Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief
10 : !> \author Jan Wilhelm
11 : !> \date 07.2023
12 : ! **************************************************************************************************
13 : MODULE gw_utils
14 : USE atomic_kind_types, ONLY: atomic_kind_type,&
15 : get_atomic_kind_set
16 : USE basis_set_types, ONLY: get_gto_basis_set,&
17 : gto_basis_set_type
18 : USE bibliography, ONLY: Graml2024,&
19 : cite_reference
20 : USE cell_types, ONLY: cell_type,&
21 : pbc,&
22 : scaled_to_real
23 : USE cp_blacs_env, ONLY: cp_blacs_env_create,&
24 : cp_blacs_env_release,&
25 : cp_blacs_env_type
26 : USE cp_cfm_types, ONLY: cp_cfm_create,&
27 : cp_cfm_release,&
28 : cp_cfm_to_cfm,&
29 : cp_cfm_to_fm,&
30 : cp_cfm_type
31 : USE cp_control_types, ONLY: dft_control_type
32 : USE cp_dbcsr_api, ONLY: &
33 : dbcsr_create, dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_p_type, &
34 : dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry, dbcsr_type_symmetric
35 : USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
36 : copy_fm_to_dbcsr,&
37 : cp_dbcsr_dist2d_to_dist,&
38 : dbcsr_allocate_matrix_set,&
39 : dbcsr_deallocate_matrix_set
40 : USE cp_files, ONLY: close_file,&
41 : open_file
42 : USE cp_fm_basic_linalg, ONLY: cp_fm_scale_and_add
43 : USE cp_fm_struct, ONLY: cp_fm_struct_create,&
44 : cp_fm_struct_release,&
45 : cp_fm_struct_type
46 : USE cp_fm_types, ONLY: cp_fm_create,&
47 : cp_fm_get_diag,&
48 : cp_fm_release,&
49 : cp_fm_set_all,&
50 : cp_fm_type
51 : USE cp_log_handling, ONLY: cp_get_default_logger,&
52 : cp_logger_type
53 : USE cp_output_handling, ONLY: cp_print_key_generate_filename
54 : USE dbt_api, ONLY: &
55 : dbt_clear, dbt_create, dbt_destroy, dbt_filter, dbt_iterator_blocks_left, &
56 : dbt_iterator_next_block, dbt_iterator_start, dbt_iterator_stop, dbt_iterator_type, &
57 : dbt_mp_environ_pgrid, dbt_pgrid_create, dbt_pgrid_destroy, dbt_pgrid_type, dbt_type
58 : USE distribution_2d_types, ONLY: distribution_2d_type
59 : USE gw_communication, ONLY: fm_to_local_array
60 : USE gw_integrals, ONLY: build_3c_integral_block
61 : USE input_constants, ONLY: do_potential_truncated,&
62 : large_cell_Gamma,&
63 : ri_rpa_g0w0_crossing_newton,&
64 : rtp_method_bse,&
65 : small_cell_full_kp,&
66 : xc_none
67 : USE input_section_types, ONLY: section_vals_get,&
68 : section_vals_get_subs_vals,&
69 : section_vals_type,&
70 : section_vals_val_get,&
71 : section_vals_val_set
72 : USE kinds, ONLY: default_path_length,&
73 : default_string_length,&
74 : dp,&
75 : int_8
76 : USE kpoint_k_r_trafo_simple, ONLY: rs_to_kp
77 : USE kpoint_methods, ONLY: kpoint_init_cell_index
78 : USE kpoint_types, ONLY: get_kpoint_info,&
79 : kpoint_create,&
80 : kpoint_type
81 : USE libint_2c_3c, ONLY: libint_potential_type
82 : USE libint_wrapper, ONLY: cp_libint_static_cleanup,&
83 : cp_libint_static_init
84 : USE machine, ONLY: m_memory,&
85 : m_walltime
86 : USE mathconstants, ONLY: gaussi,&
87 : z_one,&
88 : z_zero
89 : USE mathlib, ONLY: diag_complex,&
90 : gcd
91 : USE message_passing, ONLY: mp_cart_type,&
92 : mp_para_env_type
93 : USE minimax_exp, ONLY: get_exp_minimax_coeff
94 : USE minimax_exp_gw, ONLY: get_exp_minimax_coeff_gw
95 : USE minimax_rpa, ONLY: get_rpa_minimax_coeff,&
96 : get_rpa_minimax_coeff_larger_grid
97 : USE mp2_gpw, ONLY: create_mat_munu
98 : USE mp2_grids, ONLY: get_l_sq_wghts_cos_tf_t_to_w,&
99 : get_l_sq_wghts_cos_tf_w_to_t,&
100 : get_l_sq_wghts_sin_tf_t_to_w
101 : USE mp2_ri_2c, ONLY: trunc_coulomb_for_exchange
102 : USE parallel_gemm_api, ONLY: parallel_gemm
103 : USE particle_methods, ONLY: get_particle_set
104 : USE particle_types, ONLY: particle_type
105 : USE physcon, ONLY: angstrom,&
106 : evolt
107 : USE post_scf_bandstructure_types, ONLY: post_scf_bandstructure_type
108 : USE post_scf_bandstructure_utils, ONLY: rsmat_to_kp
109 : USE qs_energy_types, ONLY: qs_energy_type
110 : USE qs_environment_types, ONLY: get_qs_env,&
111 : qs_env_part_release,&
112 : qs_environment_type
113 : USE qs_integral_utils, ONLY: basis_set_list_setup
114 : USE qs_interactions, ONLY: init_interaction_radii_orb_basis
115 : USE qs_kind_types, ONLY: get_qs_kind,&
116 : qs_kind_type
117 : USE qs_ks_methods, ONLY: qs_ks_build_kohn_sham_matrix
118 : USE qs_neighbor_list_types, ONLY: neighbor_list_set_p_type,&
119 : release_neighbor_list_sets
120 : USE qs_tensors, ONLY: build_2c_integrals,&
121 : build_2c_neighbor_lists,&
122 : build_3c_integrals,&
123 : build_3c_neighbor_lists,&
124 : get_tensor_occupancy,&
125 : neighbor_list_3c_destroy
126 : USE qs_tensors_types, ONLY: create_2c_tensor,&
127 : create_3c_tensor,&
128 : distribution_3d_create,&
129 : distribution_3d_type,&
130 : neighbor_list_3c_type
131 : USE rpa_gw, ONLY: continuation_pade
132 : #include "base/base_uses.f90"
133 :
134 : IMPLICIT NONE
135 :
136 : PRIVATE
137 :
138 : PUBLIC :: create_and_init_bs_env_for_gw, de_init_bs_env, get_i_j_atoms, &
139 : kpoint_init_cell_index_simple, compute_xkp, time_to_freq, analyt_conti_and_print, &
140 : add_R, is_cell_in_index_to_cell, get_V_tr_R, power
141 :
142 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'gw_utils'
143 :
144 : CONTAINS
145 :
146 : ! **************************************************************************************************
147 : !> \brief ...
148 : !> \param qs_env ...
149 : !> \param bs_env ...
150 : !> \param bs_sec ...
151 : ! **************************************************************************************************
152 28 : SUBROUTINE create_and_init_bs_env_for_gw(qs_env, bs_env, bs_sec)
153 : TYPE(qs_environment_type), POINTER :: qs_env
154 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
155 : TYPE(section_vals_type), POINTER :: bs_sec
156 :
157 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_and_init_bs_env_for_gw'
158 :
159 : INTEGER :: handle
160 :
161 28 : CALL timeset(routineN, handle)
162 :
163 28 : CALL cite_reference(Graml2024)
164 :
165 28 : CALL read_gw_input_parameters(bs_env, bs_sec)
166 :
167 28 : CALL print_header_and_input_parameters(bs_env)
168 :
169 28 : CALL setup_AO_and_RI_basis_set(qs_env, bs_env)
170 :
171 28 : CALL get_RI_basis_and_basis_function_indices(qs_env, bs_env)
172 :
173 28 : CALL set_heuristic_parameters(bs_env, qs_env)
174 :
175 28 : CALL cp_libint_static_init()
176 :
177 28 : CALL setup_kpoints_chi_eps_W(bs_env, bs_env%kpoints_chi_eps_W)
178 :
179 28 : IF (bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp) THEN
180 6 : CALL setup_cells_3c(qs_env, bs_env)
181 : END IF
182 :
183 28 : CALL set_parallelization_parameters(qs_env, bs_env)
184 :
185 28 : CALL allocate_matrices(qs_env, bs_env)
186 :
187 28 : CALL compute_V_xc(qs_env, bs_env)
188 :
189 28 : CALL create_tensors(qs_env, bs_env)
190 :
191 50 : SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
192 : CASE (large_cell_Gamma)
193 :
194 22 : CALL allocate_GW_eigenvalues(bs_env)
195 :
196 22 : CALL check_sparsity_3c(qs_env, bs_env)
197 :
198 22 : CALL set_sparsity_parallelization_parameters(bs_env)
199 :
200 22 : CALL check_for_restart_files(qs_env, bs_env)
201 :
202 : CASE (small_cell_full_kp)
203 :
204 6 : CALL compute_3c_integrals(qs_env, bs_env)
205 :
206 6 : CALL setup_cells_Delta_R(bs_env)
207 :
208 6 : CALL setup_parallelization_Delta_R(bs_env)
209 :
210 6 : CALL allocate_matrices_small_cell_full_kp(qs_env, bs_env)
211 :
212 6 : CALL trafo_V_xc_R_to_kp(qs_env, bs_env)
213 :
214 34 : CALL heuristic_RI_regularization(qs_env, bs_env)
215 :
216 : END SELECT
217 :
218 28 : CALL setup_time_and_frequency_minimax_grid(bs_env)
219 :
220 : ! free memory in qs_env; only if one is not calculating the LDOS because
221 : ! we need real-space grid operations in pw_env, task_list for the LDOS
222 : ! Recommendation in case of memory issues: first perform GW calculation without calculating
223 : ! LDOS (to safe memor). Then, use GW restart files
224 : ! in a subsequent calculation to calculate the LDOS
225 : ! Marek : TODO - boolean that does not interfere with RTP init but sets this to correct value
226 : IF (.NOT. bs_env%do_ldos .AND. .FALSE.) THEN
227 : CALL qs_env_part_release(qs_env)
228 : END IF
229 :
230 28 : CALL timestop(handle)
231 :
232 28 : END SUBROUTINE create_and_init_bs_env_for_gw
233 :
234 : ! **************************************************************************************************
235 : !> \brief ...
236 : !> \param bs_env ...
237 : ! **************************************************************************************************
238 28 : SUBROUTINE de_init_bs_env(bs_env)
239 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
240 :
241 : CHARACTER(LEN=*), PARAMETER :: routineN = 'de_init_bs_env'
242 :
243 : INTEGER :: handle
244 :
245 28 : CALL timeset(routineN, handle)
246 : ! deallocate quantities here which:
247 : ! 1. cannot be deallocated in bs_env_release due to circular dependencies
248 : ! 2. consume a lot of memory and should not be kept until the quantity is
249 : ! deallocated in bs_env_release
250 :
251 28 : IF (ASSOCIATED(bs_env%nl_3c%ij_list) .AND. (bs_env%rtp_method == rtp_method_bse)) THEN
252 12 : IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, *) "Retaining nl_3c for RTBSE"
253 : ELSE
254 16 : CALL neighbor_list_3c_destroy(bs_env%nl_3c)
255 : END IF
256 :
257 28 : CALL cp_libint_static_cleanup()
258 :
259 28 : CALL timestop(handle)
260 :
261 28 : END SUBROUTINE de_init_bs_env
262 :
263 : ! **************************************************************************************************
264 : !> \brief ...
265 : !> \param bs_env ...
266 : !> \param bs_sec ...
267 : ! **************************************************************************************************
268 28 : SUBROUTINE read_gw_input_parameters(bs_env, bs_sec)
269 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
270 : TYPE(section_vals_type), POINTER :: bs_sec
271 :
272 : CHARACTER(LEN=*), PARAMETER :: routineN = 'read_gw_input_parameters'
273 :
274 : INTEGER :: handle
275 : TYPE(section_vals_type), POINTER :: gw_sec
276 :
277 28 : CALL timeset(routineN, handle)
278 :
279 28 : NULLIFY (gw_sec)
280 28 : gw_sec => section_vals_get_subs_vals(bs_sec, "GW")
281 :
282 28 : CALL section_vals_val_get(gw_sec, "NUM_TIME_FREQ_POINTS", i_val=bs_env%num_time_freq_points)
283 28 : CALL section_vals_val_get(gw_sec, "EPS_FILTER", r_val=bs_env%eps_filter)
284 28 : CALL section_vals_val_get(gw_sec, "REGULARIZATION_RI", r_val=bs_env%input_regularization_RI)
285 28 : CALL section_vals_val_get(gw_sec, "REGULARIZATION_MINIMAX", r_val=bs_env%input_regularization_minimax)
286 28 : CALL section_vals_val_get(gw_sec, "CUTOFF_RADIUS_RI", r_val=bs_env%ri_metric%cutoff_radius)
287 28 : CALL section_vals_val_get(gw_sec, "MEMORY_PER_PROC", r_val=bs_env%input_memory_per_proc_GB)
288 28 : CALL section_vals_val_get(gw_sec, "APPROX_KP_EXTRAPOL", l_val=bs_env%approx_kp_extrapol)
289 28 : CALL section_vals_val_get(gw_sec, "SIZE_LATTICE_SUM", i_val=bs_env%size_lattice_sum_V)
290 28 : CALL section_vals_val_get(gw_sec, "KPOINTS_W", i_vals=bs_env%nkp_grid_chi_eps_W_input)
291 28 : CALL section_vals_val_get(gw_sec, "HEDIN_SHIFT", l_val=bs_env%do_hedin_shift)
292 28 : CALL section_vals_val_get(gw_sec, "FREQ_MAX_FIT", r_val=bs_env%freq_max_fit)
293 :
294 28 : CALL timestop(handle)
295 :
296 28 : END SUBROUTINE read_gw_input_parameters
297 :
298 : ! **************************************************************************************************
299 : !> \brief ...
300 : !> \param qs_env ...
301 : !> \param bs_env ...
302 : ! **************************************************************************************************
303 28 : SUBROUTINE setup_AO_and_RI_basis_set(qs_env, bs_env)
304 : TYPE(qs_environment_type), POINTER :: qs_env
305 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
306 :
307 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_AO_and_RI_basis_set'
308 :
309 : INTEGER :: handle, natom, nkind
310 28 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
311 28 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
312 :
313 28 : CALL timeset(routineN, handle)
314 :
315 : CALL get_qs_env(qs_env, &
316 : qs_kind_set=qs_kind_set, &
317 : particle_set=particle_set, &
318 28 : natom=natom, nkind=nkind)
319 :
320 : ! set up basis
321 140 : ALLOCATE (bs_env%sizes_RI(natom), bs_env%sizes_AO(natom))
322 228 : ALLOCATE (bs_env%basis_set_RI(nkind), bs_env%basis_set_AO(nkind))
323 :
324 28 : CALL basis_set_list_setup(bs_env%basis_set_RI, "RI_AUX", qs_kind_set)
325 28 : CALL basis_set_list_setup(bs_env%basis_set_AO, "ORB", qs_kind_set)
326 :
327 : CALL get_particle_set(particle_set, qs_kind_set, nsgf=bs_env%sizes_RI, &
328 28 : basis=bs_env%basis_set_RI)
329 : CALL get_particle_set(particle_set, qs_kind_set, nsgf=bs_env%sizes_AO, &
330 28 : basis=bs_env%basis_set_AO)
331 :
332 28 : CALL timestop(handle)
333 :
334 28 : END SUBROUTINE setup_AO_and_RI_basis_set
335 :
336 : ! **************************************************************************************************
337 : !> \brief ...
338 : !> \param qs_env ...
339 : !> \param bs_env ...
340 : ! **************************************************************************************************
341 28 : SUBROUTINE get_RI_basis_and_basis_function_indices(qs_env, bs_env)
342 : TYPE(qs_environment_type), POINTER :: qs_env
343 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
344 :
345 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_RI_basis_and_basis_function_indices'
346 :
347 : INTEGER :: handle, i_RI, iatom, ikind, iset, &
348 : max_AO_bf_per_atom, n_ao_test, n_atom, &
349 : n_kind, n_RI, nset, nsgf, u
350 28 : INTEGER, ALLOCATABLE, DIMENSION(:) :: kind_of
351 28 : INTEGER, DIMENSION(:), POINTER :: l_max, l_min, nsgf_set
352 28 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
353 : TYPE(gto_basis_set_type), POINTER :: basis_set_a
354 28 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
355 :
356 28 : CALL timeset(routineN, handle)
357 :
358 : ! determine RI basis set size
359 28 : CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
360 :
361 28 : n_kind = SIZE(qs_kind_set)
362 28 : n_atom = bs_env%n_atom
363 :
364 28 : CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of)
365 :
366 72 : DO ikind = 1, n_kind
367 : CALL get_qs_kind(qs_kind=qs_kind_set(ikind), basis_set=basis_set_a, &
368 44 : basis_type="RI_AUX")
369 72 : IF (.NOT. ASSOCIATED(basis_set_a)) THEN
370 : CALL cp_abort(__LOCATION__, &
371 0 : "At least one RI_AUX basis set was not explicitly invoked in &KIND-section.")
372 : END IF
373 : END DO
374 :
375 84 : ALLOCATE (bs_env%i_RI_start_from_atom(n_atom))
376 56 : ALLOCATE (bs_env%i_RI_end_from_atom(n_atom))
377 56 : ALLOCATE (bs_env%i_ao_start_from_atom(n_atom))
378 56 : ALLOCATE (bs_env%i_ao_end_from_atom(n_atom))
379 :
380 28 : n_RI = 0
381 92 : DO iatom = 1, n_atom
382 64 : bs_env%i_RI_start_from_atom(iatom) = n_RI + 1
383 64 : ikind = kind_of(iatom)
384 64 : CALL get_qs_kind(qs_kind=qs_kind_set(ikind), nsgf=nsgf, basis_type="RI_AUX")
385 64 : n_RI = n_RI + nsgf
386 92 : bs_env%i_RI_end_from_atom(iatom) = n_RI
387 : END DO
388 28 : bs_env%n_RI = n_RI
389 :
390 28 : max_AO_bf_per_atom = 0
391 28 : n_ao_test = 0
392 92 : DO iatom = 1, n_atom
393 64 : bs_env%i_ao_start_from_atom(iatom) = n_ao_test + 1
394 64 : ikind = kind_of(iatom)
395 64 : CALL get_qs_kind(qs_kind=qs_kind_set(ikind), nsgf=nsgf, basis_type="ORB")
396 64 : n_ao_test = n_ao_test + nsgf
397 64 : bs_env%i_ao_end_from_atom(iatom) = n_ao_test
398 92 : max_AO_bf_per_atom = MAX(max_AO_bf_per_atom, nsgf)
399 : END DO
400 28 : CPASSERT(n_ao_test == bs_env%n_ao)
401 28 : bs_env%max_AO_bf_per_atom = max_AO_bf_per_atom
402 :
403 84 : ALLOCATE (bs_env%l_RI(n_RI))
404 28 : i_RI = 0
405 92 : DO iatom = 1, n_atom
406 64 : ikind = kind_of(iatom)
407 :
408 64 : nset = bs_env%basis_set_RI(ikind)%gto_basis_set%nset
409 64 : l_max => bs_env%basis_set_RI(ikind)%gto_basis_set%lmax
410 64 : l_min => bs_env%basis_set_RI(ikind)%gto_basis_set%lmin
411 64 : nsgf_set => bs_env%basis_set_RI(ikind)%gto_basis_set%nsgf_set
412 :
413 268 : DO iset = 1, nset
414 176 : CPASSERT(l_max(iset) == l_min(iset))
415 536 : bs_env%l_RI(i_RI + 1:i_RI + nsgf_set(iset)) = l_max(iset)
416 240 : i_RI = i_RI + nsgf_set(iset)
417 : END DO
418 :
419 : END DO
420 28 : CPASSERT(i_RI == n_RI)
421 :
422 28 : u = bs_env%unit_nr
423 :
424 28 : IF (u > 0) THEN
425 14 : WRITE (u, FMT="(T2,A)") " "
426 14 : WRITE (u, FMT="(T2,2A,T75,I8)") "Number of auxiliary Gaussian basis functions ", &
427 28 : "for χ, ε, W", n_RI
428 : END IF
429 :
430 28 : CALL timestop(handle)
431 :
432 56 : END SUBROUTINE get_RI_basis_and_basis_function_indices
433 :
434 : ! **************************************************************************************************
435 : !> \brief ...
436 : !> \param bs_env ...
437 : !> \param kpoints ...
438 : ! **************************************************************************************************
439 28 : SUBROUTINE setup_kpoints_chi_eps_W(bs_env, kpoints)
440 :
441 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
442 : TYPE(kpoint_type), POINTER :: kpoints
443 :
444 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_kpoints_chi_eps_W'
445 :
446 : INTEGER :: handle, i_dim, n_dim, nkp, nkp_extra, &
447 : nkp_orig, u
448 : INTEGER, DIMENSION(3) :: nkp_grid, nkp_grid_extra, periodic
449 : REAL(KIND=dp) :: exp_s_p, n_dim_inv
450 :
451 28 : CALL timeset(routineN, handle)
452 :
453 : ! routine adapted from mp2_integrals.F
454 28 : NULLIFY (kpoints)
455 28 : CALL kpoint_create(kpoints)
456 :
457 28 : kpoints%kp_scheme = "GENERAL"
458 :
459 112 : periodic(1:3) = bs_env%periodic(1:3)
460 :
461 28 : CPASSERT(SIZE(bs_env%nkp_grid_chi_eps_W_input) == 3)
462 :
463 : IF (bs_env%nkp_grid_chi_eps_W_input(1) > 0 .AND. &
464 28 : bs_env%nkp_grid_chi_eps_W_input(2) > 0 .AND. &
465 : bs_env%nkp_grid_chi_eps_W_input(3) > 0) THEN
466 : ! 1. k-point mesh for χ, ε, W from input
467 0 : DO i_dim = 1, 3
468 0 : SELECT CASE (periodic(i_dim))
469 : CASE (0)
470 0 : nkp_grid(i_dim) = 1
471 0 : nkp_grid_extra(i_dim) = 1
472 : CASE (1)
473 0 : nkp_grid(i_dim) = bs_env%nkp_grid_chi_eps_W_input(i_dim)
474 0 : nkp_grid_extra(i_dim) = nkp_grid(i_dim)*2
475 : CASE DEFAULT
476 0 : CPABORT("Error in periodicity.")
477 : END SELECT
478 : END DO
479 :
480 : ELSE IF (bs_env%nkp_grid_chi_eps_W_input(1) == -1 .AND. &
481 28 : bs_env%nkp_grid_chi_eps_W_input(2) == -1 .AND. &
482 : bs_env%nkp_grid_chi_eps_W_input(3) == -1) THEN
483 : ! 2. automatic k-point mesh for χ, ε, W
484 :
485 112 : DO i_dim = 1, 3
486 :
487 84 : CPASSERT(periodic(i_dim) == 0 .OR. periodic(i_dim) == 1)
488 :
489 28 : SELECT CASE (periodic(i_dim))
490 : CASE (0)
491 52 : nkp_grid(i_dim) = 1
492 52 : nkp_grid_extra(i_dim) = 1
493 : CASE (1)
494 52 : SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
495 : CASE (large_cell_Gamma)
496 20 : nkp_grid(i_dim) = 4
497 20 : nkp_grid_extra(i_dim) = 6
498 : CASE (small_cell_full_kp)
499 12 : nkp_grid(i_dim) = bs_env%kpoints_scf_desymm%nkp_grid(i_dim)*4
500 32 : nkp_grid_extra(i_dim) = bs_env%kpoints_scf_desymm%nkp_grid(i_dim)*8
501 : END SELECT
502 : CASE DEFAULT
503 84 : CPABORT("Error in periodicity.")
504 : END SELECT
505 :
506 : END DO
507 :
508 : ELSE
509 :
510 0 : CPABORT("An error occured when setting up the k-mesh for W.")
511 :
512 : END IF
513 :
514 28 : nkp_orig = MAX(nkp_grid(1)*nkp_grid(2)*nkp_grid(3)/2, 1)
515 :
516 28 : nkp_extra = nkp_grid_extra(1)*nkp_grid_extra(2)*nkp_grid_extra(3)/2
517 :
518 28 : nkp = nkp_orig + nkp_extra
519 :
520 112 : kpoints%nkp_grid(1:3) = nkp_grid(1:3)
521 28 : kpoints%nkp = nkp
522 :
523 112 : bs_env%nkp_grid_chi_eps_W_orig(1:3) = nkp_grid(1:3)
524 112 : bs_env%nkp_grid_chi_eps_W_extra(1:3) = nkp_grid_extra(1:3)
525 28 : bs_env%nkp_chi_eps_W_orig = nkp_orig
526 28 : bs_env%nkp_chi_eps_W_extra = nkp_extra
527 28 : bs_env%nkp_chi_eps_W_orig_plus_extra = nkp
528 :
529 140 : ALLOCATE (kpoints%xkp(3, nkp), kpoints%wkp(nkp))
530 140 : ALLOCATE (bs_env%wkp_no_extra(nkp), bs_env%wkp_s_p(nkp))
531 :
532 28 : CALL compute_xkp(kpoints%xkp, 1, nkp_orig, nkp_grid)
533 28 : CALL compute_xkp(kpoints%xkp, nkp_orig + 1, nkp, nkp_grid_extra)
534 :
535 112 : n_dim = SUM(periodic)
536 28 : IF (n_dim == 0) THEN
537 : ! molecules
538 12 : kpoints%wkp(1) = 1.0_dp
539 12 : bs_env%wkp_s_p(1) = 1.0_dp
540 12 : bs_env%wkp_no_extra(1) = 1.0_dp
541 : ELSE
542 :
543 16 : n_dim_inv = 1.0_dp/REAL(n_dim, KIND=dp)
544 :
545 : ! k-point weights are chosen to automatically extrapolate the k-point mesh
546 16 : CALL compute_wkp(kpoints%wkp(1:nkp_orig), nkp_orig, nkp_extra, n_dim_inv)
547 16 : CALL compute_wkp(kpoints%wkp(nkp_orig + 1:nkp), nkp_extra, nkp_orig, n_dim_inv)
548 :
549 864 : bs_env%wkp_no_extra(1:nkp_orig) = 0.0_dp
550 3268 : bs_env%wkp_no_extra(nkp_orig + 1:nkp) = 1.0_dp/REAL(nkp_extra, KIND=dp)
551 :
552 16 : IF (n_dim == 3) THEN
553 : ! W_PQ(k) for an s-function P and a p-function Q diverges as 1/k at k=0
554 : ! (instead of 1/k^2 for P and Q both being s-functions).
555 0 : exp_s_p = 2.0_dp*n_dim_inv
556 0 : CALL compute_wkp(bs_env%wkp_s_p(1:nkp_orig), nkp_orig, nkp_extra, exp_s_p)
557 0 : CALL compute_wkp(bs_env%wkp_s_p(nkp_orig + 1:nkp), nkp_extra, nkp_orig, exp_s_p)
558 : ELSE
559 4116 : bs_env%wkp_s_p(1:nkp) = bs_env%wkp_no_extra(1:nkp)
560 : END IF
561 :
562 : END IF
563 :
564 28 : IF (bs_env%approx_kp_extrapol) THEN
565 2 : bs_env%wkp_orig = 1.0_dp/REAL(nkp_orig, KIND=dp)
566 : END IF
567 :
568 : ! heuristic parameter: how many k-points for χ, ε, and W are used simultaneously
569 : ! (less simultaneous k-points: less memory, but more computational effort because of
570 : ! recomputation of V(k))
571 28 : bs_env%nkp_chi_eps_W_batch = 4
572 :
573 : bs_env%num_chi_eps_W_batches = (bs_env%nkp_chi_eps_W_orig_plus_extra - 1)/ &
574 28 : bs_env%nkp_chi_eps_W_batch + 1
575 :
576 28 : u = bs_env%unit_nr
577 :
578 28 : IF (u > 0) THEN
579 14 : WRITE (u, FMT="(T2,A)") " "
580 14 : WRITE (u, FMT="(T2,1A,T71,3I4)") "K-point mesh 1 for χ, ε, W", nkp_grid(1:3)
581 14 : WRITE (u, FMT="(T2,2A,T71,3I4)") "K-point mesh 2 for χ, ε, W ", &
582 28 : "(for k-point extrapolation of W)", nkp_grid_extra(1:3)
583 14 : WRITE (u, FMT="(T2,A,T80,L)") "Approximate the k-point extrapolation", &
584 28 : bs_env%approx_kp_extrapol
585 : END IF
586 :
587 28 : CALL timestop(handle)
588 :
589 28 : END SUBROUTINE setup_kpoints_chi_eps_W
590 :
591 : ! **************************************************************************************************
592 : !> \brief ...
593 : !> \param kpoints ...
594 : !> \param qs_env ...
595 : ! **************************************************************************************************
596 0 : SUBROUTINE kpoint_init_cell_index_simple(kpoints, qs_env)
597 :
598 : TYPE(kpoint_type), POINTER :: kpoints
599 : TYPE(qs_environment_type), POINTER :: qs_env
600 :
601 : CHARACTER(LEN=*), PARAMETER :: routineN = 'kpoint_init_cell_index_simple'
602 :
603 : INTEGER :: handle
604 : TYPE(dft_control_type), POINTER :: dft_control
605 : TYPE(mp_para_env_type), POINTER :: para_env
606 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
607 0 : POINTER :: sab_orb
608 :
609 0 : CALL timeset(routineN, handle)
610 :
611 0 : NULLIFY (dft_control, para_env, sab_orb)
612 0 : CALL get_qs_env(qs_env=qs_env, para_env=para_env, dft_control=dft_control, sab_orb=sab_orb)
613 0 : CALL kpoint_init_cell_index(kpoints, sab_orb, para_env, dft_control)
614 :
615 0 : CALL timestop(handle)
616 :
617 0 : END SUBROUTINE kpoint_init_cell_index_simple
618 :
619 : ! **************************************************************************************************
620 : !> \brief ...
621 : !> \param xkp ...
622 : !> \param ikp_start ...
623 : !> \param ikp_end ...
624 : !> \param grid ...
625 : ! **************************************************************************************************
626 56 : SUBROUTINE compute_xkp(xkp, ikp_start, ikp_end, grid)
627 :
628 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: xkp
629 : INTEGER :: ikp_start, ikp_end
630 : INTEGER, DIMENSION(3) :: grid
631 :
632 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_xkp'
633 :
634 : INTEGER :: handle, i, ix, iy, iz
635 :
636 56 : CALL timeset(routineN, handle)
637 :
638 56 : i = ikp_start
639 236 : DO ix = 1, grid(1)
640 3280 : DO iy = 1, grid(2)
641 11448 : DO iz = 1, grid(3)
642 :
643 8224 : IF (i > ikp_end) CYCLE
644 :
645 4112 : xkp(1, i) = REAL(2*ix - grid(1) - 1, KIND=dp)/(2._dp*REAL(grid(1), KIND=dp))
646 4112 : xkp(2, i) = REAL(2*iy - grid(2) - 1, KIND=dp)/(2._dp*REAL(grid(2), KIND=dp))
647 4112 : xkp(3, i) = REAL(2*iz - grid(3) - 1, KIND=dp)/(2._dp*REAL(grid(3), KIND=dp))
648 11268 : i = i + 1
649 :
650 : END DO
651 : END DO
652 : END DO
653 :
654 56 : CALL timestop(handle)
655 :
656 56 : END SUBROUTINE compute_xkp
657 :
658 : ! **************************************************************************************************
659 : !> \brief ...
660 : !> \param wkp ...
661 : !> \param nkp_1 ...
662 : !> \param nkp_2 ...
663 : !> \param exponent ...
664 : ! **************************************************************************************************
665 32 : SUBROUTINE compute_wkp(wkp, nkp_1, nkp_2, exponent)
666 : REAL(KIND=dp), DIMENSION(:) :: wkp
667 : INTEGER :: nkp_1, nkp_2
668 : REAL(KIND=dp) :: exponent
669 :
670 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_wkp'
671 :
672 : INTEGER :: handle
673 : REAL(KIND=dp) :: nkp_ratio
674 :
675 32 : CALL timeset(routineN, handle)
676 :
677 32 : nkp_ratio = REAL(nkp_2, KIND=dp)/REAL(nkp_1, KIND=dp)
678 :
679 4132 : wkp(:) = 1.0_dp/REAL(nkp_1, KIND=dp)/(1.0_dp - nkp_ratio**exponent)
680 :
681 32 : CALL timestop(handle)
682 :
683 32 : END SUBROUTINE compute_wkp
684 :
685 : ! **************************************************************************************************
686 : !> \brief ...
687 : !> \param qs_env ...
688 : !> \param bs_env ...
689 : ! **************************************************************************************************
690 28 : SUBROUTINE allocate_matrices(qs_env, bs_env)
691 : TYPE(qs_environment_type), POINTER :: qs_env
692 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
693 :
694 : CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices'
695 :
696 : INTEGER :: handle, i_t
697 : TYPE(cp_blacs_env_type), POINTER :: blacs_env, blacs_env_tensor
698 : TYPE(cp_fm_struct_type), POINTER :: fm_struct, fm_struct_RI_global
699 : TYPE(mp_para_env_type), POINTER :: para_env
700 :
701 28 : CALL timeset(routineN, handle)
702 :
703 28 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
704 :
705 28 : fm_struct => bs_env%fm_ks_Gamma(1)%matrix_struct
706 :
707 28 : CALL cp_fm_create(bs_env%fm_Gocc, fm_struct)
708 28 : CALL cp_fm_create(bs_env%fm_Gvir, fm_struct)
709 :
710 28 : NULLIFY (fm_struct_RI_global)
711 : CALL cp_fm_struct_create(fm_struct_RI_global, context=blacs_env, nrow_global=bs_env%n_RI, &
712 28 : ncol_global=bs_env%n_RI, para_env=para_env)
713 28 : CALL cp_fm_create(bs_env%fm_RI_RI, fm_struct_RI_global)
714 28 : CALL cp_fm_create(bs_env%fm_chi_Gamma_freq, fm_struct_RI_global)
715 28 : CALL cp_fm_create(bs_env%fm_W_MIC_freq, fm_struct_RI_global)
716 28 : IF (bs_env%approx_kp_extrapol) THEN
717 2 : CALL cp_fm_create(bs_env%fm_W_MIC_freq_1_extra, fm_struct_RI_global)
718 2 : CALL cp_fm_create(bs_env%fm_W_MIC_freq_1_no_extra, fm_struct_RI_global)
719 2 : CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_1_extra, 0.0_dp)
720 2 : CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_1_no_extra, 0.0_dp)
721 : END IF
722 28 : CALL cp_fm_struct_release(fm_struct_RI_global)
723 :
724 : ! create blacs_env for subgroups of tensor operations
725 28 : NULLIFY (blacs_env_tensor)
726 28 : CALL cp_blacs_env_create(blacs_env=blacs_env_tensor, para_env=bs_env%para_env_tensor)
727 :
728 : ! allocate dbcsr matrices in the tensor subgroup; actually, one only needs a small
729 : ! subset of blocks in the tensor subgroup, however, all atomic blocks are allocated.
730 : ! One might think of creating a dbcsr matrix with only the blocks that are needed
731 : ! in the tensor subgroup
732 : CALL create_mat_munu(bs_env%mat_ao_ao_tensor, qs_env, bs_env%eps_atom_grid_2d_mat, &
733 28 : blacs_env_tensor, do_ri_aux_basis=.FALSE.)
734 :
735 : CALL create_mat_munu(bs_env%mat_RI_RI_tensor, qs_env, bs_env%eps_atom_grid_2d_mat, &
736 28 : blacs_env_tensor, do_ri_aux_basis=.TRUE.)
737 :
738 : CALL create_mat_munu(bs_env%mat_RI_RI, qs_env, bs_env%eps_atom_grid_2d_mat, &
739 28 : blacs_env, do_ri_aux_basis=.TRUE.)
740 :
741 28 : CALL cp_blacs_env_release(blacs_env_tensor)
742 :
743 28 : NULLIFY (bs_env%mat_chi_Gamma_tau)
744 28 : CALL dbcsr_allocate_matrix_set(bs_env%mat_chi_Gamma_tau, bs_env%num_time_freq_points)
745 :
746 396 : DO i_t = 1, bs_env%num_time_freq_points
747 368 : ALLOCATE (bs_env%mat_chi_Gamma_tau(i_t)%matrix)
748 396 : CALL dbcsr_create(bs_env%mat_chi_Gamma_tau(i_t)%matrix, template=bs_env%mat_RI_RI%matrix)
749 : END DO
750 :
751 28 : CALL timestop(handle)
752 :
753 28 : END SUBROUTINE allocate_matrices
754 :
755 : ! **************************************************************************************************
756 : !> \brief ...
757 : !> \param bs_env ...
758 : ! **************************************************************************************************
759 22 : SUBROUTINE allocate_GW_eigenvalues(bs_env)
760 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
761 :
762 : CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_GW_eigenvalues'
763 :
764 : INTEGER :: handle
765 :
766 22 : CALL timeset(routineN, handle)
767 :
768 110 : ALLOCATE (bs_env%eigenval_G0W0(bs_env%n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
769 110 : ALLOCATE (bs_env%eigenval_HF(bs_env%n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
770 :
771 22 : CALL timestop(handle)
772 :
773 22 : END SUBROUTINE allocate_GW_eigenvalues
774 :
775 : ! **************************************************************************************************
776 : !> \brief ...
777 : !> \param qs_env ...
778 : !> \param bs_env ...
779 : ! **************************************************************************************************
780 28 : SUBROUTINE create_tensors(qs_env, bs_env)
781 : TYPE(qs_environment_type), POINTER :: qs_env
782 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
783 :
784 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_tensors'
785 :
786 : INTEGER :: handle
787 :
788 28 : CALL timeset(routineN, handle)
789 :
790 28 : CALL init_interaction_radii(bs_env)
791 :
792 : ! split blocks does not improve load balancing/efficienfy for tensor contraction, so we go
793 : ! with the standard atomic blocks
794 : CALL create_3c_t(bs_env%t_RI_AO__AO, bs_env%para_env_tensor, "(RI AO | AO)", [1, 2], [3], &
795 : bs_env%sizes_RI, bs_env%sizes_AO, &
796 28 : create_nl_3c=.TRUE., nl_3c=bs_env%nl_3c, qs_env=qs_env)
797 : CALL create_3c_t(bs_env%t_RI__AO_AO, bs_env%para_env_tensor, "(RI | AO AO)", [1], [2, 3], &
798 28 : bs_env%sizes_RI, bs_env%sizes_AO)
799 :
800 28 : CALL create_2c_t(bs_env, bs_env%sizes_RI, bs_env%sizes_AO)
801 :
802 28 : CALL timestop(handle)
803 :
804 28 : END SUBROUTINE create_tensors
805 :
806 : ! **************************************************************************************************
807 : !> \brief ...
808 : !> \param qs_env ...
809 : !> \param bs_env ...
810 : ! **************************************************************************************************
811 22 : SUBROUTINE check_sparsity_3c(qs_env, bs_env)
812 : TYPE(qs_environment_type), POINTER :: qs_env
813 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
814 :
815 : CHARACTER(LEN=*), PARAMETER :: routineN = 'check_sparsity_3c'
816 :
817 : INTEGER :: handle, n_atom_step, RI_atom
818 : INTEGER(int_8) :: mem, non_zero_elements_sum, nze
819 : REAL(dp) :: max_dist_AO_atoms, occ, occupation_sum
820 : REAL(KIND=dp) :: t1, t2
821 154 : TYPE(dbt_type) :: t_3c_global
822 22 : TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_global_array
823 : TYPE(neighbor_list_3c_type) :: nl_3c_global
824 :
825 22 : CALL timeset(routineN, handle)
826 :
827 : ! check the sparsity of 3c integral tensor (µν|P); calculate maximum distance between
828 : ! AO atoms µ, ν where at least a single integral (µν|P) is larger than the filter threshold
829 : CALL create_3c_t(t_3c_global, bs_env%para_env, "(RI AO | AO)", [1, 2], [3], &
830 : bs_env%sizes_RI, bs_env%sizes_AO, &
831 22 : create_nl_3c=.TRUE., nl_3c=nl_3c_global, qs_env=qs_env)
832 :
833 22 : CALL m_memory(mem)
834 22 : CALL bs_env%para_env%max(mem)
835 :
836 198 : ALLOCATE (t_3c_global_array(1, 1))
837 22 : CALL dbt_create(t_3c_global, t_3c_global_array(1, 1))
838 :
839 22 : CALL bs_env%para_env%sync()
840 22 : t1 = m_walltime()
841 :
842 22 : occupation_sum = 0.0_dp
843 22 : non_zero_elements_sum = 0
844 22 : max_dist_AO_atoms = 0.0_dp
845 22 : n_atom_step = INT(SQRT(REAL(bs_env%n_atom, KIND=dp)))
846 : ! do not compute full 3c integrals at once because it may cause out of memory
847 70 : DO RI_atom = 1, bs_env%n_atom, n_atom_step
848 :
849 : CALL build_3c_integrals(t_3c_global_array, &
850 : bs_env%eps_filter, &
851 : qs_env, &
852 : nl_3c_global, &
853 : int_eps=bs_env%eps_filter, &
854 : basis_i=bs_env%basis_set_RI, &
855 : basis_j=bs_env%basis_set_AO, &
856 : basis_k=bs_env%basis_set_AO, &
857 : bounds_i=[RI_atom, MIN(RI_atom + n_atom_step - 1, bs_env%n_atom)], &
858 : potential_parameter=bs_env%ri_metric, &
859 144 : desymmetrize=.FALSE.)
860 :
861 48 : CALL dbt_filter(t_3c_global_array(1, 1), bs_env%eps_filter)
862 :
863 48 : CALL bs_env%para_env%sync()
864 :
865 48 : CALL get_tensor_occupancy(t_3c_global_array(1, 1), nze, occ)
866 48 : non_zero_elements_sum = non_zero_elements_sum + nze
867 48 : occupation_sum = occupation_sum + occ
868 :
869 48 : CALL get_max_dist_AO_atoms(t_3c_global_array(1, 1), max_dist_AO_atoms, qs_env)
870 :
871 118 : CALL dbt_clear(t_3c_global_array(1, 1))
872 :
873 : END DO
874 :
875 22 : t2 = m_walltime()
876 :
877 22 : bs_env%occupation_3c_int = occupation_sum
878 22 : bs_env%max_dist_AO_atoms = max_dist_AO_atoms
879 :
880 22 : CALL dbt_destroy(t_3c_global)
881 22 : CALL dbt_destroy(t_3c_global_array(1, 1))
882 44 : DEALLOCATE (t_3c_global_array)
883 :
884 22 : CALL neighbor_list_3c_destroy(nl_3c_global)
885 :
886 22 : IF (bs_env%unit_nr > 0) THEN
887 11 : WRITE (bs_env%unit_nr, '(T2,A)') ''
888 : WRITE (bs_env%unit_nr, '(T2,A,F27.1,A)') &
889 11 : 'Computed 3-center integrals (µν|P), execution time', t2 - t1, ' s'
890 11 : WRITE (bs_env%unit_nr, '(T2,A,F48.3,A)') 'Percentage of non-zero (µν|P)', &
891 22 : occupation_sum*100, ' %'
892 11 : WRITE (bs_env%unit_nr, '(T2,A,F33.1,A)') 'Max. distance between µ,ν in non-zero (µν|P)', &
893 22 : max_dist_AO_atoms*angstrom, ' A'
894 11 : WRITE (bs_env%unit_nr, '(T2,2A,I20,A)') 'Required memory if storing all 3-center ', &
895 22 : 'integrals (µν|P)', INT(REAL(non_zero_elements_sum, KIND=dp)*8.0E-9_dp), ' GB'
896 : END IF
897 :
898 22 : CALL timestop(handle)
899 :
900 88 : END SUBROUTINE check_sparsity_3c
901 :
902 : ! **************************************************************************************************
903 : !> \brief ...
904 : !> \param bs_env ...
905 : !> \param sizes_RI ...
906 : !> \param sizes_AO ...
907 : ! **************************************************************************************************
908 28 : SUBROUTINE create_2c_t(bs_env, sizes_RI, sizes_AO)
909 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
910 : INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_RI, sizes_AO
911 :
912 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_2c_t'
913 :
914 : INTEGER :: handle
915 28 : INTEGER, ALLOCATABLE, DIMENSION(:) :: dist_1, dist_2
916 : INTEGER, DIMENSION(2) :: pdims_2d
917 84 : TYPE(dbt_pgrid_type) :: pgrid_2d
918 :
919 28 : CALL timeset(routineN, handle)
920 :
921 : ! inspired from rpa_im_time.F / hfx_types.F
922 :
923 28 : pdims_2d = 0
924 28 : CALL dbt_pgrid_create(bs_env%para_env_tensor, pdims_2d, pgrid_2d)
925 :
926 : CALL create_2c_tensor(bs_env%t_G, dist_1, dist_2, pgrid_2d, sizes_AO, sizes_AO, &
927 28 : name="(AO | AO)")
928 28 : DEALLOCATE (dist_1, dist_2)
929 : CALL create_2c_tensor(bs_env%t_chi, dist_1, dist_2, pgrid_2d, sizes_RI, sizes_RI, &
930 28 : name="(RI | RI)")
931 28 : DEALLOCATE (dist_1, dist_2)
932 : CALL create_2c_tensor(bs_env%t_W, dist_1, dist_2, pgrid_2d, sizes_RI, sizes_RI, &
933 28 : name="(RI | RI)")
934 28 : DEALLOCATE (dist_1, dist_2)
935 28 : CALL dbt_pgrid_destroy(pgrid_2d)
936 :
937 28 : CALL timestop(handle)
938 :
939 28 : END SUBROUTINE create_2c_t
940 :
941 : ! **************************************************************************************************
942 : !> \brief ...
943 : !> \param tensor ...
944 : !> \param para_env ...
945 : !> \param tensor_name ...
946 : !> \param map1 ...
947 : !> \param map2 ...
948 : !> \param sizes_RI ...
949 : !> \param sizes_AO ...
950 : !> \param create_nl_3c ...
951 : !> \param nl_3c ...
952 : !> \param qs_env ...
953 : ! **************************************************************************************************
954 78 : SUBROUTINE create_3c_t(tensor, para_env, tensor_name, map1, map2, sizes_RI, sizes_AO, &
955 : create_nl_3c, nl_3c, qs_env)
956 : TYPE(dbt_type) :: tensor
957 : TYPE(mp_para_env_type), POINTER :: para_env
958 : CHARACTER(LEN=12) :: tensor_name
959 : INTEGER, DIMENSION(:) :: map1, map2
960 : INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_RI, sizes_AO
961 : LOGICAL, OPTIONAL :: create_nl_3c
962 : TYPE(neighbor_list_3c_type), OPTIONAL :: nl_3c
963 : TYPE(qs_environment_type), OPTIONAL, POINTER :: qs_env
964 :
965 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_3c_t'
966 :
967 : INTEGER :: handle, nkind
968 78 : INTEGER, ALLOCATABLE, DIMENSION(:) :: dist_AO_1, dist_AO_2, dist_RI
969 : INTEGER, DIMENSION(3) :: pcoord, pdims, pdims_3d
970 : LOGICAL :: my_create_nl_3c
971 234 : TYPE(dbt_pgrid_type) :: pgrid_3d
972 : TYPE(distribution_3d_type) :: dist_3d
973 78 : TYPE(mp_cart_type) :: mp_comm_t3c_2
974 78 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
975 :
976 78 : CALL timeset(routineN, handle)
977 :
978 78 : pdims_3d = 0
979 78 : CALL dbt_pgrid_create(para_env, pdims_3d, pgrid_3d)
980 : CALL create_3c_tensor(tensor, dist_RI, dist_AO_1, dist_AO_2, &
981 : pgrid_3d, sizes_RI, sizes_AO, sizes_AO, &
982 78 : map1=map1, map2=map2, name=tensor_name)
983 :
984 78 : IF (PRESENT(create_nl_3c)) THEN
985 50 : my_create_nl_3c = create_nl_3c
986 : ELSE
987 : my_create_nl_3c = .FALSE.
988 : END IF
989 :
990 50 : IF (my_create_nl_3c) THEN
991 50 : CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set)
992 50 : CALL dbt_mp_environ_pgrid(pgrid_3d, pdims, pcoord)
993 50 : CALL mp_comm_t3c_2%create(pgrid_3d%mp_comm_2d, 3, pdims)
994 : CALL distribution_3d_create(dist_3d, dist_RI, dist_AO_1, dist_AO_2, &
995 50 : nkind, particle_set, mp_comm_t3c_2, own_comm=.TRUE.)
996 :
997 : CALL build_3c_neighbor_lists(nl_3c, &
998 : qs_env%bs_env%basis_set_RI, &
999 : qs_env%bs_env%basis_set_AO, &
1000 : qs_env%bs_env%basis_set_AO, &
1001 : dist_3d, qs_env%bs_env%ri_metric, &
1002 50 : "GW_3c_nl", qs_env, own_dist=.TRUE.)
1003 : END IF
1004 :
1005 78 : DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
1006 78 : CALL dbt_pgrid_destroy(pgrid_3d)
1007 :
1008 78 : CALL timestop(handle)
1009 :
1010 156 : END SUBROUTINE create_3c_t
1011 :
1012 : ! **************************************************************************************************
1013 : !> \brief ...
1014 : !> \param bs_env ...
1015 : ! **************************************************************************************************
1016 28 : SUBROUTINE init_interaction_radii(bs_env)
1017 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1018 :
1019 : CHARACTER(LEN=*), PARAMETER :: routineN = 'init_interaction_radii'
1020 :
1021 : INTEGER :: handle, ibasis
1022 : TYPE(gto_basis_set_type), POINTER :: orb_basis, ri_basis
1023 :
1024 28 : CALL timeset(routineN, handle)
1025 :
1026 72 : DO ibasis = 1, SIZE(bs_env%basis_set_AO)
1027 :
1028 44 : orb_basis => bs_env%basis_set_AO(ibasis)%gto_basis_set
1029 44 : CALL init_interaction_radii_orb_basis(orb_basis, bs_env%eps_filter)
1030 :
1031 44 : ri_basis => bs_env%basis_set_RI(ibasis)%gto_basis_set
1032 72 : CALL init_interaction_radii_orb_basis(ri_basis, bs_env%eps_filter)
1033 :
1034 : END DO
1035 :
1036 28 : CALL timestop(handle)
1037 :
1038 28 : END SUBROUTINE init_interaction_radii
1039 :
1040 : ! **************************************************************************************************
1041 : !> \brief ...
1042 : !> \param t_3c_int ...
1043 : !> \param max_dist_AO_atoms ...
1044 : !> \param qs_env ...
1045 : ! **************************************************************************************************
1046 48 : SUBROUTINE get_max_dist_AO_atoms(t_3c_int, max_dist_AO_atoms, qs_env)
1047 : TYPE(dbt_type) :: t_3c_int
1048 : REAL(KIND=dp) :: max_dist_AO_atoms
1049 : TYPE(qs_environment_type), POINTER :: qs_env
1050 :
1051 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_max_dist_AO_atoms'
1052 :
1053 : INTEGER :: atom_1, atom_2, handle, num_cells
1054 : INTEGER, DIMENSION(3) :: atom_ind
1055 48 : INTEGER, DIMENSION(:, :), POINTER :: index_to_cell
1056 : REAL(KIND=dp) :: abs_rab
1057 : REAL(KIND=dp), DIMENSION(3) :: rab
1058 : TYPE(cell_type), POINTER :: cell
1059 : TYPE(dbt_iterator_type) :: iter
1060 : TYPE(mp_para_env_type), POINTER :: para_env
1061 48 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1062 :
1063 48 : CALL timeset(routineN, handle)
1064 :
1065 48 : NULLIFY (cell, particle_set, para_env)
1066 48 : CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set, para_env=para_env)
1067 :
1068 : !$OMP PARALLEL DEFAULT(NONE) &
1069 : !$OMP SHARED(t_3c_int, max_dist_AO_atoms, num_cells, index_to_cell, particle_set, cell) &
1070 48 : !$OMP PRIVATE(iter,atom_ind,rab, abs_rab, atom_1, atom_2)
1071 : CALL dbt_iterator_start(iter, t_3c_int)
1072 : DO WHILE (dbt_iterator_blocks_left(iter))
1073 : CALL dbt_iterator_next_block(iter, atom_ind)
1074 :
1075 : atom_1 = atom_ind(2)
1076 : atom_2 = atom_ind(3)
1077 :
1078 : rab = pbc(particle_set(atom_1)%r(1:3), particle_set(atom_2)%r(1:3), cell)
1079 :
1080 : abs_rab = SQRT(rab(1)**2 + rab(2)**2 + rab(3)**2)
1081 :
1082 : max_dist_AO_atoms = MAX(max_dist_AO_atoms, abs_rab)
1083 :
1084 : END DO
1085 : CALL dbt_iterator_stop(iter)
1086 : !$OMP END PARALLEL
1087 :
1088 48 : CALL para_env%max(max_dist_AO_atoms)
1089 :
1090 48 : CALL timestop(handle)
1091 :
1092 48 : END SUBROUTINE get_max_dist_AO_atoms
1093 :
1094 : ! **************************************************************************************************
1095 : !> \brief ...
1096 : !> \param bs_env ...
1097 : ! **************************************************************************************************
1098 22 : SUBROUTINE set_sparsity_parallelization_parameters(bs_env)
1099 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1100 :
1101 : CHARACTER(LEN=*), PARAMETER :: routineN = 'set_sparsity_parallelization_parameters'
1102 :
1103 : INTEGER :: handle, i_ivl, IL_ivl, j_ivl, n_atom_per_IL_ivl, n_atom_per_ivl, n_intervals_i, &
1104 : n_intervals_inner_loop_atoms, n_intervals_j, u
1105 : INTEGER(KIND=int_8) :: input_memory_per_proc
1106 :
1107 22 : CALL timeset(routineN, handle)
1108 :
1109 : ! heuristic parameter to prevent out of memory
1110 22 : bs_env%safety_factor_memory = 0.10_dp
1111 :
1112 22 : input_memory_per_proc = INT(bs_env%input_memory_per_proc_GB*1.0E9_dp, KIND=int_8)
1113 :
1114 : ! choose atomic range for λ ("i_atom"), ν ("j_atom") in
1115 : ! M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
1116 : ! N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
1117 : ! such that M and N fit into the memory
1118 : n_atom_per_ivl = INT(SQRT(bs_env%safety_factor_memory*input_memory_per_proc &
1119 : *bs_env%group_size_tensor/24/bs_env%n_RI &
1120 22 : /SQRT(bs_env%occupation_3c_int)))/bs_env%max_AO_bf_per_atom
1121 :
1122 22 : n_intervals_i = (bs_env%n_atom_i - 1)/n_atom_per_ivl + 1
1123 22 : n_intervals_j = (bs_env%n_atom_j - 1)/n_atom_per_ivl + 1
1124 :
1125 22 : bs_env%n_atom_per_interval_ij = n_atom_per_ivl
1126 22 : bs_env%n_intervals_i = n_intervals_i
1127 22 : bs_env%n_intervals_j = n_intervals_j
1128 :
1129 66 : ALLOCATE (bs_env%i_atom_intervals(2, n_intervals_i))
1130 66 : ALLOCATE (bs_env%j_atom_intervals(2, n_intervals_j))
1131 :
1132 44 : DO i_ivl = 1, n_intervals_i
1133 22 : bs_env%i_atom_intervals(1, i_ivl) = (i_ivl - 1)*n_atom_per_ivl + bs_env%atoms_i(1)
1134 : bs_env%i_atom_intervals(2, i_ivl) = MIN(i_ivl*n_atom_per_ivl + bs_env%atoms_i(1) - 1, &
1135 44 : bs_env%atoms_i(2))
1136 : END DO
1137 :
1138 44 : DO j_ivl = 1, n_intervals_j
1139 22 : bs_env%j_atom_intervals(1, j_ivl) = (j_ivl - 1)*n_atom_per_ivl + bs_env%atoms_j(1)
1140 : bs_env%j_atom_intervals(2, j_ivl) = MIN(j_ivl*n_atom_per_ivl + bs_env%atoms_j(1) - 1, &
1141 44 : bs_env%atoms_j(2))
1142 : END DO
1143 :
1144 88 : ALLOCATE (bs_env%skip_Sigma_occ(n_intervals_i, n_intervals_j))
1145 66 : ALLOCATE (bs_env%skip_Sigma_vir(n_intervals_i, n_intervals_j))
1146 66 : bs_env%skip_Sigma_occ(:, :) = .FALSE.
1147 66 : bs_env%skip_Sigma_vir(:, :) = .FALSE.
1148 :
1149 : ! choose atomic range for µ and σ ("inner loop (IL) atom") in
1150 : ! M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
1151 : ! N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
1152 : n_atom_per_IL_ivl = MIN(INT(bs_env%safety_factor_memory*input_memory_per_proc &
1153 : *bs_env%group_size_tensor/n_atom_per_ivl &
1154 : /bs_env%max_AO_bf_per_atom &
1155 : /bs_env%n_RI/8/SQRT(bs_env%occupation_3c_int) &
1156 22 : /bs_env%max_AO_bf_per_atom), bs_env%n_atom)
1157 :
1158 22 : n_intervals_inner_loop_atoms = (bs_env%n_atom - 1)/n_atom_per_IL_ivl + 1
1159 :
1160 22 : bs_env%n_atom_per_IL_interval = n_atom_per_IL_ivl
1161 22 : bs_env%n_intervals_inner_loop_atoms = n_intervals_inner_loop_atoms
1162 :
1163 66 : ALLOCATE (bs_env%inner_loop_atom_intervals(2, n_intervals_inner_loop_atoms))
1164 44 : DO IL_ivl = 1, n_intervals_inner_loop_atoms
1165 22 : bs_env%inner_loop_atom_intervals(1, IL_ivl) = (IL_ivl - 1)*n_atom_per_IL_ivl + 1
1166 44 : bs_env%inner_loop_atom_intervals(2, IL_ivl) = MIN(IL_ivl*n_atom_per_IL_ivl, bs_env%n_atom)
1167 : END DO
1168 :
1169 22 : u = bs_env%unit_nr
1170 22 : IF (u > 0) THEN
1171 11 : WRITE (u, '(T2,A)') ''
1172 11 : WRITE (u, '(T2,A,I33)') 'Number of i and j atoms in M_λνP(τ), N_νλQ(τ):', n_atom_per_ivl
1173 11 : WRITE (u, '(T2,A,I18)') 'Number of inner loop atoms for µ in M_λνP = sum_µ (µν|P) G_µλ', &
1174 22 : n_atom_per_IL_ivl
1175 : END IF
1176 :
1177 22 : CALL timestop(handle)
1178 :
1179 22 : END SUBROUTINE set_sparsity_parallelization_parameters
1180 :
1181 : ! **************************************************************************************************
1182 : !> \brief ...
1183 : !> \param qs_env ...
1184 : !> \param bs_env ...
1185 : ! **************************************************************************************************
1186 22 : SUBROUTINE check_for_restart_files(qs_env, bs_env)
1187 : TYPE(qs_environment_type), POINTER :: qs_env
1188 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1189 :
1190 : CHARACTER(LEN=*), PARAMETER :: routineN = 'check_for_restart_files'
1191 :
1192 : CHARACTER(LEN=9) :: frmt
1193 : CHARACTER(len=default_path_length) :: project_name
1194 : CHARACTER(len=default_string_length) :: f_chi, f_s_n, f_s_p, f_s_x, f_w_t, prefix
1195 : INTEGER :: handle, i_spin, i_t_or_w, ind, n_spin, &
1196 : num_time_freq_points
1197 : LOGICAL :: chi_exists, Sigma_neg_time_exists, &
1198 : Sigma_pos_time_exists, &
1199 : Sigma_x_spin_exists, W_time_exists
1200 : TYPE(cp_logger_type), POINTER :: logger
1201 : TYPE(section_vals_type), POINTER :: input, print_key
1202 :
1203 22 : CALL timeset(routineN, handle)
1204 :
1205 22 : num_time_freq_points = bs_env%num_time_freq_points
1206 22 : n_spin = bs_env%n_spin
1207 :
1208 66 : ALLOCATE (bs_env%read_chi(num_time_freq_points))
1209 44 : ALLOCATE (bs_env%calc_chi(num_time_freq_points))
1210 88 : ALLOCATE (bs_env%Sigma_c_exists(num_time_freq_points, n_spin))
1211 :
1212 22 : CALL get_qs_env(qs_env, input=input)
1213 :
1214 22 : logger => cp_get_default_logger()
1215 22 : print_key => section_vals_get_subs_vals(input, 'PROPERTIES%BANDSTRUCTURE%GW%PRINT%RESTART')
1216 : project_name = cp_print_key_generate_filename(logger, print_key, extension="", &
1217 22 : my_local=.FALSE.)
1218 22 : WRITE (prefix, '(2A)') TRIM(project_name), "-RESTART_"
1219 22 : bs_env%prefix = prefix
1220 :
1221 22 : bs_env%all_W_exist = .TRUE.
1222 :
1223 346 : DO i_t_or_w = 1, num_time_freq_points
1224 :
1225 324 : IF (i_t_or_w < 10) THEN
1226 186 : WRITE (frmt, '(A)') '(3A,I1,A)'
1227 186 : WRITE (f_chi, frmt) TRIM(prefix), bs_env%chi_name, "_0", i_t_or_w, ".matrix"
1228 186 : WRITE (f_W_t, frmt) TRIM(prefix), bs_env%W_time_name, "_0", i_t_or_w, ".matrix"
1229 138 : ELSE IF (i_t_or_w < 100) THEN
1230 138 : WRITE (frmt, '(A)') '(3A,I2,A)'
1231 138 : WRITE (f_chi, frmt) TRIM(prefix), bs_env%chi_name, "_", i_t_or_w, ".matrix"
1232 138 : WRITE (f_W_t, frmt) TRIM(prefix), bs_env%W_time_name, "_", i_t_or_w, ".matrix"
1233 : ELSE
1234 0 : CPABORT('Please implement more than 99 time/frequency points.')
1235 : END IF
1236 :
1237 324 : INQUIRE (file=TRIM(f_chi), exist=chi_exists)
1238 324 : INQUIRE (file=TRIM(f_W_t), exist=W_time_exists)
1239 :
1240 324 : bs_env%read_chi(i_t_or_w) = chi_exists
1241 324 : bs_env%calc_chi(i_t_or_w) = .NOT. chi_exists
1242 :
1243 324 : bs_env%all_W_exist = bs_env%all_W_exist .AND. W_time_exists
1244 :
1245 : ! the self-energy is spin-dependent
1246 710 : DO i_spin = 1, n_spin
1247 :
1248 364 : ind = i_t_or_w + (i_spin - 1)*num_time_freq_points
1249 :
1250 364 : IF (ind < 10) THEN
1251 186 : WRITE (frmt, '(A)') '(3A,I1,A)'
1252 186 : WRITE (f_S_p, frmt) TRIM(prefix), bs_env%Sigma_p_name, "_0", ind, ".matrix"
1253 186 : WRITE (f_S_n, frmt) TRIM(prefix), bs_env%Sigma_n_name, "_0", ind, ".matrix"
1254 178 : ELSE IF (i_t_or_w < 100) THEN
1255 178 : WRITE (frmt, '(A)') '(3A,I2,A)'
1256 178 : WRITE (f_S_p, frmt) TRIM(prefix), bs_env%Sigma_p_name, "_", ind, ".matrix"
1257 178 : WRITE (f_S_n, frmt) TRIM(prefix), bs_env%Sigma_n_name, "_", ind, ".matrix"
1258 : END IF
1259 :
1260 364 : INQUIRE (file=TRIM(f_S_p), exist=Sigma_pos_time_exists)
1261 364 : INQUIRE (file=TRIM(f_S_n), exist=Sigma_neg_time_exists)
1262 :
1263 : bs_env%Sigma_c_exists(i_t_or_w, i_spin) = Sigma_pos_time_exists .AND. &
1264 932 : Sigma_neg_time_exists
1265 :
1266 : END DO
1267 :
1268 : END DO
1269 :
1270 : ! Marek : In the RTBSE run, check also for zero frequency W
1271 22 : IF (bs_env%rtp_method == rtp_method_bse) THEN
1272 12 : WRITE (f_W_t, '(3A,I1,A)') TRIM(prefix), "W_freq_rtp", "_0", 0, ".matrix"
1273 12 : INQUIRE (file=TRIM(f_W_t), exist=W_time_exists)
1274 20 : bs_env%all_W_exist = bs_env%all_W_exist .AND. W_time_exists
1275 : END IF
1276 :
1277 22 : IF (bs_env%all_W_exist) THEN
1278 106 : bs_env%read_chi(:) = .FALSE.
1279 106 : bs_env%calc_chi(:) = .FALSE.
1280 : END IF
1281 :
1282 22 : bs_env%Sigma_x_exists = .TRUE.
1283 48 : DO i_spin = 1, n_spin
1284 26 : WRITE (f_S_x, '(3A,I1,A)') TRIM(prefix), bs_env%Sigma_x_name, "_0", i_spin, ".matrix"
1285 26 : INQUIRE (file=TRIM(f_S_x), exist=Sigma_x_spin_exists)
1286 66 : bs_env%Sigma_x_exists = bs_env%Sigma_x_exists .AND. Sigma_x_spin_exists
1287 : END DO
1288 :
1289 : ! If any restart files are read, check if the SCF converged in 1 step.
1290 : ! This is important because a re-iterated SCF can lead to spurious GW results
1291 : IF (ANY(bs_env%read_chi(:)) &
1292 : .OR. ANY(bs_env%Sigma_c_exists) &
1293 : .OR. bs_env%all_W_exist &
1294 608 : .OR. bs_env%Sigma_x_exists &
1295 : ) THEN
1296 :
1297 6 : IF (qs_env%scf_env%iter_count /= 1) THEN
1298 : CALL cp_warn(__LOCATION__, "SCF needed more than 1 step, "// &
1299 6 : "which might lead to spurious GW results when using GW restart files. ")
1300 : END IF
1301 : END IF
1302 :
1303 22 : CALL timestop(handle)
1304 :
1305 22 : END SUBROUTINE check_for_restart_files
1306 :
1307 : ! **************************************************************************************************
1308 : !> \brief ...
1309 : !> \param qs_env ...
1310 : !> \param bs_env ...
1311 : ! **************************************************************************************************
1312 28 : SUBROUTINE set_parallelization_parameters(qs_env, bs_env)
1313 : TYPE(qs_environment_type), POINTER :: qs_env
1314 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1315 :
1316 : CHARACTER(LEN=*), PARAMETER :: routineN = 'set_parallelization_parameters'
1317 :
1318 : INTEGER :: color_sub, dummy_1, dummy_2, handle, &
1319 : num_pe, num_t_groups, u
1320 : INTEGER(KIND=int_8) :: mem
1321 : TYPE(mp_para_env_type), POINTER :: para_env
1322 :
1323 28 : CALL timeset(routineN, handle)
1324 :
1325 28 : CALL get_qs_env(qs_env, para_env=para_env)
1326 :
1327 28 : num_pe = para_env%num_pe
1328 : ! if not already set, use all processors for the group (for large-cell GW, performance
1329 : ! seems to be best for a single group with all MPI processes per group)
1330 28 : IF (bs_env%group_size_tensor < 0 .OR. bs_env%group_size_tensor > num_pe) &
1331 22 : bs_env%group_size_tensor = num_pe
1332 :
1333 : ! group_size_tensor must divide num_pe without rest; otherwise everything will be complicated
1334 28 : IF (MODULO(num_pe, bs_env%group_size_tensor) /= 0) THEN
1335 0 : CALL find_good_group_size(num_pe, bs_env%group_size_tensor)
1336 : END IF
1337 :
1338 : ! para_env_tensor for tensor subgroups
1339 28 : color_sub = para_env%mepos/bs_env%group_size_tensor
1340 28 : bs_env%tensor_group_color = color_sub
1341 :
1342 28 : ALLOCATE (bs_env%para_env_tensor)
1343 28 : CALL bs_env%para_env_tensor%from_split(para_env, color_sub)
1344 :
1345 28 : num_t_groups = para_env%num_pe/bs_env%group_size_tensor
1346 28 : bs_env%num_tensor_groups = num_t_groups
1347 :
1348 : CALL get_i_j_atoms(bs_env%atoms_i, bs_env%atoms_j, bs_env%n_atom_i, bs_env%n_atom_j, &
1349 28 : color_sub, bs_env)
1350 :
1351 84 : ALLOCATE (bs_env%atoms_i_t_group(2, num_t_groups))
1352 84 : ALLOCATE (bs_env%atoms_j_t_group(2, num_t_groups))
1353 62 : DO color_sub = 0, num_t_groups - 1
1354 : CALL get_i_j_atoms(bs_env%atoms_i_t_group(1:2, color_sub + 1), &
1355 : bs_env%atoms_j_t_group(1:2, color_sub + 1), &
1356 62 : dummy_1, dummy_2, color_sub, bs_env)
1357 : END DO
1358 :
1359 28 : CALL m_memory(mem)
1360 28 : CALL bs_env%para_env%max(mem)
1361 :
1362 28 : u = bs_env%unit_nr
1363 28 : IF (u > 0) THEN
1364 14 : WRITE (u, '(T2,A,I47)') 'Group size for tensor operations', bs_env%group_size_tensor
1365 14 : IF (bs_env%group_size_tensor > 1 .AND. bs_env%n_atom < 5) THEN
1366 11 : WRITE (u, '(T2,A)') 'The requested group size is > 1 which can lead to bad performance.'
1367 11 : WRITE (u, '(T2,A)') 'Using more memory per MPI process might improve performance.'
1368 11 : WRITE (u, '(T2,A)') '(Also increase MEMORY_PER_PROC when using more memory per process.)'
1369 : END IF
1370 : END IF
1371 :
1372 28 : CALL timestop(handle)
1373 :
1374 56 : END SUBROUTINE set_parallelization_parameters
1375 :
1376 : ! **************************************************************************************************
1377 : !> \brief ...
1378 : !> \param num_pe ...
1379 : !> \param group_size ...
1380 : ! **************************************************************************************************
1381 0 : SUBROUTINE find_good_group_size(num_pe, group_size)
1382 :
1383 : INTEGER :: num_pe, group_size
1384 :
1385 : CHARACTER(LEN=*), PARAMETER :: routineN = 'find_good_group_size'
1386 :
1387 : INTEGER :: group_size_minus, group_size_orig, &
1388 : group_size_plus, handle, i_diff
1389 :
1390 0 : CALL timeset(routineN, handle)
1391 :
1392 0 : group_size_orig = group_size
1393 :
1394 0 : DO i_diff = 1, num_pe
1395 :
1396 0 : group_size_minus = group_size - i_diff
1397 :
1398 0 : IF (MODULO(num_pe, group_size_minus) == 0 .AND. group_size_minus > 0) THEN
1399 0 : group_size = group_size_minus
1400 0 : EXIT
1401 : END IF
1402 :
1403 0 : group_size_plus = group_size + i_diff
1404 :
1405 0 : IF (MODULO(num_pe, group_size_plus) == 0 .AND. group_size_plus <= num_pe) THEN
1406 0 : group_size = group_size_plus
1407 0 : EXIT
1408 : END IF
1409 :
1410 : END DO
1411 :
1412 0 : IF (group_size_orig == group_size) CPABORT("Group size error")
1413 :
1414 0 : CALL timestop(handle)
1415 :
1416 0 : END SUBROUTINE find_good_group_size
1417 :
1418 : ! **************************************************************************************************
1419 : !> \brief ...
1420 : !> \param atoms_i ...
1421 : !> \param atoms_j ...
1422 : !> \param n_atom_i ...
1423 : !> \param n_atom_j ...
1424 : !> \param color_sub ...
1425 : !> \param bs_env ...
1426 : ! **************************************************************************************************
1427 62 : SUBROUTINE get_i_j_atoms(atoms_i, atoms_j, n_atom_i, n_atom_j, color_sub, bs_env)
1428 :
1429 : INTEGER, DIMENSION(2) :: atoms_i, atoms_j
1430 : INTEGER :: n_atom_i, n_atom_j, color_sub
1431 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1432 :
1433 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_i_j_atoms'
1434 :
1435 : INTEGER :: handle, i_atoms_per_group, i_group, &
1436 : ipcol, ipcol_loop, iprow, iprow_loop, &
1437 : j_atoms_per_group, npcol, nprow
1438 :
1439 62 : CALL timeset(routineN, handle)
1440 :
1441 : ! create a square mesh of tensor groups for iatom and jatom; code from blacs_env_create
1442 62 : CALL square_mesh(nprow, npcol, bs_env%num_tensor_groups)
1443 :
1444 62 : i_group = 0
1445 124 : DO ipcol_loop = 0, npcol - 1
1446 204 : DO iprow_loop = 0, nprow - 1
1447 80 : IF (i_group == color_sub) THEN
1448 62 : iprow = iprow_loop
1449 62 : ipcol = ipcol_loop
1450 : END IF
1451 142 : i_group = i_group + 1
1452 : END DO
1453 : END DO
1454 :
1455 62 : IF (MODULO(bs_env%n_atom, nprow) == 0) THEN
1456 50 : i_atoms_per_group = bs_env%n_atom/nprow
1457 : ELSE
1458 12 : i_atoms_per_group = bs_env%n_atom/nprow + 1
1459 : END IF
1460 :
1461 62 : IF (MODULO(bs_env%n_atom, npcol) == 0) THEN
1462 62 : j_atoms_per_group = bs_env%n_atom/npcol
1463 : ELSE
1464 0 : j_atoms_per_group = bs_env%n_atom/npcol + 1
1465 : END IF
1466 :
1467 62 : atoms_i(1) = iprow*i_atoms_per_group + 1
1468 62 : atoms_i(2) = MIN((iprow + 1)*i_atoms_per_group, bs_env%n_atom)
1469 62 : n_atom_i = atoms_i(2) - atoms_i(1) + 1
1470 :
1471 62 : atoms_j(1) = ipcol*j_atoms_per_group + 1
1472 62 : atoms_j(2) = MIN((ipcol + 1)*j_atoms_per_group, bs_env%n_atom)
1473 62 : n_atom_j = atoms_j(2) - atoms_j(1) + 1
1474 :
1475 62 : CALL timestop(handle)
1476 :
1477 62 : END SUBROUTINE get_i_j_atoms
1478 :
1479 : ! **************************************************************************************************
1480 : !> \brief ...
1481 : !> \param nprow ...
1482 : !> \param npcol ...
1483 : !> \param nproc ...
1484 : ! **************************************************************************************************
1485 62 : SUBROUTINE square_mesh(nprow, npcol, nproc)
1486 : INTEGER :: nprow, npcol, nproc
1487 :
1488 : CHARACTER(LEN=*), PARAMETER :: routineN = 'square_mesh'
1489 :
1490 : INTEGER :: gcd_max, handle, ipe, jpe
1491 :
1492 62 : CALL timeset(routineN, handle)
1493 :
1494 62 : gcd_max = -1
1495 142 : DO ipe = 1, CEILING(SQRT(REAL(nproc, dp)))
1496 80 : jpe = nproc/ipe
1497 80 : IF (ipe*jpe /= nproc) CYCLE
1498 142 : IF (gcd(ipe, jpe) >= gcd_max) THEN
1499 80 : nprow = ipe
1500 80 : npcol = jpe
1501 80 : gcd_max = gcd(ipe, jpe)
1502 : END IF
1503 : END DO
1504 :
1505 62 : CALL timestop(handle)
1506 :
1507 62 : END SUBROUTINE square_mesh
1508 :
1509 : ! **************************************************************************************************
1510 : !> \brief ...
1511 : !> \param bs_env ...
1512 : !> \param qs_env ...
1513 : ! **************************************************************************************************
1514 28 : SUBROUTINE set_heuristic_parameters(bs_env, qs_env)
1515 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1516 : TYPE(qs_environment_type), OPTIONAL, POINTER :: qs_env
1517 :
1518 : CHARACTER(LEN=*), PARAMETER :: routineN = 'set_heuristic_parameters'
1519 :
1520 : INTEGER :: handle, u
1521 : LOGICAL :: do_BvK_cell
1522 :
1523 28 : CALL timeset(routineN, handle)
1524 :
1525 : ! for generating numerically stable minimax Fourier integration weights
1526 28 : bs_env%num_points_per_magnitude = 200
1527 :
1528 28 : IF (bs_env%input_regularization_minimax > -1.0E-12_dp) THEN
1529 0 : bs_env%regularization_minimax = bs_env%input_regularization_minimax
1530 : ELSE
1531 : ! for periodic systems and for 20 minimax points, we use a regularized minimax mesh
1532 : ! (from experience: regularized minimax meshes converges faster for periodic systems
1533 : ! and for 20 pts)
1534 112 : IF (SUM(bs_env%periodic) /= 0 .OR. bs_env%num_time_freq_points >= 20) THEN
1535 28 : bs_env%regularization_minimax = 1.0E-6_dp
1536 : ELSE
1537 0 : bs_env%regularization_minimax = 0.0_dp
1538 : END IF
1539 : END IF
1540 :
1541 28 : bs_env%stabilize_exp = 70.0_dp
1542 28 : bs_env%eps_atom_grid_2d_mat = 1.0E-50_dp
1543 :
1544 : ! use a 16-parameter Padé fit
1545 28 : bs_env%nparam_pade = 16
1546 :
1547 : ! resolution of the identity with the truncated Coulomb metric, cutoff radius 3 Angström
1548 28 : bs_env%ri_metric%potential_type = do_potential_truncated
1549 28 : bs_env%ri_metric%omega = 0.0_dp
1550 : ! cutoff radius is specified in the input
1551 28 : bs_env%ri_metric%filename = "t_c_g.dat"
1552 :
1553 28 : bs_env%eps_eigval_mat_RI = 0.0_dp
1554 :
1555 28 : IF (bs_env%input_regularization_RI > -1.0E-12_dp) THEN
1556 0 : bs_env%regularization_RI = bs_env%input_regularization_RI
1557 : ELSE
1558 : ! default case:
1559 :
1560 : ! 1. for periodic systems, we use the regularized resolution of the identity per default
1561 28 : bs_env%regularization_RI = 1.0E-2_dp
1562 :
1563 : ! 2. for molecules, no regularization is necessary
1564 112 : IF (SUM(bs_env%periodic) == 0) bs_env%regularization_RI = 0.0_dp
1565 :
1566 : END IF
1567 :
1568 : ! truncated Coulomb operator for exchange self-energy
1569 : ! (see details in Guidon, VandeVondele, Hutter, JCTC 5, 3010 (2009) and references therein)
1570 28 : do_BvK_cell = bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp
1571 : CALL trunc_coulomb_for_exchange(qs_env, bs_env%trunc_coulomb, &
1572 : rel_cutoff_trunc_coulomb_ri_x=0.5_dp, &
1573 : cell_grid=bs_env%cell_grid_scf_desymm, &
1574 28 : do_BvK_cell=do_BvK_cell)
1575 :
1576 : ! for small-cell GW, we need more cells than normally used by the filter bs_env%eps_filter
1577 : ! (in particular for computing the self-energy because of higher number of cells needed)
1578 28 : bs_env%heuristic_filter_factor = 1.0E-4
1579 :
1580 28 : u = bs_env%unit_nr
1581 28 : IF (u > 0) THEN
1582 14 : WRITE (u, FMT="(T2,2A,F21.1,A)") "Cutoff radius for the truncated Coulomb ", &
1583 28 : "operator in Σ^x:", bs_env%trunc_coulomb%cutoff_radius*angstrom, " Å"
1584 14 : WRITE (u, FMT="(T2,2A,F15.1,A)") "Cutoff radius for the truncated Coulomb ", &
1585 28 : "operator in RI metric:", bs_env%ri_metric%cutoff_radius*angstrom, " Å"
1586 14 : WRITE (u, FMT="(T2,A,ES48.1)") "Regularization parameter of RI ", bs_env%regularization_RI
1587 14 : WRITE (u, FMT="(T2,A,ES38.1)") "Regularization parameter of minimax grids", &
1588 28 : bs_env%regularization_minimax
1589 14 : WRITE (u, FMT="(T2,A,I53)") "Lattice sum size for V(k):", bs_env%size_lattice_sum_V
1590 : END IF
1591 :
1592 28 : CALL timestop(handle)
1593 :
1594 28 : END SUBROUTINE set_heuristic_parameters
1595 :
1596 : ! **************************************************************************************************
1597 : !> \brief ...
1598 : !> \param bs_env ...
1599 : ! **************************************************************************************************
1600 28 : SUBROUTINE print_header_and_input_parameters(bs_env)
1601 :
1602 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1603 :
1604 : CHARACTER(LEN=*), PARAMETER :: routineN = 'print_header_and_input_parameters'
1605 :
1606 : INTEGER :: handle, u
1607 :
1608 28 : CALL timeset(routineN, handle)
1609 :
1610 28 : u = bs_env%unit_nr
1611 :
1612 28 : IF (u > 0) THEN
1613 14 : WRITE (u, '(T2,A)') ' '
1614 14 : WRITE (u, '(T2,A)') REPEAT('-', 79)
1615 14 : WRITE (u, '(T2,A,A78)') '-', '-'
1616 14 : WRITE (u, '(T2,A,A46,A32)') '-', 'GW CALCULATION', '-'
1617 14 : WRITE (u, '(T2,A,A78)') '-', '-'
1618 14 : WRITE (u, '(T2,A)') REPEAT('-', 79)
1619 14 : WRITE (u, '(T2,A)') ' '
1620 14 : WRITE (u, '(T2,A,I45)') 'Input: Number of time/freq. points', bs_env%num_time_freq_points
1621 14 : WRITE (u, "(T2,A,F44.1,A)") 'Input: ω_max for fitting Σ(iω) (eV)', bs_env%freq_max_fit*evolt
1622 14 : WRITE (u, '(T2,A,ES27.1)') 'Input: Filter threshold for sparse tensor operations', &
1623 28 : bs_env%eps_filter
1624 14 : WRITE (u, "(T2,A,L55)") 'Input: Apply Hedin shift', bs_env%do_hedin_shift
1625 : END IF
1626 :
1627 28 : CALL timestop(handle)
1628 :
1629 28 : END SUBROUTINE print_header_and_input_parameters
1630 :
1631 : ! **************************************************************************************************
1632 : !> \brief ...
1633 : !> \param qs_env ...
1634 : !> \param bs_env ...
1635 : ! **************************************************************************************************
1636 56 : SUBROUTINE compute_V_xc(qs_env, bs_env)
1637 : TYPE(qs_environment_type), POINTER :: qs_env
1638 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1639 :
1640 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_V_xc'
1641 :
1642 : INTEGER :: handle, img, ispin, myfun, nimages
1643 : LOGICAL :: hf_present
1644 : REAL(KIND=dp) :: energy_ex, energy_exc, energy_total, &
1645 : myfraction
1646 28 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_ks_without_v_xc
1647 28 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks_kp
1648 : TYPE(dft_control_type), POINTER :: dft_control
1649 : TYPE(qs_energy_type), POINTER :: energy
1650 : TYPE(section_vals_type), POINTER :: hf_section, input, xc_section
1651 :
1652 28 : CALL timeset(routineN, handle)
1653 :
1654 28 : CALL get_qs_env(qs_env, input=input, energy=energy, dft_control=dft_control)
1655 :
1656 : ! previously, dft_control%nimages set to # neighbor cells, revert for Γ-only KS matrix
1657 28 : nimages = dft_control%nimages
1658 28 : dft_control%nimages = bs_env%nimages_scf
1659 :
1660 : ! we need to reset XC functional, therefore, get XC input
1661 28 : xc_section => section_vals_get_subs_vals(input, "DFT%XC")
1662 28 : CALL section_vals_val_get(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", i_val=myfun)
1663 28 : CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", i_val=xc_none)
1664 : ! IF (ASSOCIATED(section_vals_get_subs_vals(xc_section, "HF", can_return_null=.TRUE.))) THEN
1665 28 : hf_section => section_vals_get_subs_vals(input, "DFT%XC%HF", can_return_null=.TRUE.)
1666 28 : hf_present = .FALSE.
1667 28 : IF (ASSOCIATED(hf_section)) THEN
1668 28 : CALL section_vals_get(hf_section, explicit=hf_present)
1669 : END IF
1670 28 : IF (hf_present) THEN
1671 : ! Special case for handling hfx
1672 0 : CALL section_vals_val_get(xc_section, "HF%FRACTION", r_val=myfraction)
1673 0 : CALL section_vals_val_set(xc_section, "HF%FRACTION", r_val=0.0_dp)
1674 : END IF
1675 :
1676 : ! save the energy before the energy gets updated
1677 28 : energy_total = energy%total
1678 28 : energy_exc = energy%exc
1679 28 : energy_ex = energy%ex
1680 :
1681 50 : SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
1682 : CASE (large_cell_Gamma)
1683 :
1684 22 : NULLIFY (mat_ks_without_v_xc)
1685 22 : CALL dbcsr_allocate_matrix_set(mat_ks_without_v_xc, bs_env%n_spin)
1686 :
1687 48 : DO ispin = 1, bs_env%n_spin
1688 26 : ALLOCATE (mat_ks_without_v_xc(ispin)%matrix)
1689 48 : IF (hf_present) THEN
1690 : CALL dbcsr_create(mat_ks_without_v_xc(ispin)%matrix, template=bs_env%mat_ao_ao%matrix, &
1691 0 : matrix_type=dbcsr_type_symmetric)
1692 : ELSE
1693 26 : CALL dbcsr_create(mat_ks_without_v_xc(ispin)%matrix, template=bs_env%mat_ao_ao%matrix)
1694 : END IF
1695 : END DO
1696 :
1697 : ! calculate KS-matrix without XC
1698 : CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE., &
1699 22 : ext_ks_matrix=mat_ks_without_v_xc)
1700 :
1701 48 : DO ispin = 1, bs_env%n_spin
1702 : ! transfer dbcsr matrix to fm
1703 26 : CALL cp_fm_create(bs_env%fm_V_xc_Gamma(ispin), bs_env%fm_s_Gamma%matrix_struct)
1704 26 : CALL copy_dbcsr_to_fm(mat_ks_without_v_xc(ispin)%matrix, bs_env%fm_V_xc_Gamma(ispin))
1705 :
1706 : ! v_xc = h_ks - h_ks(v_xc = 0)
1707 : CALL cp_fm_scale_and_add(alpha=-1.0_dp, matrix_a=bs_env%fm_V_xc_Gamma(ispin), &
1708 48 : beta=1.0_dp, matrix_b=bs_env%fm_ks_Gamma(ispin))
1709 : END DO
1710 :
1711 22 : CALL dbcsr_deallocate_matrix_set(mat_ks_without_v_xc)
1712 :
1713 : CASE (small_cell_full_kp)
1714 :
1715 : ! calculate KS-matrix without XC
1716 6 : CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
1717 6 : CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_kp)
1718 :
1719 208 : ALLOCATE (bs_env%fm_V_xc_R(dft_control%nimages, bs_env%n_spin))
1720 40 : DO ispin = 1, bs_env%n_spin
1721 190 : DO img = 1, dft_control%nimages
1722 : ! safe fm_V_xc_R in fm_matrix because saving in dbcsr matrix caused trouble...
1723 178 : CALL copy_dbcsr_to_fm(matrix_ks_kp(ispin, img)%matrix, bs_env%fm_work_mo(1))
1724 : CALL cp_fm_create(bs_env%fm_V_xc_R(img, ispin), bs_env%fm_work_mo(1)%matrix_struct, &
1725 178 : set_zero=.TRUE.)
1726 : ! store h_ks(v_xc = 0) in fm_V_xc_R
1727 : CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=bs_env%fm_V_xc_R(img, ispin), &
1728 184 : beta=1.0_dp, matrix_b=bs_env%fm_work_mo(1))
1729 : END DO
1730 : END DO
1731 :
1732 : END SELECT
1733 :
1734 : ! set back the energy
1735 28 : energy%total = energy_total
1736 28 : energy%exc = energy_exc
1737 28 : energy%ex = energy_ex
1738 :
1739 : ! set back nimages
1740 28 : dft_control%nimages = nimages
1741 :
1742 : ! set the DFT functional and HF fraction back
1743 : CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", &
1744 28 : i_val=myfun)
1745 28 : IF (hf_present) THEN
1746 : CALL section_vals_val_set(xc_section, "HF%FRACTION", &
1747 0 : r_val=myfraction)
1748 : END IF
1749 :
1750 28 : IF (bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp) THEN
1751 : ! calculate KS-matrix again with XC
1752 6 : CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
1753 12 : DO ispin = 1, bs_env%n_spin
1754 190 : DO img = 1, dft_control%nimages
1755 : ! store h_ks in fm_work_mo
1756 178 : CALL copy_dbcsr_to_fm(matrix_ks_kp(ispin, img)%matrix, bs_env%fm_work_mo(1))
1757 : ! v_xc = h_ks - h_ks(v_xc = 0)
1758 : CALL cp_fm_scale_and_add(alpha=-1.0_dp, matrix_a=bs_env%fm_V_xc_R(img, ispin), &
1759 184 : beta=1.0_dp, matrix_b=bs_env%fm_work_mo(1))
1760 : END DO
1761 : END DO
1762 : END IF
1763 :
1764 28 : CALL timestop(handle)
1765 :
1766 28 : END SUBROUTINE compute_V_xc
1767 :
1768 : ! **************************************************************************************************
1769 : !> \brief ...
1770 : !> \param bs_env ...
1771 : ! **************************************************************************************************
1772 28 : SUBROUTINE setup_time_and_frequency_minimax_grid(bs_env)
1773 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1774 :
1775 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_time_and_frequency_minimax_grid'
1776 :
1777 : INTEGER :: handle, homo, i_w, ierr, ispin, j_w, &
1778 : n_mo, num_time_freq_points, u
1779 : REAL(KIND=dp) :: E_max, E_max_ispin, E_min, E_min_ispin, &
1780 : E_range, max_error_min
1781 28 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: points_and_weights
1782 :
1783 28 : CALL timeset(routineN, handle)
1784 :
1785 28 : n_mo = bs_env%n_ao
1786 28 : num_time_freq_points = bs_env%num_time_freq_points
1787 :
1788 84 : ALLOCATE (bs_env%imag_freq_points(num_time_freq_points))
1789 84 : ALLOCATE (bs_env%imag_time_points(num_time_freq_points))
1790 84 : ALLOCATE (bs_env%imag_time_weights_freq_zero(num_time_freq_points))
1791 112 : ALLOCATE (bs_env%weights_cos_t_to_w(num_time_freq_points, num_time_freq_points))
1792 112 : ALLOCATE (bs_env%weights_cos_w_to_t(num_time_freq_points, num_time_freq_points))
1793 112 : ALLOCATE (bs_env%weights_sin_t_to_w(num_time_freq_points, num_time_freq_points))
1794 :
1795 : ! minimum and maximum difference between eigenvalues of unoccupied and an occupied MOs
1796 28 : E_min = 1000.0_dp
1797 28 : E_max = -1000.0_dp
1798 60 : DO ispin = 1, bs_env%n_spin
1799 32 : homo = bs_env%n_occ(ispin)
1800 58 : SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
1801 : CASE (large_cell_Gamma)
1802 : E_min_ispin = bs_env%eigenval_scf_Gamma(homo + 1, ispin) - &
1803 26 : bs_env%eigenval_scf_Gamma(homo, ispin)
1804 : E_max_ispin = bs_env%eigenval_scf_Gamma(n_mo, ispin) - &
1805 26 : bs_env%eigenval_scf_Gamma(1, ispin)
1806 : CASE (small_cell_full_kp)
1807 : E_min_ispin = MINVAL(bs_env%eigenval_scf(homo + 1, :, ispin)) - &
1808 334 : MAXVAL(bs_env%eigenval_scf(homo, :, ispin))
1809 : E_max_ispin = MAXVAL(bs_env%eigenval_scf(n_mo, :, ispin)) - &
1810 366 : MINVAL(bs_env%eigenval_scf(1, :, ispin))
1811 : END SELECT
1812 32 : E_min = MIN(E_min, E_min_ispin)
1813 60 : E_max = MAX(E_max, E_max_ispin)
1814 : END DO
1815 :
1816 28 : E_range = E_max/E_min
1817 :
1818 84 : ALLOCATE (points_and_weights(2*num_time_freq_points))
1819 :
1820 : ! frequency points
1821 28 : IF (num_time_freq_points <= 20) THEN
1822 28 : CALL get_rpa_minimax_coeff(num_time_freq_points, E_range, points_and_weights, ierr, .FALSE.)
1823 : ELSE
1824 0 : CALL get_rpa_minimax_coeff_larger_grid(num_time_freq_points, E_range, points_and_weights)
1825 : END IF
1826 :
1827 : ! one needs to scale the minimax grids, see Azizi, Wilhelm, Golze, Panades-Barrueta,
1828 : ! Giantomassi, Rinke, Draxl, Gonze et al., 2 publications
1829 396 : bs_env%imag_freq_points(:) = points_and_weights(1:num_time_freq_points)*E_min
1830 :
1831 : ! determine number of fit points in the interval [0,ω_max] for virt, or [-ω_max,0] for occ
1832 28 : bs_env%num_freq_points_fit = 0
1833 396 : DO i_w = 1, num_time_freq_points
1834 396 : IF (bs_env%imag_freq_points(i_w) < bs_env%freq_max_fit) THEN
1835 126 : bs_env%num_freq_points_fit = bs_env%num_freq_points_fit + 1
1836 : END IF
1837 : END DO
1838 :
1839 : ! iω values for the analytic continuation Σ^c_n(iω,k) -> Σ^c_n(ϵ,k)
1840 84 : ALLOCATE (bs_env%imag_freq_points_fit(bs_env%num_freq_points_fit))
1841 28 : j_w = 0
1842 396 : DO i_w = 1, num_time_freq_points
1843 396 : IF (bs_env%imag_freq_points(i_w) < bs_env%freq_max_fit) THEN
1844 126 : j_w = j_w + 1
1845 126 : bs_env%imag_freq_points_fit(j_w) = bs_env%imag_freq_points(i_w)
1846 : END IF
1847 : END DO
1848 :
1849 : ! reset the number of Padé parameters if smaller than the number of
1850 : ! imaginary-frequency points for the fit
1851 28 : IF (bs_env%num_freq_points_fit < bs_env%nparam_pade) THEN
1852 28 : bs_env%nparam_pade = bs_env%num_freq_points_fit
1853 : END IF
1854 :
1855 : ! time points
1856 28 : IF (num_time_freq_points <= 20) THEN
1857 28 : CALL get_exp_minimax_coeff(num_time_freq_points, E_range, points_and_weights)
1858 : ELSE
1859 0 : CALL get_exp_minimax_coeff_gw(num_time_freq_points, E_range, points_and_weights)
1860 : END IF
1861 :
1862 396 : bs_env%imag_time_points(:) = points_and_weights(1:num_time_freq_points)/(2.0_dp*E_min)
1863 396 : bs_env%imag_time_weights_freq_zero(:) = points_and_weights(num_time_freq_points + 1:)/(E_min)
1864 :
1865 28 : DEALLOCATE (points_and_weights)
1866 :
1867 28 : u = bs_env%unit_nr
1868 28 : IF (u > 0) THEN
1869 14 : WRITE (u, '(T2,A)') ''
1870 14 : WRITE (u, '(T2,A,F55.2)') 'SCF direct band gap (eV)', E_min*evolt
1871 14 : WRITE (u, '(T2,A,F53.2)') 'Max. SCF eigval diff. (eV)', E_max*evolt
1872 14 : WRITE (u, '(T2,A,F55.2)') 'E-Range for minimax grid', E_range
1873 14 : WRITE (u, '(T2,A,I27)') 'Number of Padé parameters for analytic continuation:', &
1874 28 : bs_env%nparam_pade
1875 14 : WRITE (u, '(T2,A)') ''
1876 : END IF
1877 :
1878 : ! in minimax grids, Fourier transforms t -> w and w -> t are split using
1879 : ! e^(iwt) = cos(wt) + i sin(wt); we thus calculate weights for trafos with a cos and
1880 : ! sine prefactor; details in Azizi, Wilhelm, Golze, Giantomassi, Panades-Barrueta,
1881 : ! Rinke, Draxl, Gonze et al., 2 publications
1882 :
1883 : ! cosine transform weights imaginary time to imaginary frequency
1884 : CALL get_l_sq_wghts_cos_tf_t_to_w(num_time_freq_points, &
1885 : bs_env%imag_time_points, &
1886 : bs_env%weights_cos_t_to_w, &
1887 : bs_env%imag_freq_points, &
1888 : E_min, E_max, max_error_min, &
1889 : bs_env%num_points_per_magnitude, &
1890 28 : bs_env%regularization_minimax)
1891 :
1892 : ! cosine transform weights imaginary frequency to imaginary time
1893 : CALL get_l_sq_wghts_cos_tf_w_to_t(num_time_freq_points, &
1894 : bs_env%imag_time_points, &
1895 : bs_env%weights_cos_w_to_t, &
1896 : bs_env%imag_freq_points, &
1897 : E_min, E_max, max_error_min, &
1898 : bs_env%num_points_per_magnitude, &
1899 28 : bs_env%regularization_minimax)
1900 :
1901 : ! sine transform weights imaginary time to imaginary frequency
1902 : CALL get_l_sq_wghts_sin_tf_t_to_w(num_time_freq_points, &
1903 : bs_env%imag_time_points, &
1904 : bs_env%weights_sin_t_to_w, &
1905 : bs_env%imag_freq_points, &
1906 : E_min, E_max, max_error_min, &
1907 : bs_env%num_points_per_magnitude, &
1908 28 : bs_env%regularization_minimax)
1909 :
1910 28 : CALL timestop(handle)
1911 :
1912 56 : END SUBROUTINE setup_time_and_frequency_minimax_grid
1913 :
1914 : ! **************************************************************************************************
1915 : !> \brief ...
1916 : !> \param qs_env ...
1917 : !> \param bs_env ...
1918 : ! **************************************************************************************************
1919 6 : SUBROUTINE setup_cells_3c(qs_env, bs_env)
1920 :
1921 : TYPE(qs_environment_type), POINTER :: qs_env
1922 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1923 :
1924 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_cells_3c'
1925 :
1926 : INTEGER :: atom_i, atom_j, atom_k, block_count, handle, i, i_cell_x, i_cell_x_max, &
1927 : i_cell_x_min, i_size, ikind, img, j, j_cell, j_cell_max, j_cell_y, j_cell_y_max, &
1928 : j_cell_y_min, j_size, k_cell, k_cell_max, k_cell_z, k_cell_z_max, k_cell_z_min, k_size, &
1929 : nimage_pairs_3c, nimages_3c, nimages_3c_max, nkind, u
1930 : INTEGER(KIND=int_8) :: mem_occ_per_proc
1931 6 : INTEGER, ALLOCATABLE, DIMENSION(:) :: kind_of, n_other_3c_images_max
1932 6 : INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell_3c_max, nblocks_3c_max
1933 : INTEGER, DIMENSION(3) :: cell_index, n_max
1934 : REAL(KIND=dp) :: avail_mem_per_proc_GB, cell_dist, cell_radius_3c, dij, dik, djk, eps, &
1935 : exp_min_ao, exp_min_RI, frobenius_norm, mem_3c_GB, mem_occ_per_proc_GB, radius_ao, &
1936 : radius_ao_product, radius_RI
1937 6 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: exp_ao_kind, exp_RI_kind, &
1938 6 : radius_ao_kind, &
1939 6 : radius_ao_product_kind, radius_RI_kind
1940 6 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: int_3c
1941 : REAL(KIND=dp), DIMENSION(3) :: rij, rik, rjk, vec_cell_j, vec_cell_k
1942 6 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: exp_ao, exp_RI
1943 6 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1944 : TYPE(cell_type), POINTER :: cell
1945 6 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1946 :
1947 6 : CALL timeset(routineN, handle)
1948 :
1949 6 : CALL get_qs_env(qs_env, nkind=nkind, atomic_kind_set=atomic_kind_set, particle_set=particle_set, cell=cell)
1950 :
1951 : ALLOCATE (exp_ao_kind(nkind), exp_RI_kind(nkind), radius_ao_kind(nkind), &
1952 42 : radius_ao_product_kind(nkind), radius_RI_kind(nkind))
1953 :
1954 18 : exp_min_RI = 10.0_dp
1955 18 : exp_min_ao = 10.0_dp
1956 18 : exp_RI_kind = 10.0_dp
1957 18 : exp_AO_kind = 10.0_dp
1958 :
1959 6 : eps = bs_env%eps_filter*bs_env%heuristic_filter_factor
1960 :
1961 18 : DO ikind = 1, nkind
1962 :
1963 12 : CALL get_gto_basis_set(bs_env%basis_set_RI(ikind)%gto_basis_set, zet=exp_RI)
1964 12 : CALL get_gto_basis_set(bs_env%basis_set_ao(ikind)%gto_basis_set, zet=exp_ao)
1965 :
1966 : ! we need to remove all exponents lower than a lower bound, e.g. 1E-3, because
1967 : ! for contracted basis sets, there might be exponents = 0 in zet
1968 24 : DO i = 1, SIZE(exp_RI, 1)
1969 42 : DO j = 1, SIZE(exp_RI, 2)
1970 18 : IF (exp_RI(i, j) < exp_min_RI .AND. exp_RI(i, j) > 1E-3_dp) exp_min_RI = exp_RI(i, j)
1971 18 : IF (exp_RI(i, j) < exp_RI_kind(ikind) .AND. exp_RI(i, j) > 1E-3_dp) &
1972 24 : exp_RI_kind(ikind) = exp_RI(i, j)
1973 : END DO
1974 : END DO
1975 60 : DO i = 1, SIZE(exp_ao, 1)
1976 144 : DO j = 1, SIZE(exp_ao, 2)
1977 84 : IF (exp_ao(i, j) < exp_min_ao .AND. exp_ao(i, j) > 1E-3_dp) exp_min_ao = exp_ao(i, j)
1978 84 : IF (exp_ao(i, j) < exp_ao_kind(ikind) .AND. exp_ao(i, j) > 1E-3_dp) &
1979 84 : exp_ao_kind(ikind) = exp_ao(i, j)
1980 : END DO
1981 : END DO
1982 12 : radius_ao_kind(ikind) = SQRT(-LOG(eps)/exp_ao_kind(ikind))
1983 12 : radius_ao_product_kind(ikind) = SQRT(-LOG(eps)/(2.0_dp*exp_ao_kind(ikind)))
1984 18 : radius_RI_kind(ikind) = SQRT(-LOG(eps)/exp_RI_kind(ikind))
1985 : END DO
1986 :
1987 6 : radius_ao = SQRT(-LOG(eps)/exp_min_ao)
1988 6 : radius_ao_product = SQRT(-LOG(eps)/(2.0_dp*exp_min_ao))
1989 6 : radius_RI = SQRT(-LOG(eps)/exp_min_RI)
1990 :
1991 6 : CALL get_atomic_kind_set(atomic_kind_set=atomic_kind_set, kind_of=kind_of)
1992 :
1993 : ! For a 3c integral (μR υS | P0) we have that cell R and cell S need to be within radius_3c
1994 6 : cell_radius_3c = radius_ao_product + radius_RI + bs_env%ri_metric%cutoff_radius
1995 :
1996 24 : n_max(1:3) = bs_env%periodic(1:3)*30
1997 :
1998 6 : nimages_3c_max = 0
1999 :
2000 6 : i_cell_x_min = 0
2001 6 : i_cell_x_max = 0
2002 6 : j_cell_y_min = 0
2003 6 : j_cell_y_max = 0
2004 6 : k_cell_z_min = 0
2005 6 : k_cell_z_max = 0
2006 :
2007 132 : DO i_cell_x = -n_max(1), n_max(1)
2008 7818 : DO j_cell_y = -n_max(2), n_max(2)
2009 30138 : DO k_cell_z = -n_max(3), n_max(3)
2010 :
2011 89304 : cell_index(1:3) = [i_cell_x, j_cell_y, k_cell_z]
2012 :
2013 22326 : CALL get_cell_dist(cell_index, bs_env%hmat, cell_dist)
2014 :
2015 30012 : IF (cell_dist < cell_radius_3c) THEN
2016 142 : nimages_3c_max = nimages_3c_max + 1
2017 142 : i_cell_x_min = MIN(i_cell_x_min, i_cell_x)
2018 142 : i_cell_x_max = MAX(i_cell_x_max, i_cell_x)
2019 142 : j_cell_y_min = MIN(j_cell_y_min, j_cell_y)
2020 142 : j_cell_y_max = MAX(j_cell_y_max, j_cell_y)
2021 142 : k_cell_z_min = MIN(k_cell_z_min, k_cell_z)
2022 142 : k_cell_z_max = MAX(k_cell_z_max, k_cell_z)
2023 : END IF
2024 :
2025 : END DO
2026 : END DO
2027 : END DO
2028 :
2029 : ! get index_to_cell_3c_max for the maximum possible cell range;
2030 : ! compute 3c integrals later in this routine and check really which cell is needed
2031 18 : ALLOCATE (index_to_cell_3c_max(3, nimages_3c_max))
2032 :
2033 6 : img = 0
2034 132 : DO i_cell_x = -n_max(1), n_max(1)
2035 7818 : DO j_cell_y = -n_max(2), n_max(2)
2036 30138 : DO k_cell_z = -n_max(3), n_max(3)
2037 :
2038 89304 : cell_index(1:3) = [i_cell_x, j_cell_y, k_cell_z]
2039 :
2040 22326 : CALL get_cell_dist(cell_index, bs_env%hmat, cell_dist)
2041 :
2042 30012 : IF (cell_dist < cell_radius_3c) THEN
2043 142 : img = img + 1
2044 568 : index_to_cell_3c_max(1:3, img) = cell_index(1:3)
2045 : END IF
2046 :
2047 : END DO
2048 : END DO
2049 : END DO
2050 :
2051 : ! get pairs of R and S which have non-zero 3c integral (μR υS | P0)
2052 24 : ALLOCATE (nblocks_3c_max(nimages_3c_max, nimages_3c_max))
2053 3530 : nblocks_3c_max(:, :) = 0
2054 :
2055 : block_count = 0
2056 148 : DO j_cell = 1, nimages_3c_max
2057 3530 : DO k_cell = 1, nimages_3c_max
2058 :
2059 12788 : DO atom_j = 1, bs_env%n_atom
2060 38674 : DO atom_k = 1, bs_env%n_atom
2061 109848 : DO atom_i = 1, bs_env%n_atom
2062 :
2063 74556 : block_count = block_count + 1
2064 74556 : IF (MODULO(block_count, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
2065 :
2066 149112 : CALL scaled_to_real(vec_cell_j, REAL(index_to_cell_3c_max(1:3, j_cell), kind=dp), cell)
2067 149112 : CALL scaled_to_real(vec_cell_k, REAL(index_to_cell_3c_max(1:3, k_cell), kind=dp), cell)
2068 :
2069 149112 : rij = pbc(particle_set(atom_j)%r(:), cell) - pbc(particle_set(atom_i)%r(:), cell) + vec_cell_j(:)
2070 : rjk = pbc(particle_set(atom_k)%r(:), cell) - pbc(particle_set(atom_j)%r(:), cell) &
2071 149112 : + vec_cell_k(:) - vec_cell_j(:)
2072 149112 : rik(:) = rij(:) + rjk(:)
2073 149112 : dij = NORM2(rij)
2074 149112 : dik = NORM2(rik)
2075 149112 : djk = NORM2(rjk)
2076 37278 : IF (djk > radius_ao_kind(kind_of(atom_j)) + radius_ao_kind(kind_of(atom_k))) CYCLE
2077 11682 : IF (dij > radius_ao_kind(kind_of(atom_j)) + radius_RI_kind(kind_of(atom_i)) &
2078 : + bs_env%ri_metric%cutoff_radius) CYCLE
2079 5932 : IF (dik > radius_RI_kind(kind_of(atom_i)) + radius_ao_kind(kind_of(atom_k)) &
2080 : + bs_env%ri_metric%cutoff_radius) CYCLE
2081 :
2082 3867 : j_size = bs_env%i_ao_end_from_atom(atom_j) - bs_env%i_ao_start_from_atom(atom_j) + 1
2083 3867 : k_size = bs_env%i_ao_end_from_atom(atom_k) - bs_env%i_ao_start_from_atom(atom_k) + 1
2084 3867 : i_size = bs_env%i_RI_end_from_atom(atom_i) - bs_env%i_RI_start_from_atom(atom_i) + 1
2085 :
2086 19335 : ALLOCATE (int_3c(j_size, k_size, i_size))
2087 :
2088 : ! compute 3-c int. ( μ(atom j) R , ν (atom k) S | P (atom i) 0 )
2089 : ! ("|": truncated Coulomb operator), inside build_3c_integrals: (j k | i)
2090 : CALL build_3c_integral_block(int_3c, qs_env, bs_env%ri_metric, &
2091 : basis_j=bs_env%basis_set_AO, &
2092 : basis_k=bs_env%basis_set_AO, &
2093 : basis_i=bs_env%basis_set_RI, &
2094 : cell_j=index_to_cell_3c_max(1:3, j_cell), &
2095 : cell_k=index_to_cell_3c_max(1:3, k_cell), &
2096 3867 : atom_k=atom_k, atom_j=atom_j, atom_i=atom_i)
2097 :
2098 206126 : frobenius_norm = SQRT(SUM(int_3c(:, :, :)**2))
2099 :
2100 3867 : DEALLOCATE (int_3c)
2101 :
2102 : ! we use a higher threshold here to safe memory when storing the 3c integrals
2103 : ! in every tensor group
2104 29895 : IF (frobenius_norm > eps) THEN
2105 825 : nblocks_3c_max(j_cell, k_cell) = nblocks_3c_max(j_cell, k_cell) + 1
2106 : END IF
2107 :
2108 : END DO
2109 : END DO
2110 : END DO
2111 :
2112 : END DO
2113 : END DO
2114 :
2115 6 : CALL bs_env%para_env%sum(nblocks_3c_max)
2116 :
2117 18 : ALLOCATE (n_other_3c_images_max(nimages_3c_max))
2118 148 : n_other_3c_images_max(:) = 0
2119 :
2120 6 : nimages_3c = 0
2121 6 : nimage_pairs_3c = 0
2122 :
2123 148 : DO j_cell = 1, nimages_3c_max
2124 3524 : DO k_cell = 1, nimages_3c_max
2125 3524 : IF (nblocks_3c_max(j_cell, k_cell) > 0) THEN
2126 290 : n_other_3c_images_max(j_cell) = n_other_3c_images_max(j_cell) + 1
2127 290 : nimage_pairs_3c = nimage_pairs_3c + 1
2128 : END IF
2129 : END DO
2130 :
2131 148 : IF (n_other_3c_images_max(j_cell) > 0) nimages_3c = nimages_3c + 1
2132 :
2133 : END DO
2134 :
2135 6 : bs_env%nimages_3c = nimages_3c
2136 18 : ALLOCATE (bs_env%index_to_cell_3c(3, nimages_3c))
2137 : ALLOCATE (bs_env%cell_to_index_3c(i_cell_x_min:i_cell_x_max, &
2138 : j_cell_y_min:j_cell_y_max, &
2139 30 : k_cell_z_min:k_cell_z_max))
2140 288 : bs_env%cell_to_index_3c(:, :, :) = -1
2141 :
2142 24 : ALLOCATE (bs_env%nblocks_3c(nimages_3c, nimages_3c))
2143 6 : bs_env%nblocks_3c(nimages_3c, nimages_3c) = 0
2144 :
2145 6 : j_cell = 0
2146 148 : DO j_cell_max = 1, nimages_3c_max
2147 142 : IF (n_other_3c_images_max(j_cell_max) == 0) CYCLE
2148 58 : j_cell = j_cell + 1
2149 232 : cell_index(1:3) = index_to_cell_3c_max(1:3, j_cell_max)
2150 232 : bs_env%index_to_cell_3c(1:3, j_cell) = cell_index(1:3)
2151 58 : bs_env%cell_to_index_3c(cell_index(1), cell_index(2), cell_index(3)) = j_cell
2152 :
2153 58 : k_cell = 0
2154 1474 : DO k_cell_max = 1, nimages_3c_max
2155 1410 : IF (n_other_3c_images_max(k_cell_max) == 0) CYCLE
2156 626 : k_cell = k_cell + 1
2157 :
2158 1552 : bs_env%nblocks_3c(j_cell, k_cell) = nblocks_3c_max(j_cell_max, k_cell_max)
2159 : END DO
2160 :
2161 : END DO
2162 :
2163 : ! we use: 8*10^-9 GB / double precision number
2164 : mem_3c_GB = REAL(bs_env%n_RI, KIND=dp)*REAL(bs_env%n_ao, KIND=dp)**2 &
2165 6 : *REAL(nimage_pairs_3c, KIND=dp)*8E-9_dp
2166 :
2167 6 : CALL m_memory(mem_occ_per_proc)
2168 6 : CALL bs_env%para_env%max(mem_occ_per_proc)
2169 :
2170 6 : mem_occ_per_proc_GB = REAL(mem_occ_per_proc, KIND=dp)/1.0E9_dp
2171 :
2172 : ! number of processors per group that entirely stores the 3c integrals and does tensor ops
2173 6 : avail_mem_per_proc_GB = bs_env%input_memory_per_proc_GB - mem_occ_per_proc_GB
2174 :
2175 : ! careful: downconvering real to integer, 1.9 -> 1; thus add 1.0 for upconversion, 1.9 -> 2
2176 6 : bs_env%group_size_tensor = MAX(INT(mem_3c_GB/avail_mem_per_proc_GB + 1.0_dp), 1)
2177 :
2178 6 : u = bs_env%unit_nr
2179 :
2180 6 : IF (u > 0) THEN
2181 3 : WRITE (u, FMT="(T2,A,F52.1,A)") "Radius of atomic orbitals", radius_ao*angstrom, " Å"
2182 3 : WRITE (u, FMT="(T2,A,F55.1,A)") "Radius of RI functions", radius_RI*angstrom, " Å"
2183 3 : WRITE (u, FMT="(T2,A,I47)") "Number of cells for 3c integrals", nimages_3c
2184 3 : WRITE (u, FMT="(T2,A,I42)") "Number of cell pairs for 3c integrals", nimage_pairs_3c
2185 3 : WRITE (u, '(T2,A)') ''
2186 3 : WRITE (u, '(T2,A,F37.1,A)') 'Input: Available memory per MPI process', &
2187 6 : bs_env%input_memory_per_proc_GB, ' GB'
2188 3 : WRITE (u, '(T2,A,F35.1,A)') 'Used memory per MPI process before GW run', &
2189 6 : mem_occ_per_proc_GB, ' GB'
2190 3 : WRITE (u, '(T2,A,F44.1,A)') 'Memory of three-center integrals', mem_3c_GB, ' GB'
2191 : END IF
2192 :
2193 6 : CALL timestop(handle)
2194 :
2195 18 : END SUBROUTINE setup_cells_3c
2196 :
2197 : ! **************************************************************************************************
2198 : !> \brief ...
2199 : !> \param index_to_cell_1 ...
2200 : !> \param index_to_cell_2 ...
2201 : !> \param nimages_1 ...
2202 : !> \param nimages_2 ...
2203 : !> \param index_to_cell ...
2204 : !> \param cell_to_index ...
2205 : !> \param nimages ...
2206 : ! **************************************************************************************************
2207 6 : SUBROUTINE sum_two_R_grids(index_to_cell_1, index_to_cell_2, nimages_1, nimages_2, &
2208 : index_to_cell, cell_to_index, nimages)
2209 :
2210 : INTEGER, DIMENSION(:, :) :: index_to_cell_1, index_to_cell_2
2211 : INTEGER :: nimages_1, nimages_2
2212 : INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell
2213 : INTEGER, DIMENSION(:, :, :), POINTER :: cell_to_index
2214 : INTEGER :: nimages
2215 :
2216 : CHARACTER(LEN=*), PARAMETER :: routineN = 'sum_two_R_grids'
2217 :
2218 : INTEGER :: handle, i_dim, img_1, img_2, nimages_max
2219 6 : INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell_tmp
2220 : INTEGER, DIMENSION(3) :: cell_1, cell_2, R, R_max, R_min
2221 :
2222 6 : CALL timeset(routineN, handle)
2223 :
2224 24 : DO i_dim = 1, 3
2225 366 : R_min(i_dim) = MINVAL(index_to_cell_1(i_dim, :)) + MINVAL(index_to_cell_2(i_dim, :))
2226 390 : R_max(i_dim) = MAXVAL(index_to_cell_1(i_dim, :)) + MAXVAL(index_to_cell_2(i_dim, :))
2227 : END DO
2228 :
2229 6 : nimages_max = (R_max(1) - R_min(1) + 1)*(R_max(2) - R_min(2) + 1)*(R_max(3) - R_min(3) + 1)
2230 :
2231 18 : ALLOCATE (index_to_cell_tmp(3, nimages_max))
2232 766 : index_to_cell_tmp(:, :) = -1
2233 :
2234 30 : ALLOCATE (cell_to_index(R_min(1):R_max(1), R_min(2):R_max(2), R_min(3):R_max(3)))
2235 376 : cell_to_index(:, :, :) = -1
2236 :
2237 6 : nimages = 0
2238 :
2239 64 : DO img_1 = 1, nimages_1
2240 :
2241 690 : DO img_2 = 1, nimages_2
2242 :
2243 2504 : cell_1(1:3) = index_to_cell_1(1:3, img_1)
2244 2504 : cell_2(1:3) = index_to_cell_2(1:3, img_2)
2245 :
2246 2504 : R(1:3) = cell_1(1:3) + cell_2(1:3)
2247 :
2248 : ! check whether we have found a new cell
2249 684 : IF (cell_to_index(R(1), R(2), R(3)) == -1) THEN
2250 :
2251 166 : nimages = nimages + 1
2252 166 : cell_to_index(R(1), R(2), R(3)) = nimages
2253 664 : index_to_cell_tmp(1:3, nimages) = R(1:3)
2254 :
2255 : END IF
2256 :
2257 : END DO
2258 :
2259 : END DO
2260 :
2261 18 : ALLOCATE (index_to_cell(3, nimages))
2262 670 : index_to_cell(:, :) = index_to_cell_tmp(1:3, 1:nimages)
2263 :
2264 6 : CALL timestop(handle)
2265 :
2266 12 : END SUBROUTINE sum_two_R_grids
2267 :
2268 : ! **************************************************************************************************
2269 : !> \brief ...
2270 : !> \param qs_env ...
2271 : !> \param bs_env ...
2272 : ! **************************************************************************************************
2273 6 : SUBROUTINE compute_3c_integrals(qs_env, bs_env)
2274 :
2275 : TYPE(qs_environment_type), POINTER :: qs_env
2276 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2277 :
2278 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_3c_integrals'
2279 :
2280 : INTEGER :: handle, j_cell, k_cell, nimages_3c
2281 :
2282 6 : CALL timeset(routineN, handle)
2283 :
2284 6 : nimages_3c = bs_env%nimages_3c
2285 756 : ALLOCATE (bs_env%t_3c_int(nimages_3c, nimages_3c))
2286 64 : DO j_cell = 1, nimages_3c
2287 690 : DO k_cell = 1, nimages_3c
2288 684 : CALL dbt_create(bs_env%t_RI_AO__AO, bs_env%t_3c_int(j_cell, k_cell))
2289 : END DO
2290 : END DO
2291 :
2292 : CALL build_3c_integrals(bs_env%t_3c_int, &
2293 : bs_env%eps_filter, &
2294 : qs_env, &
2295 : bs_env%nl_3c, &
2296 : int_eps=bs_env%eps_filter*0.05_dp, &
2297 : basis_i=bs_env%basis_set_RI, &
2298 : basis_j=bs_env%basis_set_AO, &
2299 : basis_k=bs_env%basis_set_AO, &
2300 : potential_parameter=bs_env%ri_metric, &
2301 : desymmetrize=.FALSE., do_kpoints=.TRUE., cell_sym=.TRUE., &
2302 6 : cell_to_index_ext=bs_env%cell_to_index_3c)
2303 :
2304 6 : CALL bs_env%para_env%sync()
2305 :
2306 6 : CALL timestop(handle)
2307 :
2308 6 : END SUBROUTINE compute_3c_integrals
2309 :
2310 : ! **************************************************************************************************
2311 : !> \brief ...
2312 : !> \param cell_index ...
2313 : !> \param hmat ...
2314 : !> \param cell_dist ...
2315 : ! **************************************************************************************************
2316 44652 : SUBROUTINE get_cell_dist(cell_index, hmat, cell_dist)
2317 :
2318 : INTEGER, DIMENSION(3) :: cell_index
2319 : REAL(KIND=dp) :: hmat(3, 3), cell_dist
2320 :
2321 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_cell_dist'
2322 :
2323 : INTEGER :: handle, i_dim
2324 : INTEGER, DIMENSION(3) :: cell_index_adj
2325 : REAL(KIND=dp) :: cell_dist_3(3)
2326 :
2327 44652 : CALL timeset(routineN, handle)
2328 :
2329 : ! the distance of cells needs to be taken to adjacent neighbors, not
2330 : ! between the center of the cells. We thus need to rescale the cell index
2331 178608 : DO i_dim = 1, 3
2332 133956 : IF (cell_index(i_dim) > 0) cell_index_adj(i_dim) = cell_index(i_dim) - 1
2333 133956 : IF (cell_index(i_dim) < 0) cell_index_adj(i_dim) = cell_index(i_dim) + 1
2334 178608 : IF (cell_index(i_dim) == 0) cell_index_adj(i_dim) = cell_index(i_dim)
2335 : END DO
2336 :
2337 714432 : cell_dist_3(1:3) = MATMUL(hmat, REAL(cell_index_adj, KIND=dp))
2338 :
2339 178608 : cell_dist = SQRT(ABS(SUM(cell_dist_3(1:3)**2)))
2340 :
2341 44652 : CALL timestop(handle)
2342 :
2343 44652 : END SUBROUTINE get_cell_dist
2344 :
2345 : ! **************************************************************************************************
2346 : !> \brief ...
2347 : !> \param qs_env ...
2348 : !> \param bs_env ...
2349 : !> \param kpoints ...
2350 : !> \param do_print ...
2351 : ! **************************************************************************************************
2352 0 : SUBROUTINE setup_kpoints_scf_desymm(qs_env, bs_env, kpoints, do_print)
2353 : TYPE(qs_environment_type), POINTER :: qs_env
2354 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2355 : TYPE(kpoint_type), POINTER :: kpoints
2356 :
2357 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_kpoints_scf_desymm'
2358 :
2359 : INTEGER :: handle, i_cell_x, i_dim, img, j_cell_y, &
2360 : k_cell_z, nimages, nkp, u
2361 : INTEGER, DIMENSION(3) :: cell_grid, cixd, nkp_grid
2362 : TYPE(kpoint_type), POINTER :: kpoints_scf
2363 :
2364 : LOGICAL:: do_print
2365 :
2366 0 : CALL timeset(routineN, handle)
2367 :
2368 0 : NULLIFY (kpoints)
2369 0 : CALL kpoint_create(kpoints)
2370 :
2371 0 : CALL get_qs_env(qs_env=qs_env, kpoints=kpoints_scf)
2372 :
2373 0 : nkp_grid(1:3) = kpoints_scf%nkp_grid(1:3)
2374 0 : nkp = nkp_grid(1)*nkp_grid(2)*nkp_grid(3)
2375 :
2376 : ! we need in periodic directions at least 2 k-points in the SCF
2377 0 : DO i_dim = 1, 3
2378 0 : IF (bs_env%periodic(i_dim) == 1) THEN
2379 0 : CPASSERT(nkp_grid(i_dim) > 1)
2380 : END IF
2381 : END DO
2382 :
2383 0 : kpoints%kp_scheme = "GENERAL"
2384 0 : kpoints%nkp_grid(1:3) = nkp_grid(1:3)
2385 0 : kpoints%nkp = nkp
2386 0 : bs_env%nkp_scf_desymm = nkp
2387 :
2388 0 : ALLOCATE (kpoints%xkp(1:3, nkp))
2389 0 : CALL compute_xkp(kpoints%xkp, 1, nkp, nkp_grid)
2390 :
2391 0 : ALLOCATE (kpoints%wkp(nkp))
2392 0 : kpoints%wkp(:) = 1.0_dp/REAL(nkp, KIND=dp)
2393 :
2394 : ! for example 4x3x6 kpoint grid -> 3x3x5 cell grid because we need the same number of
2395 : ! neighbor cells on both sides of the unit cell
2396 0 : cell_grid(1:3) = nkp_grid(1:3) - MODULO(nkp_grid(1:3) + 1, 2)
2397 : ! cell index: for example for x: from -n_x/2 to +n_x/2, n_x: number of cells in x direction
2398 0 : cixd(1:3) = cell_grid(1:3)/2
2399 :
2400 0 : nimages = cell_grid(1)*cell_grid(2)*cell_grid(3)
2401 :
2402 0 : bs_env%nimages_scf_desymm = nimages
2403 :
2404 0 : ALLOCATE (kpoints%cell_to_index(-cixd(1):cixd(1), -cixd(2):cixd(2), -cixd(3):cixd(3)))
2405 0 : ALLOCATE (kpoints%index_to_cell(3, nimages))
2406 :
2407 0 : img = 0
2408 0 : DO i_cell_x = -cixd(1), cixd(1)
2409 0 : DO j_cell_y = -cixd(2), cixd(2)
2410 0 : DO k_cell_z = -cixd(3), cixd(3)
2411 0 : img = img + 1
2412 0 : kpoints%cell_to_index(i_cell_x, j_cell_y, k_cell_z) = img
2413 0 : kpoints%index_to_cell(1:3, img) = [i_cell_x, j_cell_y, k_cell_z]
2414 : END DO
2415 : END DO
2416 : END DO
2417 :
2418 0 : u = bs_env%unit_nr
2419 0 : IF (u > 0 .AND. do_print) THEN
2420 0 : WRITE (u, FMT="(T2,A,I49)") "Number of cells for G, χ, W, Σ", nimages
2421 : END IF
2422 :
2423 0 : CALL timestop(handle)
2424 :
2425 0 : END SUBROUTINE setup_kpoints_scf_desymm
2426 :
2427 : ! **************************************************************************************************
2428 : !> \brief ...
2429 : !> \param bs_env ...
2430 : ! **************************************************************************************************
2431 6 : SUBROUTINE setup_cells_Delta_R(bs_env)
2432 :
2433 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2434 :
2435 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_cells_Delta_R'
2436 :
2437 : INTEGER :: handle
2438 :
2439 6 : CALL timeset(routineN, handle)
2440 :
2441 : ! cell sums batch wise for fixed ΔR = S_1 - R_1; for example:
2442 : ! Σ_λσ^R = sum_PR1νS1 M^G_λ0,νS1,PR1 M^W_σR,νS1,PR1
2443 :
2444 : CALL sum_two_R_grids(bs_env%index_to_cell_3c, &
2445 : bs_env%index_to_cell_3c, &
2446 : bs_env%nimages_3c, bs_env%nimages_3c, &
2447 : bs_env%index_to_cell_Delta_R, &
2448 : bs_env%cell_to_index_Delta_R, &
2449 6 : bs_env%nimages_Delta_R)
2450 :
2451 6 : IF (bs_env%unit_nr > 0) THEN
2452 3 : WRITE (bs_env%unit_nr, FMT="(T2,A,I61)") "Number of cells ΔR", bs_env%nimages_Delta_R
2453 : END IF
2454 :
2455 6 : CALL timestop(handle)
2456 :
2457 6 : END SUBROUTINE setup_cells_Delta_R
2458 :
2459 : ! **************************************************************************************************
2460 : !> \brief ...
2461 : !> \param bs_env ...
2462 : ! **************************************************************************************************
2463 6 : SUBROUTINE setup_parallelization_Delta_R(bs_env)
2464 :
2465 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2466 :
2467 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_parallelization_Delta_R'
2468 :
2469 : INTEGER :: handle, i_cell_Delta_R, i_task_local, &
2470 : n_tasks_local
2471 6 : INTEGER, ALLOCATABLE, DIMENSION(:) :: i_cell_Delta_R_group, &
2472 6 : n_tensor_ops_Delta_R
2473 :
2474 6 : CALL timeset(routineN, handle)
2475 :
2476 6 : CALL compute_n_tensor_ops_Delta_R(bs_env, n_tensor_ops_Delta_R)
2477 :
2478 6 : CALL compute_Delta_R_dist(bs_env, n_tensor_ops_Delta_R, i_cell_Delta_R_group, n_tasks_local)
2479 :
2480 6 : bs_env%n_tasks_Delta_R_local = n_tasks_local
2481 :
2482 18 : ALLOCATE (bs_env%task_Delta_R(n_tasks_local))
2483 :
2484 6 : i_task_local = 0
2485 172 : DO i_cell_Delta_R = 1, bs_env%nimages_Delta_R
2486 :
2487 166 : IF (i_cell_Delta_R_group(i_cell_Delta_R) /= bs_env%tensor_group_color) CYCLE
2488 :
2489 73 : i_task_local = i_task_local + 1
2490 :
2491 172 : bs_env%task_Delta_R(i_task_local) = i_cell_Delta_R
2492 :
2493 : END DO
2494 :
2495 18 : ALLOCATE (bs_env%skip_DR_chi(n_tasks_local))
2496 79 : bs_env%skip_DR_chi(:) = .FALSE.
2497 18 : ALLOCATE (bs_env%skip_DR_Sigma(n_tasks_local))
2498 79 : bs_env%skip_DR_Sigma(:) = .FALSE.
2499 :
2500 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R12_S_Goccx3c_chi, bs_env)
2501 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R12_S_Gvirx3c_chi, bs_env)
2502 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R_R2_MxM_chi, bs_env)
2503 :
2504 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R1_S2_Gx3c_Sigma, bs_env)
2505 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R1_R_MxM_Sigma, bs_env)
2506 :
2507 6 : CALL timestop(handle)
2508 :
2509 12 : END SUBROUTINE setup_parallelization_Delta_R
2510 :
2511 : ! **************************************************************************************************
2512 : !> \brief ...
2513 : !> \param skip ...
2514 : !> \param bs_env ...
2515 : ! **************************************************************************************************
2516 30 : SUBROUTINE allocate_skip_3xR(skip, bs_env)
2517 : LOGICAL, ALLOCATABLE, DIMENSION(:, :, :) :: skip
2518 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2519 :
2520 : CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_skip_3xR'
2521 :
2522 : INTEGER :: handle
2523 :
2524 30 : CALL timeset(routineN, handle)
2525 :
2526 150 : ALLOCATE (skip(bs_env%n_tasks_Delta_R_local, bs_env%nimages_3c, bs_env%nimages_scf_desymm))
2527 38235 : skip(:, :, :) = .FALSE.
2528 :
2529 30 : CALL timestop(handle)
2530 :
2531 30 : END SUBROUTINE allocate_skip_3xR
2532 :
2533 : ! **************************************************************************************************
2534 : !> \brief ...
2535 : !> \param bs_env ...
2536 : !> \param n_tensor_ops_Delta_R ...
2537 : !> \param i_cell_Delta_R_group ...
2538 : !> \param n_tasks_local ...
2539 : ! **************************************************************************************************
2540 6 : SUBROUTINE compute_Delta_R_dist(bs_env, n_tensor_ops_Delta_R, i_cell_Delta_R_group, n_tasks_local)
2541 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2542 : INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_Delta_R, &
2543 : i_cell_Delta_R_group
2544 : INTEGER :: n_tasks_local
2545 :
2546 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Delta_R_dist'
2547 :
2548 : INTEGER :: handle, i_Delta_R_max_op, i_group_min, &
2549 : nimages_Delta_R, u
2550 6 : INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_Delta_R_in_group
2551 :
2552 6 : CALL timeset(routineN, handle)
2553 :
2554 6 : nimages_Delta_R = bs_env%nimages_Delta_R
2555 :
2556 6 : u = bs_env%unit_nr
2557 :
2558 6 : IF (u > 0 .AND. nimages_Delta_R < bs_env%num_tensor_groups) THEN
2559 0 : WRITE (u, FMT="(T2,A,I5,A,I5,A)") "There are only ", nimages_Delta_R, &
2560 0 : " tasks to work on but there are ", bs_env%num_tensor_groups, " groups."
2561 0 : WRITE (u, FMT="(T2,A)") "Please reduce the number of MPI processes."
2562 0 : WRITE (u, '(T2,A)') ''
2563 : END IF
2564 :
2565 18 : ALLOCATE (n_tensor_ops_Delta_R_in_group(bs_env%num_tensor_groups))
2566 18 : n_tensor_ops_Delta_R_in_group(:) = 0
2567 18 : ALLOCATE (i_cell_Delta_R_group(nimages_Delta_R))
2568 172 : i_cell_Delta_R_group(:) = -1
2569 :
2570 6 : n_tasks_local = 0
2571 :
2572 624 : DO WHILE (ANY(n_tensor_ops_Delta_R(:) /= 0))
2573 :
2574 : ! get largest element of n_tensor_ops_Delta_R
2575 4684 : i_Delta_R_max_op = MAXLOC(n_tensor_ops_Delta_R, 1)
2576 :
2577 : ! distribute i_Delta_R_max_op to tensor group which has currently the smallest load
2578 584 : i_group_min = MINLOC(n_tensor_ops_Delta_R_in_group, 1)
2579 :
2580 : ! the tensor groups are 0-index based; but i_group_min is 1-index based
2581 146 : i_cell_Delta_R_group(i_Delta_R_max_op) = i_group_min - 1
2582 : n_tensor_ops_Delta_R_in_group(i_group_min) = n_tensor_ops_Delta_R_in_group(i_group_min) + &
2583 146 : n_tensor_ops_Delta_R(i_Delta_R_max_op)
2584 :
2585 : ! remove i_Delta_R_max_op from n_tensor_ops_Delta_R
2586 146 : n_tensor_ops_Delta_R(i_Delta_R_max_op) = 0
2587 :
2588 152 : IF (bs_env%tensor_group_color == i_group_min - 1) n_tasks_local = n_tasks_local + 1
2589 :
2590 : END DO
2591 :
2592 6 : CALL timestop(handle)
2593 :
2594 12 : END SUBROUTINE compute_Delta_R_dist
2595 :
2596 : ! **************************************************************************************************
2597 : !> \brief ...
2598 : !> \param bs_env ...
2599 : !> \param n_tensor_ops_Delta_R ...
2600 : ! **************************************************************************************************
2601 6 : SUBROUTINE compute_n_tensor_ops_Delta_R(bs_env, n_tensor_ops_Delta_R)
2602 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2603 : INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_Delta_R
2604 :
2605 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_n_tensor_ops_Delta_R'
2606 :
2607 : INTEGER :: handle, i_cell_Delta_R, i_cell_R, i_cell_R1, i_cell_R1_minus_R, i_cell_R2, &
2608 : i_cell_R2_m_R1, i_cell_S1, i_cell_S1_m_R1_p_R2, i_cell_S1_minus_R, i_cell_S2, &
2609 : nimages_Delta_R
2610 : INTEGER, DIMENSION(3) :: cell_DR, cell_m_R1, cell_R, cell_R1, cell_R1_minus_R, cell_R2, &
2611 : cell_R2_m_R1, cell_S1, cell_S1_m_R2_p_R1, cell_S1_minus_R, cell_S1_p_S2_m_R1, cell_S2
2612 : LOGICAL :: cell_found
2613 :
2614 6 : CALL timeset(routineN, handle)
2615 :
2616 6 : nimages_Delta_R = bs_env%nimages_Delta_R
2617 :
2618 18 : ALLOCATE (n_tensor_ops_Delta_R(nimages_Delta_R))
2619 172 : n_tensor_ops_Delta_R(:) = 0
2620 :
2621 : ! compute number of tensor operations for specific Delta_R
2622 172 : DO i_cell_Delta_R = 1, nimages_Delta_R
2623 :
2624 166 : IF (MODULO(i_cell_Delta_R, bs_env%num_tensor_groups) /= bs_env%tensor_group_color) CYCLE
2625 :
2626 994 : DO i_cell_R1 = 1, bs_env%nimages_3c
2627 :
2628 3620 : cell_R1(1:3) = bs_env%index_to_cell_3c(1:3, i_cell_R1)
2629 3620 : cell_DR(1:3) = bs_env%index_to_cell_Delta_R(1:3, i_cell_Delta_R)
2630 :
2631 : ! S_1 = R_1 + ΔR (from ΔR = S_1 - R_1)
2632 : CALL add_R(cell_R1, cell_DR, bs_env%index_to_cell_3c, cell_S1, &
2633 905 : cell_found, bs_env%cell_to_index_3c, i_cell_S1)
2634 905 : IF (.NOT. cell_found) CYCLE
2635 :
2636 2950 : DO i_cell_R2 = 1, bs_env%nimages_scf_desymm
2637 :
2638 10620 : cell_R2(1:3) = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_R2)
2639 :
2640 : ! R_2 - R_1
2641 : CALL add_R(cell_R2, -cell_R1, bs_env%index_to_cell_3c, cell_R2_m_R1, &
2642 10620 : cell_found, bs_env%cell_to_index_3c, i_cell_R2_m_R1)
2643 2655 : IF (.NOT. cell_found) CYCLE
2644 :
2645 : ! S_1 - R_1 + R_2
2646 : CALL add_R(cell_S1, cell_R2_m_R1, bs_env%index_to_cell_3c, cell_S1_m_R2_p_R1, &
2647 1575 : cell_found, bs_env%cell_to_index_3c, i_cell_S1_m_R1_p_R2)
2648 1575 : IF (.NOT. cell_found) CYCLE
2649 :
2650 3993 : n_tensor_ops_Delta_R(i_cell_Delta_R) = n_tensor_ops_Delta_R(i_cell_Delta_R) + 1
2651 :
2652 : END DO ! i_cell_R2
2653 :
2654 2950 : DO i_cell_S2 = 1, bs_env%nimages_scf_desymm
2655 :
2656 10620 : cell_S2(1:3) = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_S2)
2657 10620 : cell_m_R1(1:3) = -cell_R1(1:3)
2658 10620 : cell_S1_p_S2_m_R1(1:3) = cell_S1(1:3) + cell_S2(1:3) - cell_R1(1:3)
2659 :
2660 2655 : CALL is_cell_in_index_to_cell(cell_m_R1, bs_env%index_to_cell_3c, cell_found)
2661 2655 : IF (.NOT. cell_found) CYCLE
2662 :
2663 2169 : CALL is_cell_in_index_to_cell(cell_S1_p_S2_m_R1, bs_env%index_to_cell_3c, cell_found)
2664 295 : IF (.NOT. cell_found) CYCLE
2665 :
2666 : END DO ! i_cell_S2
2667 :
2668 4021 : DO i_cell_R = 1, bs_env%nimages_scf_desymm
2669 :
2670 10620 : cell_R = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_R)
2671 :
2672 : ! R_1 - R
2673 : CALL add_R(cell_R1, -cell_R, bs_env%index_to_cell_3c, cell_R1_minus_R, &
2674 10620 : cell_found, bs_env%cell_to_index_3c, i_cell_R1_minus_R)
2675 2655 : IF (.NOT. cell_found) CYCLE
2676 :
2677 : ! S_1 - R
2678 : CALL add_R(cell_S1, -cell_R, bs_env%index_to_cell_3c, cell_S1_minus_R, &
2679 6804 : cell_found, bs_env%cell_to_index_3c, i_cell_S1_minus_R)
2680 905 : IF (.NOT. cell_found) CYCLE
2681 :
2682 : END DO ! i_cell_R
2683 :
2684 : END DO ! i_cell_R1
2685 :
2686 : END DO ! i_cell_Delta_R
2687 :
2688 6 : CALL bs_env%para_env%sum(n_tensor_ops_Delta_R)
2689 :
2690 6 : CALL timestop(handle)
2691 :
2692 6 : END SUBROUTINE compute_n_tensor_ops_Delta_R
2693 :
2694 : ! **************************************************************************************************
2695 : !> \brief ...
2696 : !> \param cell_1 ...
2697 : !> \param cell_2 ...
2698 : !> \param index_to_cell ...
2699 : !> \param cell_1_plus_2 ...
2700 : !> \param cell_found ...
2701 : !> \param cell_to_index ...
2702 : !> \param i_cell_1_plus_2 ...
2703 : ! **************************************************************************************************
2704 85114 : SUBROUTINE add_R(cell_1, cell_2, index_to_cell, cell_1_plus_2, cell_found, &
2705 : cell_to_index, i_cell_1_plus_2)
2706 :
2707 : INTEGER, DIMENSION(3) :: cell_1, cell_2
2708 : INTEGER, DIMENSION(:, :) :: index_to_cell
2709 : INTEGER, DIMENSION(3) :: cell_1_plus_2
2710 : LOGICAL :: cell_found
2711 : INTEGER, DIMENSION(:, :, :), INTENT(IN), &
2712 : OPTIONAL, POINTER :: cell_to_index
2713 : INTEGER, INTENT(OUT), OPTIONAL :: i_cell_1_plus_2
2714 :
2715 : CHARACTER(LEN=*), PARAMETER :: routineN = 'add_R'
2716 :
2717 : INTEGER :: handle
2718 :
2719 85114 : CALL timeset(routineN, handle)
2720 :
2721 340456 : cell_1_plus_2(1:3) = cell_1(1:3) + cell_2(1:3)
2722 :
2723 85114 : CALL is_cell_in_index_to_cell(cell_1_plus_2, index_to_cell, cell_found)
2724 :
2725 85114 : IF (PRESENT(i_cell_1_plus_2)) THEN
2726 85114 : IF (cell_found) THEN
2727 48214 : CPASSERT(PRESENT(cell_to_index))
2728 48214 : i_cell_1_plus_2 = cell_to_index(cell_1_plus_2(1), cell_1_plus_2(2), cell_1_plus_2(3))
2729 : ELSE
2730 36900 : i_cell_1_plus_2 = -1000
2731 : END IF
2732 : END IF
2733 :
2734 85114 : CALL timestop(handle)
2735 :
2736 85114 : END SUBROUTINE add_R
2737 :
2738 : ! **************************************************************************************************
2739 : !> \brief ...
2740 : !> \param cell ...
2741 : !> \param index_to_cell ...
2742 : !> \param cell_found ...
2743 : ! **************************************************************************************************
2744 133779 : SUBROUTINE is_cell_in_index_to_cell(cell, index_to_cell, cell_found)
2745 : INTEGER, DIMENSION(3) :: cell
2746 : INTEGER, DIMENSION(:, :) :: index_to_cell
2747 : LOGICAL :: cell_found
2748 :
2749 : CHARACTER(LEN=*), PARAMETER :: routineN = 'is_cell_in_index_to_cell'
2750 :
2751 : INTEGER :: handle, i_cell, nimg
2752 : INTEGER, DIMENSION(3) :: cell_i
2753 :
2754 133779 : CALL timeset(routineN, handle)
2755 :
2756 133779 : nimg = SIZE(index_to_cell, 2)
2757 :
2758 133779 : cell_found = .FALSE.
2759 :
2760 1653594 : DO i_cell = 1, nimg
2761 :
2762 6079260 : cell_i(1:3) = index_to_cell(1:3, i_cell)
2763 :
2764 1653594 : IF (cell_i(1) == cell(1) .AND. cell_i(2) == cell(2) .AND. cell_i(3) == cell(3)) THEN
2765 79661 : cell_found = .TRUE.
2766 : END IF
2767 :
2768 : END DO
2769 :
2770 133779 : CALL timestop(handle)
2771 :
2772 133779 : END SUBROUTINE is_cell_in_index_to_cell
2773 :
2774 : ! **************************************************************************************************
2775 : !> \brief ...
2776 : !> \param qs_env ...
2777 : !> \param bs_env ...
2778 : ! **************************************************************************************************
2779 6 : SUBROUTINE allocate_matrices_small_cell_full_kp(qs_env, bs_env)
2780 : TYPE(qs_environment_type), POINTER :: qs_env
2781 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2782 :
2783 : CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_small_cell_full_kp'
2784 :
2785 : INTEGER :: handle, i_spin, i_t, img, n_spin, &
2786 : nimages_scf, num_time_freq_points
2787 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2788 : TYPE(mp_para_env_type), POINTER :: para_env
2789 :
2790 6 : CALL timeset(routineN, handle)
2791 :
2792 6 : nimages_scf = bs_env%nimages_scf_desymm
2793 6 : num_time_freq_points = bs_env%num_time_freq_points
2794 6 : n_spin = bs_env%n_spin
2795 :
2796 6 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
2797 :
2798 72 : ALLOCATE (bs_env%fm_G_S(nimages_scf))
2799 72 : ALLOCATE (bs_env%fm_Sigma_x_R(nimages_scf))
2800 464 : ALLOCATE (bs_env%fm_chi_R_t(nimages_scf, num_time_freq_points))
2801 464 : ALLOCATE (bs_env%fm_MWM_R_t(nimages_scf, num_time_freq_points))
2802 476 : ALLOCATE (bs_env%fm_Sigma_c_R_neg_tau(nimages_scf, num_time_freq_points, n_spin))
2803 476 : ALLOCATE (bs_env%fm_Sigma_c_R_pos_tau(nimages_scf, num_time_freq_points, n_spin))
2804 60 : DO img = 1, nimages_scf
2805 54 : CALL cp_fm_create(bs_env%fm_G_S(img), bs_env%fm_work_mo(1)%matrix_struct)
2806 54 : CALL cp_fm_create(bs_env%fm_Sigma_x_R(img), bs_env%fm_work_mo(1)%matrix_struct)
2807 456 : DO i_t = 1, num_time_freq_points
2808 396 : CALL cp_fm_create(bs_env%fm_chi_R_t(img, i_t), bs_env%fm_RI_RI%matrix_struct)
2809 396 : CALL cp_fm_create(bs_env%fm_MWM_R_t(img, i_t), bs_env%fm_RI_RI%matrix_struct)
2810 396 : CALL cp_fm_set_all(bs_env%fm_MWM_R_t(img, i_t), 0.0_dp)
2811 846 : DO i_spin = 1, n_spin
2812 : CALL cp_fm_create(bs_env%fm_Sigma_c_R_neg_tau(img, i_t, i_spin), &
2813 396 : bs_env%fm_work_mo(1)%matrix_struct)
2814 : CALL cp_fm_create(bs_env%fm_Sigma_c_R_pos_tau(img, i_t, i_spin), &
2815 396 : bs_env%fm_work_mo(1)%matrix_struct)
2816 396 : CALL cp_fm_set_all(bs_env%fm_Sigma_c_R_neg_tau(img, i_t, i_spin), 0.0_dp)
2817 792 : CALL cp_fm_set_all(bs_env%fm_Sigma_c_R_pos_tau(img, i_t, i_spin), 0.0_dp)
2818 : END DO
2819 : END DO
2820 : END DO
2821 :
2822 6 : CALL timestop(handle)
2823 :
2824 6 : END SUBROUTINE allocate_matrices_small_cell_full_kp
2825 :
2826 : ! **************************************************************************************************
2827 : !> \brief ...
2828 : !> \param qs_env ...
2829 : !> \param bs_env ...
2830 : ! **************************************************************************************************
2831 6 : SUBROUTINE trafo_V_xc_R_to_kp(qs_env, bs_env)
2832 : TYPE(qs_environment_type), POINTER :: qs_env
2833 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2834 :
2835 : CHARACTER(LEN=*), PARAMETER :: routineN = 'trafo_V_xc_R_to_kp'
2836 :
2837 : INTEGER :: handle, ikp, img, ispin, n_ao
2838 6 : INTEGER, DIMENSION(:, :, :), POINTER :: cell_to_index_scf
2839 : TYPE(cp_cfm_type) :: cfm_mo_coeff, cfm_tmp, cfm_V_xc
2840 : TYPE(cp_fm_type) :: fm_V_xc_re
2841 6 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks
2842 : TYPE(kpoint_type), POINTER :: kpoints_scf
2843 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
2844 6 : POINTER :: sab_nl
2845 :
2846 6 : CALL timeset(routineN, handle)
2847 :
2848 6 : n_ao = bs_env%n_ao
2849 :
2850 6 : CALL get_qs_env(qs_env, matrix_ks_kp=matrix_ks, kpoints=kpoints_scf)
2851 :
2852 6 : NULLIFY (sab_nl)
2853 6 : CALL get_kpoint_info(kpoints_scf, sab_nl=sab_nl, cell_to_index=cell_to_index_scf)
2854 :
2855 6 : CALL cp_cfm_create(cfm_V_xc, bs_env%cfm_work_mo%matrix_struct)
2856 6 : CALL cp_cfm_create(cfm_mo_coeff, bs_env%cfm_work_mo%matrix_struct)
2857 6 : CALL cp_cfm_create(cfm_tmp, bs_env%cfm_work_mo%matrix_struct)
2858 6 : CALL cp_fm_create(fm_V_xc_re, bs_env%cfm_work_mo%matrix_struct)
2859 :
2860 184 : DO img = 1, bs_env%nimages_scf
2861 362 : DO ispin = 1, bs_env%n_spin
2862 : ! JW kind of hack because the format of matrix_ks remains dubious...
2863 178 : CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
2864 356 : CALL copy_fm_to_dbcsr(bs_env%fm_V_xc_R(img, ispin), matrix_ks(ispin, img)%matrix)
2865 : END DO
2866 : END DO
2867 :
2868 30 : ALLOCATE (bs_env%v_xc_n(n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
2869 :
2870 12 : DO ispin = 1, bs_env%n_spin
2871 170 : DO ikp = 1, bs_env%nkp_bs_and_DOS
2872 :
2873 : ! v^xc^R -> v^xc(k) (matrix_ks stores v^xc^R, see SUBROUTINE compute_V_xc)
2874 : CALL rsmat_to_kp(matrix_ks, ispin, bs_env%kpoints_DOS%xkp(1:3, ikp), &
2875 158 : cell_to_index_scf, sab_nl, bs_env, cfm_V_xc)
2876 :
2877 : ! get C_µn(k)
2878 158 : CALL cp_cfm_to_cfm(bs_env%cfm_mo_coeff_kp(ikp, ispin), cfm_mo_coeff)
2879 :
2880 : ! v^xc_nm(k_i) = sum_µν C^*_µn(k_i) v^xc_µν(k_i) C_νn(k_i)
2881 : CALL parallel_gemm('N', 'N', n_ao, n_ao, n_ao, z_one, cfm_V_xc, cfm_mo_coeff, &
2882 158 : z_zero, cfm_tmp)
2883 : CALL parallel_gemm('C', 'N', n_ao, n_ao, n_ao, z_one, cfm_mo_coeff, cfm_tmp, &
2884 158 : z_zero, cfm_V_xc)
2885 :
2886 : ! get v^xc_nn(k_i) which is a real quantity as v^xc is Hermitian
2887 158 : CALL cp_cfm_to_fm(cfm_V_xc, fm_V_xc_re)
2888 164 : CALL cp_fm_get_diag(fm_V_xc_re, bs_env%v_xc_n(:, ikp, ispin))
2889 :
2890 : END DO
2891 :
2892 : END DO
2893 :
2894 : ! just rebuild the overwritten KS matrix again
2895 6 : CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
2896 :
2897 6 : CALL cp_cfm_release(cfm_V_xc)
2898 6 : CALL cp_cfm_release(cfm_mo_coeff)
2899 6 : CALL cp_cfm_release(cfm_tmp)
2900 6 : CALL cp_fm_release(fm_V_xc_re)
2901 :
2902 6 : CALL timestop(handle)
2903 :
2904 12 : END SUBROUTINE trafo_V_xc_R_to_kp
2905 :
2906 : ! **************************************************************************************************
2907 : !> \brief ...
2908 : !> \param qs_env ...
2909 : !> \param bs_env ...
2910 : ! **************************************************************************************************
2911 6 : SUBROUTINE heuristic_RI_regularization(qs_env, bs_env)
2912 : TYPE(qs_environment_type), POINTER :: qs_env
2913 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2914 :
2915 : CHARACTER(LEN=*), PARAMETER :: routineN = 'heuristic_RI_regularization'
2916 :
2917 6 : COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: M
2918 : INTEGER :: handle, ikp, ikp_local, n_RI, nkp, &
2919 : nkp_local, u
2920 : REAL(KIND=dp) :: cond_nr, cond_nr_max, max_ev, &
2921 : max_ev_ikp, min_ev, min_ev_ikp
2922 6 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: M_R
2923 :
2924 6 : CALL timeset(routineN, handle)
2925 :
2926 : ! compute M^R_PQ = <phi_P,0|V^tr(rc)|phi_Q,R> for RI metric
2927 6 : CALL get_V_tr_R(M_R, bs_env%ri_metric, 0.0_dp, bs_env, qs_env)
2928 :
2929 6 : nkp = bs_env%nkp_chi_eps_W_orig_plus_extra
2930 6 : n_RI = bs_env%n_RI
2931 :
2932 6 : nkp_local = 0
2933 3846 : DO ikp = 1, nkp
2934 : ! trivial parallelization over k-points
2935 3840 : IF (MODULO(ikp, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
2936 3846 : nkp_local = nkp_local + 1
2937 : END DO
2938 :
2939 30 : ALLOCATE (M(n_RI, n_RI, nkp_local))
2940 :
2941 6 : ikp_local = 0
2942 6 : cond_nr_max = 0.0_dp
2943 6 : min_ev = 1000.0_dp
2944 6 : max_ev = -1000.0_dp
2945 :
2946 3846 : DO ikp = 1, nkp
2947 :
2948 : ! trivial parallelization
2949 3840 : IF (MODULO(ikp, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
2950 :
2951 1920 : ikp_local = ikp_local + 1
2952 :
2953 : ! M(k) = sum_R e^ikR M^R
2954 : CALL rs_to_kp(M_R, M(:, :, ikp_local), &
2955 : bs_env%kpoints_scf_desymm%index_to_cell, &
2956 1920 : bs_env%kpoints_chi_eps_W%xkp(1:3, ikp))
2957 :
2958 : ! compute condition number of M_PQ(k)
2959 1920 : CALL power(M(:, :, ikp_local), 1.0_dp, 0.0_dp, cond_nr, min_ev_ikp, max_ev_ikp)
2960 :
2961 1920 : IF (cond_nr > cond_nr_max) cond_nr_max = cond_nr
2962 1920 : IF (max_ev_ikp > max_ev) max_ev = max_ev_ikp
2963 1926 : IF (min_ev_ikp < min_ev) min_ev = min_ev_ikp
2964 :
2965 : END DO ! ikp
2966 :
2967 6 : CALL bs_env%para_env%max(cond_nr_max)
2968 :
2969 6 : u = bs_env%unit_nr
2970 6 : IF (u > 0) THEN
2971 3 : WRITE (u, FMT="(T2,A,ES34.1)") "Min. abs. eigenvalue of RI metric matrix M(k)", min_ev
2972 3 : WRITE (u, FMT="(T2,A,ES34.1)") "Max. abs. eigenvalue of RI metric matrix M(k)", max_ev
2973 3 : WRITE (u, FMT="(T2,A,ES50.1)") "Max. condition number of M(k)", cond_nr_max
2974 : END IF
2975 :
2976 6 : CALL timestop(handle)
2977 :
2978 12 : END SUBROUTINE heuristic_RI_regularization
2979 :
2980 : ! **************************************************************************************************
2981 : !> \brief ...
2982 : !> \param V_tr_R ...
2983 : !> \param pot_type ...
2984 : !> \param regularization_RI ...
2985 : !> \param bs_env ...
2986 : !> \param qs_env ...
2987 : ! **************************************************************************************************
2988 68 : SUBROUTINE get_V_tr_R(V_tr_R, pot_type, regularization_RI, bs_env, qs_env)
2989 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: V_tr_R
2990 : TYPE(libint_potential_type) :: pot_type
2991 : REAL(KIND=dp) :: regularization_RI
2992 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2993 : TYPE(qs_environment_type), POINTER :: qs_env
2994 :
2995 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_V_tr_R'
2996 :
2997 : INTEGER :: handle, img, nimages_scf_desymm
2998 : INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_RI
2999 68 : INTEGER, DIMENSION(:), POINTER :: col_bsize, row_bsize
3000 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
3001 68 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_V_tr_R
3002 : TYPE(dbcsr_distribution_type) :: dbcsr_dist
3003 68 : TYPE(dbcsr_type), ALLOCATABLE, DIMENSION(:) :: mat_V_tr_R
3004 : TYPE(distribution_2d_type), POINTER :: dist_2d
3005 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
3006 68 : POINTER :: sab_RI
3007 68 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
3008 68 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
3009 :
3010 68 : CALL timeset(routineN, handle)
3011 :
3012 68 : NULLIFY (sab_RI, dist_2d)
3013 :
3014 : CALL get_qs_env(qs_env=qs_env, &
3015 : blacs_env=blacs_env, &
3016 : distribution_2d=dist_2d, &
3017 : qs_kind_set=qs_kind_set, &
3018 68 : particle_set=particle_set)
3019 :
3020 204 : ALLOCATE (sizes_RI(bs_env%n_atom))
3021 68 : CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_RI, basis=bs_env%basis_set_RI)
3022 : CALL build_2c_neighbor_lists(sab_RI, bs_env%basis_set_RI, bs_env%basis_set_RI, &
3023 : pot_type, "2c_nl_RI", qs_env, sym_ij=.FALSE., &
3024 68 : dist_2d=dist_2d)
3025 68 : CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
3026 204 : ALLOCATE (row_bsize(SIZE(sizes_RI)))
3027 204 : ALLOCATE (col_bsize(SIZE(sizes_RI)))
3028 244 : row_bsize(:) = sizes_RI
3029 244 : col_bsize(:) = sizes_RI
3030 :
3031 68 : nimages_scf_desymm = bs_env%nimages_scf_desymm
3032 816 : ALLOCATE (mat_V_tr_R(nimages_scf_desymm))
3033 : CALL dbcsr_create(mat_V_tr_R(1), "(RI|RI)", dbcsr_dist, dbcsr_type_no_symmetry, &
3034 68 : row_bsize, col_bsize)
3035 68 : DEALLOCATE (row_bsize, col_bsize)
3036 :
3037 612 : DO img = 2, nimages_scf_desymm
3038 612 : CALL dbcsr_create(mat_V_tr_R(img), template=mat_V_tr_R(1))
3039 : END DO
3040 :
3041 : CALL build_2c_integrals(mat_V_tr_R, 0.0_dp, qs_env, sab_RI, bs_env%basis_set_RI, &
3042 : bs_env%basis_set_RI, pot_type, do_kpoints=.TRUE., &
3043 : ext_kpoints=bs_env%kpoints_scf_desymm, &
3044 68 : regularization_RI=regularization_RI)
3045 :
3046 816 : ALLOCATE (fm_V_tr_R(nimages_scf_desymm))
3047 680 : DO img = 1, nimages_scf_desymm
3048 612 : CALL cp_fm_create(fm_V_tr_R(img), bs_env%fm_RI_RI%matrix_struct)
3049 612 : CALL copy_dbcsr_to_fm(mat_V_tr_R(img), fm_V_tr_R(img))
3050 680 : CALL dbcsr_release(mat_V_tr_R(img))
3051 : END DO
3052 :
3053 68 : IF (.NOT. ALLOCATED(V_tr_R)) THEN
3054 340 : ALLOCATE (V_tr_R(bs_env%n_RI, bs_env%n_RI, nimages_scf_desymm))
3055 : END IF
3056 :
3057 68 : CALL fm_to_local_array(fm_V_tr_R, V_tr_R)
3058 :
3059 68 : CALL cp_fm_release(fm_V_tr_R)
3060 68 : CALL dbcsr_distribution_release(dbcsr_dist)
3061 68 : CALL release_neighbor_list_sets(sab_RI)
3062 :
3063 68 : CALL timestop(handle)
3064 :
3065 204 : END SUBROUTINE get_V_tr_R
3066 :
3067 : ! **************************************************************************************************
3068 : !> \brief ...
3069 : !> \param matrix ...
3070 : !> \param exponent ...
3071 : !> \param eps ...
3072 : !> \param cond_nr ...
3073 : !> \param min_ev ...
3074 : !> \param max_ev ...
3075 : ! **************************************************************************************************
3076 34320 : SUBROUTINE power(matrix, exponent, eps, cond_nr, min_ev, max_ev)
3077 : COMPLEX(KIND=dp), DIMENSION(:, :) :: matrix
3078 : REAL(KIND=dp) :: exponent, eps
3079 : REAL(KIND=dp), OPTIONAL :: cond_nr, min_ev, max_ev
3080 :
3081 : CHARACTER(len=*), PARAMETER :: routineN = 'power'
3082 :
3083 34320 : COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: eigenvectors
3084 : INTEGER :: handle, i, n
3085 : REAL(KIND=dp) :: pos_eval
3086 34320 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: eigenvalues
3087 :
3088 34320 : CALL timeset(routineN, handle)
3089 :
3090 : ! make matrix perfectly Hermitian
3091 2559696 : matrix(:, :) = 0.5_dp*(matrix(:, :) + CONJG(TRANSPOSE(matrix(:, :))))
3092 :
3093 34320 : n = SIZE(matrix, 1)
3094 205920 : ALLOCATE (eigenvalues(n), eigenvectors(n, n))
3095 34320 : CALL diag_complex(matrix, eigenvectors, eigenvalues)
3096 :
3097 59920 : IF (PRESENT(cond_nr)) cond_nr = MAXVAL(ABS(eigenvalues))/MINVAL(ABS(eigenvalues))
3098 47120 : IF (PRESENT(min_ev)) min_ev = MINVAL(ABS(eigenvalues))
3099 47120 : IF (PRESENT(max_ev)) max_ev = MAXVAL(ABS(eigenvalues))
3100 :
3101 225344 : DO i = 1, n
3102 191024 : IF (eps < eigenvalues(i)) THEN
3103 191024 : pos_eval = (eigenvalues(i))**(0.5_dp*exponent)
3104 : ELSE
3105 : pos_eval = 0.0_dp
3106 : END IF
3107 1297008 : eigenvectors(:, i) = eigenvectors(:, i)*pos_eval
3108 : END DO
3109 :
3110 34320 : CALL ZGEMM("N", "C", n, n, n, z_one, eigenvectors, n, eigenvectors, n, z_zero, matrix, n)
3111 :
3112 34320 : DEALLOCATE (eigenvalues, eigenvectors)
3113 :
3114 34320 : CALL timestop(handle)
3115 :
3116 34320 : END SUBROUTINE power
3117 :
3118 : ! **************************************************************************************************
3119 : !> \brief ...
3120 : !> \param bs_env ...
3121 : !> \param Sigma_c_n_time ...
3122 : !> \param Sigma_c_n_freq ...
3123 : !> \param ispin ...
3124 : ! **************************************************************************************************
3125 196 : SUBROUTINE time_to_freq(bs_env, Sigma_c_n_time, Sigma_c_n_freq, ispin)
3126 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3127 : REAL(KIND=dp), DIMENSION(:, :, :) :: Sigma_c_n_time, Sigma_c_n_freq
3128 : INTEGER :: ispin
3129 :
3130 : CHARACTER(LEN=*), PARAMETER :: routineN = 'time_to_freq'
3131 :
3132 : INTEGER :: handle, i_t, j_w, n_occ
3133 : REAL(KIND=dp) :: freq_j, time_i, w_cos_ij, w_sin_ij
3134 196 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: Sigma_c_n_cos_time, Sigma_c_n_sin_time
3135 :
3136 196 : CALL timeset(routineN, handle)
3137 :
3138 784 : ALLOCATE (Sigma_c_n_cos_time(bs_env%n_ao, bs_env%num_time_freq_points))
3139 588 : ALLOCATE (Sigma_c_n_sin_time(bs_env%n_ao, bs_env%num_time_freq_points))
3140 :
3141 19028 : Sigma_c_n_cos_time(:, :) = 0.5_dp*(Sigma_c_n_time(:, :, 1) + Sigma_c_n_time(:, :, 2))
3142 19028 : Sigma_c_n_sin_time(:, :) = 0.5_dp*(Sigma_c_n_time(:, :, 1) - Sigma_c_n_time(:, :, 2))
3143 :
3144 38252 : Sigma_c_n_freq(:, :, :) = 0.0_dp
3145 :
3146 1988 : DO i_t = 1, bs_env%num_time_freq_points
3147 :
3148 20580 : DO j_w = 1, bs_env%num_time_freq_points
3149 :
3150 18592 : freq_j = bs_env%imag_freq_points(j_w)
3151 18592 : time_i = bs_env%imag_time_points(i_t)
3152 : ! integration weights for cosine and sine transform
3153 18592 : w_cos_ij = bs_env%weights_cos_t_to_w(j_w, i_t)*COS(freq_j*time_i)
3154 18592 : w_sin_ij = bs_env%weights_sin_t_to_w(j_w, i_t)*SIN(freq_j*time_i)
3155 :
3156 : ! 1. Re(Σ^c_nn(k_i,iω)) from cosine transform
3157 : Sigma_c_n_freq(:, j_w, 1) = Sigma_c_n_freq(:, j_w, 1) + &
3158 167872 : w_cos_ij*Sigma_c_n_cos_time(:, i_t)
3159 :
3160 : ! 2. Im(Σ^c_nn(k_i,iω)) from sine transform
3161 : Sigma_c_n_freq(:, j_w, 2) = Sigma_c_n_freq(:, j_w, 2) + &
3162 169664 : w_sin_ij*Sigma_c_n_sin_time(:, i_t)
3163 :
3164 : END DO
3165 :
3166 : END DO
3167 :
3168 : ! for occupied levels, we need the correlation self-energy for negative omega.
3169 : ! Therefore, weight_sin should be computed with -omega, which results in an
3170 : ! additional minus for the imaginary part:
3171 196 : n_occ = bs_env%n_occ(ispin)
3172 8356 : Sigma_c_n_freq(1:n_occ, :, 2) = -Sigma_c_n_freq(1:n_occ, :, 2)
3173 :
3174 196 : CALL timestop(handle)
3175 :
3176 392 : END SUBROUTINE time_to_freq
3177 :
3178 : ! **************************************************************************************************
3179 : !> \brief ...
3180 : !> \param bs_env ...
3181 : !> \param Sigma_c_ikp_n_freq ...
3182 : !> \param Sigma_x_ikp_n ...
3183 : !> \param V_xc_ikp_n ...
3184 : !> \param eigenval_scf ...
3185 : !> \param ikp ...
3186 : !> \param ispin ...
3187 : ! **************************************************************************************************
3188 196 : SUBROUTINE analyt_conti_and_print(bs_env, Sigma_c_ikp_n_freq, Sigma_x_ikp_n, V_xc_ikp_n, &
3189 196 : eigenval_scf, ikp, ispin)
3190 :
3191 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3192 : REAL(KIND=dp), DIMENSION(:, :, :) :: Sigma_c_ikp_n_freq
3193 : REAL(KIND=dp), DIMENSION(:) :: Sigma_x_ikp_n, V_xc_ikp_n, eigenval_scf
3194 : INTEGER :: ikp, ispin
3195 :
3196 : CHARACTER(LEN=*), PARAMETER :: routineN = 'analyt_conti_and_print'
3197 :
3198 : CHARACTER(len=3) :: occ_vir
3199 : CHARACTER(len=default_string_length) :: fname
3200 : INTEGER :: handle, i_mo, ikp_for_print, iunit, &
3201 : n_mo, nkp
3202 : LOGICAL :: is_bandstruc_kpoint, print_DOS_kpoints, &
3203 : print_ikp
3204 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: dummy, Sigma_c_ikp_n_qp
3205 :
3206 196 : CALL timeset(routineN, handle)
3207 :
3208 196 : n_mo = bs_env%n_ao
3209 784 : ALLOCATE (dummy(n_mo), Sigma_c_ikp_n_qp(n_mo))
3210 2308 : Sigma_c_ikp_n_qp(:) = 0.0_dp
3211 :
3212 2308 : DO i_mo = 1, n_mo
3213 :
3214 : ! parallelization
3215 2112 : IF (MODULO(i_mo, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
3216 :
3217 : CALL continuation_pade(Sigma_c_ikp_n_qp, &
3218 : bs_env%imag_freq_points_fit, dummy, dummy, &
3219 : Sigma_c_ikp_n_freq(:, 1:bs_env%num_freq_points_fit, 1)*z_one + &
3220 : Sigma_c_ikp_n_freq(:, 1:bs_env%num_freq_points_fit, 2)*gaussi, &
3221 : Sigma_x_ikp_n(:) - V_xc_ikp_n(:), &
3222 : eigenval_scf(:), eigenval_scf(:), &
3223 : bs_env%do_hedin_shift, &
3224 : i_mo, bs_env%n_occ(ispin), bs_env%n_vir(ispin), &
3225 : bs_env%nparam_pade, bs_env%num_freq_points_fit, &
3226 : ri_rpa_g0w0_crossing_newton, bs_env%n_occ(ispin), &
3227 68230 : 0.0_dp, .TRUE., .FALSE., 1, e_fermi_ext=bs_env%e_fermi(ispin))
3228 : END DO
3229 :
3230 196 : CALL bs_env%para_env%sum(Sigma_c_ikp_n_qp)
3231 :
3232 196 : CALL correct_obvious_fitting_fails(Sigma_c_ikp_n_qp, ispin, bs_env)
3233 :
3234 : bs_env%eigenval_G0W0(:, ikp, ispin) = eigenval_scf(:) + &
3235 : Sigma_c_ikp_n_qp(:) + &
3236 : Sigma_x_ikp_n(:) - &
3237 2308 : V_xc_ikp_n(:)
3238 :
3239 2308 : bs_env%eigenval_HF(:, ikp, ispin) = eigenval_scf(:) + Sigma_x_ikp_n(:) - V_xc_ikp_n(:)
3240 :
3241 : ! only print eigenvalues of DOS k-points in case no bandstructure path has been given
3242 196 : print_DOS_kpoints = (bs_env%nkp_only_bs <= 0)
3243 : ! in kpoints_DOS, the last nkp_only_bs are bandstructure k-points
3244 196 : is_bandstruc_kpoint = (ikp > bs_env%nkp_only_DOS)
3245 196 : print_ikp = print_DOS_kpoints .OR. is_bandstruc_kpoint
3246 :
3247 196 : IF (bs_env%para_env%is_source() .AND. print_ikp) THEN
3248 :
3249 82 : IF (print_DOS_kpoints) THEN
3250 51 : nkp = bs_env%nkp_only_DOS
3251 51 : ikp_for_print = ikp
3252 : ELSE
3253 31 : nkp = bs_env%nkp_only_bs
3254 31 : ikp_for_print = ikp - bs_env%nkp_only_DOS
3255 : END IF
3256 :
3257 82 : fname = "bandstructure_SCF_and_G0W0"
3258 :
3259 82 : IF (ikp_for_print == 1) THEN
3260 : CALL open_file(TRIM(fname), unit_number=iunit, file_status="REPLACE", &
3261 16 : file_action="WRITE")
3262 : ELSE
3263 : CALL open_file(TRIM(fname), unit_number=iunit, file_status="OLD", &
3264 66 : file_action="WRITE", file_position="APPEND")
3265 : END IF
3266 :
3267 82 : WRITE (iunit, "(A)") " "
3268 82 : WRITE (iunit, "(A10,I7,A25,3F10.4)") "kpoint: ", ikp_for_print, "coordinate: ", &
3269 164 : bs_env%kpoints_DOS%xkp(:, ikp)
3270 82 : WRITE (iunit, "(A)") " "
3271 82 : WRITE (iunit, "(A5,A12,3A17,A16,A18)") "n", "k", "ϵ_nk^DFT (eV)", "Σ^c_nk (eV)", &
3272 164 : "Σ^x_nk (eV)", "v_nk^xc (eV)", "ϵ_nk^G0W0 (eV)"
3273 82 : WRITE (iunit, "(A)") " "
3274 :
3275 994 : DO i_mo = 1, n_mo
3276 912 : IF (i_mo <= bs_env%n_occ(ispin)) occ_vir = 'occ'
3277 912 : IF (i_mo > bs_env%n_occ(ispin)) occ_vir = 'vir'
3278 912 : WRITE (iunit, "(I5,3A,I5,4F16.3,F17.3)") i_mo, ' (', occ_vir, ') ', ikp_for_print, &
3279 912 : eigenval_scf(i_mo)*evolt, &
3280 912 : Sigma_c_ikp_n_qp(i_mo)*evolt, &
3281 912 : Sigma_x_ikp_n(i_mo)*evolt, &
3282 912 : V_xc_ikp_n(i_mo)*evolt, &
3283 1906 : bs_env%eigenval_G0W0(i_mo, ikp, ispin)*evolt
3284 : END DO
3285 :
3286 82 : WRITE (iunit, "(A)") " "
3287 :
3288 82 : CALL close_file(iunit)
3289 :
3290 : END IF
3291 :
3292 196 : CALL timestop(handle)
3293 :
3294 392 : END SUBROUTINE analyt_conti_and_print
3295 :
3296 : ! **************************************************************************************************
3297 : !> \brief ...
3298 : !> \param Sigma_c_ikp_n_qp ...
3299 : !> \param ispin ...
3300 : !> \param bs_env ...
3301 : ! **************************************************************************************************
3302 196 : SUBROUTINE correct_obvious_fitting_fails(Sigma_c_ikp_n_qp, ispin, bs_env)
3303 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: Sigma_c_ikp_n_qp
3304 : INTEGER :: ispin
3305 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3306 :
3307 : CHARACTER(LEN=*), PARAMETER :: routineN = 'correct_obvious_fitting_fails'
3308 :
3309 : INTEGER :: handle, homo, i_mo, j_mo, &
3310 : n_levels_scissor, n_mo
3311 : LOGICAL :: is_occ, is_vir
3312 : REAL(KIND=dp) :: sum_Sigma_c
3313 :
3314 196 : CALL timeset(routineN, handle)
3315 :
3316 196 : n_mo = bs_env%n_ao
3317 196 : homo = bs_env%n_occ(ispin)
3318 :
3319 2308 : DO i_mo = 1, n_mo
3320 :
3321 : ! if |𝚺^c| > 13 eV, we use a scissors shift
3322 2308 : IF (ABS(Sigma_c_ikp_n_qp(i_mo)) > 13.0_dp/evolt) THEN
3323 :
3324 0 : is_occ = (i_mo <= homo)
3325 0 : is_vir = (i_mo > homo)
3326 :
3327 0 : n_levels_scissor = 0
3328 0 : sum_Sigma_c = 0.0_dp
3329 :
3330 : ! compute scissor
3331 0 : DO j_mo = 1, n_mo
3332 :
3333 : ! only compute scissor from other GW levels close in energy
3334 0 : IF (is_occ .AND. j_mo > homo) CYCLE
3335 0 : IF (is_vir .AND. j_mo <= homo) CYCLE
3336 0 : IF (ABS(i_mo - j_mo) > 10) CYCLE
3337 0 : IF (i_mo == j_mo) CYCLE
3338 :
3339 0 : n_levels_scissor = n_levels_scissor + 1
3340 0 : sum_Sigma_c = sum_Sigma_c + Sigma_c_ikp_n_qp(j_mo)
3341 :
3342 : END DO
3343 :
3344 : ! overwrite the self-energy with scissor shift
3345 0 : Sigma_c_ikp_n_qp(i_mo) = sum_Sigma_c/REAL(n_levels_scissor, KIND=dp)
3346 :
3347 : END IF
3348 :
3349 : END DO ! i_mo
3350 :
3351 196 : CALL timestop(handle)
3352 :
3353 196 : END SUBROUTINE correct_obvious_fitting_fails
3354 :
3355 : END MODULE gw_utils
|