshards, nblocks_per_shard, shard_start);
300 : #pragma omp barrier
301 : #pragma omp for schedule(static) // Need static to match previous loop.
302 : for (int iblock = 0; iblock < nblocks_recv; iblock++) {
303 : const int ishard = blocks_tmp[iblock].free_index % nshards;
304 : const int jblock = --nblocks_mythread[ishard] + shard_start[ishard];
305 : blks_recv[jblock] = blocks_tmp[iblock];
306 : }
307 :
308 : // Then sort blocks within each shard by their sum_index.
309 : #pragma omp for
310 : for (int ishard = 0; ishard < nshards; ishard++) {
311 : if (nblocks_per_shard[ishard] > 1) {
312 : qsort(&blks_recv[shard_start[ishard]], nblocks_per_shard[ishard],
313 : sizeof(dbm_pack_block_t), &compare_pack_blocks_by_sum_index);
314 : }
315 : }
316 : } // end of omp parallel region
317 :
318 412346 : free(blocks_tmp);
319 412346 : }
320 :
321 : /*******************************************************************************
322 : * \brief Private routine for redistributing a matrix along selected dimensions.
323 : * \author Ole Schuett
324 : ******************************************************************************/
325 394734 : static dbm_packed_matrix_t pack_matrix(const bool trans_matrix,
326 : const bool trans_dist,
327 : const dbm_matrix_t *matrix,
328 : const dbm_distribution_t *dist,
329 394734 : const int nticks) {
330 :
331 394734 : assert(dbm_mpi_comms_are_similar(matrix->dist->comm, dist->comm));
332 :
333 : // The row/col indicies are distributed along one cart dimension and the
334 : // ticks are distributed along the other cart dimension.
335 394734 : const dbm_dist_1d_t *dist_indices = (trans_dist) ? &dist->cols : &dist->rows;
336 394734 : const dbm_dist_1d_t *dist_ticks = (trans_dist) ? &dist->rows : &dist->cols;
337 :
338 : // Allocate packed matrix.
339 394734 : const int nsend_packs = nticks / dist_ticks->nranks;
340 394734 : assert(nsend_packs * dist_ticks->nranks == nticks);
341 394734 : dbm_packed_matrix_t packed;
342 394734 : packed.dist_indices = dist_indices;
343 394734 : packed.dist_ticks = dist_ticks;
344 394734 : packed.nsend_packs = nsend_packs;
345 394734 : packed.send_packs = malloc(nsend_packs * sizeof(dbm_pack_t));
346 394734 : assert(packed.send_packs != NULL);
347 :
348 : // Plan all packs.
349 394734 : plan_t *plans_per_pack[nsend_packs];
350 394734 : int nblks_send_per_pack[nsend_packs], ndata_send_per_pack[nsend_packs];
351 394734 : create_pack_plans(trans_matrix, trans_dist, matrix, dist->comm, dist_indices,
352 : dist_ticks, nticks, nsend_packs, plans_per_pack,
353 : nblks_send_per_pack, ndata_send_per_pack);
354 :
355 : // Allocate send buffers for maximum number of blocks/data over all packs.
356 394734 : int nblks_send_max = 0, ndata_send_max = 0;
357 807080 : for (int ipack = 0; ipack < nsend_packs; ++ipack) {
358 412346 : nblks_send_max = imax(nblks_send_max, nblks_send_per_pack[ipack]);
359 412346 : ndata_send_max = imax(ndata_send_max, ndata_send_per_pack[ipack]);
360 : }
361 394734 : dbm_pack_block_t *blks_send =
362 394734 : dbm_mpi_alloc_mem(nblks_send_max * sizeof(dbm_pack_block_t));
363 394734 : double *data_send = dbm_mpi_alloc_mem(ndata_send_max * sizeof(double));
364 :
365 : // Cannot parallelize over packs (there might be too few of them).
366 807080 : for (int ipack = 0; ipack < nsend_packs; ipack++) {
367 : // Fill send buffers according to plans.
368 412346 : const int nranks = dist->nranks;
369 412346 : int blks_send_count[nranks], data_send_count[nranks];
370 412346 : int blks_send_displ[nranks], data_send_displ[nranks];
371 412346 : fill_send_buffers(matrix, trans_matrix, nblks_send_per_pack[ipack],
372 : ndata_send_per_pack[ipack], plans_per_pack[ipack], nranks,
373 : blks_send_count, data_send_count, blks_send_displ,
374 : data_send_displ, blks_send, data_send);
375 412346 : free(plans_per_pack[ipack]);
376 :
377 : // 1st communication: Exchange block counts.
378 412346 : int blks_recv_count[nranks], blks_recv_displ[nranks];
379 412346 : dbm_mpi_alltoall_int(blks_send_count, 1, blks_recv_count, 1, dist->comm);
380 412346 : icumsum(nranks, blks_recv_count, blks_recv_displ);
381 412346 : const int nblocks_recv = isum(nranks, blks_recv_count);
382 :
383 : // 2nd communication: Exchange blocks.
384 412346 : dbm_pack_block_t *blks_recv =
385 412346 : dbm_mpi_alloc_mem(nblocks_recv * sizeof(dbm_pack_block_t));
386 412346 : int blks_send_count_byte[nranks], blks_send_displ_byte[nranks];
387 412346 : int blks_recv_count_byte[nranks], blks_recv_displ_byte[nranks];
388 877528 : for (int i = 0; i < nranks; i++) { // TODO: this is ugly!
389 465182 : blks_send_count_byte[i] = blks_send_count[i] * sizeof(dbm_pack_block_t);
390 465182 : blks_send_displ_byte[i] = blks_send_displ[i] * sizeof(dbm_pack_block_t);
391 465182 : blks_recv_count_byte[i] = blks_recv_count[i] * sizeof(dbm_pack_block_t);
392 465182 : blks_recv_displ_byte[i] = blks_recv_displ[i] * sizeof(dbm_pack_block_t);
393 : }
394 412346 : dbm_mpi_alltoallv_byte(
395 : blks_send, blks_send_count_byte, blks_send_displ_byte, blks_recv,
396 412346 : blks_recv_count_byte, blks_recv_displ_byte, dist->comm);
397 :
398 : // 3rd communication: Exchange data counts.
399 : // TODO: could be computed from blks_recv.
400 412346 : int data_recv_count[nranks], data_recv_displ[nranks];
401 412346 : dbm_mpi_alltoall_int(data_send_count, 1, data_recv_count, 1, dist->comm);
402 412346 : icumsum(nranks, data_recv_count, data_recv_displ);
403 412346 : const int ndata_recv = isum(nranks, data_recv_count);
404 :
405 : // 4th communication: Exchange data.
406 412346 : double *data_recv = dbm_mempool_host_malloc(ndata_recv * sizeof(double));
407 412346 : dbm_mpi_alltoallv_double(data_send, data_send_count, data_send_displ,
408 : data_recv, data_recv_count, data_recv_displ,
409 412346 : dist->comm);
410 :
411 : // Post-process received blocks and assemble them into a pack.
412 412346 : postprocess_received_blocks(nranks, dist_indices->nshards, nblocks_recv,
413 : blks_recv_count, blks_recv_displ,
414 : data_recv_displ, blks_recv);
415 412346 : packed.send_packs[ipack].nblocks = nblocks_recv;
416 412346 : packed.send_packs[ipack].data_size = ndata_recv;
417 412346 : packed.send_packs[ipack].blocks = blks_recv;
418 412346 : packed.send_packs[ipack].data = data_recv;
419 : }
420 :
421 : // Deallocate send buffers.
422 394734 : dbm_mpi_free_mem(blks_send);
423 394734 : dbm_mpi_free_mem(data_send);
424 :
425 : // Allocate pack_recv.
426 394734 : int max_nblocks = 0, max_data_size = 0;
427 807080 : for (int ipack = 0; ipack < packed.nsend_packs; ipack++) {
428 412346 : max_nblocks = imax(max_nblocks, packed.send_packs[ipack].nblocks);
429 412346 : max_data_size = imax(max_data_size, packed.send_packs[ipack].data_size);
430 : }
431 394734 : dbm_mpi_max_int(&max_nblocks, 1, packed.dist_ticks->comm);
432 394734 : dbm_mpi_max_int(&max_data_size, 1, packed.dist_ticks->comm);
433 394734 : packed.max_nblocks = max_nblocks;
434 394734 : packed.max_data_size = max_data_size;
435 789468 : packed.recv_pack.blocks =
436 394734 : dbm_mpi_alloc_mem(packed.max_nblocks * sizeof(dbm_pack_block_t));
437 789468 : packed.recv_pack.data =
438 394734 : dbm_mempool_host_malloc(packed.max_data_size * sizeof(double));
439 :
440 394734 : return packed; // Ownership of packed transfers to caller.
441 : }
442 :
443 : /*******************************************************************************
444 : * \brief Private routine for sending and receiving the pack for the given tick.
445 : * \author Ole Schuett
446 : ******************************************************************************/
447 429958 : static dbm_pack_t *sendrecv_pack(const int itick, const int nticks,
448 : dbm_packed_matrix_t *packed) {
449 429958 : const int nranks = packed->dist_ticks->nranks;
450 429958 : const int my_rank = packed->dist_ticks->my_rank;
451 :
452 : // Compute send rank and pack.
453 429958 : const int itick_of_rank0 = (itick + nticks - my_rank) % nticks;
454 429958 : const int send_rank = (my_rank + nticks - itick_of_rank0) % nranks;
455 429958 : const int send_itick = (itick_of_rank0 + send_rank) % nticks;
456 429958 : const int send_ipack = send_itick / nranks;
457 429958 : assert(send_itick % nranks == my_rank);
458 :
459 : // Compute receive rank and pack.
460 429958 : const int recv_rank = itick % nranks;
461 429958 : const int recv_ipack = itick / nranks;
462 :
463 429958 : dbm_pack_t *send_pack = &packed->send_packs[send_ipack];
464 429958 : if (send_rank == my_rank) {
465 412346 : assert(send_rank == recv_rank && send_ipack == recv_ipack);
466 : return send_pack; // Local pack, no mpi needed.
467 : } else {
468 : // Exchange blocks.
469 35224 : const int nblocks_in_bytes = dbm_mpi_sendrecv_byte(
470 17612 : /*sendbuf=*/send_pack->blocks,
471 17612 : /*sendcound=*/send_pack->nblocks * sizeof(dbm_pack_block_t),
472 : /*dest=*/send_rank,
473 : /*sendtag=*/send_ipack,
474 17612 : /*recvbuf=*/packed->recv_pack.blocks,
475 17612 : /*recvcount=*/packed->max_nblocks * sizeof(dbm_pack_block_t),
476 : /*source=*/recv_rank,
477 : /*recvtag=*/recv_ipack,
478 17612 : /*comm=*/packed->dist_ticks->comm);
479 :
480 17612 : assert(nblocks_in_bytes % sizeof(dbm_pack_block_t) == 0);
481 17612 : packed->recv_pack.nblocks = nblocks_in_bytes / sizeof(dbm_pack_block_t);
482 :
483 : // Exchange data.
484 35224 : packed->recv_pack.data_size = dbm_mpi_sendrecv_double(
485 17612 : /*sendbuf=*/send_pack->data,
486 : /*sendcound=*/send_pack->data_size,
487 : /*dest=*/send_rank,
488 : /*sendtag=*/send_ipack,
489 : /*recvbuf=*/packed->recv_pack.data,
490 : /*recvcount=*/packed->max_data_size,
491 : /*source=*/recv_rank,
492 : /*recvtag=*/recv_ipack,
493 17612 : /*comm=*/packed->dist_ticks->comm);
494 :
495 17612 : return &packed->recv_pack;
496 : }
497 : }
498 :
499 : /*******************************************************************************
500 : * \brief Private routine for releasing a packed matrix.
501 : * \author Ole Schuett
502 : ******************************************************************************/
503 394734 : static void free_packed_matrix(dbm_packed_matrix_t *packed) {
504 394734 : dbm_mpi_free_mem(packed->recv_pack.blocks);
505 394734 : dbm_mempool_host_free(packed->recv_pack.data);
506 807080 : for (int ipack = 0; ipack < packed->nsend_packs; ipack++) {
507 412346 : dbm_mpi_free_mem(packed->send_packs[ipack].blocks);
508 412346 : dbm_mempool_host_free(packed->send_packs[ipack].data);
509 : }
510 394734 : free(packed->send_packs);
511 394734 : }
512 :
513 : /*******************************************************************************
514 : * \brief Internal routine for creating a communication iterator.
515 : * \author Ole Schuett
516 : ******************************************************************************/
517 197367 : dbm_comm_iterator_t *dbm_comm_iterator_start(const bool transa,
518 : const bool transb,
519 : const dbm_matrix_t *matrix_a,
520 : const dbm_matrix_t *matrix_b,
521 : const dbm_matrix_t *matrix_c) {
522 :
523 197367 : dbm_comm_iterator_t *iter = malloc(sizeof(dbm_comm_iterator_t));
524 197367 : assert(iter != NULL);
525 197367 : iter->dist = matrix_c->dist;
526 :
527 : // During each communication tick we'll fetch a pack_a and pack_b.
528 : // Since the cart might be non-squared, the number of communication ticks is
529 : // chosen as the least common multiple of the cart's dimensions.
530 197367 : iter->nticks = lcm(iter->dist->rows.nranks, iter->dist->cols.nranks);
531 197367 : iter->itick = 0;
532 :
533 : // 1.arg=source dimension, 2.arg=target dimension, false=rows, true=columns.
534 197367 : iter->packed_a =
535 197367 : pack_matrix(transa, false, matrix_a, iter->dist, iter->nticks);
536 197367 : iter->packed_b =
537 197367 : pack_matrix(!transb, true, matrix_b, iter->dist, iter->nticks);
538 :
539 197367 : return iter;
540 : }
541 :
542 : /*******************************************************************************
543 : * \brief Internal routine for retriving next pair of packs from given iterator.
544 : * \author Ole Schuett
545 : ******************************************************************************/
546 412346 : bool dbm_comm_iterator_next(dbm_comm_iterator_t *iter, dbm_pack_t **pack_a,
547 : dbm_pack_t **pack_b) {
548 412346 : if (iter->itick >= iter->nticks) {
549 : return false; // end of iterator reached
550 : }
551 :
552 : // Start each rank at a different tick to spread the load on the sources.
553 214979 : const int shift = iter->dist->rows.my_rank + iter->dist->cols.my_rank;
554 214979 : const int shifted_itick = (iter->itick + shift) % iter->nticks;
555 214979 : *pack_a = sendrecv_pack(shifted_itick, iter->nticks, &iter->packed_a);
556 214979 : *pack_b = sendrecv_pack(shifted_itick, iter->nticks, &iter->packed_b);
557 :
558 214979 : iter->itick++;
559 214979 : return true;
560 : }
561 :
562 : /*******************************************************************************
563 : * \brief Internal routine for releasing the given communication iterator.
564 : * \author Ole Schuett
565 : ******************************************************************************/
566 197367 : void dbm_comm_iterator_stop(dbm_comm_iterator_t *iter) {
567 197367 : free_packed_matrix(&iter->packed_a);
568 197367 : free_packed_matrix(&iter->packed_b);
569 197367 : free(iter);
570 197367 : }
571 :
572 : // EOF
|