LCOV - code coverage report
Current view: top level - src - dm_ls_chebyshev.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:b279b6b) Lines: 173 174 99.4 %
Date: 2024-04-24 07:13:09 Functions: 3 3 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines using linear scaling chebyshev methods
      10             : !> \par History
      11             : !>       2012.10 created [Jinwoong Cha]
      12             : !> \author Jinwoong Cha
      13             : ! **************************************************************************************************
      14             : MODULE dm_ls_chebyshev
      15             :    USE arnoldi_api,                     ONLY: arnoldi_extremal
      16             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      17             :                                               cp_logger_get_default_unit_nr,&
      18             :                                               cp_logger_type
      19             :    USE cp_output_handling,              ONLY: cp_p_file,&
      20             :                                               cp_print_key_finished_output,&
      21             :                                               cp_print_key_should_output,&
      22             :                                               cp_print_key_unit_nr
      23             :    USE dbcsr_api,                       ONLY: &
      24             :         dbcsr_add, dbcsr_add_on_diag, dbcsr_copy, dbcsr_create, dbcsr_frobenius_norm, &
      25             :         dbcsr_get_info, dbcsr_get_occupation, dbcsr_multiply, dbcsr_release, dbcsr_scale, &
      26             :         dbcsr_set, dbcsr_trace, dbcsr_type, dbcsr_type_no_symmetry
      27             :    USE dm_ls_scf_qs,                    ONLY: write_matrix_to_cube
      28             :    USE dm_ls_scf_types,                 ONLY: ls_scf_env_type
      29             :    USE input_section_types,             ONLY: section_get_ivals,&
      30             :                                               section_vals_val_get
      31             :    USE kinds,                           ONLY: default_string_length,&
      32             :                                               dp
      33             :    USE machine,                         ONLY: m_flush,&
      34             :                                               m_walltime
      35             :    USE mathconstants,                   ONLY: pi
      36             :    USE qs_environment_types,            ONLY: qs_environment_type
      37             : #include "./base/base_uses.f90"
      38             : 
      39             :    IMPLICIT NONE
      40             : 
      41             :    PRIVATE
      42             : 
      43             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'dm_ls_chebyshev'
      44             : 
      45             :    PUBLIC :: compute_chebyshev
      46             : 
      47             : CONTAINS
      48             : 
      49             : ! **************************************************************************************************
      50             : !> \brief compute chebyshev polynomials up to order n for a given value of x
      51             : !> \param value ...
      52             : !> \param x ...
      53             : !> \param n ...
      54             : !> \par History
      55             : !>       2012.11 created [Jinwoong Cha]
      56             : !> \author Jinwoong Cha
      57             : ! **************************************************************************************************
      58     3729300 :    SUBROUTINE chebyshev_poly(value, x, n)
      59             :       REAL(KIND=dp), INTENT(OUT)                         :: value
      60             :       REAL(KIND=dp), INTENT(IN)                          :: x
      61             :       INTEGER, INTENT(IN)                                :: n
      62             : 
      63             : !polynomial values
      64             : !number of chev polynomials
      65             : 
      66     3729300 :       value = COS((n - 1)*ACOS(x))
      67             : 
      68     3729300 :    END SUBROUTINE chebyshev_poly
      69             : 
      70             : ! **************************************************************************************************
      71             : !> \brief kernel for chebyshev polynomials expansion (Jackson kernel)
      72             : !> \param value ...
      73             : !> \param n ...
      74             : !> \param nc ...
      75             : !> \par History
      76             : !>       2012.11 created [Jinwoong Cha]
      77             : !> \author Jinwoong Cha
      78             : ! **************************************************************************************************
      79        3000 :    SUBROUTINE kernel(value, n, nc)
      80             :       REAL(KIND=dp), INTENT(OUT)                         :: value
      81             :       INTEGER, INTENT(IN)                                :: n, nc
      82             : 
      83             : !kernel at n
      84             : !n-1 order of chebyshev polynomials
      85             : !number of total chebyshev polynomials
      86             : !Kernel define
      87             : 
      88             :       value = 1.0_dp/(nc + 1.0_dp)*((nc - (n - 1) + 1.0_dp)* &
      89        3000 :                                     COS(pi*(n - 1)/(nc + 1.0_dp)) + SIN(pi*(n - 1)/(nc + 1.0_dp))*1.0_dp/TAN(pi/(nc + 1.0_dp)))
      90             : 
      91        3000 :    END SUBROUTINE kernel
      92             : 
      93             : ! **************************************************************************************************
      94             : !> \brief compute properties based on chebyshev expansion
      95             : !> \param qs_env ...
      96             : !> \param ls_scf_env ...
      97             : !> \par History
      98             : !>       2012.10 created [Jinwoong Cha]
      99             : !> \author Jinwoong Cha
     100             : ! **************************************************************************************************
     101           6 :    SUBROUTINE compute_chebyshev(qs_env, ls_scf_env)
     102             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     103             :       TYPE(ls_scf_env_type)                              :: ls_scf_env
     104             : 
     105             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'compute_chebyshev'
     106             :       REAL(KIND=dp), PARAMETER                           :: scale_evals = 1.01_dp
     107             : 
     108             :       CHARACTER(LEN=30)                                  :: middle_name
     109             :       CHARACTER(LEN=default_string_length)               :: title
     110             :       INTEGER                                            :: handle, icheb, igrid, iinte, ispin, &
     111             :                                                             iwindow, n_gridpoint_dos, ncheb, &
     112             :                                                             ninte, Nrows, nwindow, unit_cube, &
     113             :                                                             unit_dos, unit_nr
     114             :       LOGICAL                                            :: converged, write_cubes
     115             :       REAL(KIND=dp) :: chev_T, chev_T_dos, dummy1, final, frob_matrix, initial, interval_a, &
     116             :          interval_b, max_ev, min_ev, occ, orbital_occ, summa, t1, t2
     117           6 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: chev_E, chev_Es_dos, dos, dummy2, ev1, &
     118           6 :                                                             ev2, kernel_g, mu, sev1, sev2, trace_dm
     119           6 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: aitchev_T, E_inte, gdensity, sqrt_vec
     120           6 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tmp_r
     121             :       TYPE(cp_logger_type), POINTER                      :: logger
     122             :       TYPE(dbcsr_type)                                   :: matrix_dummy1, matrix_F, matrix_tmp1, &
     123             :                                                             matrix_tmp2, matrix_tmp3
     124           6 :       TYPE(dbcsr_type), DIMENSION(:), POINTER            :: matrix_dummy2
     125             : 
     126           6 :       IF (.NOT. ls_scf_env%chebyshev%compute_chebyshev) RETURN
     127             : 
     128           6 :       CALL timeset(routineN, handle)
     129             : 
     130             :       ! get a useful output_unit
     131           6 :       logger => cp_get_default_logger()
     132           6 :       IF (logger%para_env%is_source()) THEN
     133           3 :          unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     134             :       ELSE
     135           3 :          unit_nr = -1
     136             :       END IF
     137             : 
     138           6 :       ncheb = ls_scf_env%chebyshev%n_chebyshev
     139           6 :       ninte = 2*ncheb
     140           6 :       n_gridpoint_dos = ls_scf_env%chebyshev%n_gridpoint_dos
     141             : 
     142           6 :       write_cubes = BTEST(cp_print_key_should_output(logger%iter_info, ls_scf_env%chebyshev%print_key_cube), cp_p_file)
     143           6 :       IF (write_cubes) THEN
     144           2 :          IF (ASSOCIATED(ls_scf_env%chebyshev%min_energy)) DEALLOCATE (ls_scf_env%chebyshev%min_energy)
     145           2 :          CALL section_vals_val_get(ls_scf_env%chebyshev%print_key_cube, "MIN_ENERGY", r_vals=tmp_r)
     146           6 :          ALLOCATE (ls_scf_env%chebyshev%min_energy(SIZE(tmp_r)))
     147           8 :          ls_scf_env%chebyshev%min_energy = tmp_r
     148             : 
     149           2 :          IF (ASSOCIATED(ls_scf_env%chebyshev%max_energy)) DEALLOCATE (ls_scf_env%chebyshev%max_energy)
     150           2 :          CALL section_vals_val_get(ls_scf_env%chebyshev%print_key_cube, "MAX_ENERGY", r_vals=tmp_r)
     151           6 :          ALLOCATE (ls_scf_env%chebyshev%max_energy(SIZE(tmp_r)))
     152           8 :          ls_scf_env%chebyshev%max_energy = tmp_r
     153             : 
     154           2 :          nwindow = SIZE(ls_scf_env%chebyshev%min_energy)
     155             :       ELSE
     156             :          nwindow = 0
     157             :       END IF
     158             : 
     159          14 :       ALLOCATE (ev1(1:nwindow))
     160          14 :       ALLOCATE (ev2(1:nwindow))
     161          14 :       ALLOCATE (sev1(1:nwindow))
     162          14 :       ALLOCATE (sev2(1:nwindow))
     163          14 :       ALLOCATE (trace_dm(1:nwindow))
     164          20 :       ALLOCATE (matrix_dummy2(1:nwindow))
     165             : 
     166          12 :       DO iwindow = 1, nwindow
     167           6 :          ev1(iwindow) = ls_scf_env%chebyshev%min_energy(iwindow)
     168          12 :          ev2(iwindow) = ls_scf_env%chebyshev%max_energy(iwindow)
     169             :       END DO
     170             : 
     171           6 :       IF (unit_nr > 0) THEN
     172           3 :          WRITE (unit_nr, '()')
     173           3 :          WRITE (unit_nr, '(T2,A)') "STARTING CHEBYSHEV CALCULATION"
     174             :       END IF
     175             : 
     176             :       ! create 3 temporary matrices
     177           6 :       CALL dbcsr_create(matrix_tmp1, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     178           6 :       CALL dbcsr_create(matrix_tmp2, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     179           6 :       CALL dbcsr_create(matrix_tmp3, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     180           6 :       CALL dbcsr_create(matrix_F, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     181           6 :       CALL dbcsr_create(matrix_dummy1, template=ls_scf_env%matrix_s, matrix_type=dbcsr_type_no_symmetry)
     182             : 
     183          12 :       DO iwindow = 1, nwindow
     184             :          CALL dbcsr_create(matrix_dummy2(iwindow), template=ls_scf_env%matrix_s, &
     185          12 :                            matrix_type=dbcsr_type_no_symmetry)
     186             :       END DO
     187             : 
     188          12 :       DO ispin = 1, SIZE(ls_scf_env%matrix_ks)
     189             :          ! create matrix_F=inv(sqrt(S))*H*inv(sqrt(S))
     190             :          CALL dbcsr_multiply("N", "N", 1.0_dp, ls_scf_env%matrix_s_sqrt_inv, ls_scf_env%matrix_ks(ispin), &
     191           6 :                              0.0_dp, matrix_tmp1, filter_eps=ls_scf_env%eps_filter)
     192             :          CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_tmp1, ls_scf_env%matrix_s_sqrt_inv, &
     193           6 :                              0.0_dp, matrix_F, filter_eps=ls_scf_env%eps_filter)
     194             : 
     195             :          ! find largest and smallest eigenvalues
     196             :          CALL arnoldi_extremal(matrix_F, max_ev, min_ev, converged=converged, max_iter=ls_scf_env%max_iter_lanczos, &
     197           6 :                                threshold=ls_scf_env%eps_lanczos) !Lanczos algorithm to calculate eigenvalue
     198           6 :          IF (unit_nr > 0) WRITE (unit_nr, '(T2,A,2F16.8,A,L2)') &
     199           3 :             "smallest largest eigenvalue", min_ev, max_ev, " converged ", converged
     200           6 :          IF (nwindow > 0) THEN
     201           2 :             IF (unit_nr > 0) WRITE (unit_nr, '(T2,A,1000F16.8)') "requested interval-min_energy", ev1(:)
     202           2 :             IF (unit_nr > 0) WRITE (unit_nr, '(T2,A,1000F16.8)') "requested interval-max_energy", ev2(:)
     203             :          END IF
     204           6 :          interval_a = (max_ev - min_ev)*scale_evals/2
     205           6 :          interval_b = (max_ev + min_ev)/2
     206             : 
     207          12 :          sev1(:) = (ev1(:) - interval_b)/interval_a !scaled ev1 vector
     208          12 :          sev2(:) = (ev2(:) - interval_b)/interval_a !scaled ev2 vector
     209             : 
     210             :          !chebyshev domain,pi*sqrt(1-x^2) vector construction and chebyshev polynomials for integration (for g(E))
     211          20 :          ALLOCATE (E_inte(1:ninte + 1, 1:nwindow))
     212          20 :          ALLOCATE (sqrt_vec(1:ninte + 1, 1:nwindow))
     213             : 
     214          12 :          DO iwindow = 1, nwindow
     215        4818 :             DO iinte = 1, ninte + 1
     216        4806 :                E_inte(iinte, iwindow) = sev1(iwindow) + ((sev2(iwindow) - sev1(iwindow))/ninte)*(iinte - 1)
     217        4812 :                sqrt_vec(iinte, iwindow) = pi*SQRT(1.0_dp - E_inte(iinte, iwindow)*E_inte(iinte, iwindow))
     218             :             END DO
     219             :          END DO
     220             : 
     221             :          !integral.. (identical to the coefficient for g(E))
     222             : 
     223          20 :          ALLOCATE (aitchev_T(1:ncheb, 1:nwindow)) !after intergral. =>ainte
     224             : 
     225          12 :          DO iwindow = 1, nwindow
     226        2412 :             DO icheb = 1, ncheb
     227        2400 :                CALL chebyshev_poly(initial, E_inte(1, iwindow), icheb)
     228        2400 :                CALL chebyshev_poly(final, E_inte(1, iwindow), icheb)
     229        2400 :           summa = (sev2(iwindow) - sev1(iwindow))/(2.0_dp*ninte)*(initial/sqrt_vec(1, iwindow) + final/sqrt_vec(ninte + 1, iwindow))
     230     1920000 :                DO iinte = 2, ninte
     231     1917600 :                   CALL chebyshev_poly(chev_T, E_inte(iinte, iwindow), icheb)
     232     1920000 :                   summa = summa + ((sev2(iwindow) - sev1(iwindow))/ninte)*(chev_T/sqrt_vec(iinte, iwindow))
     233             :                END DO
     234        2400 :                aitchev_T(icheb, iwindow) = summa
     235        4806 :                summa = 0
     236             :             END DO
     237             :          END DO
     238             : 
     239             :          ! scale the matrix to get evals in the interval -1,1
     240           6 :          CALL dbcsr_add_on_diag(matrix_F, -interval_b)
     241           6 :          CALL dbcsr_scale(matrix_F, 1/interval_a)
     242             : 
     243             :          ! compute chebyshev matrix recursion
     244           6 :          CALL dbcsr_get_info(matrix=matrix_F, nfullrows_total=Nrows) !get information about a matrix
     245           6 :          CALL dbcsr_set(matrix_dummy1, 0.0_dp) !empty matrix creation(for density matrix)
     246             : 
     247          12 :          DO iwindow = 1, nwindow
     248          12 :             CALL dbcsr_set(matrix_dummy2(iwindow), 0.0_dp) !empty matrix creation(for density matrix)
     249             :          END DO
     250             : 
     251          18 :          ALLOCATE (mu(1:ncheb))
     252          18 :          ALLOCATE (kernel_g(1:ncheb))
     253           6 :          CALL kernel(kernel_g(1), 1, ncheb)
     254           6 :          CALL kernel(kernel_g(2), 2, ncheb)
     255             : 
     256           6 :          CALL dbcsr_set(matrix_tmp1, 0.0_dp) !matrix creation
     257           6 :          CALL dbcsr_add_on_diag(matrix_tmp1, 1.0_dp) !add a only number to diagonal elements
     258           6 :          CALL dbcsr_trace(matrix_tmp1, trace=mu(1))
     259           6 :          CALL dbcsr_copy(matrix_tmp2, matrix_F) !make matrix_tmp2 = matrix_F
     260           6 :          CALL dbcsr_trace(matrix_tmp2, trace=mu(2))
     261             : 
     262          12 :          DO iwindow = 1, nwindow
     263           6 :             CALL dbcsr_copy(matrix_dummy1, matrix_tmp1)
     264           6 :             CALL dbcsr_copy(matrix_dummy2(iwindow), matrix_tmp2) !matrix_dummy2=
     265           6 :             CALL dbcsr_scale(matrix_dummy1, kernel_g(1)*aitchev_T(1, iwindow)) !first term of chebyshev poly(matrix)
     266           6 :             CALL dbcsr_scale(matrix_dummy2(iwindow), 2.0_dp*kernel_g(2)*aitchev_T(2, iwindow)) !second term of chebyshev poly(matrix)
     267             : 
     268          12 :             CALL dbcsr_add(matrix_dummy2(iwindow), matrix_dummy1, 1.0_dp, 1.0_dp)
     269             :          END DO
     270             : 
     271        2994 :          DO icheb = 2, ncheb - 1
     272        2988 :             t1 = m_walltime()
     273             :             CALL dbcsr_multiply("N", "N", 2.0_dp, matrix_F, matrix_tmp2, &
     274        2988 :                                 -1.0_dp, matrix_tmp1, filter_eps=ls_scf_env%eps_filter) !matrix multiplication(Recursion)
     275        2988 :             CALL dbcsr_copy(matrix_tmp3, matrix_tmp1)
     276        2988 :             CALL dbcsr_copy(matrix_tmp1, matrix_tmp2)
     277        2988 :             CALL dbcsr_copy(matrix_tmp2, matrix_tmp3)
     278        2988 :             CALL dbcsr_trace(matrix_tmp2, trace=mu(icheb + 1)) !icheb+1 th coefficient
     279        2988 :             CALL kernel(kernel_g(icheb + 1), icheb + 1, ncheb)
     280             : 
     281        5376 :             DO iwindow = 1, nwindow
     282             : 
     283        2388 :                CALL dbcsr_copy(matrix_dummy1, matrix_tmp2)
     284        2388 :                CALL dbcsr_scale(matrix_dummy1, 2.0_dp*kernel_g(icheb + 1)*aitchev_T(icheb + 1, iwindow)) !second term of chebyshev poly(matrix)
     285        2388 :                CALL dbcsr_add(matrix_dummy2(iwindow), matrix_dummy1, 1.0_dp, 1.0_dp)
     286        5376 :                CALL dbcsr_trace(matrix_dummy2(iwindow), trace=trace_dm(iwindow)) !icheb+1 th coefficient
     287             : 
     288             :             END DO
     289             : 
     290        2988 :             occ = dbcsr_get_occupation(matrix_tmp1)
     291        2988 :             t2 = m_walltime()
     292        2994 :             IF (unit_nr > 0 .AND. MOD(icheb, 20) == 0) THEN
     293          72 :                CALL m_flush(unit_nr)
     294          72 :                IF (nwindow > 0) THEN
     295             :                   WRITE (unit_nr, '(T2,A,I5,1X,A,1X,F8.3,1X,A,1X,F8.6,1X,A,1X,1000F16.8)') &
     296          19 :                      "Iter.", icheb, "time=", t2 - t1, "occ=", occ, "traces=", trace_dm(:)
     297             :                ELSE
     298             :                   WRITE (unit_nr, '(T2,A,I5,1X,A,1X,F8.3,1X,A,1X,F8.6)') &
     299          53 :                      "Iter.", icheb, "time=", t2 - t1, "occ=", occ
     300             :                END IF
     301             :             END IF
     302             :          END DO
     303             : 
     304          12 :          DO iwindow = 1, nwindow
     305           6 :             IF (SIZE(ls_scf_env%matrix_ks) == 1) THEN
     306           6 :                orbital_occ = 2.0_dp
     307             :             ELSE
     308           0 :                orbital_occ = 1.0_dp
     309             :             END IF
     310             :             CALL dbcsr_multiply("N", "N", 1.0_dp, ls_scf_env%matrix_s_sqrt_inv, matrix_dummy2(iwindow), &
     311           6 :                                 0.0_dp, matrix_tmp1, filter_eps=ls_scf_env%eps_filter)
     312             :             CALL dbcsr_multiply("N", "N", orbital_occ, matrix_tmp1, ls_scf_env%matrix_s_sqrt_inv, &
     313           6 :                                 0.0_dp, matrix_tmp2, filter_eps=ls_scf_env%eps_filter)
     314           6 :             CALL dbcsr_copy(matrix_dummy2(iwindow), matrix_tmp2)
     315             : 
     316             :             ! look at the difference with the density matrix from the ls routines
     317           6 :             IF (.FALSE.) THEN
     318             :                CALL dbcsr_copy(matrix_tmp1, matrix_tmp2)
     319             :                CALL dbcsr_add(matrix_tmp1, ls_scf_env%matrix_p(ispin), 1.0_dp, -1.0_dp) !comparison
     320             :                frob_matrix = dbcsr_frobenius_norm(matrix_tmp1)
     321             :                IF (unit_nr > 0) WRITE (unit_nr, *) "Difference between Chebyshev DM and LS DM", frob_matrix
     322             :             END IF
     323             :          END DO
     324             : 
     325             :          write_cubes = BTEST(cp_print_key_should_output(logger%iter_info, &
     326           6 :                                                         ls_scf_env%chebyshev%print_key_cube), cp_p_file)
     327          24 :          IF (write_cubes) THEN
     328           8 :             DO iwindow = 1, nwindow
     329           6 :                WRITE (middle_name, "(A,I0)") "E_DENSITY_WINDOW_", iwindow
     330           6 :                WRITE (title, "(A,1X,F16.8,1X,A,1X,F16.8)") "Energy range : ", ev1(iwindow), "to", ev2(iwindow)
     331             :                unit_cube = cp_print_key_unit_nr(logger, ls_scf_env%chebyshev%print_key_cube, &
     332             :                                                 "", extension=".cube", & !added 01/22/2012
     333           6 :                                                 middle_name=TRIM(middle_name), log_filename=.FALSE.)
     334             :                CALL write_matrix_to_cube(qs_env, ls_scf_env, matrix_dummy2(iwindow), unit_cube, title, &
     335           6 :                                          section_get_ivals(ls_scf_env%chebyshev%print_key_cube, "STRIDE"))
     336           8 :                CALL cp_print_key_finished_output(unit_cube, logger, ls_scf_env%chebyshev%print_key_cube, "")
     337             :             END DO
     338             :          END IF
     339             : 
     340             :       END DO
     341             : 
     342             :       ! Chebyshev expansion with calculated coefficient
     343             :       ! grid construction and rescaling (by J)
     344             :       unit_dos = cp_print_key_unit_nr(logger, ls_scf_env%chebyshev%print_key_dos, "", extension=".xy", &
     345           6 :                                       middle_name="DOS", log_filename=.FALSE.)
     346             : 
     347           6 :       IF (unit_dos > 0) THEN
     348           9 :          ALLOCATE (dos(1:n_gridpoint_dos))
     349          10 :          ALLOCATE (gdensity(1:n_gridpoint_dos, 1:nwindow))
     350           9 :          ALLOCATE (chev_E(1:n_gridpoint_dos))
     351           9 :          ALLOCATE (chev_Es_dos(1:n_gridpoint_dos))
     352           7 :          ALLOCATE (dummy2(1:nwindow))
     353        3103 :          DO igrid = 1, n_gridpoint_dos
     354        3100 :             chev_E(igrid) = min_ev + (igrid - 1)*(max_ev - min_ev)/(n_gridpoint_dos - 1)
     355        3103 :             chev_Es_dos(igrid) = (chev_E(igrid) - interval_b)/interval_a
     356             :          END DO
     357        3103 :          DO igrid = 1, n_gridpoint_dos
     358        9100 :             dummy1 = 0.0_dp !summation of polynomials
     359        9100 :             dummy2(:) = 0.0_dp !summation of polynomials
     360     1810000 :             DO icheb = 2, ncheb
     361     1806900 :                CALL chebyshev_poly(chev_T_dos, chev_Es_dos(igrid), icheb)
     362     1806900 :                dummy1 = dummy1 + kernel_g(icheb)*mu(icheb)*chev_T_dos
     363     4204000 :                DO iwindow = 1, nwindow
     364     4200900 :                   dummy2(iwindow) = dummy2(iwindow) + kernel_g(icheb)*aitchev_T(icheb, iwindow)*chev_T_dos
     365             :                END DO
     366             :             END DO
     367             :             dos(igrid) = 1.0_dp/(interval_a*Nrows* &
     368        3100 :                                  (pi*SQRT(1.0_dp - chev_Es_dos(igrid)*chev_Es_dos(igrid))))*(kernel_g(1)*mu(1) + 2.0_dp*dummy1)
     369        9100 :             DO iwindow = 1, nwindow
     370        9100 :                gdensity(igrid, iwindow) = kernel_g(1)*aitchev_T(1, iwindow) + 2.0_dp*dummy2(iwindow)
     371             :             END DO
     372        3103 :             WRITE (unit_dos, '(1000F16.8)') chev_E(igrid), dos(igrid), gdensity(igrid, :)
     373             :          END DO
     374           3 :          DEALLOCATE (chev_Es_dos, chev_E, dos, gdensity)
     375             :       END IF
     376           6 :       CALL cp_print_key_finished_output(unit_dos, logger, ls_scf_env%chebyshev%print_key_dos, "")
     377             : 
     378             :       ! free the matrices
     379           6 :       CALL dbcsr_release(matrix_tmp1)
     380           6 :       CALL dbcsr_release(matrix_tmp2)
     381           6 :       CALL dbcsr_release(matrix_tmp3)
     382           6 :       CALL dbcsr_release(matrix_F)
     383           6 :       CALL dbcsr_release(matrix_dummy1)
     384             : 
     385          12 :       DO iwindow = 1, nwindow
     386          12 :          CALL dbcsr_release(matrix_dummy2(iwindow))
     387             :       END DO
     388             : 
     389           6 :       DEALLOCATE (ev1, ev2, sev1, sev2, matrix_dummy2)
     390             : 
     391             :       !Need deallocation
     392           6 :       DEALLOCATE (mu, kernel_g, aitchev_T, E_inte, sqrt_vec)
     393             : 
     394           6 :       IF (unit_nr > 0) WRITE (unit_nr, '(T2,A)') "ENDING CHEBYSHEV CALCULATION"
     395             : 
     396           6 :       CALL timestop(handle)
     397             : 
     398          12 :    END SUBROUTINE compute_chebyshev
     399             : 
     400             : END MODULE dm_ls_chebyshev

Generated by: LCOV version 1.15