Line data Source code
1 : /*----------------------------------------------------------------------------*/
2 : /* CP2K: A general program to perform molecular dynamics simulations */
3 : /* Copyright 2000-2025 CP2K developers group <https://cp2k.org> */
4 : /* */
5 : /* SPDX-License-Identifier: BSD-3-Clause */
6 : /*----------------------------------------------------------------------------*/
7 : #include "dbm_multiply_comm.h"
8 : #include "../mpiwrap/cp_mpi.h"
9 : #include "../offload/offload_mempool.h"
10 :
11 : #include <assert.h>
12 : #include <stdlib.h>
13 : #include <string.h>
14 :
15 : #if 1
16 : #define DBM_MULTIPLY_COMM_MEMPOOL
17 : #endif
18 :
19 : /*******************************************************************************
20 : * \brief Private routine for computing greatest common divisor of two numbers.
21 : * \author Ole Schuett
22 : ******************************************************************************/
23 445570 : static int gcd(const int a, const int b) {
24 445570 : if (a == 0) {
25 : return b;
26 : }
27 232318 : return gcd(b % a, a); // Euclid's algorithm.
28 : }
29 :
30 : /*******************************************************************************
31 : * \brief Private routine for computing least common multiple of two numbers.
32 : * \author Ole Schuett
33 : ******************************************************************************/
34 213252 : static int lcm(const int a, const int b) { return (a * b) / gcd(a, b); }
35 :
36 : /*******************************************************************************
37 : * \brief Private routine for computing the sum of the given integers.
38 : * \author Ole Schuett
39 : ******************************************************************************/
40 891276 : static inline int isum(const int n, const int input[n]) {
41 891276 : int output = 0;
42 1897356 : for (int i = 0; i < n; i++) {
43 1006080 : output += input[i];
44 : }
45 891276 : return output;
46 : }
47 :
48 : /*******************************************************************************
49 : * \brief Private routine for computing the cumulative sums of given numbers.
50 : * \author Ole Schuett
51 : ******************************************************************************/
52 2228190 : static inline void icumsum(const int n, const int input[n], int output[n]) {
53 2228190 : output[0] = 0;
54 2457798 : for (int i = 1; i < n; i++) {
55 229608 : output[i] = output[i - 1] + input[i - 1];
56 : }
57 2228190 : }
58 :
59 : /*******************************************************************************
60 : * \brief Private struct used for planing during pack_matrix.
61 : * \author Ole Schuett
62 : ******************************************************************************/
63 : typedef struct {
64 : const dbm_block_t *blk; // source block
65 : int rank; // target mpi rank
66 : int row_size;
67 : int col_size;
68 : } plan_t;
69 :
70 : /*******************************************************************************
71 : * \brief Private routine for planing packs.
72 : * \author Ole Schuett
73 : ******************************************************************************/
74 426504 : static void create_pack_plans(const bool trans_matrix, const bool trans_dist,
75 : const dbm_matrix_t *matrix,
76 : const cp_mpi_comm_t comm,
77 : const dbm_dist_1d_t *dist_indices,
78 : const dbm_dist_1d_t *dist_ticks, const int nticks,
79 : const int npacks, plan_t *plans_per_pack[npacks],
80 : int nblks_per_pack[npacks],
81 : int ndata_per_pack[npacks]) {
82 :
83 426504 : memset(nblks_per_pack, 0, npacks * sizeof(int));
84 426504 : memset(ndata_per_pack, 0, npacks * sizeof(int));
85 :
86 426504 : #pragma omp parallel
87 : {
88 : // 1st pass: Compute number of blocks that will be send in each pack.
89 : int nblks_mythread[npacks];
90 : memset(nblks_mythread, 0, npacks * sizeof(int));
91 : #pragma omp for schedule(static)
92 : for (int ishard = 0; ishard < dbm_get_num_shards(matrix); ishard++) {
93 : dbm_shard_t *shard = &matrix->shards[ishard];
94 : for (int iblock = 0; iblock < shard->nblocks; iblock++) {
95 : const dbm_block_t *blk = &shard->blocks[iblock];
96 : const int sum_index = (trans_matrix) ? blk->row : blk->col;
97 : const int itick = (1021 * sum_index) % nticks; // 1021 = a random prime
98 : const int ipack = itick / dist_ticks->nranks;
99 : nblks_mythread[ipack]++;
100 : }
101 : }
102 :
103 : // Sum nblocks across threads and allocate arrays for plans.
104 : #pragma omp critical
105 : for (int ipack = 0; ipack < npacks; ipack++) {
106 : nblks_per_pack[ipack] += nblks_mythread[ipack];
107 : nblks_mythread[ipack] = nblks_per_pack[ipack];
108 : }
109 : #pragma omp barrier
110 : #pragma omp for
111 : for (int ipack = 0; ipack < npacks; ipack++) {
112 : const int nblks = nblks_per_pack[ipack];
113 : plans_per_pack[ipack] = malloc(nblks * sizeof(plan_t));
114 : assert(plans_per_pack[ipack] != NULL || nblks == 0);
115 : }
116 :
117 : // 2nd pass: Plan where to send each block.
118 : int ndata_mythread[npacks];
119 : memset(ndata_mythread, 0, npacks * sizeof(int));
120 : #pragma omp for schedule(static) // Need static to match previous loop.
121 : for (int ishard = 0; ishard < dbm_get_num_shards(matrix); ishard++) {
122 : dbm_shard_t *shard = &matrix->shards[ishard];
123 : for (int iblock = 0; iblock < shard->nblocks; iblock++) {
124 : const dbm_block_t *blk = &shard->blocks[iblock];
125 : const int free_index = (trans_matrix) ? blk->col : blk->row;
126 : const int sum_index = (trans_matrix) ? blk->row : blk->col;
127 : const int itick = (1021 * sum_index) % nticks; // Same mapping as above.
128 : const int ipack = itick / dist_ticks->nranks;
129 : // Compute rank to which this block should be sent.
130 : const int coord_free_idx = dist_indices->index2coord[free_index];
131 : const int coord_sum_idx = itick % dist_ticks->nranks;
132 : const int coords[2] = {(trans_dist) ? coord_sum_idx : coord_free_idx,
133 : (trans_dist) ? coord_free_idx : coord_sum_idx};
134 : const int rank = cp_mpi_cart_rank(comm, coords);
135 : const int row_size = matrix->row_sizes[blk->row];
136 : const int col_size = matrix->col_sizes[blk->col];
137 : ndata_mythread[ipack] += row_size * col_size;
138 : // Create plan.
139 : const int iplan = --nblks_mythread[ipack];
140 : plans_per_pack[ipack][iplan].blk = blk;
141 : plans_per_pack[ipack][iplan].rank = rank;
142 : plans_per_pack[ipack][iplan].row_size = row_size;
143 : plans_per_pack[ipack][iplan].col_size = col_size;
144 : }
145 : }
146 : #pragma omp critical
147 : for (int ipack = 0; ipack < npacks; ipack++) {
148 : ndata_per_pack[ipack] += ndata_mythread[ipack];
149 : }
150 : } // end of omp parallel region
151 426504 : }
152 :
153 : /*******************************************************************************
154 : * \brief Private routine for filling send buffers.
155 : * \author Ole Schuett
156 : ******************************************************************************/
157 445638 : static void fill_send_buffers(
158 : const dbm_matrix_t *matrix, const bool trans_matrix, const int nblks_send,
159 : const int ndata_send, plan_t plans[nblks_send], const int nranks,
160 : int blks_send_count[nranks], int data_send_count[nranks],
161 : int blks_send_displ[nranks], int data_send_displ[nranks],
162 : dbm_pack_block_t blks_send[nblks_send], double data_send[ndata_send]) {
163 :
164 445638 : memset(blks_send_count, 0, nranks * sizeof(int));
165 445638 : memset(data_send_count, 0, nranks * sizeof(int));
166 :
167 445638 : #pragma omp parallel
168 : {
169 : // 3th pass: Compute per rank nblks and ndata.
170 : int nblks_mythread[nranks], ndata_mythread[nranks];
171 : memset(nblks_mythread, 0, nranks * sizeof(int));
172 : memset(ndata_mythread, 0, nranks * sizeof(int));
173 : #pragma omp for schedule(static)
174 : for (int iblock = 0; iblock < nblks_send; iblock++) {
175 : const plan_t *plan = &plans[iblock];
176 : nblks_mythread[plan->rank] += 1;
177 : ndata_mythread[plan->rank] += plan->row_size * plan->col_size;
178 : }
179 :
180 : // Sum nblks and ndata across threads.
181 : #pragma omp critical
182 : for (int irank = 0; irank < nranks; irank++) {
183 : blks_send_count[irank] += nblks_mythread[irank];
184 : data_send_count[irank] += ndata_mythread[irank];
185 : nblks_mythread[irank] = blks_send_count[irank];
186 : ndata_mythread[irank] = data_send_count[irank];
187 : }
188 : #pragma omp barrier
189 :
190 : // Compute send displacements.
191 : #pragma omp master
192 : {
193 : icumsum(nranks, blks_send_count, blks_send_displ);
194 : icumsum(nranks, data_send_count, data_send_displ);
195 : const int m = nranks - 1;
196 : assert(nblks_send == blks_send_displ[m] + blks_send_count[m]);
197 : assert(ndata_send == data_send_displ[m] + data_send_count[m]);
198 : }
199 : #pragma omp barrier
200 :
201 : // 4th pass: Fill blks_send and data_send arrays.
202 : #pragma omp for schedule(static) // Need static to match previous loop.
203 : for (int iblock = 0; iblock < nblks_send; iblock++) {
204 : const plan_t *plan = &plans[iblock];
205 : const dbm_block_t *blk = plan->blk;
206 : const int ishard = dbm_get_shard_index(matrix, blk->row, blk->col);
207 : const dbm_shard_t *shard = &matrix->shards[ishard];
208 : const double *blk_data = &shard->data[blk->offset];
209 : const int row_size = plan->row_size, col_size = plan->col_size;
210 : const int plan_size = row_size * col_size;
211 : const int irank = plan->rank;
212 :
213 : // The blk_send_data is ordered by rank, thread, and block.
214 : // data_send_displ[irank]: Start of data for irank within blk_send_data.
215 : // ndata_mythread[irank]: Current threads offset within data for irank.
216 : nblks_mythread[irank] -= 1;
217 : ndata_mythread[irank] -= plan_size;
218 : const int offset = data_send_displ[irank] + ndata_mythread[irank];
219 : const int jblock = blks_send_displ[irank] + nblks_mythread[irank];
220 :
221 : double norm = 0.0; // Compute norm as double...
222 : if (trans_matrix) {
223 : // Transpose block to allow for outer-product style multiplication.
224 : for (int i = 0; i < row_size; i++) {
225 : for (int j = 0; j < col_size; j++) {
226 : const double element = blk_data[j * row_size + i];
227 : data_send[offset + i * col_size + j] = element;
228 : norm += element * element;
229 : }
230 : }
231 : blks_send[jblock].free_index = plan->blk->col;
232 : blks_send[jblock].sum_index = plan->blk->row;
233 : } else {
234 : for (int i = 0; i < plan_size; i++) {
235 : const double element = blk_data[i];
236 : data_send[offset + i] = element;
237 : norm += element * element;
238 : }
239 : blks_send[jblock].free_index = plan->blk->row;
240 : blks_send[jblock].sum_index = plan->blk->col;
241 : }
242 : blks_send[jblock].norm = (float)norm; // ...store norm as float.
243 :
244 : // After the block exchange data_recv_displ will be added to the offsets.
245 : blks_send[jblock].offset = offset - data_send_displ[irank];
246 : }
247 : } // end of omp parallel region
248 445638 : }
249 :
250 : /*******************************************************************************
251 : * \brief Private comperator passed to qsort to compare two blocks by sum_index.
252 : * \author Ole Schuett
253 : ******************************************************************************/
254 70747990 : static int compare_pack_blocks_by_sum_index(const void *a, const void *b) {
255 70747990 : const dbm_pack_block_t *blk_a = (const dbm_pack_block_t *)a;
256 70747990 : const dbm_pack_block_t *blk_b = (const dbm_pack_block_t *)b;
257 70747990 : return blk_a->sum_index - blk_b->sum_index;
258 : }
259 :
260 : /*******************************************************************************
261 : * \brief Private routine for post-processing received blocks.
262 : * \author Ole Schuett
263 : ******************************************************************************/
264 445638 : static void postprocess_received_blocks(
265 : const int nranks, const int nshards, const int nblocks_recv,
266 : const int blks_recv_count[nranks], const int blks_recv_displ[nranks],
267 : const int data_recv_displ[nranks],
268 445638 : dbm_pack_block_t blks_recv[nblocks_recv]) {
269 :
270 445638 : int nblocks_per_shard[nshards], shard_start[nshards];
271 445638 : memset(nblocks_per_shard, 0, nshards * sizeof(int));
272 445638 : dbm_pack_block_t *blocks_tmp =
273 445638 : malloc(nblocks_recv * sizeof(dbm_pack_block_t));
274 445638 : assert(blocks_tmp != NULL || nblocks_recv == 0);
275 :
276 445638 : #pragma omp parallel
277 : {
278 : // Add data_recv_displ to recveived block offsets.
279 : for (int irank = 0; irank < nranks; irank++) {
280 : #pragma omp for
281 : for (int i = 0; i < blks_recv_count[irank]; i++) {
282 : blks_recv[blks_recv_displ[irank] + i].offset += data_recv_displ[irank];
283 : }
284 : }
285 :
286 : // First use counting sort to group blocks by their free_index shard.
287 : int nblocks_mythread[nshards];
288 : memset(nblocks_mythread, 0, nshards * sizeof(int));
289 : #pragma omp for schedule(static)
290 : for (int iblock = 0; iblock < nblocks_recv; iblock++) {
291 : blocks_tmp[iblock] = blks_recv[iblock];
292 : const int ishard = blks_recv[iblock].free_index % nshards;
293 : nblocks_mythread[ishard]++;
294 : }
295 : #pragma omp critical
296 : for (int ishard = 0; ishard < nshards; ishard++) {
297 : nblocks_per_shard[ishard] += nblocks_mythread[ishard];
298 : nblocks_mythread[ishard] = nblocks_per_shard[ishard];
299 : }
300 : #pragma omp barrier
301 : #pragma omp master
302 : icumsum(nshards, nblocks_per_shard, shard_start);
303 : #pragma omp barrier
304 : #pragma omp for schedule(static) // Need static to match previous loop.
305 : for (int iblock = 0; iblock < nblocks_recv; iblock++) {
306 : const int ishard = blocks_tmp[iblock].free_index % nshards;
307 : const int jblock = --nblocks_mythread[ishard] + shard_start[ishard];
308 : blks_recv[jblock] = blocks_tmp[iblock];
309 : }
310 :
311 : // Then sort blocks within each shard by their sum_index.
312 : #pragma omp for
313 : for (int ishard = 0; ishard < nshards; ishard++) {
314 : if (nblocks_per_shard[ishard] > 1) {
315 : qsort(&blks_recv[shard_start[ishard]], nblocks_per_shard[ishard],
316 : sizeof(dbm_pack_block_t), &compare_pack_blocks_by_sum_index);
317 : }
318 : }
319 : } // end of omp parallel region
320 :
321 445638 : free(blocks_tmp);
322 445638 : }
323 :
324 : /*******************************************************************************
325 : * \brief Private routine for redistributing a matrix along selected dimensions.
326 : * \author Ole Schuett
327 : ******************************************************************************/
328 426504 : static dbm_packed_matrix_t pack_matrix(const bool trans_matrix,
329 : const bool trans_dist,
330 : const dbm_matrix_t *matrix,
331 : const dbm_distribution_t *dist,
332 426504 : const int nticks) {
333 :
334 426504 : assert(cp_mpi_comms_are_similar(matrix->dist->comm, dist->comm));
335 :
336 : // The row/col indicies are distributed along one cart dimension and the
337 : // ticks are distributed along the other cart dimension.
338 426504 : const dbm_dist_1d_t *dist_indices = (trans_dist) ? &dist->cols : &dist->rows;
339 426504 : const dbm_dist_1d_t *dist_ticks = (trans_dist) ? &dist->rows : &dist->cols;
340 :
341 : // Allocate packed matrix.
342 426504 : const int nsend_packs = nticks / dist_ticks->nranks;
343 426504 : assert(nsend_packs * dist_ticks->nranks == nticks);
344 426504 : dbm_packed_matrix_t packed;
345 426504 : packed.dist_indices = dist_indices;
346 426504 : packed.dist_ticks = dist_ticks;
347 426504 : packed.nsend_packs = nsend_packs;
348 426504 : packed.send_packs = malloc(nsend_packs * sizeof(dbm_pack_t));
349 426504 : assert(packed.send_packs != NULL || nsend_packs == 0);
350 :
351 : // Plan all packs.
352 426504 : plan_t *plans_per_pack[nsend_packs];
353 426504 : int nblks_send_per_pack[nsend_packs], ndata_send_per_pack[nsend_packs];
354 426504 : create_pack_plans(trans_matrix, trans_dist, matrix, dist->comm, dist_indices,
355 : dist_ticks, nticks, nsend_packs, plans_per_pack,
356 : nblks_send_per_pack, ndata_send_per_pack);
357 :
358 : // Allocate send buffers for maximum number of blocks/data over all packs.
359 426504 : int nblks_send_max = 0, ndata_send_max = 0;
360 872142 : for (int ipack = 0; ipack < nsend_packs; ++ipack) {
361 445638 : nblks_send_max = imax(nblks_send_max, nblks_send_per_pack[ipack]);
362 445638 : ndata_send_max = imax(ndata_send_max, ndata_send_per_pack[ipack]);
363 : }
364 426504 : dbm_pack_block_t *blks_send =
365 426504 : cp_mpi_alloc_mem(nblks_send_max * sizeof(dbm_pack_block_t));
366 426504 : double *data_send = cp_mpi_alloc_mem(ndata_send_max * sizeof(double));
367 :
368 : // Cannot parallelize over packs (there might be too few of them).
369 872142 : for (int ipack = 0; ipack < nsend_packs; ipack++) {
370 : // Fill send buffers according to plans.
371 445638 : const int nranks = dist->nranks;
372 445638 : int blks_send_count[nranks], data_send_count[nranks];
373 445638 : int blks_send_displ[nranks], data_send_displ[nranks];
374 445638 : fill_send_buffers(matrix, trans_matrix, nblks_send_per_pack[ipack],
375 : ndata_send_per_pack[ipack], plans_per_pack[ipack], nranks,
376 : blks_send_count, data_send_count, blks_send_displ,
377 : data_send_displ, blks_send, data_send);
378 445638 : free(plans_per_pack[ipack]);
379 :
380 : // 1st communication: Exchange block counts.
381 445638 : int blks_recv_count[nranks], blks_recv_displ[nranks];
382 445638 : cp_mpi_alltoall_int(blks_send_count, 1, blks_recv_count, 1, dist->comm);
383 445638 : icumsum(nranks, blks_recv_count, blks_recv_displ);
384 445638 : const int nblocks_recv = isum(nranks, blks_recv_count);
385 :
386 : // 2nd communication: Exchange blocks.
387 445638 : dbm_pack_block_t *blks_recv =
388 445638 : cp_mpi_alloc_mem(nblocks_recv * sizeof(dbm_pack_block_t));
389 445638 : int blks_send_count_byte[nranks], blks_send_displ_byte[nranks];
390 445638 : int blks_recv_count_byte[nranks], blks_recv_displ_byte[nranks];
391 948678 : for (int i = 0; i < nranks; i++) { // TODO: this is ugly!
392 503040 : blks_send_count_byte[i] = blks_send_count[i] * sizeof(dbm_pack_block_t);
393 503040 : blks_send_displ_byte[i] = blks_send_displ[i] * sizeof(dbm_pack_block_t);
394 503040 : blks_recv_count_byte[i] = blks_recv_count[i] * sizeof(dbm_pack_block_t);
395 503040 : blks_recv_displ_byte[i] = blks_recv_displ[i] * sizeof(dbm_pack_block_t);
396 : }
397 445638 : cp_mpi_alltoallv_byte(blks_send, blks_send_count_byte, blks_send_displ_byte,
398 : blks_recv, blks_recv_count_byte, blks_recv_displ_byte,
399 445638 : dist->comm);
400 :
401 : // 3rd communication: Exchange data counts.
402 : // TODO: could be computed from blks_recv.
403 445638 : int data_recv_count[nranks], data_recv_displ[nranks];
404 445638 : cp_mpi_alltoall_int(data_send_count, 1, data_recv_count, 1, dist->comm);
405 445638 : icumsum(nranks, data_recv_count, data_recv_displ);
406 445638 : const int ndata_recv = isum(nranks, data_recv_count);
407 :
408 : // 4th communication: Exchange data.
409 : #if defined(DBM_MULTIPLY_COMM_MEMPOOL)
410 445638 : double *data_recv =
411 445638 : offload_mempool_host_malloc(ndata_recv * sizeof(double));
412 : #else
413 : double *data_recv = cp_mpi_alloc_mem(ndata_recv * sizeof(double));
414 : #endif
415 445638 : cp_mpi_alltoallv_double(data_send, data_send_count, data_send_displ,
416 : data_recv, data_recv_count, data_recv_displ,
417 445638 : dist->comm);
418 :
419 : // Post-process received blocks and assemble them into a pack.
420 445638 : postprocess_received_blocks(nranks, dist_indices->nshards, nblocks_recv,
421 : blks_recv_count, blks_recv_displ,
422 : data_recv_displ, blks_recv);
423 445638 : packed.send_packs[ipack].nblocks = nblocks_recv;
424 445638 : packed.send_packs[ipack].data_size = ndata_recv;
425 445638 : packed.send_packs[ipack].blocks = blks_recv;
426 445638 : packed.send_packs[ipack].data = data_recv;
427 : }
428 :
429 : // Deallocate send buffers.
430 426504 : cp_mpi_free_mem(blks_send);
431 426504 : cp_mpi_free_mem(data_send);
432 :
433 : // Allocate pack_recv.
434 426504 : int max_nblocks = 0, max_data_size = 0;
435 872142 : for (int ipack = 0; ipack < packed.nsend_packs; ipack++) {
436 445638 : max_nblocks = imax(max_nblocks, packed.send_packs[ipack].nblocks);
437 445638 : max_data_size = imax(max_data_size, packed.send_packs[ipack].data_size);
438 : }
439 426504 : cp_mpi_max_int(&max_nblocks, 1, packed.dist_ticks->comm);
440 426504 : cp_mpi_max_int(&max_data_size, 1, packed.dist_ticks->comm);
441 426504 : packed.max_nblocks = max_nblocks;
442 426504 : packed.max_data_size = max_data_size;
443 853008 : packed.recv_pack.blocks =
444 426504 : cp_mpi_alloc_mem(packed.max_nblocks * sizeof(dbm_pack_block_t));
445 : #if defined(DBM_MULTIPLY_COMM_MEMPOOL)
446 853008 : packed.recv_pack.data =
447 426504 : offload_mempool_host_malloc(packed.max_data_size * sizeof(double));
448 : #else
449 : packed.recv_pack.data =
450 : cp_mpi_alloc_mem(packed.max_data_size * sizeof(double));
451 : #endif
452 :
453 426504 : return packed; // Ownership of packed transfers to caller.
454 : }
455 :
456 : /*******************************************************************************
457 : * \brief Private routine for sending and receiving the pack for the given tick.
458 : * \author Ole Schuett
459 : ******************************************************************************/
460 464772 : static dbm_pack_t *sendrecv_pack(const int itick, const int nticks,
461 : dbm_packed_matrix_t *packed) {
462 464772 : const int nranks = packed->dist_ticks->nranks;
463 464772 : const int my_rank = packed->dist_ticks->my_rank;
464 :
465 : // Compute send rank and pack.
466 464772 : const int itick_of_rank0 = (itick + nticks - my_rank) % nticks;
467 464772 : const int send_rank = (my_rank + nticks - itick_of_rank0) % nranks;
468 464772 : const int send_itick = (itick_of_rank0 + send_rank) % nticks;
469 464772 : const int send_ipack = send_itick / nranks;
470 464772 : assert(send_itick % nranks == my_rank);
471 :
472 : // Compute receive rank and pack.
473 464772 : const int recv_rank = itick % nranks;
474 464772 : const int recv_ipack = itick / nranks;
475 :
476 464772 : dbm_pack_t *send_pack = &packed->send_packs[send_ipack];
477 464772 : if (send_rank == my_rank) {
478 445638 : assert(send_rank == recv_rank && send_ipack == recv_ipack);
479 : return send_pack; // Local pack, no mpi needed.
480 : } else {
481 : // Exchange blocks.
482 38268 : const int nblocks_in_bytes = cp_mpi_sendrecv_byte(
483 19134 : /*sendbuf=*/send_pack->blocks,
484 19134 : /*sendcound=*/send_pack->nblocks * sizeof(dbm_pack_block_t),
485 : /*dest=*/send_rank,
486 : /*sendtag=*/send_ipack,
487 19134 : /*recvbuf=*/packed->recv_pack.blocks,
488 19134 : /*recvcount=*/packed->max_nblocks * sizeof(dbm_pack_block_t),
489 : /*source=*/recv_rank,
490 : /*recvtag=*/recv_ipack,
491 19134 : /*comm=*/packed->dist_ticks->comm);
492 :
493 19134 : assert(nblocks_in_bytes % sizeof(dbm_pack_block_t) == 0);
494 19134 : packed->recv_pack.nblocks = nblocks_in_bytes / sizeof(dbm_pack_block_t);
495 :
496 : // Exchange data.
497 38268 : packed->recv_pack.data_size = cp_mpi_sendrecv_double(
498 19134 : /*sendbuf=*/send_pack->data,
499 : /*sendcound=*/send_pack->data_size,
500 : /*dest=*/send_rank,
501 : /*sendtag=*/send_ipack,
502 : /*recvbuf=*/packed->recv_pack.data,
503 : /*recvcount=*/packed->max_data_size,
504 : /*source=*/recv_rank,
505 : /*recvtag=*/recv_ipack,
506 19134 : /*comm=*/packed->dist_ticks->comm);
507 :
508 19134 : return &packed->recv_pack;
509 : }
510 : }
511 :
512 : /*******************************************************************************
513 : * \brief Private routine for releasing a packed matrix.
514 : * \author Ole Schuett
515 : ******************************************************************************/
516 426504 : static void free_packed_matrix(dbm_packed_matrix_t *packed) {
517 426504 : cp_mpi_free_mem(packed->recv_pack.blocks);
518 : #if defined(DBM_MULTIPLY_COMM_MEMPOOL)
519 426504 : offload_mempool_host_free(packed->recv_pack.data);
520 : #else
521 : cp_mpi_free_mem(packed->recv_pack.data);
522 : #endif
523 872142 : for (int ipack = 0; ipack < packed->nsend_packs; ipack++) {
524 445638 : cp_mpi_free_mem(packed->send_packs[ipack].blocks);
525 : #if defined(DBM_MULTIPLY_COMM_MEMPOOL)
526 445638 : offload_mempool_host_free(packed->send_packs[ipack].data);
527 : #else
528 : cp_mpi_free_mem(packed->send_packs[ipack].data);
529 : #endif
530 : }
531 426504 : free(packed->send_packs);
532 426504 : }
533 :
534 : /*******************************************************************************
535 : * \brief Internal routine for creating a communication iterator.
536 : * \author Ole Schuett
537 : ******************************************************************************/
538 213252 : dbm_comm_iterator_t *dbm_comm_iterator_start(const bool transa,
539 : const bool transb,
540 : const dbm_matrix_t *matrix_a,
541 : const dbm_matrix_t *matrix_b,
542 : const dbm_matrix_t *matrix_c) {
543 :
544 213252 : dbm_comm_iterator_t *iter = malloc(sizeof(dbm_comm_iterator_t));
545 213252 : assert(iter != NULL);
546 213252 : iter->dist = matrix_c->dist;
547 :
548 : // During each communication tick we'll fetch a pack_a and pack_b.
549 : // Since the cart might be non-squared, the number of communication ticks is
550 : // chosen as the least common multiple of the cart's dimensions.
551 213252 : iter->nticks = lcm(iter->dist->rows.nranks, iter->dist->cols.nranks);
552 213252 : iter->itick = 0;
553 :
554 : // 1.arg=source dimension, 2.arg=target dimension, false=rows, true=columns.
555 213252 : iter->packed_a =
556 213252 : pack_matrix(transa, false, matrix_a, iter->dist, iter->nticks);
557 213252 : iter->packed_b =
558 213252 : pack_matrix(!transb, true, matrix_b, iter->dist, iter->nticks);
559 :
560 213252 : return iter;
561 : }
562 :
563 : /*******************************************************************************
564 : * \brief Internal routine for retriving next pair of packs from given iterator.
565 : * \author Ole Schuett
566 : ******************************************************************************/
567 445638 : bool dbm_comm_iterator_next(dbm_comm_iterator_t *iter, dbm_pack_t **pack_a,
568 : dbm_pack_t **pack_b) {
569 445638 : if (iter->itick >= iter->nticks) {
570 : return false; // end of iterator reached
571 : }
572 :
573 : // Start each rank at a different tick to spread the load on the sources.
574 232386 : const int shift = iter->dist->rows.my_rank + iter->dist->cols.my_rank;
575 232386 : const int shifted_itick = (iter->itick + shift) % iter->nticks;
576 232386 : *pack_a = sendrecv_pack(shifted_itick, iter->nticks, &iter->packed_a);
577 232386 : *pack_b = sendrecv_pack(shifted_itick, iter->nticks, &iter->packed_b);
578 :
579 232386 : iter->itick++;
580 232386 : return true;
581 : }
582 :
583 : /*******************************************************************************
584 : * \brief Internal routine for releasing the given communication iterator.
585 : * \author Ole Schuett
586 : ******************************************************************************/
587 213252 : void dbm_comm_iterator_stop(dbm_comm_iterator_t *iter) {
588 213252 : free_packed_matrix(&iter->packed_a);
589 213252 : free_packed_matrix(&iter->packed_b);
590 213252 : free(iter);
591 213252 : }
592 :
593 : // EOF
|