Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Energy correction environment setup and handling
10 : !> \par History
11 : !> 2019.09 created
12 : !> \author JGH
13 : ! **************************************************************************************************
14 : MODULE ec_environment
15 : USE atomic_kind_types, ONLY: atomic_kind_type
16 : USE basis_set_container_types, ONLY: add_basis_set_to_container,&
17 : remove_basis_from_container
18 : USE basis_set_types, ONLY: allocate_gto_basis_set,&
19 : copy_gto_basis_set,&
20 : create_primitive_basis_set,&
21 : gto_basis_set_type
22 : USE bibliography, ONLY: Niklasson2003,&
23 : Niklasson2014,&
24 : cite_reference
25 : USE cp_control_types, ONLY: dft_control_type
26 : USE cp_log_handling, ONLY: cp_get_default_logger,&
27 : cp_logger_get_default_unit_nr,&
28 : cp_logger_type
29 : USE dm_ls_scf_types, ONLY: ls_scf_env_type
30 : USE ec_env_types, ONLY: energy_correction_type
31 : USE input_constants, ONLY: &
32 : ec_diagonalization, ec_functional_dc, ec_functional_ext, ec_functional_harris, &
33 : ec_matrix_sign, ec_matrix_tc2, ec_matrix_trs4, ec_ot_atomic, ec_ot_diag, ec_ot_gs, &
34 : kg_cholesky, ls_cluster_atomic, ls_cluster_molecular, ls_s_inversion_hotelling, &
35 : ls_s_inversion_none, ls_s_inversion_sign_sqrt, ls_s_preconditioner_atomic, &
36 : ls_s_preconditioner_molecular, ls_s_preconditioner_none, ls_s_sqrt_ns, ls_s_sqrt_proot, &
37 : xc_vdw_fun_nonloc, xc_vdw_fun_pairpot
38 : USE input_cp2k_check, ONLY: xc_functionals_expand
39 : USE input_section_types, ONLY: section_get_ival,&
40 : section_vals_get,&
41 : section_vals_get_subs_vals,&
42 : section_vals_type,&
43 : section_vals_val_get
44 : USE kinds, ONLY: dp
45 : USE message_passing, ONLY: mp_para_env_type
46 : USE molecule_types, ONLY: molecule_of_atom,&
47 : molecule_type
48 : USE orbital_pointers, ONLY: init_orbital_pointers
49 : USE particle_types, ONLY: particle_type
50 : USE qs_dispersion_nonloc, ONLY: qs_dispersion_nonloc_init
51 : USE qs_dispersion_pairpot, ONLY: qs_dispersion_pairpot_init
52 : USE qs_dispersion_types, ONLY: qs_dispersion_type
53 : USE qs_dispersion_utils, ONLY: qs_dispersion_env_set
54 : USE qs_environment_types, ONLY: get_qs_env,&
55 : qs_environment_type
56 : USE qs_interactions, ONLY: init_interaction_radii_orb_basis
57 : USE qs_kind_types, ONLY: get_qs_kind,&
58 : get_qs_kind_set,&
59 : qs_kind_type
60 : USE qs_rho_types, ONLY: qs_rho_type
61 : USE soft_basis_set, ONLY: create_soft_basis
62 : USE string_utilities, ONLY: uppercase
63 : USE xc, ONLY: xc_uses_kinetic_energy_density,&
64 : xc_uses_norm_drho
65 : USE xc_input_constants, ONLY: xc_deriv_collocate
66 : #include "./base/base_uses.f90"
67 :
68 : IMPLICIT NONE
69 :
70 : PRIVATE
71 :
72 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'ec_environment'
73 :
74 : PUBLIC :: ec_env_create
75 : PUBLIC :: ec_write_input
76 :
77 : CONTAINS
78 :
79 : ! **************************************************************************************************
80 : !> \brief Allocates and intitializes ec_env
81 : !> \param qs_env The QS environment
82 : !> \param ec_env The energy correction environment (the object to create)
83 : !> \param dft_section The DFT section
84 : !> \param ec_section The energy correction input section
85 : !> \par History
86 : !> 2019.09 created
87 : !> \author JGH
88 : ! **************************************************************************************************
89 7444 : SUBROUTINE ec_env_create(qs_env, ec_env, dft_section, ec_section)
90 : TYPE(qs_environment_type), POINTER :: qs_env
91 : TYPE(energy_correction_type), POINTER :: ec_env
92 : TYPE(section_vals_type), POINTER :: dft_section
93 : TYPE(section_vals_type), OPTIONAL, POINTER :: ec_section
94 :
95 7444 : CPASSERT(.NOT. ASSOCIATED(ec_env))
96 96772 : ALLOCATE (ec_env)
97 7444 : CALL init_ec_env(qs_env, ec_env, dft_section, ec_section)
98 :
99 7444 : END SUBROUTINE ec_env_create
100 :
101 : ! **************************************************************************************************
102 : !> \brief Initializes energy correction environment
103 : !> \param qs_env The QS environment
104 : !> \param ec_env The energy correction environment
105 : !> \param dft_section The DFT section
106 : !> \param ec_section The energy correction input section
107 : !> \par History
108 : !> 2019.09 created
109 : !> \author JGH
110 : ! **************************************************************************************************
111 7444 : SUBROUTINE init_ec_env(qs_env, ec_env, dft_section, ec_section)
112 : TYPE(qs_environment_type), POINTER :: qs_env
113 : TYPE(energy_correction_type), POINTER :: ec_env
114 : TYPE(section_vals_type), POINTER :: dft_section
115 : TYPE(section_vals_type), OPTIONAL, POINTER :: ec_section
116 :
117 : CHARACTER(LEN=*), PARAMETER :: routineN = 'init_ec_env'
118 :
119 : INTEGER :: handle, ikind, maxlgto, nkind, unit_nr
120 : LOGICAL :: explicit, gpw, paw_atom
121 : REAL(KIND=dp) :: eps_pgf_orb, rc
122 7444 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
123 : TYPE(cp_logger_type), POINTER :: logger
124 : TYPE(dft_control_type), POINTER :: dft_control
125 : TYPE(gto_basis_set_type), POINTER :: basis_set, harris_basis, &
126 : harris_soft_basis
127 : TYPE(mp_para_env_type), POINTER :: para_env
128 : TYPE(qs_dispersion_type), POINTER :: dispersion_env
129 7444 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
130 : TYPE(qs_kind_type), POINTER :: qs_kind
131 : TYPE(qs_rho_type), POINTER :: rho
132 : TYPE(section_vals_type), POINTER :: ec_hfx_section, nl_section, pp_section, &
133 : section1, section2, xc_fun_section, &
134 : xc_section
135 :
136 7444 : CALL timeset(routineN, handle)
137 :
138 7444 : NULLIFY (atomic_kind_set, dispersion_env, ec_env%ls_env, para_env)
139 7444 : NULLIFY (ec_env%sab_orb, ec_env%sac_ae, ec_env%sac_ppl, ec_env%sap_ppnl)
140 7444 : NULLIFY (ec_env%matrix_ks, ec_env%matrix_h, ec_env%matrix_s)
141 7444 : NULLIFY (ec_env%matrix_t, ec_env%matrix_p, ec_env%matrix_w)
142 7444 : NULLIFY (ec_env%task_list)
143 7444 : NULLIFY (ec_env%mao_coef)
144 7444 : NULLIFY (ec_env%force)
145 7444 : NULLIFY (ec_env%dispersion_env)
146 7444 : NULLIFY (ec_env%xc_section)
147 7444 : NULLIFY (ec_env%matrix_z)
148 7444 : NULLIFY (ec_env%matrix_hz)
149 7444 : NULLIFY (ec_env%matrix_wz)
150 7444 : NULLIFY (ec_env%z_admm)
151 7444 : NULLIFY (ec_env%p_env)
152 7444 : NULLIFY (ec_env%vxc_rspace)
153 7444 : NULLIFY (ec_env%vtau_rspace)
154 7444 : NULLIFY (ec_env%vadmm_rspace)
155 7444 : NULLIFY (ec_env%rhoout_r, ec_env%rhoz_r)
156 7444 : NULLIFY (ec_env%x_data)
157 7444 : ec_env%should_update = .TRUE.
158 7444 : ec_env%mao = .FALSE.
159 7444 : ec_env%do_ec_admm = .FALSE.
160 7444 : ec_env%do_ec_hfx = .FALSE.
161 7444 : ec_env%reuse_hfx = .FALSE.
162 :
163 7444 : IF (qs_env%energy_correction) THEN
164 :
165 268 : CPASSERT(PRESENT(ec_section))
166 : ! get a useful output_unit
167 268 : logger => cp_get_default_logger()
168 268 : IF (logger%para_env%is_source()) THEN
169 134 : unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
170 : ELSE
171 : unit_nr = -1
172 : END IF
173 :
174 : CALL section_vals_val_get(ec_section, "ALGORITHM", &
175 268 : i_val=ec_env%ks_solver)
176 : CALL section_vals_val_get(ec_section, "ENERGY_FUNCTIONAL", &
177 268 : i_val=ec_env%energy_functional)
178 : CALL section_vals_val_get(ec_section, "FACTORIZATION", &
179 268 : i_val=ec_env%factorization)
180 : CALL section_vals_val_get(ec_section, "OT_INITIAL_GUESS", &
181 268 : i_val=ec_env%ec_initial_guess)
182 : CALL section_vals_val_get(ec_section, "EPS_DEFAULT", &
183 268 : r_val=ec_env%eps_default)
184 : CALL section_vals_val_get(ec_section, "HARRIS_BASIS", &
185 268 : c_val=ec_env%basis)
186 : CALL section_vals_val_get(ec_section, "MAO", &
187 268 : l_val=ec_env%mao)
188 : CALL section_vals_val_get(ec_section, "MAO_MAX_ITER", &
189 268 : i_val=ec_env%mao_max_iter)
190 : CALL section_vals_val_get(ec_section, "MAO_EPS_GRAD", &
191 268 : r_val=ec_env%mao_eps_grad)
192 : CALL section_vals_val_get(ec_section, "MAO_EPS1", &
193 268 : r_val=ec_env%mao_eps1)
194 : CALL section_vals_val_get(ec_section, "MAO_IOLEVEL", &
195 268 : i_val=ec_env%mao_iolevel)
196 : ! Skip EC calculation if ground-state calculation did not converge
197 : CALL section_vals_val_get(ec_section, "SKIP_EC", &
198 268 : l_val=ec_env%skip_ec)
199 : ! Debug output
200 : CALL section_vals_val_get(ec_section, "DEBUG_FORCES", &
201 268 : l_val=ec_env%debug_forces)
202 : CALL section_vals_val_get(ec_section, "DEBUG_STRESS", &
203 268 : l_val=ec_env%debug_stress)
204 : CALL section_vals_val_get(ec_section, "DEBUG_EXTERNAL_METHOD", &
205 268 : l_val=ec_env%debug_external)
206 : ! ADMM
207 268 : CALL section_vals_val_get(ec_section, "ADMM", l_val=ec_env%do_ec_admm)
208 : ! EXTERNAL
209 : CALL section_vals_val_get(ec_section, "EXTERNAL_RESPONSE_FILENAME", &
210 268 : c_val=ec_env%exresp_fn)
211 : CALL section_vals_val_get(ec_section, "EXTERNAL_RESULT_FILENAME", &
212 268 : c_val=ec_env%exresult_fn)
213 : CALL section_vals_val_get(ec_section, "ERROR_ESTIMATION", &
214 268 : l_val=ec_env%do_error)
215 :
216 268 : ec_env%do_skip = .FALSE.
217 :
218 : ! set basis
219 268 : CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, nkind=nkind)
220 268 : CALL uppercase(ec_env%basis)
221 448 : SELECT CASE (ec_env%basis)
222 : CASE ("ORBITAL")
223 388 : DO ikind = 1, nkind
224 208 : qs_kind => qs_kind_set(ikind)
225 208 : CALL get_qs_kind(qs_kind=qs_kind, basis_set=basis_set, basis_type="ORB")
226 388 : IF (ASSOCIATED(basis_set)) THEN
227 208 : NULLIFY (harris_basis)
228 208 : CALL get_qs_kind(qs_kind=qs_kind, basis_set=harris_basis, basis_type="HARRIS")
229 208 : IF (ASSOCIATED(harris_basis)) THEN
230 6 : CALL remove_basis_from_container(qs_kind%basis_sets, basis_type="HARRIS")
231 : END IF
232 208 : NULLIFY (harris_basis)
233 208 : CALL copy_gto_basis_set(basis_set, harris_basis)
234 208 : CALL add_basis_set_to_container(qs_kind%basis_sets, harris_basis, "HARRIS")
235 : END IF
236 : END DO
237 : CASE ("PRIMITIVE")
238 6 : DO ikind = 1, nkind
239 4 : qs_kind => qs_kind_set(ikind)
240 4 : CALL get_qs_kind(qs_kind=qs_kind, basis_set=basis_set, basis_type="ORB")
241 6 : IF (ASSOCIATED(basis_set)) THEN
242 4 : NULLIFY (harris_basis)
243 4 : CALL get_qs_kind(qs_kind=qs_kind, basis_set=harris_basis, basis_type="HARRIS")
244 4 : IF (ASSOCIATED(harris_basis)) THEN
245 0 : CALL remove_basis_from_container(qs_kind%basis_sets, basis_type="HARRIS")
246 : END IF
247 4 : NULLIFY (harris_basis)
248 4 : CALL create_primitive_basis_set(basis_set, harris_basis)
249 4 : CALL get_qs_env(qs_env, dft_control=dft_control)
250 4 : eps_pgf_orb = dft_control%qs_control%eps_pgf_orb
251 4 : CALL init_interaction_radii_orb_basis(harris_basis, eps_pgf_orb)
252 4 : harris_basis%kind_radius = basis_set%kind_radius
253 4 : CALL add_basis_set_to_container(qs_kind%basis_sets, harris_basis, "HARRIS")
254 : END IF
255 : END DO
256 : CASE ("HARRIS")
257 212 : DO ikind = 1, nkind
258 126 : qs_kind => qs_kind_set(ikind)
259 126 : NULLIFY (harris_basis)
260 126 : CALL get_qs_kind(qs_kind=qs_kind, basis_set=harris_basis, basis_type="HARRIS")
261 212 : IF (.NOT. ASSOCIATED(harris_basis)) THEN
262 0 : CPWARN("Harris Basis not defined for all types of atoms.")
263 : END IF
264 : END DO
265 : CASE DEFAULT
266 268 : CPABORT("Unknown basis set for energy correction (Harris functional)")
267 : END SELECT
268 : !
269 268 : CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto, basis_type="HARRIS")
270 268 : CALL init_orbital_pointers(maxlgto + 1)
271 : ! GAPW: Generate soft version of Harris basis
272 268 : CALL get_qs_env(qs_env, dft_control=dft_control)
273 268 : IF (dft_control%qs_control%gapw .OR. dft_control%qs_control%gapw_xc) THEN
274 32 : eps_pgf_orb = dft_control%qs_control%eps_pgf_orb
275 72 : DO ikind = 1, nkind
276 40 : qs_kind => qs_kind_set(ikind)
277 40 : NULLIFY (harris_basis)
278 40 : CALL get_qs_kind(qs_kind, basis_set=harris_basis, basis_type="HARRIS")
279 40 : CALL get_qs_kind(qs_kind, hard_radius=rc, gpw_type_forced=gpw)
280 40 : NULLIFY (harris_soft_basis)
281 40 : CALL allocate_gto_basis_set(harris_soft_basis)
282 : CALL create_soft_basis(harris_basis, harris_soft_basis, &
283 : dft_control%qs_control%gapw_control%eps_fit, &
284 : rc, paw_atom, &
285 40 : dft_control%qs_control%gapw_control%force_paw, gpw)
286 40 : CALL init_interaction_radii_orb_basis(harris_soft_basis, eps_pgf_orb)
287 388 : CALL add_basis_set_to_container(qs_kind%basis_sets, harris_soft_basis, "HARRIS_SOFT")
288 : END DO
289 : END IF
290 : !
291 268 : CALL uppercase(ec_env%basis)
292 :
293 : ! Basis may only differ from ground-state if explicitly added
294 268 : ec_env%basis_inconsistent = .FALSE.
295 268 : IF (ec_env%basis == "HARRIS") THEN
296 212 : DO ikind = 1, nkind
297 126 : qs_kind => qs_kind_set(ikind)
298 : ! Basis sets of ground-state
299 126 : CALL get_qs_kind(qs_kind=qs_kind, basis_set=basis_set, basis_type="ORB")
300 : ! Basis sets of energy correction
301 126 : CALL get_qs_kind(qs_kind=qs_kind, basis_set=harris_basis, basis_type="HARRIS")
302 :
303 212 : IF (basis_set%name /= harris_basis%name) THEN
304 64 : ec_env%basis_inconsistent = .TRUE.
305 : END IF
306 : END DO
307 : END IF
308 :
309 : !Density-corrected DFT must be performed with the same basis as ground-state
310 268 : IF (ec_env%energy_functional == ec_functional_dc .AND. ec_env%basis_inconsistent) THEN
311 : CALL cp_abort(__LOCATION__, &
312 : "DC-DFT: Correction and ground state need to use the same basis. "// &
313 0 : "Checked by comparing basis set names only.")
314 : END IF
315 268 : IF (ec_env%energy_functional == ec_functional_ext .AND. ec_env%basis_inconsistent) THEN
316 : CALL cp_abort(__LOCATION__, &
317 : "Exteranl Energy: Correction and ground state need to use the same basis. "// &
318 0 : "Checked by comparing basis set names only.")
319 : END IF
320 : !
321 : ! set functional
322 414 : SELECT CASE (ec_env%energy_functional)
323 : CASE (ec_functional_harris)
324 146 : ec_env%ec_name = "Harris"
325 : CASE (ec_functional_dc)
326 110 : ec_env%ec_name = "DC-DFT"
327 : CASE (ec_functional_ext)
328 12 : ec_env%ec_name = "External Energy"
329 : CASE DEFAULT
330 268 : CPABORT("unknown energy correction")
331 : END SELECT
332 : ! select the XC section
333 268 : NULLIFY (xc_section)
334 268 : xc_section => section_vals_get_subs_vals(dft_section, "XC")
335 268 : section1 => section_vals_get_subs_vals(ec_section, "XC")
336 268 : section2 => section_vals_get_subs_vals(ec_section, "XC%XC_FUNCTIONAL")
337 268 : CALL section_vals_get(section2, explicit=explicit)
338 268 : IF (explicit) THEN
339 256 : CALL xc_functionals_expand(section2, section1)
340 256 : ec_env%xc_section => section1
341 : ELSE
342 12 : ec_env%xc_section => xc_section
343 : END IF
344 : ! Check whether energy correction requires the kinetic energy density and rebuild rho if necessary
345 268 : CALL get_qs_env(qs_env, dft_control=dft_control, rho=rho)
346 268 : xc_fun_section => section_vals_get_subs_vals(ec_env%xc_section, "XC_FUNCTIONAL")
347 : dft_control%use_kinetic_energy_density = dft_control%use_kinetic_energy_density .OR. &
348 268 : xc_uses_kinetic_energy_density(xc_fun_section, dft_control%lsd)
349 : ! Same for density gradient
350 : dft_control%drho_by_collocation = dft_control%drho_by_collocation .OR. &
351 : (xc_uses_norm_drho(xc_fun_section, dft_control%lsd) .AND. &
352 268 : (section_get_ival(xc_section, "XC_GRID%XC_DERIV") == xc_deriv_collocate))
353 : ! dispersion
354 1340 : ALLOCATE (dispersion_env)
355 : NULLIFY (xc_section)
356 268 : xc_section => ec_env%xc_section
357 268 : CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, para_env=para_env)
358 268 : CALL qs_dispersion_env_set(dispersion_env, xc_section)
359 268 : IF (dispersion_env%type == xc_vdw_fun_pairpot) THEN
360 0 : NULLIFY (pp_section)
361 0 : pp_section => section_vals_get_subs_vals(xc_section, "VDW_POTENTIAL%PAIR_POTENTIAL")
362 0 : CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, pp_section, para_env)
363 268 : ELSE IF (dispersion_env%type == xc_vdw_fun_nonloc) THEN
364 0 : CPABORT("nl-vdW functionals not available for EC calculations")
365 0 : NULLIFY (nl_section)
366 0 : nl_section => section_vals_get_subs_vals(xc_section, "VDW_POTENTIAL%NON_LOCAL")
367 0 : CALL qs_dispersion_nonloc_init(dispersion_env, para_env)
368 : END IF
369 268 : ec_env%dispersion_env => dispersion_env
370 :
371 : ! Check if hybrid functional are used
372 268 : ec_hfx_section => section_vals_get_subs_vals(ec_section, "XC%HF")
373 268 : CALL section_vals_get(ec_hfx_section, explicit=ec_env%do_ec_hfx)
374 :
375 : ! Initialize Harris LS solver environment
376 268 : ec_env%use_ls_solver = .FALSE.
377 : ec_env%use_ls_solver = (ec_env%ks_solver == ec_matrix_sign) &
378 : .OR. (ec_env%ks_solver == ec_matrix_trs4) &
379 268 : .OR. (ec_env%ks_solver == ec_matrix_tc2)
380 :
381 268 : IF (ec_env%use_ls_solver) THEN
382 22 : CALL ec_ls_create(qs_env, ec_env)
383 : END IF
384 :
385 : END IF
386 :
387 7444 : CALL timestop(handle)
388 :
389 7444 : END SUBROUTINE init_ec_env
390 :
391 : ! **************************************************************************************************
392 : !> \brief Initializes linear scaling environment for LS based solver of
393 : !> Harris energy functional and parses input section
394 : !> \param qs_env ...
395 : !> \param ec_env ...
396 : !> \par History
397 : !> 2020.10 created [Fabian Belleflamme]
398 : !> \author Fabian Belleflamme
399 : ! **************************************************************************************************
400 22 : SUBROUTINE ec_ls_create(qs_env, ec_env)
401 : TYPE(qs_environment_type), POINTER :: qs_env
402 : TYPE(energy_correction_type), POINTER :: ec_env
403 :
404 : CHARACTER(LEN=*), PARAMETER :: routineN = 'ec_ls_create'
405 :
406 : INTEGER :: handle
407 : REAL(KIND=dp) :: mu
408 : TYPE(dft_control_type), POINTER :: dft_control
409 : TYPE(ls_scf_env_type), POINTER :: ls_env
410 22 : TYPE(molecule_type), DIMENSION(:), POINTER :: molecule_set
411 22 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
412 : TYPE(section_vals_type), POINTER :: ec_section, input
413 :
414 22 : CALL timeset(routineN, handle)
415 :
416 858 : ALLOCATE (ec_env%ls_env)
417 22 : ls_env => ec_env%ls_env
418 :
419 22 : NULLIFY (dft_control, input, ls_env%para_env)
420 :
421 : CALL get_qs_env(qs_env, &
422 : dft_control=dft_control, &
423 : input=input, &
424 : molecule_set=molecule_set, &
425 : particle_set=particle_set, &
426 : para_env=ls_env%para_env, &
427 22 : nelectron_spin=ls_env%nelectron_spin)
428 :
429 : ! copy some basic stuff
430 22 : ls_env%nspins = dft_control%nspins
431 22 : ls_env%natoms = SIZE(particle_set, 1)
432 22 : CALL ls_env%para_env%retain()
433 :
434 : ! initialize block to group to defined molecules
435 66 : ALLOCATE (ls_env%ls_mstruct%atom_to_molecule(ls_env%natoms))
436 22 : CALL molecule_of_atom(molecule_set, atom_to_mol=ls_env%ls_mstruct%atom_to_molecule)
437 :
438 22 : ls_env%do_transport = .FALSE.
439 22 : ls_env%do_pao = .FALSE.
440 22 : ls_env%ls_mstruct%do_pao = ls_env%do_pao
441 22 : ls_env%do_pexsi = .FALSE.
442 22 : ls_env%has_unit_metric = .FALSE.
443 :
444 22 : ec_section => section_vals_get_subs_vals(input, "DFT%ENERGY_CORRECTION")
445 22 : CALL section_vals_val_get(ec_section, "EPS_FILTER", r_val=ls_env%eps_filter)
446 22 : CALL section_vals_val_get(ec_section, "MU", r_val=mu)
447 22 : CALL section_vals_val_get(ec_section, "FIXED_MU", l_val=ls_env%fixed_mu)
448 66 : ls_env%mu_spin = mu
449 22 : CALL section_vals_val_get(ec_section, "S_PRECONDITIONER", i_val=ls_env%s_preconditioner_type)
450 22 : CALL section_vals_val_get(ec_section, "MATRIX_CLUSTER_TYPE", i_val=ls_env%ls_mstruct%cluster_type)
451 22 : CALL section_vals_val_get(ec_section, "S_INVERSION", i_val=ls_env%s_inversion_type)
452 22 : CALL section_vals_val_get(ec_section, "CHECK_S_INV", l_val=ls_env%check_s_inv)
453 22 : CALL section_vals_val_get(ec_section, "REPORT_ALL_SPARSITIES", l_val=ls_env%report_all_sparsities)
454 22 : CALL section_vals_val_get(ec_section, "SIGN_METHOD", i_val=ls_env%sign_method)
455 22 : CALL section_vals_val_get(ec_section, "SIGN_ORDER", i_val=ls_env%sign_order)
456 22 : CALL section_vals_val_get(ec_section, "DYNAMIC_THRESHOLD", l_val=ls_env%dynamic_threshold)
457 22 : CALL section_vals_val_get(ec_section, "NON_MONOTONIC", l_val=ls_env%non_monotonic)
458 22 : CALL section_vals_val_get(ec_section, "S_SQRT_METHOD", i_val=ls_env%s_sqrt_method)
459 22 : CALL section_vals_val_get(ec_section, "S_SQRT_ORDER", i_val=ls_env%s_sqrt_order)
460 22 : CALL section_vals_val_get(ec_section, "EPS_LANCZOS", r_val=ls_env%eps_lanczos)
461 22 : CALL section_vals_val_get(ec_section, "MAX_ITER_LANCZOS", i_val=ls_env%max_iter_lanczos)
462 :
463 24 : SELECT CASE (ec_env%ks_solver)
464 : CASE (ec_matrix_sign)
465 : ! S inverse required for Sign matrix algorithm,
466 : ! calculated either by Hotelling or multiplying S matrix sqrt inv
467 24 : SELECT CASE (ls_env%s_inversion_type)
468 : CASE (ls_s_inversion_sign_sqrt)
469 2 : ls_env%needs_s_inv = .TRUE.
470 2 : ls_env%use_s_sqrt = .TRUE.
471 : CASE (ls_s_inversion_hotelling)
472 0 : ls_env%needs_s_inv = .TRUE.
473 0 : ls_env%use_s_sqrt = .FALSE.
474 : CASE (ls_s_inversion_none)
475 0 : ls_env%needs_s_inv = .FALSE.
476 0 : ls_env%use_s_sqrt = .FALSE.
477 : CASE DEFAULT
478 2 : CPABORT("")
479 : END SELECT
480 : CASE (ec_matrix_trs4, ec_matrix_tc2)
481 20 : ls_env%needs_s_inv = .FALSE.
482 20 : ls_env%use_s_sqrt = .TRUE.
483 : CASE DEFAULT
484 22 : CPABORT("")
485 : END SELECT
486 :
487 22 : SELECT CASE (ls_env%s_preconditioner_type)
488 : CASE (ls_s_preconditioner_none)
489 0 : ls_env%has_s_preconditioner = .FALSE.
490 : CASE DEFAULT
491 22 : ls_env%has_s_preconditioner = .TRUE.
492 : END SELECT
493 :
494 : ! buffer for the history of matrices, not needed here
495 22 : ls_env%extrapolation_order = 0
496 22 : ls_env%scf_history%nstore = 0
497 22 : ls_env%scf_history%istore = 0
498 44 : ALLOCATE (ls_env%scf_history%matrix(ls_env%nspins, ls_env%scf_history%nstore))
499 :
500 22 : NULLIFY (ls_env%mixing_store)
501 :
502 22 : CALL timestop(handle)
503 :
504 44 : END SUBROUTINE ec_ls_create
505 :
506 : ! **************************************************************************************************
507 : !> \brief Print out the energy correction input section
508 : !>
509 : !> \param ec_env ...
510 : !> \par History
511 : !> 2020.10 created [Fabian Belleflamme]
512 : !> \author Fabian Belleflamme
513 : ! **************************************************************************************************
514 268 : SUBROUTINE ec_write_input(ec_env)
515 : TYPE(energy_correction_type), POINTER :: ec_env
516 :
517 : CHARACTER(LEN=*), PARAMETER :: routineN = 'ec_write_input'
518 :
519 : INTEGER :: handle, unit_nr
520 : TYPE(cp_logger_type), POINTER :: logger
521 : TYPE(ls_scf_env_type), POINTER :: ls_env
522 :
523 268 : CALL timeset(routineN, handle)
524 :
525 268 : logger => cp_get_default_logger()
526 268 : IF (logger%para_env%is_source()) THEN
527 134 : unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
528 : ELSE
529 : unit_nr = -1
530 : END IF
531 :
532 134 : IF (unit_nr > 0) THEN
533 :
534 : WRITE (unit_nr, '(T2,A)') &
535 134 : "!"//REPEAT("-", 29)//" Energy Correction "//REPEAT("-", 29)//"!"
536 :
537 : ! Type of energy correction
538 207 : SELECT CASE (ec_env%energy_functional)
539 : CASE (ec_functional_harris)
540 73 : WRITE (unit_nr, '(T2,A,T61,A20)') "Energy Correction: ", "HARRIS FUNCTIONAL"
541 : CASE (ec_functional_dc)
542 55 : WRITE (unit_nr, '(T2,A,T61,A20)') "Energy Correction: ", "DC-DFT"
543 : CASE (ec_functional_ext)
544 134 : WRITE (unit_nr, '(T2,A,T61,A20)') "Energy Correction: ", "External"
545 : END SELECT
546 134 : WRITE (unit_nr, '()')
547 :
548 : ! Energy correction parameters
549 134 : WRITE (unit_nr, '(T2,A,T61,E20.3)') "eps_default:", ec_env%eps_default
550 :
551 134 : CALL uppercase(ec_env%basis)
552 224 : SELECT CASE (ec_env%basis)
553 : CASE ("ORBITAL")
554 90 : WRITE (unit_nr, '(T2,A,T61,A20)') "EC basis: ", "ORBITAL"
555 : CASE ("PRIMITIVE")
556 1 : WRITE (unit_nr, '(T2,A,T61,A20)') "EC basis: ", "PRIMITIVE"
557 : CASE ("HARRIS")
558 134 : WRITE (unit_nr, '(T2,A,T61,A20)') "EC Basis: ", "HARRIS"
559 : END SELECT
560 :
561 : ! Info how HFX in energy correction is treated
562 134 : IF (ec_env%do_ec_hfx) THEN
563 :
564 12 : WRITE (unit_nr, '(T2,A,T61,L20)') "DC-DFT with HFX", ec_env%do_ec_hfx
565 12 : WRITE (unit_nr, '(T2,A,T61,L20)') "Reuse HFX integrals", ec_env%reuse_hfx
566 12 : WRITE (unit_nr, '(T2,A,T61,L20)') "DC-DFT HFX with ADMM", ec_env%do_ec_admm
567 :
568 : END IF ! ec_env%do_ec_hfx
569 :
570 : ! Parameters for Harris functional solver
571 134 : IF (ec_env%energy_functional == ec_functional_harris) THEN
572 :
573 : ! Algorithm
574 133 : SELECT CASE (ec_env%ks_solver)
575 : CASE (ec_diagonalization)
576 60 : WRITE (unit_nr, '(T2,A,T61,A20)') "Algorithm: ", "DIAGONALIZATION"
577 : CASE (ec_ot_diag)
578 2 : WRITE (unit_nr, '(T2,A,T61,A20)') "Algorithm: ", "OT DIAGONALIZATION"
579 : CASE (ec_matrix_sign)
580 1 : WRITE (unit_nr, '(T2,A,T61,A20)') "Algorithm: ", "MATRIX_SIGN"
581 : CASE (ec_matrix_trs4)
582 9 : WRITE (unit_nr, '(T2,A,T61,A20)') "Algorithm: ", "TRS4"
583 9 : CALL cite_reference(Niklasson2003)
584 : CASE (ec_matrix_tc2)
585 1 : WRITE (unit_nr, '(T2,A,T61,A20)') "Algorithm: ", "TC2"
586 74 : CALL cite_reference(Niklasson2014)
587 : END SELECT
588 73 : WRITE (unit_nr, '()')
589 :
590 : ! MAO
591 73 : IF (ec_env%mao) THEN
592 2 : WRITE (unit_nr, '(T2,A,T61,L20)') "MAO:", ec_env%mao
593 2 : WRITE (unit_nr, '(T2,A,T61,L20)') "MAO_IOLEVEL:", ec_env%mao_iolevel
594 2 : WRITE (unit_nr, '(T2,A,T61,I20)') "MAO_MAX_ITER:", ec_env%mao_max_iter
595 2 : WRITE (unit_nr, '(T2,A,T61,E20.3)') "MAO_EPS_GRAD:", ec_env%mao_eps_grad
596 2 : WRITE (unit_nr, '(T2,A,T61,E20.3)') "MAO_EPS1:", ec_env%mao_eps1
597 2 : WRITE (unit_nr, '()')
598 : END IF
599 :
600 : ! Parameters for linear response solver
601 73 : IF (.NOT. ec_env%use_ls_solver) THEN
602 :
603 62 : WRITE (unit_nr, '(T2,A)') "MO Solver"
604 62 : WRITE (unit_nr, '()')
605 :
606 122 : SELECT CASE (ec_env%ks_solver)
607 : CASE (ec_diagonalization)
608 :
609 122 : SELECT CASE (ec_env%factorization)
610 : CASE (kg_cholesky)
611 60 : WRITE (unit_nr, '(T2,A,T61,A20)') "Factorization: ", "CHOLESKY"
612 : END SELECT
613 :
614 : CASE (ec_ot_diag)
615 :
616 : ! OT Diagonalization
617 : ! Initial guess : 1) block diagonal initial guess
618 : ! 2) GS-density matrix (might require trafo if basis diff)
619 :
620 3 : SELECT CASE (ec_env%ec_initial_guess)
621 : CASE (ec_ot_atomic)
622 1 : WRITE (unit_nr, '(T2,A,T61,A20)') "OT Diag initial guess: ", "ATOMIC"
623 : CASE (ec_ot_gs)
624 2 : WRITE (unit_nr, '(T2,A,T61,A20)') "OT Diag initial guess: ", "GROUND STATE DM"
625 : END SELECT
626 :
627 : CASE DEFAULT
628 62 : CPABORT("Unknown Diagonalization algorithm for Harris functional")
629 : END SELECT
630 :
631 : ELSE
632 :
633 11 : WRITE (unit_nr, '(T2,A)') "AO Solver"
634 11 : WRITE (unit_nr, '()')
635 :
636 11 : ls_env => ec_env%ls_env
637 11 : WRITE (unit_nr, '(T2,A,T61,E20.3)') "eps_filter:", ls_env%eps_filter
638 11 : WRITE (unit_nr, '(T2,A,T61,L20)') "fixed chemical potential (mu)", ls_env%fixed_mu
639 11 : WRITE (unit_nr, '(T2,A,T61,L20)') "Computing inv(S):", ls_env%needs_s_inv
640 11 : WRITE (unit_nr, '(T2,A,T61,L20)') "Computing sqrt(S):", ls_env%use_s_sqrt
641 11 : WRITE (unit_nr, '(T2,A,T61,L20)') "Computing S preconditioner ", ls_env%has_s_preconditioner
642 :
643 11 : IF (ls_env%use_s_sqrt) THEN
644 21 : SELECT CASE (ls_env%s_sqrt_method)
645 : CASE (ls_s_sqrt_ns)
646 10 : WRITE (unit_nr, '(T2,A,T61,A20)') "S sqrt method:", "NEWTONSCHULZ"
647 : CASE (ls_s_sqrt_proot)
648 1 : WRITE (unit_nr, '(T2,A,T61,A20)') "S sqrt method:", "PROOT"
649 : CASE DEFAULT
650 11 : CPABORT("Unknown sqrt method.")
651 : END SELECT
652 11 : WRITE (unit_nr, '(T2,A,T61,I20)') "S sqrt order:", ls_env%s_sqrt_order
653 : END IF
654 :
655 11 : SELECT CASE (ls_env%s_preconditioner_type)
656 : CASE (ls_s_preconditioner_none)
657 0 : WRITE (unit_nr, '(T2,A,T61,A20)') "S preconditioner type ", "NONE"
658 : CASE (ls_s_preconditioner_atomic)
659 11 : WRITE (unit_nr, '(T2,A,T61,A20)') "S preconditioner type ", "ATOMIC"
660 : CASE (ls_s_preconditioner_molecular)
661 11 : WRITE (unit_nr, '(T2,A,T61,A20)') "S preconditioner type ", "MOLECULAR"
662 : END SELECT
663 :
664 22 : SELECT CASE (ls_env%ls_mstruct%cluster_type)
665 : CASE (ls_cluster_atomic)
666 11 : WRITE (unit_nr, '(T2,A,T61,A20)') "Cluster type", ADJUSTR("ATOMIC")
667 : CASE (ls_cluster_molecular)
668 0 : WRITE (unit_nr, '(T2,A,T61,A20)') "Cluster type", ADJUSTR("MOLECULAR")
669 : CASE DEFAULT
670 11 : CPABORT("Unknown cluster type")
671 : END SELECT
672 :
673 : END IF
674 :
675 : END IF ! if ec_functional_harris
676 :
677 134 : WRITE (unit_nr, '(T2,A)') REPEAT("-", 79)
678 134 : WRITE (unit_nr, '()')
679 :
680 : END IF ! unit_nr
681 :
682 268 : CALL timestop(handle)
683 :
684 268 : END SUBROUTINE ec_write_input
685 :
686 : END MODULE ec_environment
|