LCOV - code coverage report
Current view: top level - src - dm_ls_chebyshev.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:32ddf85) Lines: 173 174 99.4 %
Date: 2025-05-17 08:08:58 Functions: 3 3 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines using linear scaling chebyshev methods
      10             : !> \par History
      11             : !>       2012.10 created [Jinwoong Cha]
      12             : !> \author Jinwoong Cha
      13             : ! **************************************************************************************************
      14             : MODULE dm_ls_chebyshev
      15             :    USE arnoldi_api,                     ONLY: arnoldi_extremal
      16             :    USE cp_dbcsr_api,                    ONLY: &
      17             :         dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_get_info, dbcsr_get_occupation, dbcsr_multiply, &
      18             :         dbcsr_release, dbcsr_scale, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry
      19             :    USE cp_dbcsr_contrib,                ONLY: dbcsr_add_on_diag,&
      20             :                                               dbcsr_frobenius_norm,&
      21             :                                               dbcsr_trace
      22             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      23             :                                               cp_logger_get_default_unit_nr,&
      24             :                                               cp_logger_type
      25             :    USE cp_output_handling,              ONLY: cp_p_file,&
      26             :                                               cp_print_key_finished_output,&
      27             :                                               cp_print_key_should_output,&
      28             :                                               cp_print_key_unit_nr
      29             :    USE dm_ls_scf_qs,                    ONLY: write_matrix_to_cube
      30             :    USE dm_ls_scf_types,                 ONLY: ls_scf_env_type
      31             :    USE input_section_types,             ONLY: section_get_ivals,&
      32             :                                               section_vals_val_get
      33             :    USE kinds,                           ONLY: default_string_length,&
      34             :                                               dp
      35             :    USE machine,                         ONLY: m_flush,&
      36             :                                               m_walltime
      37             :    USE mathconstants,                   ONLY: pi
      38             :    USE qs_environment_types,            ONLY: qs_environment_type
      39             : #include "./base/base_uses.f90"
      40             : 
      41             :    IMPLICIT NONE
      42             : 
      43             :    PRIVATE
      44             : 
      45             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'dm_ls_chebyshev'
      46             : 
      47             :    PUBLIC :: compute_chebyshev
      48             : 
      49             : CONTAINS
      50             : 
      51             : ! **************************************************************************************************
      52             : !> \brief compute chebyshev polynomials up to order n for a given value of x
      53             : !> \param value ...
      54             : !> \param x ...
      55             : !> \param n ...
      56             : !> \par History
      57             : !>       2012.11 created [Jinwoong Cha]
      58             : !> \author Jinwoong Cha
      59             : ! **************************************************************************************************
      60     3729300 :    SUBROUTINE chebyshev_poly(value, x, n)
      61             :       REAL(KIND=dp), INTENT(OUT)                         :: value
      62             :       REAL(KIND=dp), INTENT(IN)                          :: x
      63             :       INTEGER, INTENT(IN)                                :: n
      64             : 
      65             : !polynomial values
      66             : !number of chev polynomials
      67             : 
      68     3729300 :       value = COS((n - 1)*ACOS(x))
      69             : 
      70     3729300 :    END SUBROUTINE chebyshev_poly
      71             : 
      72             : ! **************************************************************************************************
      73             : !> \brief kernel for chebyshev polynomials expansion (Jackson kernel)
      74             : !> \param value ...
      75             : !> \param n ...
      76             : !> \param nc ...
      77             : !> \par History
      78             : !>       2012.11 created [Jinwoong Cha]
      79             : !> \author Jinwoong Cha
      80             : ! **************************************************************************************************
      81        3000 :    SUBROUTINE kernel(value, n, nc)
      82             :       REAL(KIND=dp), INTENT(OUT)                         :: value
      83             :       INTEGER, INTENT(IN)                                :: n, nc
      84             : 
      85             : !kernel at n
      86             : !n-1 order of chebyshev polynomials
      87             : !number of total chebyshev polynomials
      88             : !Kernel define
      89             : 
      90             :       value = 1.0_dp/(nc + 1.0_dp)*((nc - (n - 1) + 1.0_dp)* &
      91        3000 :                                     COS(pi*(n - 1)/(nc + 1.0_dp)) + SIN(pi*(n - 1)/(nc + 1.0_dp))*1.0_dp/TAN(pi/(nc + 1.0_dp)))
      92             : 
      93        3000 :    END SUBROUTINE kernel
      94             : 
      95             : ! **************************************************************************************************
      96             : !> \brief compute properties based on chebyshev expansion
      97             : !> \param qs_env ...
      98             : !> \param ls_scf_env ...
      99             : !> \par History
     100             : !>       2012.10 created [Jinwoong Cha]
     101             : !> \author Jinwoong Cha
     102             : ! **************************************************************************************************
     103           6 :    SUBROUTINE compute_chebyshev(qs_env, ls_scf_env)
     104             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     105             :       TYPE(ls_scf_env_type)                              :: ls_scf_env
     106             : 
     107             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'compute_chebyshev'
     108             :       REAL(KIND=dp), PARAMETER                           :: scale_evals = 1.01_dp
     109             : 
     110             :       CHARACTER(LEN=30)                                  :: middle_name
     111             :       CHARACTER(LEN=default_string_length)               :: title
     112             :       INTEGER                                            :: handle, icheb, igrid, iinte, ispin, &
     113             :                                                             iwindow, n_gridpoint_dos, ncheb, &
     114             :                                                             ninte, Nrows, nwindow, unit_cube, &
     115             :                                                             unit_dos, unit_nr
     116             :       LOGICAL                                            :: converged, write_cubes
     117             :       REAL(KIND=dp) :: chev_T, chev_T_dos, dummy1, final, frob_matrix, initial, interval_a, &
     118             :          interval_b, max_ev, min_ev, occ, orbital_occ, summa, t1, t2
     119           6 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: chev_E, chev_Es_dos, dos, dummy2, ev1, &
     120           6 :                                                             ev2, kernel_g, mu, sev1, sev2, trace_dm
     121           6 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: aitchev_T, E_inte, gdensity, sqrt_vec
     122           6 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tmp_r
     123             :       TYPE(cp_logger_type), POINTER                      :: logger
     124             :       TYPE(dbcsr_type)                                   :: matrix_dummy1, matrix_F, matrix_tmp1, &
     125             :                                                             matrix_tmp2, matrix_tmp3
     126           6 :       TYPE(dbcsr_type), DIMENSION(:), POINTER            :: matrix_dummy2
     127             : 
     128           6 :       IF (.NOT. ls_scf_env%chebyshev%compute_chebyshev) RETURN
     129             : 
     130           6 :       CALL timeset(routineN, handle)
     131             : 
     132             :       ! get a useful output_unit
     133           6 :       logger => cp_get_default_logger()
     134           6 :       IF (logger%para_env%is_source()) THEN
     135           3 :          unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     136             :       ELSE
     137           3 :          unit_nr = -1
     138             :       END IF
     139             : 
     140           6 :       ncheb = ls_scf_env%chebyshev%n_chebyshev
     141           6 :       ninte = 2*ncheb
     142           6 :       n_gridpoint_dos = ls_scf_env%chebyshev%n_gridpoint_dos
     143             : 
     144           6 :       write_cubes = BTEST(cp_print_key_should_output(logger%iter_info, ls_scf_env%chebyshev%print_key_cube), cp_p_file)
     145           6 :       IF (write_cubes) THEN
     146           2 :          IF (ASSOCIATED(ls_scf_env%chebyshev%min_energy)) DEALLOCATE (ls_scf_env%chebyshev%min_energy)
     147           2 :          CALL section_vals_val_get(ls_scf_env%chebyshev%print_key_cube, "MIN_ENERGY", r_vals=tmp_r)
     148           6 :          ALLOCATE (ls_scf_env%chebyshev%min_energy(SIZE(tmp_r)))
     149           8 :          ls_scf_env%chebyshev%min_energy = tmp_r
     150             : 
     151           2 :          IF (ASSOCIATED(ls_scf_env%chebyshev%max_energy)) DEALLOCATE (ls_scf_env%chebyshev%max_energy)
     152           2 :          CALL section_vals_val_get(ls_scf_env%chebyshev%print_key_cube, "MAX_ENERGY", r_vals=tmp_r)
     153           6 :          ALLOCATE (ls_scf_env%chebyshev%max_energy(SIZE(tmp_r)))
     154           8 :          ls_scf_env%chebyshev%max_energy = tmp_r
     155             : 
     156           2 :          nwindow = SIZE(ls_scf_env%chebyshev%min_energy)
     157             :       ELSE
     158             :          nwindow = 0
     159             :       END IF
     160             : 
     161          14 :       ALLOCATE (ev1(1:nwindow))
     162           8 :       ALLOCATE (ev2(1:nwindow))
     163           8 :       ALLOCATE (sev1(1:nwindow))
     164           8 :       ALLOCATE (sev2(1:nwindow))
     165           8 :       ALLOCATE (trace_dm(1:nwindow))
     166          20 :       ALLOCATE (matrix_dummy2(1:nwindow))
     167             : 
     168          12 :       DO iwindow = 1, nwindow
     169           6 :          ev1(iwindow) = ls_scf_env%chebyshev%min_energy(iwindow)
     170          12 :          ev2(iwindow) = ls_scf_env%chebyshev%max_energy(iwindow)
     171             :       END DO
     172             : 
     173           6 :       IF (unit_nr > 0) THEN
     174           3 :          WRITE (unit_nr, '()')
     175           3 :          WRITE (unit_nr, '(T2,A)') "STARTING CHEBYSHEV CALCULATION"
     176             :       END IF
     177             : 
     178             :       ! create 3 temporary matrices
     179           6 :       CALL dbcsr_create(matrix_tmp1, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     180           6 :       CALL dbcsr_create(matrix_tmp2, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     181           6 :       CALL dbcsr_create(matrix_tmp3, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     182           6 :       CALL dbcsr_create(matrix_F, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     183           6 :       CALL dbcsr_create(matrix_dummy1, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     184             : 
     185          12 :       DO iwindow = 1, nwindow
     186             :          CALL dbcsr_create(matrix_dummy2(iwindow), template=ls_scf_env%matrix_s, &
     187          12 :                            matrix_type=dbcsr_type_no_symmetry)
     188             :       END DO
     189             : 
     190          12 :       DO ispin = 1, SIZE(ls_scf_env%matrix_ks)
     191             :          ! create matrix_F=inv(sqrt(S))*H*inv(sqrt(S))
     192             :          CALL dbcsr_multiply("N", "N", 1.0_dp, ls_scf_env%matrix_s_sqrt_inv, ls_scf_env%matrix_ks(ispin), &
     193           6 :                              0.0_dp, matrix_tmp1, filter_eps=ls_scf_env%eps_filter)
     194             :          CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_tmp1, ls_scf_env%matrix_s_sqrt_inv, &
     195           6 :                              0.0_dp, matrix_F, filter_eps=ls_scf_env%eps_filter)
     196             : 
     197             :          ! find largest and smallest eigenvalues
     198             :          CALL arnoldi_extremal(matrix_F, max_ev, min_ev, converged=converged, max_iter=ls_scf_env%max_iter_lanczos, &
     199           6 :                                threshold=ls_scf_env%eps_lanczos) !Lanczos algorithm to calculate eigenvalue
     200           6 :          IF (unit_nr > 0) WRITE (unit_nr, '(T2,A,2F16.8,A,L2)') &
     201           3 :             "smallest largest eigenvalue", min_ev, max_ev, " converged ", converged
     202           6 :          IF (nwindow > 0) THEN
     203           2 :             IF (unit_nr > 0) WRITE (unit_nr, '(T2,A,1000F16.8)') "requested interval-min_energy", ev1(:)
     204           2 :             IF (unit_nr > 0) WRITE (unit_nr, '(T2,A,1000F16.8)') "requested interval-max_energy", ev2(:)
     205             :          END IF
     206           6 :          interval_a = (max_ev - min_ev)*scale_evals/2
     207           6 :          interval_b = (max_ev + min_ev)/2
     208             : 
     209          12 :          sev1(:) = (ev1(:) - interval_b)/interval_a !scaled ev1 vector
     210          12 :          sev2(:) = (ev2(:) - interval_b)/interval_a !scaled ev2 vector
     211             : 
     212             :          !chebyshev domain,pi*sqrt(1-x^2) vector construction and chebyshev polynomials for integration (for g(E))
     213          20 :          ALLOCATE (E_inte(1:ninte + 1, 1:nwindow))
     214          14 :          ALLOCATE (sqrt_vec(1:ninte + 1, 1:nwindow))
     215             : 
     216          12 :          DO iwindow = 1, nwindow
     217        4818 :             DO iinte = 1, ninte + 1
     218        4806 :                E_inte(iinte, iwindow) = sev1(iwindow) + ((sev2(iwindow) - sev1(iwindow))/ninte)*(iinte - 1)
     219        4812 :                sqrt_vec(iinte, iwindow) = pi*SQRT(1.0_dp - E_inte(iinte, iwindow)*E_inte(iinte, iwindow))
     220             :             END DO
     221             :          END DO
     222             : 
     223             :          !integral.. (identical to the coefficient for g(E))
     224             : 
     225          20 :          ALLOCATE (aitchev_T(1:ncheb, 1:nwindow)) !after intergral. =>ainte
     226             : 
     227          12 :          DO iwindow = 1, nwindow
     228        2412 :             DO icheb = 1, ncheb
     229        2400 :                CALL chebyshev_poly(initial, E_inte(1, iwindow), icheb)
     230        2400 :                CALL chebyshev_poly(final, E_inte(1, iwindow), icheb)
     231        2400 :           summa = (sev2(iwindow) - sev1(iwindow))/(2.0_dp*ninte)*(initial/sqrt_vec(1, iwindow) + final/sqrt_vec(ninte + 1, iwindow))
     232     1920000 :                DO iinte = 2, ninte
     233     1917600 :                   CALL chebyshev_poly(chev_T, E_inte(iinte, iwindow), icheb)
     234     1920000 :                   summa = summa + ((sev2(iwindow) - sev1(iwindow))/ninte)*(chev_T/sqrt_vec(iinte, iwindow))
     235             :                END DO
     236        2400 :                aitchev_T(icheb, iwindow) = summa
     237        4806 :                summa = 0
     238             :             END DO
     239             :          END DO
     240             : 
     241             :          ! scale the matrix to get evals in the interval -1,1
     242           6 :          CALL dbcsr_add_on_diag(matrix_F, -interval_b)
     243           6 :          CALL dbcsr_scale(matrix_F, 1/interval_a)
     244             : 
     245             :          ! compute chebyshev matrix recursion
     246           6 :          CALL dbcsr_get_info(matrix=matrix_F, nfullrows_total=Nrows) !get information about a matrix
     247           6 :          CALL dbcsr_set(matrix_dummy1, 0.0_dp) !empty matrix creation(for density matrix)
     248             : 
     249          12 :          DO iwindow = 1, nwindow
     250          12 :             CALL dbcsr_set(matrix_dummy2(iwindow), 0.0_dp) !empty matrix creation(for density matrix)
     251             :          END DO
     252             : 
     253          18 :          ALLOCATE (mu(1:ncheb))
     254          12 :          ALLOCATE (kernel_g(1:ncheb))
     255           6 :          CALL kernel(kernel_g(1), 1, ncheb)
     256           6 :          CALL kernel(kernel_g(2), 2, ncheb)
     257             : 
     258           6 :          CALL dbcsr_set(matrix_tmp1, 0.0_dp) !matrix creation
     259           6 :          CALL dbcsr_add_on_diag(matrix_tmp1, 1.0_dp) !add a only number to diagonal elements
     260           6 :          CALL dbcsr_trace(matrix_tmp1, trace=mu(1))
     261           6 :          CALL dbcsr_copy(matrix_tmp2, matrix_F) !make matrix_tmp2 = matrix_F
     262           6 :          CALL dbcsr_trace(matrix_tmp2, trace=mu(2))
     263             : 
     264          12 :          DO iwindow = 1, nwindow
     265           6 :             CALL dbcsr_copy(matrix_dummy1, matrix_tmp1)
     266           6 :             CALL dbcsr_copy(matrix_dummy2(iwindow), matrix_tmp2) !matrix_dummy2=
     267           6 :             CALL dbcsr_scale(matrix_dummy1, kernel_g(1)*aitchev_T(1, iwindow)) !first term of chebyshev poly(matrix)
     268           6 :             CALL dbcsr_scale(matrix_dummy2(iwindow), 2.0_dp*kernel_g(2)*aitchev_T(2, iwindow)) !second term of chebyshev poly(matrix)
     269             : 
     270          12 :             CALL dbcsr_add(matrix_dummy2(iwindow), matrix_dummy1, 1.0_dp, 1.0_dp)
     271             :          END DO
     272             : 
     273        2994 :          DO icheb = 2, ncheb - 1
     274        2988 :             t1 = m_walltime()
     275             :             CALL dbcsr_multiply("N", "N", 2.0_dp, matrix_F, matrix_tmp2, &
     276        2988 :                                 -1.0_dp, matrix_tmp1, filter_eps=ls_scf_env%eps_filter) !matrix multiplication(Recursion)
     277        2988 :             CALL dbcsr_copy(matrix_tmp3, matrix_tmp1)
     278        2988 :             CALL dbcsr_copy(matrix_tmp1, matrix_tmp2)
     279        2988 :             CALL dbcsr_copy(matrix_tmp2, matrix_tmp3)
     280        2988 :             CALL dbcsr_trace(matrix_tmp2, trace=mu(icheb + 1)) !icheb+1 th coefficient
     281        2988 :             CALL kernel(kernel_g(icheb + 1), icheb + 1, ncheb)
     282             : 
     283        5376 :             DO iwindow = 1, nwindow
     284             : 
     285        2388 :                CALL dbcsr_copy(matrix_dummy1, matrix_tmp2)
     286        2388 :                CALL dbcsr_scale(matrix_dummy1, 2.0_dp*kernel_g(icheb + 1)*aitchev_T(icheb + 1, iwindow)) !second term of chebyshev poly(matrix)
     287        2388 :                CALL dbcsr_add(matrix_dummy2(iwindow), matrix_dummy1, 1.0_dp, 1.0_dp)
     288        5376 :                CALL dbcsr_trace(matrix_dummy2(iwindow), trace=trace_dm(iwindow)) !icheb+1 th coefficient
     289             : 
     290             :             END DO
     291             : 
     292        2988 :             occ = dbcsr_get_occupation(matrix_tmp1)
     293        2988 :             t2 = m_walltime()
     294        2994 :             IF (unit_nr > 0 .AND. MOD(icheb, 20) == 0) THEN
     295          72 :                CALL m_flush(unit_nr)
     296          72 :                IF (nwindow > 0) THEN
     297             :                   WRITE (unit_nr, '(T2,A,I5,1X,A,1X,F8.3,1X,A,1X,F8.6,1X,A,1X,1000F16.8)') &
     298          19 :                      "Iter.", icheb, "time=", t2 - t1, "occ=", occ, "traces=", trace_dm(:)
     299             :                ELSE
     300             :                   WRITE (unit_nr, '(T2,A,I5,1X,A,1X,F8.3,1X,A,1X,F8.6)') &
     301          53 :                      "Iter.", icheb, "time=", t2 - t1, "occ=", occ
     302             :                END IF
     303             :             END IF
     304             :          END DO
     305             : 
     306          12 :          DO iwindow = 1, nwindow
     307           6 :             IF (SIZE(ls_scf_env%matrix_ks) == 1) THEN
     308           6 :                orbital_occ = 2.0_dp
     309             :             ELSE
     310           0 :                orbital_occ = 1.0_dp
     311             :             END IF
     312             :             CALL dbcsr_multiply("N", "N", 1.0_dp, ls_scf_env%matrix_s_sqrt_inv, matrix_dummy2(iwindow), &
     313           6 :                                 0.0_dp, matrix_tmp1, filter_eps=ls_scf_env%eps_filter)
     314             :             CALL dbcsr_multiply("N", "N", orbital_occ, matrix_tmp1, ls_scf_env%matrix_s_sqrt_inv, &
     315           6 :                                 0.0_dp, matrix_tmp2, filter_eps=ls_scf_env%eps_filter)
     316           6 :             CALL dbcsr_copy(matrix_dummy2(iwindow), matrix_tmp2)
     317             : 
     318             :             ! look at the difference with the density matrix from the ls routines
     319           6 :             IF (.FALSE.) THEN
     320             :                CALL dbcsr_copy(matrix_tmp1, matrix_tmp2)
     321             :                CALL dbcsr_add(matrix_tmp1, ls_scf_env%matrix_p(ispin), 1.0_dp, -1.0_dp) !comparison
     322             :                frob_matrix = dbcsr_frobenius_norm(matrix_tmp1)
     323             :                IF (unit_nr > 0) WRITE (unit_nr, *) "Difference between Chebyshev DM and LS DM", frob_matrix
     324             :             END IF
     325             :          END DO
     326             : 
     327             :          write_cubes = BTEST(cp_print_key_should_output(logger%iter_info, &
     328           6 :                                                         ls_scf_env%chebyshev%print_key_cube), cp_p_file)
     329          24 :          IF (write_cubes) THEN
     330           8 :             DO iwindow = 1, nwindow
     331           6 :                WRITE (middle_name, "(A,I0)") "E_DENSITY_WINDOW_", iwindow
     332           6 :                WRITE (title, "(A,1X,F16.8,1X,A,1X,F16.8)") "Energy range : ", ev1(iwindow), "to", ev2(iwindow)
     333             :                unit_cube = cp_print_key_unit_nr(logger, ls_scf_env%chebyshev%print_key_cube, &
     334             :                                                 "", extension=".cube", & !added 01/22/2012
     335           6 :                                                 middle_name=TRIM(middle_name), log_filename=.FALSE.)
     336             :                CALL write_matrix_to_cube(qs_env, ls_scf_env, matrix_dummy2(iwindow), unit_cube, title, &
     337           6 :                                          section_get_ivals(ls_scf_env%chebyshev%print_key_cube, "STRIDE"))
     338           8 :                CALL cp_print_key_finished_output(unit_cube, logger, ls_scf_env%chebyshev%print_key_cube, "")
     339             :             END DO
     340             :          END IF
     341             : 
     342             :       END DO
     343             : 
     344             :       ! Chebyshev expansion with calculated coefficient
     345             :       ! grid construction and rescaling (by J)
     346             :       unit_dos = cp_print_key_unit_nr(logger, ls_scf_env%chebyshev%print_key_dos, "", extension=".xy", &
     347           6 :                                       middle_name="DOS", log_filename=.FALSE.)
     348             : 
     349           6 :       IF (unit_dos > 0) THEN
     350           9 :          ALLOCATE (dos(1:n_gridpoint_dos))
     351          10 :          ALLOCATE (gdensity(1:n_gridpoint_dos, 1:nwindow))
     352           6 :          ALLOCATE (chev_E(1:n_gridpoint_dos))
     353           6 :          ALLOCATE (chev_Es_dos(1:n_gridpoint_dos))
     354           4 :          ALLOCATE (dummy2(1:nwindow))
     355        3103 :          DO igrid = 1, n_gridpoint_dos
     356        3100 :             chev_E(igrid) = min_ev + (igrid - 1)*(max_ev - min_ev)/(n_gridpoint_dos - 1)
     357        3103 :             chev_Es_dos(igrid) = (chev_E(igrid) - interval_b)/interval_a
     358             :          END DO
     359        3103 :          DO igrid = 1, n_gridpoint_dos
     360        9100 :             dummy1 = 0.0_dp !summation of polynomials
     361        9100 :             dummy2(:) = 0.0_dp !summation of polynomials
     362     1810000 :             DO icheb = 2, ncheb
     363     1806900 :                CALL chebyshev_poly(chev_T_dos, chev_Es_dos(igrid), icheb)
     364     1806900 :                dummy1 = dummy1 + kernel_g(icheb)*mu(icheb)*chev_T_dos
     365     4204000 :                DO iwindow = 1, nwindow
     366     4200900 :                   dummy2(iwindow) = dummy2(iwindow) + kernel_g(icheb)*aitchev_T(icheb, iwindow)*chev_T_dos
     367             :                END DO
     368             :             END DO
     369             :             dos(igrid) = 1.0_dp/(interval_a*Nrows* &
     370        3100 :                                  (pi*SQRT(1.0_dp - chev_Es_dos(igrid)*chev_Es_dos(igrid))))*(kernel_g(1)*mu(1) + 2.0_dp*dummy1)
     371        9100 :             DO iwindow = 1, nwindow
     372        9100 :                gdensity(igrid, iwindow) = kernel_g(1)*aitchev_T(1, iwindow) + 2.0_dp*dummy2(iwindow)
     373             :             END DO
     374        3103 :             WRITE (unit_dos, '(1000F16.8)') chev_E(igrid), dos(igrid), gdensity(igrid, :)
     375             :          END DO
     376           3 :          DEALLOCATE (chev_Es_dos, chev_E, dos, gdensity)
     377             :       END IF
     378           6 :       CALL cp_print_key_finished_output(unit_dos, logger, ls_scf_env%chebyshev%print_key_dos, "")
     379             : 
     380             :       ! free the matrices
     381           6 :       CALL dbcsr_release(matrix_tmp1)
     382           6 :       CALL dbcsr_release(matrix_tmp2)
     383           6 :       CALL dbcsr_release(matrix_tmp3)
     384           6 :       CALL dbcsr_release(matrix_F)
     385           6 :       CALL dbcsr_release(matrix_dummy1)
     386             : 
     387          12 :       DO iwindow = 1, nwindow
     388          12 :          CALL dbcsr_release(matrix_dummy2(iwindow))
     389             :       END DO
     390             : 
     391           6 :       DEALLOCATE (ev1, ev2, sev1, sev2, matrix_dummy2)
     392             : 
     393             :       !Need deallocation
     394           6 :       DEALLOCATE (mu, kernel_g, aitchev_T, E_inte, sqrt_vec)
     395             : 
     396           6 :       IF (unit_nr > 0) WRITE (unit_nr, '(T2,A)') "ENDING CHEBYSHEV CALCULATION"
     397             : 
     398           6 :       CALL timestop(handle)
     399             : 
     400          12 :    END SUBROUTINE compute_chebyshev
     401             : 
     402             : END MODULE dm_ls_chebyshev

Generated by: LCOV version 1.15