Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Routines from paper [Graml2024]
10 : !> \author Jan Wilhelm
11 : !> \date 07.2023
12 : ! **************************************************************************************************
13 : MODULE gw_large_cell_gamma
14 : USE atomic_kind_types, ONLY: atomic_kind_type
15 : USE cell_types, ONLY: cell_type,&
16 : get_cell,&
17 : pbc
18 : USE constants_operator, ONLY: operator_coulomb
19 : USE cp_cfm_basic_linalg, ONLY: cp_cfm_uplo_to_full
20 : USE cp_cfm_cholesky, ONLY: cp_cfm_cholesky_decompose,&
21 : cp_cfm_cholesky_invert
22 : USE cp_cfm_diag, ONLY: cp_cfm_geeig
23 : USE cp_cfm_types, ONLY: cp_cfm_create,&
24 : cp_cfm_get_info,&
25 : cp_cfm_release,&
26 : cp_cfm_to_cfm,&
27 : cp_cfm_to_fm,&
28 : cp_cfm_type,&
29 : cp_fm_to_cfm
30 : USE cp_dbcsr_api, ONLY: &
31 : dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_deallocate_matrix, dbcsr_get_block_p, &
32 : dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, dbcsr_iterator_start, &
33 : dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_p_type, dbcsr_release, dbcsr_set, &
34 : dbcsr_type
35 : USE cp_dbcsr_contrib, ONLY: dbcsr_reserve_all_blocks
36 : USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
37 : copy_fm_to_dbcsr,&
38 : dbcsr_deallocate_matrix_set
39 : USE cp_files, ONLY: close_file,&
40 : open_file
41 : USE cp_fm_basic_linalg, ONLY: cp_fm_scale_and_add
42 : USE cp_fm_diag, ONLY: cp_fm_power
43 : USE cp_fm_types, ONLY: &
44 : cp_fm_create, cp_fm_get_diag, cp_fm_get_info, cp_fm_read_unformatted, cp_fm_release, &
45 : cp_fm_set_all, cp_fm_to_fm, cp_fm_type, cp_fm_write_unformatted
46 : USE cp_log_handling, ONLY: cp_get_default_logger,&
47 : cp_logger_type
48 : USE cp_output_handling, ONLY: cp_p_file,&
49 : cp_print_key_should_output,&
50 : cp_print_key_unit_nr
51 : USE dbt_api, ONLY: dbt_clear,&
52 : dbt_contract,&
53 : dbt_copy,&
54 : dbt_create,&
55 : dbt_destroy,&
56 : dbt_type
57 : USE gw_communication, ONLY: fm_to_local_tensor,&
58 : local_dbt_to_global_mat
59 : USE gw_utils, ONLY: analyt_conti_and_print,&
60 : de_init_bs_env,&
61 : time_to_freq
62 : USE input_constants, ONLY: rtp_method_bse
63 : USE input_section_types, ONLY: section_vals_type
64 : USE kinds, ONLY: default_string_length,&
65 : dp,&
66 : int_8
67 : USE kpoint_coulomb_2c, ONLY: build_2c_coulomb_matrix_kp
68 : USE kpoint_types, ONLY: kpoint_type
69 : USE machine, ONLY: m_walltime
70 : USE mathconstants, ONLY: twopi,&
71 : z_one,&
72 : z_zero
73 : USE message_passing, ONLY: mp_file_delete
74 : USE mp2_ri_2c, ONLY: RI_2c_integral_mat
75 : USE parallel_gemm_api, ONLY: parallel_gemm
76 : USE particle_types, ONLY: particle_type
77 : USE post_scf_bandstructure_types, ONLY: post_scf_bandstructure_type
78 : USE post_scf_bandstructure_utils, ONLY: MIC_contribution_from_ikp,&
79 : cfm_ikp_from_fm_Gamma,&
80 : get_all_VBM_CBM_bandgaps
81 : USE qs_environment_types, ONLY: get_qs_env,&
82 : qs_environment_type
83 : USE qs_kind_types, ONLY: qs_kind_type
84 : USE qs_tensors, ONLY: build_3c_integrals
85 : USE rpa_gw_kpoints_util, ONLY: cp_cfm_power
86 : #include "./base/base_uses.f90"
87 :
88 : IMPLICIT NONE
89 :
90 : PRIVATE
91 :
92 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'gw_large_cell_gamma'
93 :
94 : PUBLIC :: gw_calc_large_cell_Gamma, &
95 : compute_3c_integrals
96 :
97 : CONTAINS
98 :
99 : ! **************************************************************************************************
100 : !> \brief Perform GW band structure calculation
101 : !> \param qs_env ...
102 : !> \param bs_env ...
103 : !> \par History
104 : !> * 07.2023 created [Jan Wilhelm]
105 : ! **************************************************************************************************
106 22 : SUBROUTINE gw_calc_large_cell_Gamma(qs_env, bs_env)
107 : TYPE(qs_environment_type), POINTER :: qs_env
108 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
109 :
110 : CHARACTER(LEN=*), PARAMETER :: routineN = 'gw_calc_large_cell_Gamma'
111 :
112 : INTEGER :: handle
113 22 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_Sigma_x_Gamma, fm_W_MIC_time
114 22 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :, :) :: fm_Sigma_c_Gamma_time
115 :
116 22 : CALL timeset(routineN, handle)
117 :
118 : ! G^occ_µλ(i|τ|,k=0) = sum_n^occ C_µn(k=0) e^(-|(ϵ_nk=0-ϵ_F)τ|) C_λn(k=0)
119 : ! G^vir_µλ(i|τ|,k=0) = sum_n^vir C_µn(k=0) e^(-|(ϵ_nk=0-ϵ_F)τ|) C_λn(k=0)
120 : ! χ_PQ(iτ,k=0) = sum_λν [sum_µ (µν|P) G^occ_µλ(i|τ|)] [sum_σ (σλ|Q) G^vir_σν(i|τ|)]
121 22 : CALL get_mat_chi_Gamma_tau(bs_env, qs_env, bs_env%mat_chi_Gamma_tau)
122 :
123 : ! χ_PQ(iτ,k=0) -> χ_PQ(iω,k) -> ε_PQ(iω,k) -> W_PQ(iω,k) -> W^MIC_PQ(iτ) -> M^-1*W^MIC*M^-1
124 22 : CALL get_W_MIC(bs_env, qs_env, bs_env%mat_chi_Gamma_tau, fm_W_MIC_time)
125 :
126 : ! D_µν = sum_n^occ C_µn(k=0) C_νn(k=0), V^trunc_PQ = sum_cell_R <phi_P,0|V^trunc|phi_Q,R>
127 : ! Σ^x_λσ(k=0) = sum_νQ [sum_P (νσ|P) V^trunc_PQ] [sum_µ (λµ|Q) D_µν)]
128 22 : CALL get_Sigma_x(bs_env, qs_env, fm_Sigma_x_Gamma)
129 :
130 : ! Σ^c_λσ(iτ,k=0) = sum_νQ [sum_P (νσ|P) W^MIC_PQ(iτ)] [sum_µ (λµ|Q) G^occ_µν(i|τ|)], τ < 0
131 : ! Σ^c_λσ(iτ,k=0) = sum_νQ [sum_P (νσ|P) W^MIC_PQ(iτ)] [sum_µ (λµ|Q) G^vir_µν(i|τ|)], τ > 0
132 22 : CALL get_Sigma_c(bs_env, qs_env, fm_W_MIC_time, fm_Sigma_c_Gamma_time)
133 :
134 : ! Σ^c_λσ(iτ,k=0) -> Σ^c_nn(ϵ,k); ϵ_nk^GW = ϵ_nk^DFT + Σ^c_nn(ϵ,k) + Σ^x_nn(k) - v^xc_nn(k)
135 22 : CALL compute_QP_energies(bs_env, qs_env, fm_Sigma_x_Gamma, fm_Sigma_c_Gamma_time)
136 :
137 22 : CALL de_init_bs_env(bs_env)
138 :
139 22 : CALL timestop(handle)
140 :
141 22 : END SUBROUTINE gw_calc_large_cell_Gamma
142 :
143 : ! **************************************************************************************************
144 : !> \brief ...
145 : !> \param bs_env ...
146 : !> \param qs_env ...
147 : !> \param mat_chi_Gamma_tau ...
148 : ! **************************************************************************************************
149 22 : SUBROUTINE get_mat_chi_Gamma_tau(bs_env, qs_env, mat_chi_Gamma_tau)
150 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
151 : TYPE(qs_environment_type), POINTER :: qs_env
152 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_chi_Gamma_tau
153 :
154 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_mat_chi_Gamma_tau'
155 :
156 : INTEGER :: handle, i_intval_idx, i_t, inner_loop_atoms_interval_index, ispin, j_intval_idx
157 : INTEGER, DIMENSION(2) :: i_atoms, IL_atoms, j_atoms
158 : LOGICAL :: dist_too_long_i, dist_too_long_j
159 : REAL(KIND=dp) :: t1, tau
160 550 : TYPE(dbt_type) :: t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, &
161 374 : t_3c_for_Gvir, t_3c_x_Gocc, &
162 374 : t_3c_x_Gocc_2, t_3c_x_Gvir, &
163 198 : t_3c_x_Gvir_2
164 :
165 22 : CALL timeset(routineN, handle)
166 :
167 346 : DO i_t = 1, bs_env%num_time_freq_points
168 :
169 324 : t1 = m_walltime()
170 :
171 324 : IF (bs_env%read_chi(i_t)) THEN
172 :
173 0 : CALL fm_read(bs_env%fm_RI_RI, bs_env, bs_env%chi_name, i_t)
174 :
175 : CALL copy_fm_to_dbcsr(bs_env%fm_RI_RI, mat_chi_Gamma_tau(i_t)%matrix, &
176 0 : keep_sparsity=.FALSE.)
177 :
178 0 : IF (bs_env%unit_nr > 0) THEN
179 : WRITE (bs_env%unit_nr, '(T2,A,I5,A,I3,A,F7.1,A)') &
180 0 : 'Read χ(iτ,k=0) from file for time point ', i_t, ' /', &
181 0 : bs_env%num_time_freq_points, &
182 0 : ', Execution time', m_walltime() - t1, ' s'
183 : END IF
184 :
185 : CYCLE
186 :
187 : END IF
188 :
189 324 : IF (.NOT. bs_env%calc_chi(i_t)) CYCLE
190 :
191 : CALL create_tensors_chi(t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, t_3c_for_Gvir, &
192 224 : t_3c_x_Gocc, t_3c_x_Gvir, t_3c_x_Gocc_2, t_3c_x_Gvir_2, bs_env)
193 :
194 : ! 1. compute G^occ and G^vir
195 : ! Background: G^σ(iτ) = G^occ,σ(iτ) * Θ(-τ) + G^vir,σ(iτ) * Θ(τ), σ ∈ {↑,↓}
196 : ! G^occ,σ_µλ(i|τ|,k=0) = sum_n^occ C^σ_µn(k=0) e^(-|(ϵ^σ_nk=0-ϵ_F)τ|) C^σ_λn(k=0)
197 : ! G^vir,σ_µλ(i|τ|,k=0) = sum_n^vir C^σ_µn(k=0) e^(-|(ϵ^σ_nk=0-ϵ_F)τ|) C^σ_λn(k=0)
198 224 : tau = bs_env%imag_time_points(i_t)
199 :
200 468 : DO ispin = 1, bs_env%n_spin
201 244 : CALL G_occ_vir(bs_env, tau, bs_env%fm_Gocc, ispin, occ=.TRUE., vir=.FALSE.)
202 244 : CALL G_occ_vir(bs_env, tau, bs_env%fm_Gvir, ispin, occ=.FALSE., vir=.TRUE.)
203 :
204 : CALL fm_to_local_tensor(bs_env%fm_Gocc, bs_env%mat_ao_ao%matrix, &
205 : bs_env%mat_ao_ao_tensor%matrix, t_2c_Gocc, bs_env, &
206 244 : bs_env%atoms_j_t_group)
207 : CALL fm_to_local_tensor(bs_env%fm_Gvir, bs_env%mat_ao_ao%matrix, &
208 : bs_env%mat_ao_ao_tensor%matrix, t_2c_Gvir, bs_env, &
209 244 : bs_env%atoms_i_t_group)
210 :
211 : ! every group has its own range of i_atoms and j_atoms; only deal with a
212 : ! limited number of i_atom-j_atom pairs simultaneously in a group to save memory
213 712 : DO i_intval_idx = 1, bs_env%n_intervals_i
214 732 : DO j_intval_idx = 1, bs_env%n_intervals_j
215 732 : i_atoms = bs_env%i_atom_intervals(1:2, i_intval_idx)
216 732 : j_atoms = bs_env%j_atom_intervals(1:2, j_intval_idx)
217 :
218 488 : DO inner_loop_atoms_interval_index = 1, bs_env%n_intervals_inner_loop_atoms
219 :
220 732 : IL_atoms = bs_env%inner_loop_atom_intervals(1:2, inner_loop_atoms_interval_index)
221 :
222 244 : CALL check_dist(i_atoms, IL_atoms, qs_env, bs_env, dist_too_long_i)
223 244 : CALL check_dist(j_atoms, IL_atoms, qs_env, bs_env, dist_too_long_j)
224 244 : IF (dist_too_long_i .OR. dist_too_long_j) CYCLE
225 :
226 : ! 2. compute 3-center integrals (µν|P) ("|": truncated Coulomb operator)
227 244 : CALL compute_3c_integrals(qs_env, bs_env, t_3c_for_Gocc, i_atoms, IL_atoms)
228 :
229 : ! 3. tensor operation M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
230 : CALL G_times_3c(t_3c_for_Gocc, t_2c_Gocc, t_3c_x_Gocc, bs_env, &
231 244 : j_atoms, i_atoms, IL_atoms)
232 :
233 : ! 4. compute 3-center integrals (σλ|Q) ("|": truncated Coulomb operator)
234 244 : CALL compute_3c_integrals(qs_env, bs_env, t_3c_for_Gvir, j_atoms, IL_atoms)
235 :
236 : ! 5. tensor operation N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
237 : CALL G_times_3c(t_3c_for_Gvir, t_2c_Gvir, t_3c_x_Gvir, bs_env, &
238 488 : i_atoms, j_atoms, IL_atoms)
239 :
240 : END DO ! IL_atoms
241 :
242 : ! 6. reorder tensors
243 244 : CALL dbt_copy(t_3c_x_Gocc, t_3c_x_Gocc_2, move_data=.TRUE., order=[1, 3, 2])
244 244 : CALL dbt_copy(t_3c_x_Gvir, t_3c_x_Gvir_2, move_data=.TRUE.)
245 :
246 : ! 7. tensor operation χ_PQ(iτ,k=0) = sum_λν M_λνP(iτ) N_νλQ(iτ),
247 : CALL dbt_contract(alpha=bs_env%spin_degeneracy, &
248 : tensor_1=t_3c_x_Gocc_2, tensor_2=t_3c_x_Gvir_2, &
249 : beta=1.0_dp, tensor_3=bs_env%t_chi, &
250 : contract_1=[2, 3], notcontract_1=[1], map_1=[1], &
251 : contract_2=[2, 3], notcontract_2=[1], map_2=[2], &
252 488 : filter_eps=bs_env%eps_filter, move_data=.TRUE.)
253 :
254 : END DO ! j_atoms
255 : END DO ! i_atoms
256 : END DO ! ispin
257 :
258 : ! 8. communicate data of χ_PQ(iτ,k=0) in tensor bs_env%t_chi (which local in the
259 : ! subgroup) to the global dbcsr matrix mat_chi_Gamma_tau (which stores
260 : ! χ_PQ(iτ,k=0) for all time points)
261 : CALL local_dbt_to_global_mat(bs_env%t_chi, bs_env%mat_RI_RI_tensor%matrix, &
262 224 : mat_chi_Gamma_tau(i_t)%matrix, bs_env%para_env)
263 :
264 : CALL write_matrix(mat_chi_Gamma_tau(i_t)%matrix, i_t, bs_env%chi_name, &
265 224 : bs_env%fm_RI_RI, qs_env)
266 :
267 : CALL destroy_tensors_chi(t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, t_3c_for_Gvir, &
268 224 : t_3c_x_Gocc, t_3c_x_Gvir, t_3c_x_Gocc_2, t_3c_x_Gvir_2)
269 :
270 246 : IF (bs_env%unit_nr > 0) THEN
271 : WRITE (bs_env%unit_nr, '(T2,A,I13,A,I3,A,F7.1,A)') &
272 112 : 'Computed χ(iτ,k=0) for time point', i_t, ' /', bs_env%num_time_freq_points, &
273 224 : ', Execution time', m_walltime() - t1, ' s'
274 : END IF
275 :
276 : END DO ! i_t
277 :
278 22 : IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, '(A)') ' '
279 :
280 22 : CALL timestop(handle)
281 :
282 22 : END SUBROUTINE get_mat_chi_Gamma_tau
283 :
284 : ! **************************************************************************************************
285 : !> \brief ...
286 : !> \param fm ...
287 : !> \param bs_env ...
288 : !> \param mat_name ...
289 : !> \param idx ...
290 : ! **************************************************************************************************
291 352 : SUBROUTINE fm_read(fm, bs_env, mat_name, idx)
292 : TYPE(cp_fm_type) :: fm
293 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
294 : CHARACTER(LEN=*) :: mat_name
295 : INTEGER :: idx
296 :
297 : CHARACTER(LEN=*), PARAMETER :: routineN = 'fm_read'
298 :
299 : CHARACTER(LEN=default_string_length) :: f_chi
300 : INTEGER :: handle, unit_nr
301 :
302 352 : CALL timeset(routineN, handle)
303 :
304 352 : unit_nr = -1
305 352 : IF (bs_env%para_env%is_source()) THEN
306 :
307 176 : IF (idx < 10) THEN
308 87 : WRITE (f_chi, '(3A,I1,A)') TRIM(bs_env%prefix), TRIM(mat_name), "_0", idx, ".matrix"
309 89 : ELSE IF (idx < 100) THEN
310 89 : WRITE (f_chi, '(3A,I2,A)') TRIM(bs_env%prefix), TRIM(mat_name), "_", idx, ".matrix"
311 : ELSE
312 0 : CPABORT('Please implement more than 99 time/frequency points.')
313 : END IF
314 :
315 : CALL open_file(file_name=TRIM(f_chi), file_action="READ", file_form="UNFORMATTED", &
316 176 : file_position="REWIND", file_status="OLD", unit_number=unit_nr)
317 :
318 : END IF
319 :
320 352 : CALL cp_fm_read_unformatted(fm, unit_nr)
321 :
322 352 : IF (bs_env%para_env%is_source()) CALL close_file(unit_number=unit_nr)
323 :
324 352 : CALL timestop(handle)
325 :
326 352 : END SUBROUTINE fm_read
327 :
328 : ! **************************************************************************************************
329 : !> \brief ...
330 : !> \param t_2c_Gocc ...
331 : !> \param t_2c_Gvir ...
332 : !> \param t_3c_for_Gocc ...
333 : !> \param t_3c_for_Gvir ...
334 : !> \param t_3c_x_Gocc ...
335 : !> \param t_3c_x_Gvir ...
336 : !> \param t_3c_x_Gocc_2 ...
337 : !> \param t_3c_x_Gvir_2 ...
338 : !> \param bs_env ...
339 : ! **************************************************************************************************
340 224 : SUBROUTINE create_tensors_chi(t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, t_3c_for_Gvir, &
341 : t_3c_x_Gocc, t_3c_x_Gvir, t_3c_x_Gocc_2, t_3c_x_Gvir_2, bs_env)
342 :
343 : TYPE(dbt_type) :: t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, &
344 : t_3c_for_Gvir, t_3c_x_Gocc, &
345 : t_3c_x_Gvir, t_3c_x_Gocc_2, &
346 : t_3c_x_Gvir_2
347 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
348 :
349 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_tensors_chi'
350 :
351 : INTEGER :: handle
352 :
353 224 : CALL timeset(routineN, handle)
354 :
355 224 : CALL dbt_create(bs_env%t_G, t_2c_Gocc)
356 224 : CALL dbt_create(bs_env%t_G, t_2c_Gvir)
357 224 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_for_Gocc)
358 224 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_for_Gvir)
359 224 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_Gocc)
360 224 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_Gvir)
361 224 : CALL dbt_create(bs_env%t_RI__AO_AO, t_3c_x_Gocc_2)
362 224 : CALL dbt_create(bs_env%t_RI__AO_AO, t_3c_x_Gvir_2)
363 :
364 224 : CALL timestop(handle)
365 :
366 224 : END SUBROUTINE create_tensors_chi
367 :
368 : ! **************************************************************************************************
369 : !> \brief ...
370 : !> \param t_2c_Gocc ...
371 : !> \param t_2c_Gvir ...
372 : !> \param t_3c_for_Gocc ...
373 : !> \param t_3c_for_Gvir ...
374 : !> \param t_3c_x_Gocc ...
375 : !> \param t_3c_x_Gvir ...
376 : !> \param t_3c_x_Gocc_2 ...
377 : !> \param t_3c_x_Gvir_2 ...
378 : ! **************************************************************************************************
379 224 : SUBROUTINE destroy_tensors_chi(t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, t_3c_for_Gvir, &
380 : t_3c_x_Gocc, t_3c_x_Gvir, t_3c_x_Gocc_2, t_3c_x_Gvir_2)
381 : TYPE(dbt_type) :: t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, &
382 : t_3c_for_Gvir, t_3c_x_Gocc, &
383 : t_3c_x_Gvir, t_3c_x_Gocc_2, &
384 : t_3c_x_Gvir_2
385 :
386 : CHARACTER(LEN=*), PARAMETER :: routineN = 'destroy_tensors_chi'
387 :
388 : INTEGER :: handle
389 :
390 224 : CALL timeset(routineN, handle)
391 :
392 224 : CALL dbt_destroy(t_2c_Gocc)
393 224 : CALL dbt_destroy(t_2c_Gvir)
394 224 : CALL dbt_destroy(t_3c_for_Gocc)
395 224 : CALL dbt_destroy(t_3c_for_Gvir)
396 224 : CALL dbt_destroy(t_3c_x_Gocc)
397 224 : CALL dbt_destroy(t_3c_x_Gvir)
398 224 : CALL dbt_destroy(t_3c_x_Gocc_2)
399 224 : CALL dbt_destroy(t_3c_x_Gvir_2)
400 :
401 224 : CALL timestop(handle)
402 :
403 224 : END SUBROUTINE destroy_tensors_chi
404 :
405 : ! **************************************************************************************************
406 : !> \brief ...
407 : !> \param matrix ...
408 : !> \param matrix_index ...
409 : !> \param matrix_name ...
410 : !> \param fm ...
411 : !> \param qs_env ...
412 : ! **************************************************************************************************
413 730 : SUBROUTINE write_matrix(matrix, matrix_index, matrix_name, fm, qs_env)
414 : TYPE(dbcsr_type) :: matrix
415 : INTEGER :: matrix_index
416 : CHARACTER(LEN=*) :: matrix_name
417 : TYPE(cp_fm_type), INTENT(IN), POINTER :: fm
418 : TYPE(qs_environment_type), POINTER :: qs_env
419 :
420 : CHARACTER(LEN=*), PARAMETER :: routineN = 'write_matrix'
421 :
422 : INTEGER :: handle
423 :
424 730 : CALL timeset(routineN, handle)
425 :
426 730 : CALL cp_fm_set_all(fm, 0.0_dp)
427 :
428 730 : CALL copy_dbcsr_to_fm(matrix, fm)
429 :
430 730 : CALL fm_write(fm, matrix_index, matrix_name, qs_env)
431 :
432 730 : CALL timestop(handle)
433 :
434 730 : END SUBROUTINE write_matrix
435 :
436 : ! **************************************************************************************************
437 : !> \brief ...
438 : !> \param fm ...
439 : !> \param matrix_index ...
440 : !> \param matrix_name ...
441 : !> \param qs_env ...
442 : ! **************************************************************************************************
443 962 : SUBROUTINE fm_write(fm, matrix_index, matrix_name, qs_env)
444 : TYPE(cp_fm_type) :: fm
445 : INTEGER :: matrix_index
446 : CHARACTER(LEN=*) :: matrix_name
447 : TYPE(qs_environment_type), POINTER :: qs_env
448 :
449 : CHARACTER(LEN=*), PARAMETER :: key = 'PROPERTIES%BANDSTRUCTURE%GW%PRINT%RESTART', &
450 : routineN = 'fm_write'
451 :
452 : CHARACTER(LEN=default_string_length) :: filename
453 : INTEGER :: handle, unit_nr
454 : TYPE(cp_logger_type), POINTER :: logger
455 : TYPE(section_vals_type), POINTER :: input
456 :
457 962 : CALL timeset(routineN, handle)
458 :
459 962 : CALL get_qs_env(qs_env, input=input)
460 :
461 962 : logger => cp_get_default_logger()
462 :
463 962 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, key), cp_p_file)) THEN
464 :
465 780 : IF (matrix_index < 10) THEN
466 380 : WRITE (filename, '(3A,I1)') "RESTART_", matrix_name, "_0", matrix_index
467 400 : ELSE IF (matrix_index < 100) THEN
468 400 : WRITE (filename, '(3A,I2)') "RESTART_", matrix_name, "_", matrix_index
469 : ELSE
470 0 : CPABORT('Please implement more than 99 time/frequency points.')
471 : END IF
472 :
473 : unit_nr = cp_print_key_unit_nr(logger, input, key, extension=".matrix", &
474 : file_form="UNFORMATTED", middle_name=TRIM(filename), &
475 780 : file_position="REWIND", file_action="WRITE")
476 :
477 780 : CALL cp_fm_write_unformatted(fm, unit_nr)
478 780 : IF (unit_nr > 0) THEN
479 390 : CALL close_file(unit_nr)
480 : END IF
481 : END IF
482 :
483 962 : CALL timestop(handle)
484 :
485 962 : END SUBROUTINE fm_write
486 :
487 : ! **************************************************************************************************
488 : !> \brief ...
489 : !> \param bs_env ...
490 : !> \param tau ...
491 : !> \param fm_G_Gamma ...
492 : !> \param ispin ...
493 : !> \param occ ...
494 : !> \param vir ...
495 : ! **************************************************************************************************
496 1988 : SUBROUTINE G_occ_vir(bs_env, tau, fm_G_Gamma, ispin, occ, vir)
497 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
498 : REAL(KIND=dp) :: tau
499 : TYPE(cp_fm_type) :: fm_G_Gamma
500 : INTEGER :: ispin
501 : LOGICAL :: occ, vir
502 :
503 : CHARACTER(LEN=*), PARAMETER :: routineN = 'G_occ_vir'
504 :
505 : INTEGER :: handle, homo, i_row_local, j_col, &
506 : j_col_local, n_mo, ncol_local, &
507 : nrow_local
508 994 : INTEGER, DIMENSION(:), POINTER :: col_indices
509 : REAL(KIND=dp) :: tau_E
510 :
511 994 : CALL timeset(routineN, handle)
512 :
513 994 : CPASSERT(occ .NEQV. vir)
514 :
515 : CALL cp_fm_get_info(matrix=bs_env%fm_work_mo(1), &
516 : nrow_local=nrow_local, &
517 : ncol_local=ncol_local, &
518 994 : col_indices=col_indices)
519 :
520 994 : n_mo = bs_env%n_ao
521 994 : homo = bs_env%n_occ(ispin)
522 :
523 994 : CALL cp_fm_to_fm(bs_env%fm_mo_coeff_Gamma(ispin), bs_env%fm_work_mo(1))
524 :
525 3899 : DO i_row_local = 1, nrow_local
526 41608 : DO j_col_local = 1, ncol_local
527 :
528 37709 : j_col = col_indices(j_col_local)
529 :
530 37709 : tau_E = ABS(tau*0.5_dp*(bs_env%eigenval_scf_Gamma(j_col, ispin) - bs_env%e_fermi(ispin)))
531 :
532 37709 : IF (tau_E < bs_env%stabilize_exp) THEN
533 : bs_env%fm_work_mo(1)%local_data(i_row_local, j_col_local) = &
534 36917 : bs_env%fm_work_mo(1)%local_data(i_row_local, j_col_local)*EXP(-tau_E)
535 : ELSE
536 792 : bs_env%fm_work_mo(1)%local_data(i_row_local, j_col_local) = 0.0_dp
537 : END IF
538 :
539 40614 : IF ((occ .AND. j_col > homo) .OR. (vir .AND. j_col <= homo)) THEN
540 19222 : bs_env%fm_work_mo(1)%local_data(i_row_local, j_col_local) = 0.0_dp
541 : END IF
542 :
543 : END DO
544 : END DO
545 :
546 : CALL parallel_gemm(transa="N", transb="T", m=n_mo, n=n_mo, k=n_mo, alpha=1.0_dp, &
547 : matrix_a=bs_env%fm_work_mo(1), matrix_b=bs_env%fm_work_mo(1), &
548 994 : beta=0.0_dp, matrix_c=fm_G_Gamma)
549 :
550 994 : CALL timestop(handle)
551 :
552 994 : END SUBROUTINE G_occ_vir
553 :
554 : ! **************************************************************************************************
555 : !> \brief ...
556 : !> \param qs_env ...
557 : !> \param bs_env ...
558 : !> \param t_3c ...
559 : !> \param atoms_AO_1 ...
560 : !> \param atoms_AO_2 ...
561 : !> \param atoms_RI ...
562 : ! **************************************************************************************************
563 1214 : SUBROUTINE compute_3c_integrals(qs_env, bs_env, t_3c, atoms_AO_1, atoms_AO_2, atoms_RI)
564 : TYPE(qs_environment_type), POINTER :: qs_env
565 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
566 : TYPE(dbt_type) :: t_3c
567 : INTEGER, DIMENSION(2), OPTIONAL :: atoms_AO_1, atoms_AO_2, atoms_RI
568 :
569 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_3c_integrals'
570 :
571 : INTEGER :: handle
572 : INTEGER, DIMENSION(2) :: my_atoms_AO_1, my_atoms_AO_2, my_atoms_RI
573 1214 : TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_array
574 :
575 1214 : CALL timeset(routineN, handle)
576 :
577 : ! free memory (not clear whether memory has been freed previously)
578 1214 : CALL dbt_clear(t_3c)
579 :
580 13354 : ALLOCATE (t_3c_array(1, 1))
581 1214 : CALL dbt_create(t_3c, t_3c_array(1, 1))
582 :
583 1214 : IF (PRESENT(atoms_AO_1)) THEN
584 : my_atoms_AO_1 = atoms_AO_1
585 : ELSE
586 1446 : my_atoms_AO_1 = [1, bs_env%n_atom]
587 : END IF
588 1214 : IF (PRESENT(atoms_AO_2)) THEN
589 : my_atoms_AO_2 = atoms_AO_2
590 : ELSE
591 768 : my_atoms_AO_2 = [1, bs_env%n_atom]
592 : END IF
593 1214 : IF (PRESENT(atoms_RI)) THEN
594 : my_atoms_RI = atoms_RI
595 : ELSE
596 1500 : my_atoms_RI = [1, bs_env%n_atom]
597 : END IF
598 :
599 : CALL build_3c_integrals(t_3c_array, &
600 : bs_env%eps_filter, &
601 : qs_env, &
602 : bs_env%nl_3c, &
603 : int_eps=bs_env%eps_filter, &
604 : basis_i=bs_env%basis_set_RI, &
605 : basis_j=bs_env%basis_set_AO, &
606 : basis_k=bs_env%basis_set_AO, &
607 : potential_parameter=bs_env%ri_metric, &
608 : bounds_i=atoms_RI, &
609 : bounds_j=atoms_AO_1, &
610 : bounds_k=atoms_AO_2, &
611 1214 : desymmetrize=.FALSE.)
612 :
613 1214 : CALL dbt_copy(t_3c_array(1, 1), t_3c, move_data=.TRUE.)
614 :
615 1214 : CALL dbt_destroy(t_3c_array(1, 1))
616 2428 : DEALLOCATE (t_3c_array)
617 :
618 1214 : CALL timestop(handle)
619 :
620 2428 : END SUBROUTINE compute_3c_integrals
621 :
622 : ! **************************************************************************************************
623 : !> \brief ...
624 : !> \param t_3c_for_G ...
625 : !> \param t_G ...
626 : !> \param t_M ...
627 : !> \param bs_env ...
628 : !> \param atoms_AO_1 ...
629 : !> \param atoms_AO_2 ...
630 : !> \param atoms_IL ...
631 : ! **************************************************************************************************
632 488 : SUBROUTINE G_times_3c(t_3c_for_G, t_G, t_M, bs_env, atoms_AO_1, atoms_AO_2, atoms_IL)
633 : TYPE(dbt_type) :: t_3c_for_G, t_G, t_M
634 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
635 : INTEGER, DIMENSION(2) :: atoms_AO_1, atoms_AO_2, atoms_IL
636 :
637 : CHARACTER(LEN=*), PARAMETER :: routineN = 'G_times_3c'
638 :
639 : INTEGER :: handle
640 : INTEGER, DIMENSION(2) :: bounds_IL, bounds_l
641 : INTEGER, DIMENSION(2, 2) :: bounds_k
642 :
643 488 : CALL timeset(routineN, handle)
644 :
645 : ! JW bounds_IL and bounds_k do not safe any operations, but maybe communication
646 : ! maybe remove "bounds_1=bounds_IL, &" and "bounds_2=bounds_k, &" later and
647 : ! check whether performance improves
648 :
649 : bounds_IL(1:2) = [bs_env%i_ao_start_from_atom(atoms_IL(1)), &
650 1464 : bs_env%i_ao_end_from_atom(atoms_IL(2))]
651 1464 : bounds_k(1:2, 1) = [1, bs_env%n_RI]
652 : bounds_k(1:2, 2) = [bs_env%i_ao_start_from_atom(atoms_AO_2(1)), &
653 1464 : bs_env%i_ao_end_from_atom(atoms_AO_2(2))]
654 : bounds_l(1:2) = [bs_env%i_ao_start_from_atom(atoms_AO_1(1)), &
655 1464 : bs_env%i_ao_end_from_atom(atoms_AO_1(2))]
656 :
657 : CALL dbt_contract(alpha=1.0_dp, &
658 : tensor_1=t_3c_for_G, &
659 : tensor_2=t_G, &
660 : beta=1.0_dp, &
661 : tensor_3=t_M, &
662 : contract_1=[3], notcontract_1=[1, 2], map_1=[1, 2], &
663 : contract_2=[2], notcontract_2=[1], map_2=[3], &
664 : bounds_1=bounds_IL, &
665 : bounds_2=bounds_k, &
666 : bounds_3=bounds_l, &
667 488 : filter_eps=bs_env%eps_filter)
668 :
669 488 : CALL dbt_clear(t_3c_for_G)
670 :
671 488 : CALL timestop(handle)
672 :
673 488 : END SUBROUTINE G_times_3c
674 :
675 : ! **************************************************************************************************
676 : !> \brief ...
677 : !> \param atoms_1 ...
678 : !> \param atoms_2 ...
679 : !> \param qs_env ...
680 : !> \param bs_env ...
681 : !> \param dist_too_long ...
682 : ! **************************************************************************************************
683 488 : SUBROUTINE check_dist(atoms_1, atoms_2, qs_env, bs_env, dist_too_long)
684 : INTEGER, DIMENSION(2) :: atoms_1, atoms_2
685 : TYPE(qs_environment_type), POINTER :: qs_env
686 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
687 : LOGICAL :: dist_too_long
688 :
689 : CHARACTER(LEN=*), PARAMETER :: routineN = 'check_dist'
690 :
691 : INTEGER :: atom_1, atom_2, handle
692 : REAL(dp) :: abs_rab, min_dist_AO_atoms
693 : REAL(KIND=dp), DIMENSION(3) :: rab
694 : TYPE(cell_type), POINTER :: cell
695 488 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
696 :
697 488 : CALL timeset(routineN, handle)
698 :
699 488 : CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set)
700 :
701 488 : min_dist_AO_atoms = 1.0E5_dp
702 1512 : DO atom_1 = atoms_1(1), atoms_1(2)
703 3704 : DO atom_2 = atoms_2(1), atoms_2(2)
704 :
705 2192 : rab = pbc(particle_set(atom_1)%r(1:3), particle_set(atom_2)%r(1:3), cell)
706 :
707 2192 : abs_rab = SQRT(rab(1)**2 + rab(2)**2 + rab(3)**2)
708 :
709 3216 : min_dist_AO_atoms = MIN(min_dist_AO_atoms, abs_rab)
710 :
711 : END DO
712 : END DO
713 :
714 488 : dist_too_long = (min_dist_AO_atoms > bs_env%max_dist_AO_atoms)
715 :
716 488 : CALL timestop(handle)
717 :
718 488 : END SUBROUTINE check_dist
719 :
720 : ! **************************************************************************************************
721 : !> \brief ...
722 : !> \param bs_env ...
723 : !> \param qs_env ...
724 : !> \param mat_chi_Gamma_tau ...
725 : !> \param fm_W_MIC_time ...
726 : ! **************************************************************************************************
727 22 : SUBROUTINE get_W_MIC(bs_env, qs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
728 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
729 : TYPE(qs_environment_type), POINTER :: qs_env
730 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_chi_Gamma_tau
731 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_W_MIC_time
732 :
733 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_W_MIC'
734 :
735 : INTEGER :: handle
736 :
737 22 : CALL timeset(routineN, handle)
738 :
739 22 : IF (bs_env%all_W_exist) THEN
740 6 : CALL read_W_MIC_time(bs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
741 : ELSE
742 16 : CALL compute_W_MIC(bs_env, qs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
743 : END IF
744 :
745 22 : CALL timestop(handle)
746 :
747 22 : END SUBROUTINE get_W_MIC
748 :
749 : ! **************************************************************************************************
750 : !> \brief ...
751 : !> \param bs_env ...
752 : !> \param qs_env ...
753 : !> \param fm_V_kp ...
754 : !> \param ikp_batch ...
755 : ! **************************************************************************************************
756 64 : SUBROUTINE compute_V_k_by_lattice_sum(bs_env, qs_env, fm_V_kp, ikp_batch)
757 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
758 : TYPE(qs_environment_type), POINTER :: qs_env
759 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_V_kp
760 : INTEGER :: ikp_batch
761 :
762 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_V_k_by_lattice_sum'
763 :
764 : INTEGER :: handle, ikp, ikp_end, ikp_start, &
765 : nkp_chi_eps_W_batch, re_im
766 64 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
767 : TYPE(cell_type), POINTER :: cell
768 64 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: mat_V_kp
769 64 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
770 64 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
771 :
772 64 : CALL timeset(routineN, handle)
773 :
774 64 : nkp_chi_eps_W_batch = bs_env%nkp_chi_eps_W_batch
775 :
776 64 : ikp_start = (ikp_batch - 1)*bs_env%nkp_chi_eps_W_batch + 1
777 64 : ikp_end = MIN(ikp_batch*bs_env%nkp_chi_eps_W_batch, bs_env%kpoints_chi_eps_W%nkp)
778 :
779 64 : NULLIFY (mat_V_kp)
780 816 : ALLOCATE (mat_V_kp(ikp_start:ikp_end, 2))
781 :
782 192 : DO re_im = 1, 2
783 624 : DO ikp = ikp_start, ikp_end
784 432 : NULLIFY (mat_V_kp(ikp, re_im)%matrix)
785 432 : ALLOCATE (mat_V_kp(ikp, re_im)%matrix)
786 432 : CALL dbcsr_create(mat_V_kp(ikp, re_im)%matrix, template=bs_env%mat_RI_RI%matrix)
787 432 : CALL dbcsr_reserve_all_blocks(mat_V_kp(ikp, re_im)%matrix)
788 560 : CALL dbcsr_set(mat_V_kp(ikp, re_im)%matrix, 0.0_dp)
789 : END DO ! ikp
790 : END DO ! re_im
791 :
792 : CALL get_qs_env(qs_env=qs_env, &
793 : particle_set=particle_set, &
794 : cell=cell, &
795 : qs_kind_set=qs_kind_set, &
796 64 : atomic_kind_set=atomic_kind_set)
797 :
798 64 : IF (ikp_end <= bs_env%nkp_chi_eps_W_orig) THEN
799 :
800 : ! 1. 2c Coulomb integrals for the first "original" k-point grid
801 96 : bs_env%kpoints_chi_eps_W%nkp_grid = bs_env%nkp_grid_chi_eps_W_orig
802 :
803 40 : ELSE IF (ikp_start > bs_env%nkp_chi_eps_W_orig .AND. &
804 : ikp_end <= bs_env%nkp_chi_eps_W_orig_plus_extra) THEN
805 :
806 : ! 2. 2c Coulomb integrals for the second "extrapolation" k-point grid
807 160 : bs_env%kpoints_chi_eps_W%nkp_grid = bs_env%nkp_grid_chi_eps_W_extra
808 :
809 : ELSE
810 :
811 0 : CPABORT("Error with k-point parallelization.")
812 :
813 : END IF
814 :
815 : CALL build_2c_coulomb_matrix_kp(mat_V_kp, &
816 : bs_env%kpoints_chi_eps_W, &
817 : basis_type="RI_AUX", &
818 : cell=cell, &
819 : particle_set=particle_set, &
820 : qs_kind_set=qs_kind_set, &
821 : atomic_kind_set=atomic_kind_set, &
822 : size_lattice_sum=bs_env%size_lattice_sum_V, &
823 : operator_type=operator_coulomb, &
824 : ikp_start=ikp_start, &
825 64 : ikp_end=ikp_end)
826 :
827 256 : bs_env%kpoints_chi_eps_W%nkp_grid = bs_env%nkp_grid_chi_eps_W_orig
828 :
829 816 : ALLOCATE (fm_V_kp(ikp_start:ikp_end, 2))
830 192 : DO re_im = 1, 2
831 624 : DO ikp = ikp_start, ikp_end
832 432 : CALL cp_fm_create(fm_V_kp(ikp, re_im), bs_env%fm_RI_RI%matrix_struct)
833 432 : CALL copy_dbcsr_to_fm(mat_V_kp(ikp, re_im)%matrix, fm_V_kp(ikp, re_im))
834 560 : CALL dbcsr_deallocate_matrix(mat_V_kp(ikp, re_im)%matrix)
835 : END DO
836 : END DO
837 64 : DEALLOCATE (mat_V_kp)
838 :
839 64 : CALL timestop(handle)
840 :
841 64 : END SUBROUTINE compute_V_k_by_lattice_sum
842 :
843 : ! **************************************************************************************************
844 : !> \brief ...
845 : !> \param bs_env ...
846 : !> \param qs_env ...
847 : !> \param fm_V_kp ...
848 : !> \param cfm_V_sqrt_ikp ...
849 : !> \param cfm_M_inv_V_sqrt_ikp ...
850 : !> \param ikp ...
851 : ! **************************************************************************************************
852 216 : SUBROUTINE compute_MinvVsqrt_Vsqrt(bs_env, qs_env, fm_V_kp, cfm_V_sqrt_ikp, &
853 : cfm_M_inv_V_sqrt_ikp, ikp)
854 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
855 : TYPE(qs_environment_type), POINTER :: qs_env
856 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_V_kp
857 : TYPE(cp_cfm_type) :: cfm_V_sqrt_ikp, cfm_M_inv_V_sqrt_ikp
858 : INTEGER :: ikp
859 :
860 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_MinvVsqrt_Vsqrt'
861 :
862 : INTEGER :: handle, info, n_RI
863 : TYPE(cp_cfm_type) :: cfm_M_inv_ikp, cfm_work
864 216 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_M_ikp
865 :
866 216 : CALL timeset(routineN, handle)
867 :
868 216 : n_RI = bs_env%n_RI
869 :
870 : ! get here M(k) and write it to fm_M_ikp
871 : CALL RI_2c_integral_mat(qs_env, fm_M_ikp, fm_V_kp(ikp, 1), &
872 : n_RI, bs_env%ri_metric, do_kpoints=.TRUE., &
873 : kpoints=bs_env%kpoints_chi_eps_W, &
874 : regularization_RI=bs_env%regularization_RI, ikp_ext=ikp, &
875 216 : do_build_cell_index=(ikp == 1))
876 :
877 216 : IF (ikp == 1) THEN
878 16 : CALL cp_cfm_create(cfm_V_sqrt_ikp, fm_V_kp(ikp, 1)%matrix_struct)
879 16 : CALL cp_cfm_create(cfm_M_inv_V_sqrt_ikp, fm_V_kp(ikp, 1)%matrix_struct)
880 : END IF
881 216 : CALL cp_cfm_create(cfm_M_inv_ikp, fm_V_kp(ikp, 1)%matrix_struct)
882 :
883 216 : CALL cp_fm_to_cfm(fm_M_ikp(1, 1), fm_M_ikp(1, 2), cfm_M_inv_ikp)
884 216 : CALL cp_fm_to_cfm(fm_V_kp(ikp, 1), fm_V_kp(ikp, 2), cfm_V_sqrt_ikp)
885 :
886 216 : CALL cp_fm_release(fm_M_ikp)
887 :
888 216 : CALL cp_cfm_create(cfm_work, fm_V_kp(ikp, 1)%matrix_struct)
889 :
890 : ! M(k) -> M^-1(k)
891 216 : CALL cp_cfm_to_cfm(cfm_M_inv_ikp, cfm_work)
892 216 : CALL cp_cfm_cholesky_decompose(matrix=cfm_M_inv_ikp, n=n_RI, info_out=info)
893 216 : IF (info == 0) THEN
894 : ! successful Cholesky decomposition
895 216 : CALL cp_cfm_cholesky_invert(cfm_M_inv_ikp)
896 : ! symmetrize the result
897 216 : CALL cp_cfm_uplo_to_full(cfm_M_inv_ikp)
898 : ELSE
899 : ! Cholesky decomposition not successful: use expensive diagonalization
900 0 : CALL cp_cfm_power(cfm_work, threshold=bs_env%eps_eigval_mat_RI, exponent=-1.0_dp)
901 0 : CALL cp_cfm_to_cfm(cfm_work, cfm_M_inv_ikp)
902 : END IF
903 :
904 : ! V(k) -> L(k) with L^H(k)*L(k) = V(k) [L(k) can be just considered to be V^0.5(k)]
905 216 : CALL cp_cfm_to_cfm(cfm_V_sqrt_ikp, cfm_work)
906 216 : CALL cp_cfm_cholesky_decompose(matrix=cfm_V_sqrt_ikp, n=n_RI, info_out=info)
907 216 : IF (info == 0) THEN
908 : ! successful Cholesky decomposition
909 216 : CALL clean_lower_part(cfm_V_sqrt_ikp)
910 : ELSE
911 : ! Cholesky decomposition not successful: use expensive diagonalization
912 0 : CALL cp_cfm_power(cfm_work, threshold=0.0_dp, exponent=0.5_dp)
913 0 : CALL cp_cfm_to_cfm(cfm_work, cfm_V_sqrt_ikp)
914 : END IF
915 216 : CALL cp_cfm_release(cfm_work)
916 :
917 : ! get M^-1(k)*V^0.5(k)
918 : CALL parallel_gemm("N", "C", n_RI, n_RI, n_RI, z_one, cfm_M_inv_ikp, cfm_V_sqrt_ikp, &
919 216 : z_zero, cfm_M_inv_V_sqrt_ikp)
920 :
921 216 : CALL cp_cfm_release(cfm_M_inv_ikp)
922 :
923 216 : CALL timestop(handle)
924 :
925 432 : END SUBROUTINE compute_MinvVsqrt_Vsqrt
926 :
927 : ! **************************************************************************************************
928 : !> \brief ...
929 : !> \param bs_env ...
930 : !> \param mat_chi_Gamma_tau ...
931 : !> \param fm_W_MIC_time ...
932 : ! **************************************************************************************************
933 6 : SUBROUTINE read_W_MIC_time(bs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
934 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
935 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_chi_Gamma_tau
936 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_W_MIC_time
937 :
938 : CHARACTER(LEN=*), PARAMETER :: routineN = 'read_W_MIC_time'
939 :
940 : INTEGER :: handle, i_t
941 : REAL(KIND=dp) :: t1
942 :
943 6 : CALL timeset(routineN, handle)
944 :
945 6 : CALL dbcsr_deallocate_matrix_set(mat_chi_Gamma_tau)
946 6 : CALL create_fm_W_MIC_time(bs_env, fm_W_MIC_time)
947 :
948 106 : DO i_t = 1, bs_env%num_time_freq_points
949 :
950 100 : t1 = m_walltime()
951 :
952 100 : CALL fm_read(fm_W_MIC_time(i_t), bs_env, bs_env%W_time_name, i_t)
953 :
954 106 : IF (bs_env%unit_nr > 0) THEN
955 : WRITE (bs_env%unit_nr, '(T2,A,I5,A,I3,A,F7.1,A)') &
956 50 : 'Read W^MIC(iτ) from file for time point ', i_t, ' /', bs_env%num_time_freq_points, &
957 100 : ', Execution time', m_walltime() - t1, ' s'
958 : END IF
959 :
960 : END DO
961 :
962 6 : IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, '(A)') ' '
963 :
964 : ! Marek : Reading of the W(w=0) potential for RTP
965 : ! TODO : is the condition bs_env%all_W_exist sufficient for reading?
966 6 : IF (bs_env%rtp_method == rtp_method_bse) THEN
967 4 : CALL cp_fm_create(bs_env%fm_W_MIC_freq_zero, bs_env%fm_W_MIC_freq%matrix_struct)
968 4 : t1 = m_walltime()
969 4 : CALL fm_read(bs_env%fm_W_MIC_freq_zero, bs_env, "W_freq_rtp", 0)
970 4 : IF (bs_env%unit_nr > 0) THEN
971 : WRITE (bs_env%unit_nr, '(T2,A,I3,A,I3,A,F7.1,A)') &
972 2 : 'Read W^MIC(f=0) from file for freq. point ', 1, ' /', 1, &
973 4 : ', Execution time', m_walltime() - t1, ' s'
974 : END IF
975 : END IF
976 :
977 6 : CALL timestop(handle)
978 :
979 6 : END SUBROUTINE read_W_MIC_time
980 :
981 : ! **************************************************************************************************
982 : !> \brief ...
983 : !> \param bs_env ...
984 : !> \param qs_env ...
985 : !> \param mat_chi_Gamma_tau ...
986 : !> \param fm_W_MIC_time ...
987 : ! **************************************************************************************************
988 16 : SUBROUTINE compute_W_MIC(bs_env, qs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
989 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
990 : TYPE(qs_environment_type), POINTER :: qs_env
991 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_chi_Gamma_tau
992 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_W_MIC_time
993 :
994 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_W_MIC'
995 :
996 : INTEGER :: handle, i_t, ikp, ikp_batch, &
997 : ikp_in_batch, j_w
998 : REAL(KIND=dp) :: t1
999 : TYPE(cp_cfm_type) :: cfm_M_inv_V_sqrt_ikp, cfm_V_sqrt_ikp
1000 16 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_V_kp
1001 :
1002 16 : CALL timeset(routineN, handle)
1003 :
1004 16 : CALL create_fm_W_MIC_time(bs_env, fm_W_MIC_time)
1005 :
1006 80 : DO ikp_batch = 1, bs_env%num_chi_eps_W_batches
1007 :
1008 64 : t1 = m_walltime()
1009 :
1010 : ! Compute V_PQ(k) = sum_R e^(ikR) <phi_P, cell 0 | 1/r | phi_Q, cell R>
1011 64 : CALL compute_V_k_by_lattice_sum(bs_env, qs_env, fm_V_kp, ikp_batch)
1012 :
1013 320 : DO ikp_in_batch = 1, bs_env%nkp_chi_eps_W_batch
1014 :
1015 256 : ikp = (ikp_batch - 1)*bs_env%nkp_chi_eps_W_batch + ikp_in_batch
1016 :
1017 256 : IF (ikp > bs_env%nkp_chi_eps_W_orig_plus_extra) CYCLE
1018 :
1019 : CALL compute_MinvVsqrt_Vsqrt(bs_env, qs_env, fm_V_kp, &
1020 216 : cfm_V_sqrt_ikp, cfm_M_inv_V_sqrt_ikp, ikp)
1021 :
1022 216 : CALL bs_env%para_env%sync()
1023 216 : CALL cp_fm_release(fm_V_kp(ikp, 1))
1024 216 : CALL cp_fm_release(fm_V_kp(ikp, 2))
1025 :
1026 2104 : DO j_w = 1, bs_env%num_time_freq_points
1027 :
1028 : ! check if we need this (ikp, ω_j) combination for approximate k-point extrapolation
1029 1824 : IF (bs_env%approx_kp_extrapol .AND. j_w > 1 .AND. &
1030 : ikp > bs_env%nkp_chi_eps_W_orig) CYCLE
1031 :
1032 : CALL compute_fm_W_MIC_freq_j(bs_env, qs_env, bs_env%fm_W_MIC_freq, j_w, ikp, &
1033 : mat_chi_Gamma_tau, cfm_M_inv_V_sqrt_ikp, &
1034 1500 : cfm_V_sqrt_ikp)
1035 :
1036 : ! Fourier trafo from W_PQ^MIC(iω_j) to W_PQ^MIC(iτ)
1037 2080 : CALL Fourier_transform_w_to_t(bs_env, fm_W_MIC_time, bs_env%fm_W_MIC_freq, j_w)
1038 :
1039 : END DO ! ω_j
1040 :
1041 : END DO ! ikp_in_batch
1042 :
1043 64 : DEALLOCATE (fm_V_kp)
1044 :
1045 80 : IF (bs_env%unit_nr > 0) THEN
1046 : WRITE (bs_env%unit_nr, '(T2,A,I12,A,I3,A,F7.1,A)') &
1047 32 : 'Computed W(iτ,k) for k-point batch', &
1048 32 : ikp_batch, ' /', bs_env%num_chi_eps_W_batches, &
1049 64 : ', Execution time', m_walltime() - t1, ' s'
1050 : END IF
1051 :
1052 : END DO ! ikp_batch
1053 :
1054 16 : IF (bs_env%approx_kp_extrapol) THEN
1055 2 : CALL apply_extrapol_factor(bs_env, fm_W_MIC_time)
1056 : END IF
1057 :
1058 : ! M^-1(k=0)*W^MIC(iτ)*M^-1(k=0)
1059 16 : CALL multiply_fm_W_MIC_time_with_Minv_Gamma(bs_env, qs_env, fm_W_MIC_time)
1060 :
1061 240 : DO i_t = 1, bs_env%num_time_freq_points
1062 240 : CALL fm_write(fm_W_MIC_time(i_t), i_t, bs_env%W_time_name, qs_env)
1063 : END DO
1064 :
1065 16 : CALL cp_cfm_release(cfm_M_inv_V_sqrt_ikp)
1066 16 : CALL cp_cfm_release(cfm_V_sqrt_ikp)
1067 16 : CALL dbcsr_deallocate_matrix_set(mat_chi_Gamma_tau)
1068 :
1069 : ! Marek : Fourier transform W^MIC(itau) back to get it at a specific im.frequency point - iomega = 0
1070 16 : IF (bs_env%rtp_method == rtp_method_bse) THEN
1071 8 : t1 = m_walltime()
1072 8 : CALL cp_fm_create(bs_env%fm_W_MIC_freq_zero, bs_env%fm_W_MIC_freq%matrix_struct)
1073 : ! Set to zero
1074 8 : CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_zero, 0.0_dp)
1075 : ! Sum over all times
1076 168 : DO i_t = 1, bs_env%num_time_freq_points
1077 : ! Add the relevant structure with correct weight
1078 : CALL cp_fm_scale_and_add(1.0_dp, bs_env%fm_W_MIC_freq_zero, &
1079 168 : bs_env%imag_time_weights_freq_zero(i_t), fm_W_MIC_time(i_t))
1080 : END DO
1081 : ! Done, save to file
1082 8 : CALL fm_write(bs_env%fm_W_MIC_freq_zero, 0, "W_freq_rtp", qs_env)
1083 : ! Report calculation
1084 8 : IF (bs_env%unit_nr > 0) THEN
1085 : WRITE (bs_env%unit_nr, '(T2,A,I11,A,I3,A,F7.1,A)') &
1086 4 : 'Computed W(f=0,k) for k-point batch', &
1087 4 : 1, ' /', 1, &
1088 8 : ', Execution time', m_walltime() - t1, ' s'
1089 : END IF
1090 : END IF
1091 :
1092 16 : IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, '(A)') ' '
1093 :
1094 16 : CALL timestop(handle)
1095 :
1096 32 : END SUBROUTINE compute_W_MIC
1097 :
1098 : ! **************************************************************************************************
1099 : !> \brief ...
1100 : !> \param bs_env ...
1101 : !> \param qs_env ...
1102 : !> \param fm_W_MIC_freq_j ...
1103 : !> \param j_w ...
1104 : !> \param ikp ...
1105 : !> \param mat_chi_Gamma_tau ...
1106 : !> \param cfm_M_inv_V_sqrt_ikp ...
1107 : !> \param cfm_V_sqrt_ikp ...
1108 : ! **************************************************************************************************
1109 1500 : SUBROUTINE compute_fm_W_MIC_freq_j(bs_env, qs_env, fm_W_MIC_freq_j, j_w, ikp, mat_chi_Gamma_tau, &
1110 : cfm_M_inv_V_sqrt_ikp, cfm_V_sqrt_ikp)
1111 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1112 : TYPE(qs_environment_type), POINTER :: qs_env
1113 : TYPE(cp_fm_type) :: fm_W_MIC_freq_j
1114 : INTEGER :: j_w, ikp
1115 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_chi_Gamma_tau
1116 : TYPE(cp_cfm_type) :: cfm_M_inv_V_sqrt_ikp, cfm_V_sqrt_ikp
1117 :
1118 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_fm_W_MIC_freq_j'
1119 :
1120 : INTEGER :: handle
1121 : TYPE(cp_cfm_type) :: cfm_chi_ikp_freq_j, cfm_W_ikp_freq_j
1122 :
1123 1500 : CALL timeset(routineN, handle)
1124 :
1125 : ! 1. Fourier transformation of χ_PQ(iτ,k=0) to χ_PQ(iω_j,k=0)
1126 1500 : CALL compute_fm_chi_Gamma_freq(bs_env, bs_env%fm_chi_Gamma_freq, j_w, mat_chi_Gamma_tau)
1127 :
1128 1500 : CALL cp_fm_set_all(fm_W_MIC_freq_j, 0.0_dp)
1129 :
1130 : ! 2. Get χ_PQ(iω_j,k_i) from χ_PQ(iω_j,k=0) using the minimum image convention
1131 : CALL cfm_ikp_from_fm_Gamma(cfm_chi_ikp_freq_j, bs_env%fm_chi_Gamma_freq, &
1132 1500 : ikp, qs_env, bs_env%kpoints_chi_eps_W, "RI_AUX")
1133 :
1134 : ! 3. Remove all negative eigenvalues from χ_PQ(iω_j,k_i)
1135 1500 : CALL cp_cfm_power(cfm_chi_ikp_freq_j, threshold=0.0_dp, exponent=1.0_dp)
1136 :
1137 : ! 4. ε(iω_j,k_i) = Id - V^0.5(k_i)*M^-1(k_i)*χ(iω_j,k_i)*M^-1(k_i)*V^0.5(k_i)
1138 : ! W(iω_j,k_i) = V^0.5(k_i)*(ε^-1(iω_j,k_i)-Id)*V^0.5(k_i)
1139 : CALL compute_cfm_W_ikp_freq_j(bs_env, cfm_chi_ikp_freq_j, cfm_V_sqrt_ikp, &
1140 1500 : cfm_M_inv_V_sqrt_ikp, cfm_W_ikp_freq_j)
1141 :
1142 : ! 5. k-point integration W_PQ(iω_j, k_i) to W_PQ^MIC(iω_j)
1143 1500 : SELECT CASE (bs_env%approx_kp_extrapol)
1144 : CASE (.FALSE.)
1145 : ! default: standard k-point extrapolation
1146 : CALL MIC_contribution_from_ikp(bs_env, qs_env, fm_W_MIC_freq_j, cfm_W_ikp_freq_j, ikp, &
1147 1500 : bs_env%kpoints_chi_eps_W, "RI_AUX")
1148 : CASE (.TRUE.)
1149 : ! for approximate kpoint extrapolation: get W_PQ^MIC(iω_1) with and without k-point
1150 : ! extrapolation to compute the extrapolation factor f_PQ for every PQ-matrix element,
1151 : ! f_PQ = (W_PQ^MIC(iω_1) with extrapolation) / (W_PQ^MIC(iω_1) without extrapolation)
1152 :
1153 : ! for ω_1, we compute the k-point extrapolated result using all k-points
1154 196 : IF (j_w == 1) THEN
1155 :
1156 : ! k-point extrapolated
1157 : CALL MIC_contribution_from_ikp(bs_env, qs_env, bs_env%fm_W_MIC_freq_1_extra, &
1158 : cfm_W_ikp_freq_j, ikp, bs_env%kpoints_chi_eps_W, &
1159 52 : "RI_AUX")
1160 : ! non-kpoint extrapolated
1161 52 : IF (ikp <= bs_env%nkp_chi_eps_W_orig) THEN
1162 : CALL MIC_contribution_from_ikp(bs_env, qs_env, bs_env%fm_W_MIC_freq_1_no_extra, &
1163 : cfm_W_ikp_freq_j, ikp, bs_env%kpoints_chi_eps_W, &
1164 16 : "RI_AUX", wkp_ext=bs_env%wkp_orig)
1165 : END IF
1166 :
1167 : END IF
1168 :
1169 : ! for all ω_j, we need to compute W^MIC without k-point extrpolation
1170 196 : IF (ikp <= bs_env%nkp_chi_eps_W_orig) THEN
1171 : CALL MIC_contribution_from_ikp(bs_env, qs_env, fm_W_MIC_freq_j, cfm_W_ikp_freq_j, &
1172 : ikp, bs_env%kpoints_chi_eps_W, "RI_AUX", &
1173 160 : wkp_ext=bs_env%wkp_orig)
1174 : END IF
1175 : END SELECT
1176 :
1177 1500 : CALL cp_cfm_release(cfm_W_ikp_freq_j)
1178 :
1179 1500 : CALL timestop(handle)
1180 :
1181 1500 : END SUBROUTINE compute_fm_W_MIC_freq_j
1182 :
1183 : ! **************************************************************************************************
1184 : !> \brief ...
1185 : !> \param cfm_mat ...
1186 : ! **************************************************************************************************
1187 432 : SUBROUTINE clean_lower_part(cfm_mat)
1188 : TYPE(cp_cfm_type) :: cfm_mat
1189 :
1190 : CHARACTER(LEN=*), PARAMETER :: routineN = 'clean_lower_part'
1191 :
1192 : INTEGER :: handle, i_row, j_col, j_global, &
1193 : ncol_local, nrow_local
1194 216 : INTEGER, DIMENSION(:), POINTER :: col_indices, row_indices
1195 :
1196 216 : CALL timeset(routineN, handle)
1197 :
1198 : CALL cp_cfm_get_info(matrix=cfm_mat, &
1199 : nrow_local=nrow_local, ncol_local=ncol_local, &
1200 216 : row_indices=row_indices, col_indices=col_indices)
1201 :
1202 1744 : DO j_col = 1, ncol_local
1203 1528 : j_global = col_indices(j_col)
1204 8308 : DO i_row = 1, nrow_local
1205 8092 : IF (j_global < row_indices(i_row)) cfm_mat%local_data(i_row, j_col) = z_zero
1206 : END DO
1207 : END DO
1208 :
1209 216 : CALL timestop(handle)
1210 :
1211 216 : END SUBROUTINE clean_lower_part
1212 :
1213 : ! **************************************************************************************************
1214 : !> \brief ...
1215 : !> \param bs_env ...
1216 : !> \param fm_W_MIC_time ...
1217 : ! **************************************************************************************************
1218 4 : SUBROUTINE apply_extrapol_factor(bs_env, fm_W_MIC_time)
1219 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1220 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_W_MIC_time
1221 :
1222 : CHARACTER(LEN=*), PARAMETER :: routineN = 'apply_extrapol_factor'
1223 :
1224 : INTEGER :: handle, i, i_t, j, ncol_local, nrow_local
1225 : REAL(KIND=dp) :: extrapol_factor, W_extra_1, W_no_extra_1
1226 :
1227 2 : CALL timeset(routineN, handle)
1228 :
1229 2 : CALL cp_fm_get_info(matrix=fm_W_MIC_time(1), nrow_local=nrow_local, ncol_local=ncol_local)
1230 :
1231 22 : DO i_t = 1, bs_env%num_time_freq_points
1232 122 : DO j = 1, ncol_local
1233 370 : DO i = 1, nrow_local
1234 :
1235 250 : W_extra_1 = bs_env%fm_W_MIC_freq_1_extra%local_data(i, j)
1236 250 : W_no_extra_1 = bs_env%fm_W_MIC_freq_1_no_extra%local_data(i, j)
1237 :
1238 250 : IF (ABS(W_no_extra_1) > 1.0E-13) THEN
1239 190 : extrapol_factor = ABS(W_extra_1/W_no_extra_1)
1240 : ELSE
1241 : extrapol_factor = 1.0_dp
1242 : END IF
1243 :
1244 : ! reset extrapolation factor if it is very large
1245 190 : IF (extrapol_factor > 10.0_dp) extrapol_factor = 1.0_dp
1246 :
1247 : fm_W_MIC_time(i_t)%local_data(i, j) = fm_W_MIC_time(i_t)%local_data(i, j) &
1248 350 : *extrapol_factor
1249 : END DO
1250 : END DO
1251 : END DO
1252 :
1253 2 : CALL timestop(handle)
1254 :
1255 2 : END SUBROUTINE apply_extrapol_factor
1256 :
1257 : ! **************************************************************************************************
1258 : !> \brief ...
1259 : !> \param bs_env ...
1260 : !> \param fm_chi_Gamma_freq ...
1261 : !> \param j_w ...
1262 : !> \param mat_chi_Gamma_tau ...
1263 : ! **************************************************************************************************
1264 1500 : SUBROUTINE compute_fm_chi_Gamma_freq(bs_env, fm_chi_Gamma_freq, j_w, mat_chi_Gamma_tau)
1265 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1266 : TYPE(cp_fm_type) :: fm_chi_Gamma_freq
1267 : INTEGER :: j_w
1268 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_chi_Gamma_tau
1269 :
1270 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_fm_chi_Gamma_freq'
1271 :
1272 : INTEGER :: handle, i_t
1273 : REAL(KIND=dp) :: freq_j, time_i, weight_ij
1274 :
1275 1500 : CALL timeset(routineN, handle)
1276 :
1277 1500 : CALL dbcsr_set(bs_env%mat_RI_RI%matrix, 0.0_dp)
1278 :
1279 1500 : freq_j = bs_env%imag_freq_points(j_w)
1280 :
1281 15604 : DO i_t = 1, bs_env%num_time_freq_points
1282 :
1283 14104 : time_i = bs_env%imag_time_points(i_t)
1284 14104 : weight_ij = bs_env%weights_cos_t_to_w(j_w, i_t)
1285 :
1286 : ! actual Fourier transform
1287 : CALL dbcsr_add(bs_env%mat_RI_RI%matrix, mat_chi_Gamma_tau(i_t)%matrix, &
1288 15604 : 1.0_dp, COS(time_i*freq_j)*weight_ij)
1289 :
1290 : END DO
1291 :
1292 1500 : CALL copy_dbcsr_to_fm(bs_env%mat_RI_RI%matrix, fm_chi_Gamma_freq)
1293 :
1294 1500 : CALL timestop(handle)
1295 :
1296 1500 : END SUBROUTINE compute_fm_chi_Gamma_freq
1297 :
1298 : ! **************************************************************************************************
1299 : !> \brief ...
1300 : !> \param mat_ikp_re ...
1301 : !> \param mat_ikp_im ...
1302 : !> \param mat_Gamma ...
1303 : !> \param kpoints ...
1304 : !> \param ikp ...
1305 : !> \param qs_env ...
1306 : ! **************************************************************************************************
1307 0 : SUBROUTINE mat_ikp_from_mat_Gamma(mat_ikp_re, mat_ikp_im, mat_Gamma, kpoints, ikp, qs_env)
1308 : TYPE(dbcsr_type) :: mat_ikp_re, mat_ikp_im, mat_Gamma
1309 : TYPE(kpoint_type), POINTER :: kpoints
1310 : INTEGER :: ikp
1311 : TYPE(qs_environment_type), POINTER :: qs_env
1312 :
1313 : CHARACTER(LEN=*), PARAMETER :: routineN = 'mat_ikp_from_mat_Gamma'
1314 :
1315 : INTEGER :: col, handle, i_cell, j_cell, num_cells, &
1316 : row
1317 0 : INTEGER, DIMENSION(:, :), POINTER :: index_to_cell
1318 : LOGICAL :: f, i_cell_is_the_minimum_image_cell
1319 : REAL(KIND=dp) :: abs_rab_cell_i, abs_rab_cell_j, arg
1320 : REAL(KIND=dp), DIMENSION(3) :: cell_vector, cell_vector_j, rab_cell_i, &
1321 : rab_cell_j
1322 : REAL(KIND=dp), DIMENSION(3, 3) :: hmat
1323 0 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: block_im, block_re, data_block
1324 : TYPE(cell_type), POINTER :: cell
1325 : TYPE(dbcsr_iterator_type) :: iter
1326 0 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1327 :
1328 0 : CALL timeset(routineN, handle)
1329 :
1330 : ! get the same blocks in mat_ikp_re and mat_ikp_im as in mat_Gamma
1331 0 : CALL dbcsr_copy(mat_ikp_re, mat_Gamma)
1332 0 : CALL dbcsr_copy(mat_ikp_im, mat_Gamma)
1333 0 : CALL dbcsr_set(mat_ikp_re, 0.0_dp)
1334 0 : CALL dbcsr_set(mat_ikp_im, 0.0_dp)
1335 :
1336 0 : NULLIFY (cell, particle_set)
1337 0 : CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set)
1338 0 : CALL get_cell(cell=cell, h=hmat)
1339 :
1340 0 : index_to_cell => kpoints%index_to_cell
1341 :
1342 0 : num_cells = SIZE(index_to_cell, 2)
1343 :
1344 0 : DO i_cell = 1, num_cells
1345 :
1346 0 : CALL dbcsr_iterator_start(iter, mat_Gamma)
1347 0 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1348 0 : CALL dbcsr_iterator_next_block(iter, row, col, data_block)
1349 :
1350 0 : cell_vector(1:3) = MATMUL(hmat, REAL(index_to_cell(1:3, i_cell), dp))
1351 :
1352 : rab_cell_i(1:3) = pbc(particle_set(row)%r(1:3), cell) - &
1353 0 : (pbc(particle_set(col)%r(1:3), cell) + cell_vector(1:3))
1354 0 : abs_rab_cell_i = SQRT(rab_cell_i(1)**2 + rab_cell_i(2)**2 + rab_cell_i(3)**2)
1355 :
1356 : ! minimum image convention
1357 0 : i_cell_is_the_minimum_image_cell = .TRUE.
1358 0 : DO j_cell = 1, num_cells
1359 0 : cell_vector_j(1:3) = MATMUL(hmat, REAL(index_to_cell(1:3, j_cell), dp))
1360 : rab_cell_j(1:3) = pbc(particle_set(row)%r(1:3), cell) - &
1361 0 : (pbc(particle_set(col)%r(1:3), cell) + cell_vector_j(1:3))
1362 0 : abs_rab_cell_j = SQRT(rab_cell_j(1)**2 + rab_cell_j(2)**2 + rab_cell_j(3)**2)
1363 :
1364 0 : IF (abs_rab_cell_i > abs_rab_cell_j + 1.0E-6_dp) THEN
1365 0 : i_cell_is_the_minimum_image_cell = .FALSE.
1366 : END IF
1367 : END DO
1368 :
1369 0 : IF (i_cell_is_the_minimum_image_cell) THEN
1370 0 : NULLIFY (block_re, block_im)
1371 0 : CALL dbcsr_get_block_p(matrix=mat_ikp_re, row=row, col=col, block=block_re, found=f)
1372 0 : CALL dbcsr_get_block_p(matrix=mat_ikp_im, row=row, col=col, block=block_im, found=f)
1373 0 : CPASSERT(ALL(ABS(block_re) < 1.0E-10_dp))
1374 0 : CPASSERT(ALL(ABS(block_im) < 1.0E-10_dp))
1375 :
1376 : arg = REAL(index_to_cell(1, i_cell), dp)*kpoints%xkp(1, ikp) + &
1377 : REAL(index_to_cell(2, i_cell), dp)*kpoints%xkp(2, ikp) + &
1378 0 : REAL(index_to_cell(3, i_cell), dp)*kpoints%xkp(3, ikp)
1379 :
1380 0 : block_re(:, :) = COS(twopi*arg)*data_block(:, :)
1381 0 : block_im(:, :) = SIN(twopi*arg)*data_block(:, :)
1382 : END IF
1383 :
1384 : END DO
1385 0 : CALL dbcsr_iterator_stop(iter)
1386 :
1387 : END DO
1388 :
1389 0 : CALL timestop(handle)
1390 :
1391 0 : END SUBROUTINE mat_ikp_from_mat_Gamma
1392 :
1393 : ! **************************************************************************************************
1394 : !> \brief ...
1395 : !> \param bs_env ...
1396 : !> \param cfm_chi_ikp_freq_j ...
1397 : !> \param cfm_V_sqrt_ikp ...
1398 : !> \param cfm_M_inv_V_sqrt_ikp ...
1399 : !> \param cfm_W_ikp_freq_j ...
1400 : ! **************************************************************************************************
1401 7500 : SUBROUTINE compute_cfm_W_ikp_freq_j(bs_env, cfm_chi_ikp_freq_j, cfm_V_sqrt_ikp, &
1402 : cfm_M_inv_V_sqrt_ikp, cfm_W_ikp_freq_j)
1403 :
1404 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1405 : TYPE(cp_cfm_type) :: cfm_chi_ikp_freq_j, cfm_V_sqrt_ikp, &
1406 : cfm_M_inv_V_sqrt_ikp, cfm_W_ikp_freq_j
1407 :
1408 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_cfm_W_ikp_freq_j'
1409 :
1410 : INTEGER :: handle, info, n_RI
1411 : TYPE(cp_cfm_type) :: cfm_eps_ikp_freq_j, cfm_work
1412 :
1413 1500 : CALL timeset(routineN, handle)
1414 :
1415 1500 : CALL cp_cfm_create(cfm_work, cfm_chi_ikp_freq_j%matrix_struct)
1416 1500 : n_RI = bs_env%n_RI
1417 :
1418 : ! 1. ε(iω_j,k) = Id - V^0.5(k)*M^-1(k)*χ(iω_j,k)*M^-1(k)*V^0.5(k)
1419 :
1420 : ! 1. a) work = χ(iω_j,k)*M^-1(k)*V^0.5(k)
1421 : CALL parallel_gemm('N', 'N', n_RI, n_RI, n_RI, z_one, &
1422 1500 : cfm_chi_ikp_freq_j, cfm_M_inv_V_sqrt_ikp, z_zero, cfm_work)
1423 1500 : CALL cp_cfm_release(cfm_chi_ikp_freq_j)
1424 :
1425 : ! 1. b) eps_work = V^0.5(k)*M^-1(k)*work
1426 1500 : CALL cp_cfm_create(cfm_eps_ikp_freq_j, cfm_work%matrix_struct)
1427 : CALL parallel_gemm('C', 'N', n_RI, n_RI, n_RI, z_one, &
1428 1500 : cfm_M_inv_V_sqrt_ikp, cfm_work, z_zero, cfm_eps_ikp_freq_j)
1429 :
1430 : ! 1. c) ε(iω_j,k) = eps_work - Id
1431 1500 : CALL cfm_add_on_diag(cfm_eps_ikp_freq_j, z_one)
1432 :
1433 : ! 2. W(iω_j,k) = V^0.5(k)*(ε^-1(iω_j,k)-Id)*V^0.5(k)
1434 :
1435 : ! 2. a) Cholesky decomposition of ε(iω_j,k) as preparation for inversion
1436 1500 : CALL cp_cfm_cholesky_decompose(matrix=cfm_eps_ikp_freq_j, n=n_RI, info_out=info)
1437 1500 : CPASSERT(info == 0)
1438 :
1439 : ! 2. b) Inversion of ε(iω_j,k) using its Cholesky decomposition
1440 1500 : CALL cp_cfm_cholesky_invert(cfm_eps_ikp_freq_j)
1441 1500 : CALL cp_cfm_uplo_to_full(cfm_eps_ikp_freq_j)
1442 :
1443 : ! 2. c) ε^-1(iω_j,k)-Id
1444 1500 : CALL cfm_add_on_diag(cfm_eps_ikp_freq_j, -z_one)
1445 :
1446 : ! 2. d) work = (ε^-1(iω_j,k)-Id)*V^0.5(k)
1447 : CALL parallel_gemm('N', 'N', n_RI, n_RI, n_RI, z_one, cfm_eps_ikp_freq_j, cfm_V_sqrt_ikp, &
1448 1500 : z_zero, cfm_work)
1449 :
1450 : ! 2. e) W(iw,k) = V^0.5(k)*work
1451 1500 : CALL cp_cfm_create(cfm_W_ikp_freq_j, cfm_work%matrix_struct)
1452 : CALL parallel_gemm('C', 'N', n_RI, n_RI, n_RI, z_one, cfm_V_sqrt_ikp, cfm_work, &
1453 1500 : z_zero, cfm_W_ikp_freq_j)
1454 :
1455 1500 : CALL cp_cfm_release(cfm_work)
1456 1500 : CALL cp_cfm_release(cfm_eps_ikp_freq_j)
1457 :
1458 1500 : CALL timestop(handle)
1459 :
1460 1500 : END SUBROUTINE compute_cfm_W_ikp_freq_j
1461 :
1462 : ! **************************************************************************************************
1463 : !> \brief ...
1464 : !> \param cfm ...
1465 : !> \param alpha ...
1466 : ! **************************************************************************************************
1467 6000 : SUBROUTINE cfm_add_on_diag(cfm, alpha)
1468 :
1469 : TYPE(cp_cfm_type) :: cfm
1470 : COMPLEX(KIND=dp) :: alpha
1471 :
1472 : CHARACTER(LEN=*), PARAMETER :: routineN = 'cfm_add_on_diag'
1473 :
1474 : INTEGER :: handle, i_row, j_col, j_global, &
1475 : ncol_local, nrow_local
1476 3000 : INTEGER, DIMENSION(:), POINTER :: col_indices, row_indices
1477 :
1478 3000 : CALL timeset(routineN, handle)
1479 :
1480 : CALL cp_cfm_get_info(matrix=cfm, &
1481 : nrow_local=nrow_local, &
1482 : ncol_local=ncol_local, &
1483 : row_indices=row_indices, &
1484 3000 : col_indices=col_indices)
1485 :
1486 : ! add 1 on the diagonal
1487 27184 : DO j_col = 1, ncol_local
1488 24184 : j_global = col_indices(j_col)
1489 162460 : DO i_row = 1, nrow_local
1490 159460 : IF (j_global == row_indices(i_row)) THEN
1491 12092 : cfm%local_data(i_row, j_col) = cfm%local_data(i_row, j_col) + alpha
1492 : END IF
1493 : END DO
1494 : END DO
1495 :
1496 3000 : CALL timestop(handle)
1497 :
1498 3000 : END SUBROUTINE cfm_add_on_diag
1499 :
1500 : ! **************************************************************************************************
1501 : !> \brief ...
1502 : !> \param bs_env ...
1503 : !> \param fm_W_MIC_time ...
1504 : ! **************************************************************************************************
1505 22 : SUBROUTINE create_fm_W_MIC_time(bs_env, fm_W_MIC_time)
1506 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1507 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_W_MIC_time
1508 :
1509 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_fm_W_MIC_time'
1510 :
1511 : INTEGER :: handle, i_t
1512 :
1513 22 : CALL timeset(routineN, handle)
1514 :
1515 390 : ALLOCATE (fm_W_MIC_time(bs_env%num_time_freq_points))
1516 346 : DO i_t = 1, bs_env%num_time_freq_points
1517 346 : CALL cp_fm_create(fm_W_MIC_time(i_t), bs_env%fm_RI_RI%matrix_struct, set_zero=.TRUE.)
1518 : END DO
1519 :
1520 22 : CALL timestop(handle)
1521 :
1522 22 : END SUBROUTINE create_fm_W_MIC_time
1523 :
1524 : ! **************************************************************************************************
1525 : !> \brief ...
1526 : !> \param bs_env ...
1527 : !> \param fm_W_MIC_time ...
1528 : !> \param fm_W_MIC_freq_j ...
1529 : !> \param j_w ...
1530 : ! **************************************************************************************************
1531 1500 : SUBROUTINE Fourier_transform_w_to_t(bs_env, fm_W_MIC_time, fm_W_MIC_freq_j, j_w)
1532 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1533 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_W_MIC_time
1534 : TYPE(cp_fm_type) :: fm_W_MIC_freq_j
1535 : INTEGER :: j_w
1536 :
1537 : CHARACTER(LEN=*), PARAMETER :: routineN = 'Fourier_transform_w_to_t'
1538 :
1539 : INTEGER :: handle, i_t
1540 : REAL(KIND=dp) :: freq_j, time_i, weight_ij
1541 :
1542 1500 : CALL timeset(routineN, handle)
1543 :
1544 1500 : freq_j = bs_env%imag_freq_points(j_w)
1545 :
1546 15604 : DO i_t = 1, bs_env%num_time_freq_points
1547 :
1548 14104 : time_i = bs_env%imag_time_points(i_t)
1549 14104 : weight_ij = bs_env%weights_cos_w_to_t(i_t, j_w)
1550 :
1551 : ! actual Fourier transform
1552 : CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=fm_W_MIC_time(i_t), &
1553 15604 : beta=weight_ij*COS(time_i*freq_j), matrix_b=fm_W_MIC_freq_j)
1554 :
1555 : END DO
1556 :
1557 1500 : CALL timestop(handle)
1558 :
1559 1500 : END SUBROUTINE Fourier_transform_w_to_t
1560 :
1561 : ! **************************************************************************************************
1562 : !> \brief ...
1563 : !> \param bs_env ...
1564 : !> \param qs_env ...
1565 : !> \param fm_W_MIC_time ...
1566 : ! **************************************************************************************************
1567 32 : SUBROUTINE multiply_fm_W_MIC_time_with_Minv_Gamma(bs_env, qs_env, fm_W_MIC_time)
1568 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1569 : TYPE(qs_environment_type), POINTER :: qs_env
1570 : TYPE(cp_fm_type), DIMENSION(:) :: fm_W_MIC_time
1571 :
1572 : CHARACTER(LEN=*), PARAMETER :: routineN = 'multiply_fm_W_MIC_time_with_Minv_Gamma'
1573 :
1574 : INTEGER :: handle, i_t, n_RI, ndep
1575 : TYPE(cp_fm_type) :: fm_work
1576 32 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_Minv_Gamma
1577 :
1578 32 : CALL timeset(routineN, handle)
1579 :
1580 32 : n_RI = bs_env%n_RI
1581 :
1582 32 : CALL cp_fm_create(fm_work, fm_W_MIC_time(1)%matrix_struct)
1583 :
1584 : ! compute Gamma-only RI-metric matrix M(k=0); no regularization
1585 : CALL RI_2c_integral_mat(qs_env, fm_Minv_Gamma, fm_W_MIC_time(1), n_RI, &
1586 32 : bs_env%ri_metric, do_kpoints=.FALSE.)
1587 :
1588 32 : CALL cp_fm_power(fm_Minv_Gamma(1, 1), fm_work, -1.0_dp, 0.0_dp, ndep)
1589 :
1590 : ! M^-1(k=0)*W^MIC(iτ)*M^-1(k=0)
1591 272 : DO i_t = 1, SIZE(fm_W_MIC_time)
1592 :
1593 : CALL parallel_gemm('N', 'N', n_RI, n_RI, n_RI, 1.0_dp, fm_Minv_Gamma(1, 1), &
1594 240 : fm_W_MIC_time(i_t), 0.0_dp, fm_work)
1595 :
1596 : CALL parallel_gemm('N', 'N', n_RI, n_RI, n_RI, 1.0_dp, fm_work, &
1597 272 : fm_Minv_Gamma(1, 1), 0.0_dp, fm_W_MIC_time(i_t))
1598 :
1599 : END DO
1600 :
1601 32 : CALL cp_fm_release(fm_work)
1602 32 : CALL cp_fm_release(fm_Minv_Gamma)
1603 :
1604 32 : CALL timestop(handle)
1605 :
1606 64 : END SUBROUTINE multiply_fm_W_MIC_time_with_Minv_Gamma
1607 :
1608 : ! **************************************************************************************************
1609 : !> \brief ...
1610 : !> \param bs_env ...
1611 : !> \param qs_env ...
1612 : !> \param fm_Sigma_x_Gamma ...
1613 : ! **************************************************************************************************
1614 22 : SUBROUTINE get_Sigma_x(bs_env, qs_env, fm_Sigma_x_Gamma)
1615 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1616 : TYPE(qs_environment_type), POINTER :: qs_env
1617 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_Sigma_x_Gamma
1618 :
1619 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_Sigma_x'
1620 :
1621 : INTEGER :: handle, ispin
1622 :
1623 22 : CALL timeset(routineN, handle)
1624 :
1625 92 : ALLOCATE (fm_Sigma_x_Gamma(bs_env%n_spin))
1626 48 : DO ispin = 1, bs_env%n_spin
1627 48 : CALL cp_fm_create(fm_Sigma_x_Gamma(ispin), bs_env%fm_s_Gamma%matrix_struct)
1628 : END DO
1629 :
1630 22 : IF (bs_env%Sigma_x_exists) THEN
1631 14 : DO ispin = 1, bs_env%n_spin
1632 14 : CALL fm_read(fm_Sigma_x_Gamma(ispin), bs_env, bs_env%Sigma_x_name, ispin)
1633 : END DO
1634 : ELSE
1635 16 : CALL compute_Sigma_x(bs_env, qs_env, fm_Sigma_x_Gamma)
1636 : END IF
1637 :
1638 22 : CALL timestop(handle)
1639 :
1640 22 : END SUBROUTINE get_Sigma_x
1641 :
1642 : ! **************************************************************************************************
1643 : !> \brief ...
1644 : !> \param bs_env ...
1645 : !> \param qs_env ...
1646 : !> \param fm_Sigma_x_Gamma ...
1647 : ! **************************************************************************************************
1648 16 : SUBROUTINE compute_Sigma_x(bs_env, qs_env, fm_Sigma_x_Gamma)
1649 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1650 : TYPE(qs_environment_type), POINTER :: qs_env
1651 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_Sigma_x_Gamma
1652 :
1653 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Sigma_x'
1654 :
1655 : INTEGER :: handle, i_intval_idx, ispin, j_intval_idx
1656 : INTEGER, DIMENSION(2) :: i_atoms, j_atoms
1657 : REAL(KIND=dp) :: t1
1658 16 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_Vtr_Gamma
1659 : TYPE(dbcsr_type) :: mat_Sigma_x_Gamma
1660 528 : TYPE(dbt_type) :: t_2c_D, t_2c_Sigma_x, t_2c_V, t_3c_x_V
1661 :
1662 16 : CALL timeset(routineN, handle)
1663 :
1664 16 : t1 = m_walltime()
1665 :
1666 16 : CALL dbt_create(bs_env%t_G, t_2c_D)
1667 16 : CALL dbt_create(bs_env%t_W, t_2c_V)
1668 16 : CALL dbt_create(bs_env%t_G, t_2c_Sigma_x)
1669 16 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_V)
1670 16 : CALL dbcsr_create(mat_Sigma_x_Gamma, template=bs_env%mat_ao_ao%matrix)
1671 :
1672 : ! 1. Compute truncated Coulomb operator matrix V^tr(k=0) (cutoff rad: cellsize/2)
1673 : CALL RI_2c_integral_mat(qs_env, fm_Vtr_Gamma, bs_env%fm_RI_RI, bs_env%n_RI, &
1674 16 : bs_env%trunc_coulomb, do_kpoints=.FALSE.)
1675 :
1676 : ! 2. Compute M^-1(k=0) and get M^-1(k=0)*V^tr(k=0)*M^-1(k=0)
1677 16 : CALL multiply_fm_W_MIC_time_with_Minv_Gamma(bs_env, qs_env, fm_Vtr_Gamma(:, 1))
1678 :
1679 34 : DO ispin = 1, bs_env%n_spin
1680 :
1681 : ! 3. Compute density matrix D_µν
1682 18 : CALL G_occ_vir(bs_env, 0.0_dp, bs_env%fm_work_mo(2), ispin, occ=.TRUE., vir=.FALSE.)
1683 :
1684 : CALL fm_to_local_tensor(bs_env%fm_work_mo(2), bs_env%mat_ao_ao%matrix, &
1685 : bs_env%mat_ao_ao_tensor%matrix, t_2c_D, bs_env, &
1686 18 : bs_env%atoms_i_t_group)
1687 :
1688 : CALL fm_to_local_tensor(fm_Vtr_Gamma(1, 1), bs_env%mat_RI_RI%matrix, &
1689 : bs_env%mat_RI_RI_tensor%matrix, t_2c_V, bs_env, &
1690 18 : bs_env%atoms_j_t_group)
1691 :
1692 : ! every group has its own range of i_atoms and j_atoms; only deal with a
1693 : ! limited number of i_atom-j_atom pairs simultaneously in a group to save memory
1694 36 : DO i_intval_idx = 1, bs_env%n_intervals_i
1695 54 : DO j_intval_idx = 1, bs_env%n_intervals_j
1696 54 : i_atoms = bs_env%i_atom_intervals(1:2, i_intval_idx)
1697 54 : j_atoms = bs_env%j_atom_intervals(1:2, j_intval_idx)
1698 :
1699 : ! 4. compute 3-center integrals (µν|P) ("|": truncated Coulomb operator)
1700 : ! 5. M_νσQ(iτ) = sum_P (νσ|P) (M^-1(k=0)*V^tr(k=0)*M^-1(k=0))_PQ(iτ)
1701 18 : CALL compute_3c_and_contract_W(qs_env, bs_env, i_atoms, j_atoms, t_3c_x_V, t_2c_V)
1702 :
1703 : ! 6. tensor operations with D and computation of Σ^x
1704 : ! Σ^x_λσ(k=0) = sum_νQ M_νσQ(iτ) sum_µ (λµ|Q) D_µν
1705 : CALL contract_to_Sigma(t_2c_D, t_3c_x_V, t_2c_Sigma_x, i_atoms, j_atoms, &
1706 36 : qs_env, bs_env, occ=.TRUE., vir=.FALSE., clear_W=.TRUE.)
1707 :
1708 : END DO ! j_atoms
1709 : END DO ! i_atoms
1710 :
1711 : CALL local_dbt_to_global_mat(t_2c_Sigma_x, bs_env%mat_ao_ao_tensor%matrix, &
1712 18 : mat_Sigma_x_Gamma, bs_env%para_env)
1713 :
1714 : CALL write_matrix(mat_Sigma_x_Gamma, ispin, bs_env%Sigma_x_name, &
1715 18 : bs_env%fm_work_mo(1), qs_env)
1716 :
1717 34 : CALL copy_dbcsr_to_fm(mat_Sigma_x_Gamma, fm_Sigma_x_Gamma(ispin))
1718 :
1719 : END DO ! ispin
1720 :
1721 16 : IF (bs_env%unit_nr > 0) THEN
1722 : WRITE (bs_env%unit_nr, '(T2,A,T58,A,F7.1,A)') &
1723 8 : 'Computed Σ^x(k=0),', ' Execution time', m_walltime() - t1, ' s'
1724 8 : WRITE (bs_env%unit_nr, '(A)') ' '
1725 : END IF
1726 :
1727 16 : CALL dbcsr_release(mat_Sigma_x_Gamma)
1728 16 : CALL dbt_destroy(t_2c_D)
1729 16 : CALL dbt_destroy(t_2c_V)
1730 16 : CALL dbt_destroy(t_2c_Sigma_x)
1731 16 : CALL dbt_destroy(t_3c_x_V)
1732 16 : CALL cp_fm_release(fm_Vtr_Gamma)
1733 :
1734 16 : CALL timestop(handle)
1735 :
1736 32 : END SUBROUTINE compute_Sigma_x
1737 :
1738 : ! **************************************************************************************************
1739 : !> \brief ...
1740 : !> \param bs_env ...
1741 : !> \param qs_env ...
1742 : !> \param fm_W_MIC_time ...
1743 : !> \param fm_Sigma_c_Gamma_time ...
1744 : ! **************************************************************************************************
1745 22 : SUBROUTINE get_Sigma_c(bs_env, qs_env, fm_W_MIC_time, fm_Sigma_c_Gamma_time)
1746 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1747 : TYPE(qs_environment_type), POINTER :: qs_env
1748 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_W_MIC_time
1749 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :, :) :: fm_Sigma_c_Gamma_time
1750 :
1751 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_Sigma_c'
1752 :
1753 : INTEGER :: handle, i_intval_idx, i_t, ispin, &
1754 : j_intval_idx, read_write_index
1755 : INTEGER, DIMENSION(2) :: i_atoms, j_atoms
1756 : REAL(KIND=dp) :: t1, tau
1757 22 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: mat_Sigma_neg_tau, mat_Sigma_pos_tau
1758 374 : TYPE(dbt_type) :: t_2c_Gocc, t_2c_Gvir, &
1759 198 : t_2c_Sigma_neg_tau, &
1760 550 : t_2c_Sigma_pos_tau, t_2c_W, t_3c_x_W
1761 :
1762 22 : CALL timeset(routineN, handle)
1763 :
1764 : CALL create_mat_for_Sigma_c(bs_env, t_2c_Gocc, t_2c_Gvir, t_2c_W, t_2c_Sigma_neg_tau, &
1765 : t_2c_Sigma_pos_tau, t_3c_x_W, &
1766 22 : mat_Sigma_neg_tau, mat_Sigma_pos_tau)
1767 :
1768 346 : DO i_t = 1, bs_env%num_time_freq_points
1769 :
1770 710 : DO ispin = 1, bs_env%n_spin
1771 :
1772 364 : t1 = m_walltime()
1773 :
1774 364 : read_write_index = i_t + (ispin - 1)*bs_env%num_time_freq_points
1775 :
1776 : ! read self-energy from restart
1777 364 : IF (bs_env%Sigma_c_exists(i_t, ispin)) THEN
1778 120 : CALL fm_read(bs_env%fm_work_mo(1), bs_env, bs_env%Sigma_p_name, read_write_index)
1779 : CALL copy_fm_to_dbcsr(bs_env%fm_work_mo(1), mat_Sigma_pos_tau(i_t, ispin)%matrix, &
1780 120 : keep_sparsity=.FALSE.)
1781 120 : CALL fm_read(bs_env%fm_work_mo(1), bs_env, bs_env%Sigma_n_name, read_write_index)
1782 : CALL copy_fm_to_dbcsr(bs_env%fm_work_mo(1), mat_Sigma_neg_tau(i_t, ispin)%matrix, &
1783 120 : keep_sparsity=.FALSE.)
1784 120 : IF (bs_env%unit_nr > 0) THEN
1785 60 : WRITE (bs_env%unit_nr, '(T2,2A,I3,A,I3,A,F7.1,A)') 'Read Σ^c(iτ,k=0) ', &
1786 60 : 'from file for time point ', i_t, ' /', bs_env%num_time_freq_points, &
1787 120 : ', Execution time', m_walltime() - t1, ' s'
1788 : END IF
1789 :
1790 : CYCLE
1791 :
1792 : END IF
1793 :
1794 244 : tau = bs_env%imag_time_points(i_t)
1795 :
1796 244 : CALL G_occ_vir(bs_env, tau, bs_env%fm_Gocc, ispin, occ=.TRUE., vir=.FALSE.)
1797 244 : CALL G_occ_vir(bs_env, tau, bs_env%fm_Gvir, ispin, occ=.FALSE., vir=.TRUE.)
1798 :
1799 : ! fm G^occ, G^vir and W to local tensor
1800 : CALL fm_to_local_tensor(bs_env%fm_Gocc, bs_env%mat_ao_ao%matrix, &
1801 : bs_env%mat_ao_ao_tensor%matrix, t_2c_Gocc, bs_env, &
1802 244 : bs_env%atoms_i_t_group)
1803 : CALL fm_to_local_tensor(bs_env%fm_Gvir, bs_env%mat_ao_ao%matrix, &
1804 : bs_env%mat_ao_ao_tensor%matrix, t_2c_Gvir, bs_env, &
1805 244 : bs_env%atoms_i_t_group)
1806 : CALL fm_to_local_tensor(fm_W_MIC_time(i_t), bs_env%mat_RI_RI%matrix, &
1807 : bs_env%mat_RI_RI_tensor%matrix, t_2c_W, bs_env, &
1808 244 : bs_env%atoms_j_t_group)
1809 :
1810 : ! every group has its own range of i_atoms and j_atoms; only deal with a
1811 : ! limited number of i_atom-j_atom pairs simultaneously in a group to save memory
1812 488 : DO i_intval_idx = 1, bs_env%n_intervals_i
1813 732 : DO j_intval_idx = 1, bs_env%n_intervals_j
1814 732 : i_atoms = bs_env%i_atom_intervals(1:2, i_intval_idx)
1815 732 : j_atoms = bs_env%j_atom_intervals(1:2, j_intval_idx)
1816 :
1817 244 : IF (bs_env%skip_Sigma_occ(i_intval_idx, j_intval_idx) .AND. &
1818 : bs_env%skip_Sigma_vir(i_intval_idx, j_intval_idx)) CYCLE
1819 :
1820 : ! 1. compute 3-center integrals (µν|P) ("|": truncated Coulomb operator)
1821 : ! 2. tensor operation M_νσQ(iτ) = sum_P (νσ|P) W^MIC_PQ(iτ)
1822 226 : CALL compute_3c_and_contract_W(qs_env, bs_env, i_atoms, j_atoms, t_3c_x_W, t_2c_W)
1823 :
1824 : ! 3. Σ_λσ(iτ,k=0) = sum_νQ M_νσQ(iτ) sum_µ (λµ|Q) G^occ_µν(i|τ|) for τ < 0
1825 : ! (recall M_νσQ(iτ) = M_νσQ(-iτ) because W^MIC_PQ(iτ) = W^MIC_PQ(-iτ) )
1826 : CALL contract_to_Sigma(t_2c_Gocc, t_3c_x_W, t_2c_Sigma_neg_tau, i_atoms, j_atoms, &
1827 : qs_env, bs_env, occ=.TRUE., vir=.FALSE., clear_W=.FALSE., &
1828 226 : can_skip=bs_env%skip_Sigma_occ(i_intval_idx, j_intval_idx))
1829 :
1830 : ! Σ_λσ(iτ,k=0) = sum_νQ M_νσQ(iτ) sum_µ (λµ|Q) G^vir_µν(i|τ|) for τ > 0
1831 : CALL contract_to_Sigma(t_2c_Gvir, t_3c_x_W, t_2c_Sigma_pos_tau, i_atoms, j_atoms, &
1832 : qs_env, bs_env, occ=.FALSE., vir=.TRUE., clear_W=.TRUE., &
1833 488 : can_skip=bs_env%skip_Sigma_vir(i_intval_idx, j_intval_idx))
1834 :
1835 : END DO ! j_atoms
1836 : END DO ! i_atoms
1837 :
1838 : ! 4. communicate data tensor t_2c_Sigma (which is local in the subgroup)
1839 : ! to the global dbcsr matrix mat_Sigma_pos/neg_tau (which stores Σ for all iτ)
1840 : CALL local_dbt_to_global_mat(t_2c_Sigma_neg_tau, bs_env%mat_ao_ao_tensor%matrix, &
1841 244 : mat_Sigma_neg_tau(i_t, ispin)%matrix, bs_env%para_env)
1842 : CALL local_dbt_to_global_mat(t_2c_Sigma_pos_tau, bs_env%mat_ao_ao_tensor%matrix, &
1843 244 : mat_Sigma_pos_tau(i_t, ispin)%matrix, bs_env%para_env)
1844 :
1845 : CALL write_matrix(mat_Sigma_pos_tau(i_t, ispin)%matrix, read_write_index, &
1846 244 : bs_env%Sigma_p_name, bs_env%fm_work_mo(1), qs_env)
1847 : CALL write_matrix(mat_Sigma_neg_tau(i_t, ispin)%matrix, read_write_index, &
1848 244 : bs_env%Sigma_n_name, bs_env%fm_work_mo(1), qs_env)
1849 :
1850 568 : IF (bs_env%unit_nr > 0) THEN
1851 : WRITE (bs_env%unit_nr, '(T2,A,I10,A,I3,A,F7.1,A)') &
1852 122 : 'Computed Σ^c(iτ,k=0) for time point ', i_t, ' /', bs_env%num_time_freq_points, &
1853 244 : ', Execution time', m_walltime() - t1, ' s'
1854 : END IF
1855 :
1856 : END DO ! ispin
1857 :
1858 : END DO ! i_t
1859 :
1860 22 : IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, '(A)') ' '
1861 :
1862 : CALL fill_fm_Sigma_c_Gamma_time(fm_Sigma_c_Gamma_time, bs_env, &
1863 22 : mat_Sigma_pos_tau, mat_Sigma_neg_tau)
1864 :
1865 22 : CALL print_skipping(bs_env)
1866 :
1867 : CALL destroy_mat_Sigma_c(t_2c_Gocc, t_2c_Gvir, t_2c_W, t_2c_Sigma_neg_tau, &
1868 : t_2c_Sigma_pos_tau, t_3c_x_W, fm_W_MIC_time, &
1869 22 : mat_Sigma_neg_tau, mat_Sigma_pos_tau)
1870 :
1871 22 : CALL delete_unnecessary_files(bs_env)
1872 :
1873 22 : CALL timestop(handle)
1874 :
1875 44 : END SUBROUTINE get_Sigma_c
1876 :
1877 : ! **************************************************************************************************
1878 : !> \brief ...
1879 : !> \param bs_env ...
1880 : !> \param t_2c_Gocc ...
1881 : !> \param t_2c_Gvir ...
1882 : !> \param t_2c_W ...
1883 : !> \param t_2c_Sigma_neg_tau ...
1884 : !> \param t_2c_Sigma_pos_tau ...
1885 : !> \param t_3c_x_W ...
1886 : !> \param mat_Sigma_neg_tau ...
1887 : !> \param mat_Sigma_pos_tau ...
1888 : ! **************************************************************************************************
1889 22 : SUBROUTINE create_mat_for_Sigma_c(bs_env, t_2c_Gocc, t_2c_Gvir, t_2c_W, t_2c_Sigma_neg_tau, &
1890 : t_2c_Sigma_pos_tau, t_3c_x_W, &
1891 : mat_Sigma_neg_tau, mat_Sigma_pos_tau)
1892 :
1893 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1894 : TYPE(dbt_type) :: t_2c_Gocc, t_2c_Gvir, t_2c_W, &
1895 : t_2c_Sigma_neg_tau, &
1896 : t_2c_Sigma_pos_tau, t_3c_x_W
1897 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: mat_Sigma_neg_tau, mat_Sigma_pos_tau
1898 :
1899 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_mat_for_Sigma_c'
1900 :
1901 : INTEGER :: handle, i_t, ispin
1902 :
1903 22 : CALL timeset(routineN, handle)
1904 :
1905 22 : CALL dbt_create(bs_env%t_G, t_2c_Gocc)
1906 22 : CALL dbt_create(bs_env%t_G, t_2c_Gvir)
1907 22 : CALL dbt_create(bs_env%t_W, t_2c_W)
1908 22 : CALL dbt_create(bs_env%t_G, t_2c_Sigma_neg_tau)
1909 22 : CALL dbt_create(bs_env%t_G, t_2c_Sigma_pos_tau)
1910 22 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_W)
1911 :
1912 22 : NULLIFY (mat_Sigma_neg_tau, mat_Sigma_pos_tau)
1913 478 : ALLOCATE (mat_Sigma_neg_tau(bs_env%num_time_freq_points, bs_env%n_spin))
1914 478 : ALLOCATE (mat_Sigma_pos_tau(bs_env%num_time_freq_points, bs_env%n_spin))
1915 :
1916 48 : DO ispin = 1, bs_env%n_spin
1917 412 : DO i_t = 1, bs_env%num_time_freq_points
1918 364 : ALLOCATE (mat_Sigma_neg_tau(i_t, ispin)%matrix)
1919 364 : ALLOCATE (mat_Sigma_pos_tau(i_t, ispin)%matrix)
1920 364 : CALL dbcsr_create(mat_Sigma_neg_tau(i_t, ispin)%matrix, template=bs_env%mat_ao_ao%matrix)
1921 390 : CALL dbcsr_create(mat_Sigma_pos_tau(i_t, ispin)%matrix, template=bs_env%mat_ao_ao%matrix)
1922 : END DO
1923 : END DO
1924 :
1925 22 : CALL timestop(handle)
1926 :
1927 22 : END SUBROUTINE create_mat_for_Sigma_c
1928 :
1929 : ! **************************************************************************************************
1930 : !> \brief ...
1931 : !> \param qs_env ...
1932 : !> \param bs_env ...
1933 : !> \param i_atoms ...
1934 : !> \param j_atoms ...
1935 : !> \param t_3c_x_W ...
1936 : !> \param t_2c_W ...
1937 : ! **************************************************************************************************
1938 244 : SUBROUTINE compute_3c_and_contract_W(qs_env, bs_env, i_atoms, j_atoms, t_3c_x_W, t_2c_W)
1939 :
1940 : TYPE(qs_environment_type), POINTER :: qs_env
1941 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1942 : INTEGER, DIMENSION(2) :: i_atoms, j_atoms
1943 : TYPE(dbt_type) :: t_3c_x_W, t_2c_W
1944 :
1945 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_3c_and_contract_W'
1946 :
1947 : INTEGER :: handle, RI_intval_idx
1948 : INTEGER, DIMENSION(2) :: bounds_j, RI_atoms
1949 4148 : TYPE(dbt_type) :: t_3c_for_W, t_3c_x_W_tmp
1950 :
1951 244 : CALL timeset(routineN, handle)
1952 :
1953 244 : CALL dbt_create(bs_env%t_RI__AO_AO, t_3c_x_W_tmp)
1954 244 : CALL dbt_create(bs_env%t_RI__AO_AO, t_3c_for_W)
1955 :
1956 : bounds_j(1:2) = [bs_env%i_RI_start_from_atom(j_atoms(1)), &
1957 732 : bs_env%i_RI_end_from_atom(j_atoms(2))]
1958 :
1959 488 : DO RI_intval_idx = 1, bs_env%n_intervals_inner_loop_atoms
1960 732 : RI_atoms = bs_env%inner_loop_atom_intervals(1:2, RI_intval_idx)
1961 :
1962 : ! 1. compute 3-center integrals (µν|P) ("|": truncated Coulomb operator)
1963 : CALL compute_3c_integrals(qs_env, bs_env, t_3c_for_W, &
1964 244 : atoms_AO_1=i_atoms, atoms_RI=RI_atoms)
1965 :
1966 : ! 2. tensor operation M_νσQ(iτ) = sum_P (νσ|P) W^MIC_PQ(iτ)
1967 : CALL dbt_contract(alpha=1.0_dp, &
1968 : tensor_1=t_2c_W, &
1969 : tensor_2=t_3c_for_W, &
1970 : beta=1.0_dp, &
1971 : tensor_3=t_3c_x_W_tmp, &
1972 : contract_1=[2], notcontract_1=[1], map_1=[1], &
1973 : contract_2=[1], notcontract_2=[2, 3], map_2=[2, 3], &
1974 : bounds_2=bounds_j, &
1975 488 : filter_eps=bs_env%eps_filter)
1976 :
1977 : END DO ! RI_atoms
1978 :
1979 : ! 3. reorder tensor
1980 244 : CALL dbt_copy(t_3c_x_W_tmp, t_3c_x_W, order=[1, 2, 3], move_data=.TRUE.)
1981 :
1982 244 : CALL dbt_destroy(t_3c_x_W_tmp)
1983 244 : CALL dbt_destroy(t_3c_for_W)
1984 :
1985 244 : CALL timestop(handle)
1986 :
1987 244 : END SUBROUTINE compute_3c_and_contract_W
1988 :
1989 : ! **************************************************************************************************
1990 : !> \brief ...
1991 : !> \param t_2c_G ...
1992 : !> \param t_3c_x_W ...
1993 : !> \param t_2c_Sigma ...
1994 : !> \param i_atoms ...
1995 : !> \param j_atoms ...
1996 : !> \param qs_env ...
1997 : !> \param bs_env ...
1998 : !> \param occ ...
1999 : !> \param vir ...
2000 : !> \param clear_W ...
2001 : !> \param can_skip ...
2002 : ! **************************************************************************************************
2003 470 : SUBROUTINE contract_to_Sigma(t_2c_G, t_3c_x_W, t_2c_Sigma, i_atoms, j_atoms, qs_env, bs_env, &
2004 : occ, vir, clear_W, can_skip)
2005 : TYPE(dbt_type) :: t_2c_G, t_3c_x_W, t_2c_Sigma
2006 : INTEGER, DIMENSION(2) :: i_atoms, j_atoms
2007 : TYPE(qs_environment_type), POINTER :: qs_env
2008 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2009 : LOGICAL :: occ, vir, clear_W
2010 : LOGICAL, OPTIONAL :: can_skip
2011 :
2012 : CHARACTER(LEN=*), PARAMETER :: routineN = 'contract_to_Sigma'
2013 :
2014 : INTEGER :: handle, inner_loop_atoms_interval_index
2015 : INTEGER(KIND=int_8) :: flop
2016 : INTEGER, DIMENSION(2) :: bounds_i, IL_atoms
2017 : REAL(KIND=dp) :: sign_Sigma
2018 11750 : TYPE(dbt_type) :: t_3c_for_G, t_3c_x_G, t_3c_x_G_2
2019 :
2020 470 : CALL timeset(routineN, handle)
2021 :
2022 470 : CPASSERT(occ .EQV. (.NOT. vir))
2023 470 : IF (occ) sign_Sigma = -1.0_dp
2024 470 : IF (vir) sign_Sigma = 1.0_dp
2025 :
2026 470 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_for_G)
2027 470 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_G)
2028 470 : CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_G_2)
2029 :
2030 : bounds_i(1:2) = [bs_env%i_ao_start_from_atom(i_atoms(1)), &
2031 1410 : bs_env%i_ao_end_from_atom(i_atoms(2))]
2032 :
2033 940 : DO inner_loop_atoms_interval_index = 1, bs_env%n_intervals_inner_loop_atoms
2034 1410 : IL_atoms = bs_env%inner_loop_atom_intervals(1:2, inner_loop_atoms_interval_index)
2035 :
2036 : CALL compute_3c_integrals(qs_env, bs_env, t_3c_for_G, &
2037 470 : atoms_RI=j_atoms, atoms_AO_2=IL_atoms)
2038 :
2039 : CALL dbt_contract(alpha=1.0_dp, &
2040 : tensor_1=t_2c_G, &
2041 : tensor_2=t_3c_for_G, &
2042 : beta=1.0_dp, &
2043 : tensor_3=t_3c_x_G, &
2044 : contract_1=[2], notcontract_1=[1], map_1=[3], &
2045 : contract_2=[3], notcontract_2=[1, 2], map_2=[1, 2], &
2046 : bounds_2=bounds_i, &
2047 940 : filter_eps=bs_env%eps_filter)
2048 :
2049 : END DO ! IL_atoms
2050 :
2051 470 : CALL dbt_copy(t_3c_x_G, t_3c_x_G_2, order=[1, 3, 2], move_data=.TRUE.)
2052 :
2053 : CALL dbt_contract(alpha=sign_Sigma, &
2054 : tensor_1=t_3c_x_W, &
2055 : tensor_2=t_3c_x_G_2, &
2056 : beta=1.0_dp, &
2057 : tensor_3=t_2c_Sigma, &
2058 : contract_1=[1, 2], notcontract_1=[3], map_1=[1], &
2059 : contract_2=[1, 2], notcontract_2=[3], map_2=[2], &
2060 470 : filter_eps=bs_env%eps_filter, move_data=clear_W, flop=flop)
2061 :
2062 470 : IF (PRESENT(can_skip)) THEN
2063 452 : IF (flop == 0_int_8) can_skip = .TRUE.
2064 : END IF
2065 :
2066 470 : CALL dbt_destroy(t_3c_for_G)
2067 470 : CALL dbt_destroy(t_3c_x_G)
2068 470 : CALL dbt_destroy(t_3c_x_G_2)
2069 :
2070 470 : CALL timestop(handle)
2071 :
2072 470 : END SUBROUTINE contract_to_Sigma
2073 :
2074 : ! **************************************************************************************************
2075 : !> \brief ...
2076 : !> \param fm_Sigma_c_Gamma_time ...
2077 : !> \param bs_env ...
2078 : !> \param mat_Sigma_pos_tau ...
2079 : !> \param mat_Sigma_neg_tau ...
2080 : ! **************************************************************************************************
2081 22 : SUBROUTINE fill_fm_Sigma_c_Gamma_time(fm_Sigma_c_Gamma_time, bs_env, &
2082 : mat_Sigma_pos_tau, mat_Sigma_neg_tau)
2083 :
2084 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :, :) :: fm_Sigma_c_Gamma_time
2085 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2086 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: mat_Sigma_pos_tau, mat_Sigma_neg_tau
2087 :
2088 : CHARACTER(LEN=*), PARAMETER :: routineN = 'fill_fm_Sigma_c_Gamma_time'
2089 :
2090 : INTEGER :: handle, i_t, ispin, pos_neg
2091 :
2092 22 : CALL timeset(routineN, handle)
2093 :
2094 894 : ALLOCATE (fm_Sigma_c_Gamma_time(bs_env%num_time_freq_points, 2, bs_env%n_spin))
2095 48 : DO ispin = 1, bs_env%n_spin
2096 412 : DO i_t = 1, bs_env%num_time_freq_points
2097 1092 : DO pos_neg = 1, 2
2098 : CALL cp_fm_create(fm_Sigma_c_Gamma_time(i_t, pos_neg, ispin), &
2099 1092 : bs_env%fm_s_Gamma%matrix_struct)
2100 : END DO
2101 : CALL copy_dbcsr_to_fm(mat_Sigma_pos_tau(i_t, ispin)%matrix, &
2102 364 : fm_Sigma_c_Gamma_time(i_t, 1, ispin))
2103 : CALL copy_dbcsr_to_fm(mat_Sigma_neg_tau(i_t, ispin)%matrix, &
2104 390 : fm_Sigma_c_Gamma_time(i_t, 2, ispin))
2105 : END DO
2106 : END DO
2107 :
2108 22 : CALL timestop(handle)
2109 :
2110 22 : END SUBROUTINE fill_fm_Sigma_c_Gamma_time
2111 :
2112 : ! **************************************************************************************************
2113 : !> \brief ...
2114 : !> \param bs_env ...
2115 : ! **************************************************************************************************
2116 22 : SUBROUTINE print_skipping(bs_env)
2117 :
2118 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2119 :
2120 : CHARACTER(LEN=*), PARAMETER :: routineN = 'print_skipping'
2121 :
2122 : INTEGER :: handle, i_intval_idx, j_intval_idx, &
2123 : n_skip
2124 :
2125 22 : CALL timeset(routineN, handle)
2126 :
2127 22 : n_skip = 0
2128 :
2129 44 : DO i_intval_idx = 1, bs_env%n_intervals_i
2130 66 : DO j_intval_idx = 1, bs_env%n_intervals_j
2131 22 : IF (bs_env%skip_Sigma_occ(i_intval_idx, j_intval_idx) .AND. &
2132 22 : bs_env%skip_Sigma_vir(i_intval_idx, j_intval_idx)) THEN
2133 2 : n_skip = n_skip + 1
2134 : END IF
2135 : END DO
2136 : END DO
2137 :
2138 22 : IF (bs_env%unit_nr > 0) THEN
2139 : WRITE (bs_env%unit_nr, '(T2,A,T74,F7.1,A)') &
2140 11 : 'Sparsity of Σ^c(iτ,k=0): Percentage of skipped atom pairs:', &
2141 22 : REAL(100*n_skip, KIND=dp)/REAL(i_intval_idx*j_intval_idx, KIND=dp), ' %'
2142 : END IF
2143 :
2144 22 : CALL timestop(handle)
2145 :
2146 22 : END SUBROUTINE print_skipping
2147 :
2148 : ! **************************************************************************************************
2149 : !> \brief ...
2150 : !> \param t_2c_Gocc ...
2151 : !> \param t_2c_Gvir ...
2152 : !> \param t_2c_W ...
2153 : !> \param t_2c_Sigma_neg_tau ...
2154 : !> \param t_2c_Sigma_pos_tau ...
2155 : !> \param t_3c_x_W ...
2156 : !> \param fm_W_MIC_time ...
2157 : !> \param mat_Sigma_neg_tau ...
2158 : !> \param mat_Sigma_pos_tau ...
2159 : ! **************************************************************************************************
2160 22 : SUBROUTINE destroy_mat_Sigma_c(t_2c_Gocc, t_2c_Gvir, t_2c_W, t_2c_Sigma_neg_tau, &
2161 : t_2c_Sigma_pos_tau, t_3c_x_W, fm_W_MIC_time, &
2162 : mat_Sigma_neg_tau, mat_Sigma_pos_tau)
2163 :
2164 : TYPE(dbt_type) :: t_2c_Gocc, t_2c_Gvir, t_2c_W, &
2165 : t_2c_Sigma_neg_tau, &
2166 : t_2c_Sigma_pos_tau, t_3c_x_W
2167 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_W_MIC_time
2168 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: mat_Sigma_neg_tau, mat_Sigma_pos_tau
2169 :
2170 : CHARACTER(LEN=*), PARAMETER :: routineN = 'destroy_mat_Sigma_c'
2171 :
2172 : INTEGER :: handle
2173 :
2174 22 : CALL timeset(routineN, handle)
2175 :
2176 22 : CALL dbt_destroy(t_2c_Gocc)
2177 22 : CALL dbt_destroy(t_2c_Gvir)
2178 22 : CALL dbt_destroy(t_2c_W)
2179 22 : CALL dbt_destroy(t_2c_Sigma_neg_tau)
2180 22 : CALL dbt_destroy(t_2c_Sigma_pos_tau)
2181 22 : CALL dbt_destroy(t_3c_x_W)
2182 22 : CALL cp_fm_release(fm_W_MIC_time)
2183 22 : CALL dbcsr_deallocate_matrix_set(mat_Sigma_neg_tau)
2184 22 : CALL dbcsr_deallocate_matrix_set(mat_Sigma_pos_tau)
2185 :
2186 22 : CALL timestop(handle)
2187 :
2188 22 : END SUBROUTINE destroy_mat_Sigma_c
2189 :
2190 : ! **************************************************************************************************
2191 : !> \brief ...
2192 : !> \param bs_env ...
2193 : ! **************************************************************************************************
2194 22 : SUBROUTINE delete_unnecessary_files(bs_env)
2195 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2196 :
2197 : CHARACTER(LEN=*), PARAMETER :: routineN = 'delete_unnecessary_files'
2198 :
2199 : CHARACTER(LEN=default_string_length) :: f_chi, f_W_t, prefix
2200 : INTEGER :: handle, i_t
2201 :
2202 22 : CALL timeset(routineN, handle)
2203 :
2204 22 : prefix = bs_env%prefix
2205 :
2206 346 : DO i_t = 1, bs_env%num_time_freq_points
2207 :
2208 324 : IF (i_t < 10) THEN
2209 186 : WRITE (f_chi, '(3A,I1,A)') TRIM(prefix), bs_env%chi_name, "_00", i_t, ".matrix"
2210 186 : WRITE (f_W_t, '(3A,I1,A)') TRIM(prefix), bs_env%W_time_name, "_00", i_t, ".matrix"
2211 138 : ELSE IF (i_t < 100) THEN
2212 138 : WRITE (f_chi, '(3A,I2,A)') TRIM(prefix), bs_env%chi_name, "_0", i_t, ".matrix"
2213 138 : WRITE (f_W_t, '(3A,I2,A)') TRIM(prefix), bs_env%W_time_name, "_0", i_t, ".matrix"
2214 : ELSE
2215 0 : CPABORT('Please implement more than 99 time/frequency points.')
2216 : END IF
2217 :
2218 324 : CALL safe_delete(f_chi, bs_env)
2219 346 : CALL safe_delete(f_W_t, bs_env)
2220 :
2221 : END DO
2222 :
2223 22 : CALL timestop(handle)
2224 :
2225 22 : END SUBROUTINE delete_unnecessary_files
2226 :
2227 : ! **************************************************************************************************
2228 : !> \brief ...
2229 : !> \param filename ...
2230 : !> \param bs_env ...
2231 : ! **************************************************************************************************
2232 648 : SUBROUTINE safe_delete(filename, bs_env)
2233 : CHARACTER(LEN=*) :: filename
2234 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2235 :
2236 : CHARACTER(LEN=*), PARAMETER :: routineN = 'safe_delete'
2237 :
2238 : INTEGER :: handle
2239 : LOGICAL :: file_exists
2240 :
2241 648 : CALL timeset(routineN, handle)
2242 :
2243 648 : IF (bs_env%para_env%mepos == 0) THEN
2244 :
2245 324 : INQUIRE (file=TRIM(filename), exist=file_exists)
2246 324 : IF (file_exists) CALL mp_file_delete(TRIM(filename))
2247 :
2248 : END IF
2249 :
2250 648 : CALL timestop(handle)
2251 :
2252 648 : END SUBROUTINE safe_delete
2253 :
2254 : ! **************************************************************************************************
2255 : !> \brief ...
2256 : !> \param bs_env ...
2257 : !> \param qs_env ...
2258 : !> \param fm_Sigma_x_Gamma ...
2259 : !> \param fm_Sigma_c_Gamma_time ...
2260 : ! **************************************************************************************************
2261 22 : SUBROUTINE compute_QP_energies(bs_env, qs_env, fm_Sigma_x_Gamma, fm_Sigma_c_Gamma_time)
2262 :
2263 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2264 : TYPE(qs_environment_type), POINTER :: qs_env
2265 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_Sigma_x_Gamma
2266 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :, :) :: fm_Sigma_c_Gamma_time
2267 :
2268 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_QP_energies'
2269 :
2270 : INTEGER :: handle, ikp, ispin, j_t
2271 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: Sigma_x_ikp_n, V_xc_ikp_n
2272 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: Sigma_c_ikp_n_freq, Sigma_c_ikp_n_time
2273 : TYPE(cp_cfm_type) :: cfm_ks_ikp, cfm_mos_ikp, cfm_s_ikp, &
2274 : cfm_Sigma_x_ikp, cfm_work_ikp
2275 :
2276 22 : CALL timeset(routineN, handle)
2277 :
2278 22 : CALL cp_cfm_create(cfm_mos_ikp, bs_env%fm_s_Gamma%matrix_struct)
2279 22 : CALL cp_cfm_create(cfm_work_ikp, bs_env%fm_s_Gamma%matrix_struct)
2280 : ! JW TODO: fully distribute these arrays at given time; also eigenvalues in bs_env
2281 110 : ALLOCATE (V_xc_ikp_n(bs_env%n_ao), Sigma_x_ikp_n(bs_env%n_ao))
2282 110 : ALLOCATE (Sigma_c_ikp_n_time(bs_env%n_ao, bs_env%num_time_freq_points, 2))
2283 88 : ALLOCATE (Sigma_c_ikp_n_freq(bs_env%n_ao, bs_env%num_time_freq_points, 2))
2284 :
2285 48 : DO ispin = 1, bs_env%n_spin
2286 :
2287 86 : DO ikp = 1, bs_env%nkp_bs_and_DOS
2288 :
2289 : ! 1. get H^KS_µν(k_i) from H^KS_µν(k=0)
2290 : CALL cfm_ikp_from_fm_Gamma(cfm_ks_ikp, bs_env%fm_ks_Gamma(ispin), &
2291 38 : ikp, qs_env, bs_env%kpoints_DOS, "ORB")
2292 :
2293 : ! 2. get S_µν(k_i) from S_µν(k=0)
2294 : CALL cfm_ikp_from_fm_Gamma(cfm_s_ikp, bs_env%fm_s_Gamma, &
2295 38 : ikp, qs_env, bs_env%kpoints_DOS, "ORB")
2296 :
2297 : ! 3. Diagonalize (Roothaan-Hall): H_KS(k_i)*C(k_i) = S(k_i)*C(k_i)*ϵ(k_i)
2298 : CALL cp_cfm_geeig(cfm_ks_ikp, cfm_s_ikp, cfm_mos_ikp, &
2299 38 : bs_env%eigenval_scf(:, ikp, ispin), cfm_work_ikp)
2300 :
2301 : ! 4. V^xc_µν(k=0) -> V^xc_µν(k_i) -> V^xc_nn(k_i)
2302 : CALL to_ikp_and_mo(V_xc_ikp_n, bs_env%fm_V_xc_Gamma(ispin), &
2303 38 : ikp, qs_env, bs_env, cfm_mos_ikp)
2304 :
2305 : ! 5. Σ^x_µν(k=0) -> Σ^x_µν(k_i) -> Σ^x_nn(k_i)
2306 : CALL to_ikp_and_mo(Sigma_x_ikp_n, fm_Sigma_x_Gamma(ispin), &
2307 38 : ikp, qs_env, bs_env, cfm_mos_ikp)
2308 :
2309 : ! 6. Σ^c_µν(k=0,+/-i|τ_j|) -> Σ^c_µν(k_i,+/-i|τ_j|) -> Σ^c_nn(k_i,+/-i|τ_j|)
2310 506 : DO j_t = 1, bs_env%num_time_freq_points
2311 : CALL to_ikp_and_mo(Sigma_c_ikp_n_time(:, j_t, 1), &
2312 : fm_Sigma_c_Gamma_time(j_t, 1, ispin), &
2313 468 : ikp, qs_env, bs_env, cfm_mos_ikp)
2314 : CALL to_ikp_and_mo(Sigma_c_ikp_n_time(:, j_t, 2), &
2315 : fm_Sigma_c_Gamma_time(j_t, 2, ispin), &
2316 506 : ikp, qs_env, bs_env, cfm_mos_ikp)
2317 : END DO
2318 :
2319 : ! 7. Σ^c_nn(k_i,iτ) -> Σ^c_nn(k_i,iω)
2320 38 : CALL time_to_freq(bs_env, Sigma_c_ikp_n_time, Sigma_c_ikp_n_freq, ispin)
2321 :
2322 : ! 8. Analytic continuation Σ^c_nn(k_i,iω) -> Σ^c_nn(k_i,ϵ) and
2323 : ! ϵ_nk_i^GW = ϵ_nk_i^DFT + Σ^c_nn(k_i,ϵ) + Σ^x_nn(k_i) - v^xc_nn(k_i)
2324 : CALL analyt_conti_and_print(bs_env, Sigma_c_ikp_n_freq, Sigma_x_ikp_n, V_xc_ikp_n, &
2325 64 : bs_env%eigenval_scf(:, ikp, ispin), ikp, ispin)
2326 :
2327 : END DO ! ikp_DOS
2328 :
2329 : END DO ! ispin
2330 :
2331 22 : CALL get_all_VBM_CBM_bandgaps(bs_env)
2332 :
2333 22 : CALL cp_fm_release(fm_Sigma_x_Gamma)
2334 22 : CALL cp_fm_release(fm_Sigma_c_Gamma_time)
2335 22 : CALL cp_cfm_release(cfm_ks_ikp)
2336 22 : CALL cp_cfm_release(cfm_s_ikp)
2337 22 : CALL cp_cfm_release(cfm_mos_ikp)
2338 22 : CALL cp_cfm_release(cfm_work_ikp)
2339 22 : CALL cp_cfm_release(cfm_Sigma_x_ikp)
2340 :
2341 22 : CALL timestop(handle)
2342 :
2343 44 : END SUBROUTINE compute_QP_energies
2344 :
2345 : ! **************************************************************************************************
2346 : !> \brief ...
2347 : !> \param array_ikp_n ...
2348 : !> \param fm_Gamma ...
2349 : !> \param ikp ...
2350 : !> \param qs_env ...
2351 : !> \param bs_env ...
2352 : !> \param cfm_mos_ikp ...
2353 : ! **************************************************************************************************
2354 1012 : SUBROUTINE to_ikp_and_mo(array_ikp_n, fm_Gamma, ikp, qs_env, bs_env, cfm_mos_ikp)
2355 :
2356 : REAL(KIND=dp), DIMENSION(:) :: array_ikp_n
2357 : TYPE(cp_fm_type) :: fm_Gamma
2358 : INTEGER :: ikp
2359 : TYPE(qs_environment_type), POINTER :: qs_env
2360 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2361 : TYPE(cp_cfm_type) :: cfm_mos_ikp
2362 :
2363 : CHARACTER(LEN=*), PARAMETER :: routineN = 'to_ikp_and_mo'
2364 :
2365 : INTEGER :: handle
2366 : TYPE(cp_fm_type) :: fm_ikp_mo_re
2367 :
2368 1012 : CALL timeset(routineN, handle)
2369 :
2370 1012 : CALL cp_fm_create(fm_ikp_mo_re, fm_Gamma%matrix_struct)
2371 :
2372 1012 : CALL fm_Gamma_ao_to_cfm_ikp_mo(fm_Gamma, fm_ikp_mo_re, ikp, qs_env, bs_env, cfm_mos_ikp)
2373 :
2374 1012 : CALL cp_fm_get_diag(fm_ikp_mo_re, array_ikp_n)
2375 :
2376 1012 : CALL cp_fm_release(fm_ikp_mo_re)
2377 :
2378 1012 : CALL timestop(handle)
2379 :
2380 1012 : END SUBROUTINE to_ikp_and_mo
2381 :
2382 : ! **************************************************************************************************
2383 : !> \brief ...
2384 : !> \param fm_Gamma ...
2385 : !> \param fm_ikp_mo_re ...
2386 : !> \param ikp ...
2387 : !> \param qs_env ...
2388 : !> \param bs_env ...
2389 : !> \param cfm_mos_ikp ...
2390 : ! **************************************************************************************************
2391 4048 : SUBROUTINE fm_Gamma_ao_to_cfm_ikp_mo(fm_Gamma, fm_ikp_mo_re, ikp, qs_env, bs_env, cfm_mos_ikp)
2392 : TYPE(cp_fm_type) :: fm_Gamma, fm_ikp_mo_re
2393 : INTEGER :: ikp
2394 : TYPE(qs_environment_type), POINTER :: qs_env
2395 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2396 : TYPE(cp_cfm_type) :: cfm_mos_ikp
2397 :
2398 : CHARACTER(LEN=*), PARAMETER :: routineN = 'fm_Gamma_ao_to_cfm_ikp_mo'
2399 :
2400 : INTEGER :: handle, nmo
2401 : TYPE(cp_cfm_type) :: cfm_ikp_ao, cfm_ikp_mo, cfm_tmp
2402 :
2403 1012 : CALL timeset(routineN, handle)
2404 :
2405 1012 : CALL cp_cfm_create(cfm_ikp_ao, fm_Gamma%matrix_struct)
2406 1012 : CALL cp_cfm_create(cfm_ikp_mo, fm_Gamma%matrix_struct)
2407 1012 : CALL cp_cfm_create(cfm_tmp, fm_Gamma%matrix_struct)
2408 :
2409 : ! get cfm_µν(k_i) from fm_µν(k=0)
2410 1012 : CALL cfm_ikp_from_fm_Gamma(cfm_ikp_ao, fm_Gamma, ikp, qs_env, bs_env%kpoints_DOS, "ORB")
2411 :
2412 1012 : nmo = bs_env%n_ao
2413 1012 : CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, cfm_ikp_ao, cfm_mos_ikp, z_zero, cfm_tmp)
2414 1012 : CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mos_ikp, cfm_tmp, z_zero, cfm_ikp_mo)
2415 :
2416 1012 : CALL cp_cfm_to_fm(cfm_ikp_mo, fm_ikp_mo_re)
2417 :
2418 1012 : CALL cp_cfm_release(cfm_ikp_mo)
2419 1012 : CALL cp_cfm_release(cfm_ikp_ao)
2420 1012 : CALL cp_cfm_release(cfm_tmp)
2421 :
2422 1012 : CALL timestop(handle)
2423 :
2424 1012 : END SUBROUTINE fm_Gamma_ao_to_cfm_ikp_mo
2425 :
2426 : END MODULE gw_large_cell_gamma
|