LCOV - code coverage report
Current view: top level - src/grpp - grpp_overlap.c (source / functions) Coverage Total Hit
Test: CP2K Regtests (git:936074a) Lines: 0.0 % 60 0
Test Date: 2025-12-04 06:27:48 Functions: 0.0 % 2 0

            Line data    Source code
       1              : /*----------------------------------------------------------------------------*/
       2              : /*  CP2K: A general program to perform molecular dynamics simulations         */
       3              : /*  Copyright 2000-2025 CP2K developers group <https://cp2k.org>              */
       4              : /*                                                                            */
       5              : /*  SPDX-License-Identifier: MIT                                              */
       6              : /*----------------------------------------------------------------------------*/
       7              : 
       8              : /*
       9              :  *  libgrpp - a library for the evaluation of integrals over
      10              :  *            generalized relativistic pseudopotentials.
      11              :  *
      12              :  *  Copyright (C) 2021-2023 Alexander Oleynichenko
      13              :  */
      14              : 
      15              : /**
      16              :  * Calculation of overlap integrals.
      17              :  *
      18              :  * The recursive Obara-Saika scheme is used to calculate 1- and 2-center overlap
      19              :  * integrals. For details, see: T. Helgaker, P. Jorgensen, J. Olsen, Molecular
      20              :  * Electronic-Structure Theory, John Wiley & Sons Ltd, 2000. Chapter 9.3.1,
      21              :  * "Overlap integrals"
      22              :  */
      23              : 
      24              : #include <math.h>
      25              : #include <stdlib.h>
      26              : #include <string.h>
      27              : #ifndef M_PI
      28              : #define M_PI 3.14159265358979323846
      29              : #endif
      30              : 
      31              : #include "grpp_norm_gaussian.h"
      32              : #include "grpp_overlap.h"
      33              : #include "libgrpp.h"
      34              : 
      35              : #include "grpp_utils.h"
      36              : 
      37              : static void overlap_integrals_shell_pair_obara_saika(libgrpp_shell_t *shell_A,
      38              :                                                      libgrpp_shell_t *shell_B,
      39              :                                                      double alpha_A,
      40              :                                                      double alpha_B,
      41              :                                                      double *overlap_matrix);
      42              : 
      43              : /**
      44              :  * Calculates overlap integral between two shells represented by contracted
      45              :  * Gaussian functions.
      46              :  */
      47            0 : void libgrpp_overlap_integrals(libgrpp_shell_t *shell_A,
      48              :                                libgrpp_shell_t *shell_B,
      49              :                                double *overlap_matrix) {
      50            0 :   int size_A = libgrpp_get_shell_size(shell_A);
      51            0 :   int size_B = libgrpp_get_shell_size(shell_B);
      52              : 
      53            0 :   double *buf = calloc(size_A * size_B, sizeof(double));
      54              : 
      55            0 :   memset(overlap_matrix, 0, size_A * size_B * sizeof(double));
      56              : 
      57              :   // loop over primitives in contractions
      58            0 :   for (int i = 0; i < shell_A->num_primitives; i++) {
      59            0 :     for (int j = 0; j < shell_B->num_primitives; j++) {
      60            0 :       double alpha_i = shell_A->alpha[i];
      61            0 :       double alpha_j = shell_B->alpha[j];
      62            0 :       double coef_A_i = shell_A->coeffs[i];
      63            0 :       double coef_B_j = shell_B->coeffs[j];
      64              : 
      65            0 :       overlap_integrals_shell_pair_obara_saika(shell_A, shell_B, alpha_i,
      66              :                                                alpha_j, buf);
      67              : 
      68            0 :       libgrpp_daxpy(size_A * size_B, coef_A_i * coef_B_j, buf, overlap_matrix);
      69              :     }
      70              :   }
      71              : 
      72            0 :   free(buf);
      73            0 : }
      74              : 
      75            0 : static void overlap_integrals_shell_pair_obara_saika(libgrpp_shell_t *shell_A,
      76              :                                                      libgrpp_shell_t *shell_B,
      77              :                                                      double alpha_A,
      78              :                                                      double alpha_B,
      79              :                                                      double *overlap_matrix) {
      80            0 :   int size_A = libgrpp_get_shell_size(shell_A);
      81            0 :   int size_B = libgrpp_get_shell_size(shell_B);
      82            0 :   int L_A = shell_A->L;
      83            0 :   int L_B = shell_B->L;
      84            0 :   double N_A = libgrpp_gaussian_norm_factor(L_A, 0, 0, alpha_A);
      85            0 :   double N_B = libgrpp_gaussian_norm_factor(L_B, 0, 0, alpha_B);
      86              : 
      87            0 :   double p = alpha_A + alpha_B;
      88            0 :   double mu = alpha_A * alpha_B / (alpha_A + alpha_B);
      89            0 :   double *A = shell_A->origin;
      90            0 :   double *B = shell_B->origin;
      91              : 
      92            0 :   double S[3][LIBGRPP_MAX_BASIS_L][LIBGRPP_MAX_BASIS_L];
      93              : 
      94            0 :   for (int coord = 0; coord < 3; coord++) {
      95            0 :     double P = (alpha_A * A[coord] + alpha_B * B[coord]) / p;
      96              : 
      97            0 :     double X_AB = A[coord] - B[coord];
      98            0 :     double X_PA = P - A[coord];
      99            0 :     double X_PB = P - B[coord];
     100            0 :     double pfac = 1.0 / (2.0 * p);
     101              : 
     102            0 :     for (int i = 0; i <= L_A; i++) {
     103            0 :       for (int j = 0; j <= L_B; j++) {
     104            0 :         double S_ij = 0.0;
     105              : 
     106            0 :         if (i + j == 0) {
     107            0 :           S[coord][0][0] = sqrt(M_PI / p) * exp(-mu * X_AB * X_AB);
     108            0 :           continue;
     109              :         }
     110              : 
     111            0 :         if (i == 0) { // upward by j
     112            0 :           S_ij += X_PB * S[coord][i][j - 1];
     113            0 :           if (j - 1 > 0) {
     114            0 :             S_ij += (j - 1) * pfac * S[coord][i][j - 2];
     115              :           }
     116              :         } else { // upward by i
     117            0 :           S_ij += X_PA * S[coord][i - 1][j];
     118            0 :           if (i - 1 > 0) {
     119            0 :             S_ij += (i - 1) * pfac * S[coord][i - 2][j];
     120              :           }
     121            0 :           if (j > 0) {
     122            0 :             S_ij += j * pfac * S[coord][i - 1][j - 1];
     123              :           }
     124              :         }
     125              : 
     126            0 :         S[coord][i][j] = S_ij;
     127              :       }
     128              :     }
     129              :   }
     130              : 
     131              :   // loop over cartesian functions inside the shells
     132            0 :   for (int m = 0; m < size_A; m++) {
     133            0 :     for (int n = 0; n < size_B; n++) {
     134            0 :       int n_A = shell_A->cart_list[3 * m + 0];
     135            0 :       int l_A = shell_A->cart_list[3 * m + 1];
     136            0 :       int m_A = shell_A->cart_list[3 * m + 2];
     137            0 :       int n_B = shell_B->cart_list[3 * n + 0];
     138            0 :       int l_B = shell_B->cart_list[3 * n + 1];
     139            0 :       int m_B = shell_B->cart_list[3 * n + 2];
     140              : 
     141            0 :       overlap_matrix[m * size_B + n] =
     142            0 :           N_A * N_B * S[0][n_A][n_B] * S[1][l_A][l_B] * S[2][m_A][m_B];
     143              :     }
     144              :   }
     145            0 : }
        

Generated by: LCOV version 2.0-1