Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2026 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief
10 : !> \author Jan Wilhelm
11 : !> \date 07.2023
12 : ! **************************************************************************************************
13 : MODULE gw_utils
14 : USE atomic_kind_types, ONLY: atomic_kind_type,&
15 : get_atomic_kind_set
16 : USE basis_set_types, ONLY: get_gto_basis_set,&
17 : gto_basis_set_type
18 : USE bibliography, ONLY: Graml2024,&
19 : cite_reference
20 : USE cell_types, ONLY: cell_type,&
21 : pbc,&
22 : scaled_to_real
23 : USE cp_blacs_env, ONLY: cp_blacs_env_create,&
24 : cp_blacs_env_release,&
25 : cp_blacs_env_type
26 : USE cp_cfm_types, ONLY: cp_cfm_create,&
27 : cp_cfm_release,&
28 : cp_cfm_to_cfm,&
29 : cp_cfm_to_fm,&
30 : cp_cfm_type
31 : USE cp_control_types, ONLY: dft_control_type
32 : USE cp_dbcsr_api, ONLY: &
33 : dbcsr_create, dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_p_type, &
34 : dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry, dbcsr_type_symmetric
35 : USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
36 : copy_fm_to_dbcsr,&
37 : cp_dbcsr_dist2d_to_dist,&
38 : dbcsr_allocate_matrix_set,&
39 : dbcsr_deallocate_matrix_set
40 : USE cp_files, ONLY: close_file,&
41 : open_file
42 : USE cp_fm_basic_linalg, ONLY: cp_fm_scale_and_add
43 : USE cp_fm_struct, ONLY: cp_fm_struct_create,&
44 : cp_fm_struct_release,&
45 : cp_fm_struct_type
46 : USE cp_fm_types, ONLY: cp_fm_create,&
47 : cp_fm_get_diag,&
48 : cp_fm_release,&
49 : cp_fm_set_all,&
50 : cp_fm_type
51 : USE cp_log_handling, ONLY: cp_get_default_logger,&
52 : cp_logger_type
53 : USE cp_output_handling, ONLY: cp_print_key_generate_filename
54 : USE dbt_api, ONLY: &
55 : dbt_clear, dbt_create, dbt_destroy, dbt_filter, dbt_iterator_blocks_left, &
56 : dbt_iterator_next_block, dbt_iterator_start, dbt_iterator_stop, dbt_iterator_type, &
57 : dbt_mp_environ_pgrid, dbt_pgrid_create, dbt_pgrid_destroy, dbt_pgrid_type, dbt_type
58 : USE distribution_2d_types, ONLY: distribution_2d_type
59 : USE gw_communication, ONLY: fm_to_local_array
60 : USE gw_integrals, ONLY: build_3c_integral_block
61 : USE input_constants, ONLY: do_potential_truncated,&
62 : large_cell_Gamma,&
63 : ri_rpa_g0w0_crossing_newton,&
64 : rtp_method_bse,&
65 : small_cell_full_kp,&
66 : xc_none
67 : USE input_section_types, ONLY: section_vals_get,&
68 : section_vals_get_subs_vals,&
69 : section_vals_type,&
70 : section_vals_val_get,&
71 : section_vals_val_set
72 : USE kinds, ONLY: default_path_length,&
73 : default_string_length,&
74 : dp,&
75 : int_8
76 : USE kpoint_k_r_trafo_simple, ONLY: rs_to_kp
77 : USE kpoint_types, ONLY: get_kpoint_info,&
78 : kpoint_create,&
79 : kpoint_type
80 : USE libint_2c_3c, ONLY: libint_potential_type
81 : USE libint_wrapper, ONLY: cp_libint_static_cleanup,&
82 : cp_libint_static_init
83 : USE machine, ONLY: m_memory,&
84 : m_walltime
85 : USE mathconstants, ONLY: gaussi,&
86 : z_one,&
87 : z_zero
88 : USE mathlib, ONLY: diag_complex,&
89 : gcd
90 : USE message_passing, ONLY: mp_cart_type,&
91 : mp_para_env_type
92 : USE minimax_exp, ONLY: get_exp_minimax_coeff
93 : USE minimax_exp_gw, ONLY: get_exp_minimax_coeff_gw
94 : USE minimax_rpa, ONLY: get_rpa_minimax_coeff,&
95 : get_rpa_minimax_coeff_larger_grid
96 : USE mp2_gpw, ONLY: create_mat_munu
97 : USE mp2_grids, ONLY: get_l_sq_wghts_cos_tf_t_to_w,&
98 : get_l_sq_wghts_cos_tf_w_to_t,&
99 : get_l_sq_wghts_sin_tf_t_to_w
100 : USE mp2_ri_2c, ONLY: trunc_coulomb_for_exchange
101 : USE parallel_gemm_api, ONLY: parallel_gemm
102 : USE particle_methods, ONLY: get_particle_set
103 : USE particle_types, ONLY: particle_type
104 : USE physcon, ONLY: angstrom,&
105 : evolt
106 : USE post_scf_bandstructure_types, ONLY: post_scf_bandstructure_type
107 : USE post_scf_bandstructure_utils, ONLY: rsmat_to_kp
108 : USE qs_energy_types, ONLY: qs_energy_type
109 : USE qs_environment_types, ONLY: get_qs_env,&
110 : qs_env_part_release,&
111 : qs_environment_type
112 : USE qs_integral_utils, ONLY: basis_set_list_setup
113 : USE qs_interactions, ONLY: init_interaction_radii_orb_basis
114 : USE qs_kind_types, ONLY: get_qs_kind,&
115 : qs_kind_type
116 : USE qs_ks_methods, ONLY: qs_ks_build_kohn_sham_matrix
117 : USE qs_neighbor_list_types, ONLY: neighbor_list_set_p_type,&
118 : release_neighbor_list_sets
119 : USE qs_tensors, ONLY: build_2c_integrals,&
120 : build_2c_neighbor_lists,&
121 : build_3c_integrals,&
122 : build_3c_neighbor_lists,&
123 : get_tensor_occupancy,&
124 : neighbor_list_3c_destroy
125 : USE qs_tensors_types, ONLY: create_2c_tensor,&
126 : create_3c_tensor,&
127 : distribution_3d_create,&
128 : distribution_3d_type,&
129 : neighbor_list_3c_type
130 : USE rpa_gw, ONLY: continuation_pade
131 : #include "base/base_uses.f90"
132 :
133 : IMPLICIT NONE
134 :
135 : PRIVATE
136 :
137 : PUBLIC :: create_and_init_bs_env_for_gw, de_init_bs_env, get_i_j_atoms, &
138 : compute_xkp, time_to_freq, analyt_conti_and_print, &
139 : add_R, is_cell_in_index_to_cell, get_V_tr_R, power
140 :
141 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'gw_utils'
142 :
143 : CONTAINS
144 :
145 : ! **************************************************************************************************
146 : !> \brief ...
147 : !> \param qs_env ...
148 : !> \param bs_env ...
149 : !> \param bs_sec ...
150 : ! **************************************************************************************************
151 28 : SUBROUTINE create_and_init_bs_env_for_gw(qs_env, bs_env, bs_sec)
152 : TYPE(qs_environment_type), POINTER :: qs_env
153 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
154 : TYPE(section_vals_type), POINTER :: bs_sec
155 :
156 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_and_init_bs_env_for_gw'
157 :
158 : INTEGER :: handle
159 :
160 28 : CALL timeset(routineN, handle)
161 :
162 28 : CALL cite_reference(Graml2024)
163 :
164 28 : CALL read_gw_input_parameters(bs_env, bs_sec)
165 :
166 28 : CALL print_header_and_input_parameters(bs_env)
167 :
168 28 : CALL setup_AO_and_RI_basis_set(qs_env, bs_env)
169 :
170 28 : CALL get_RI_basis_and_basis_function_indices(qs_env, bs_env)
171 :
172 28 : CALL set_heuristic_parameters(bs_env, qs_env)
173 :
174 28 : CALL cp_libint_static_init()
175 :
176 28 : CALL setup_kpoints_chi_eps_W(bs_env, bs_env%kpoints_chi_eps_W)
177 :
178 28 : IF (bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp) THEN
179 6 : CALL setup_cells_3c(qs_env, bs_env)
180 : END IF
181 :
182 28 : CALL set_parallelization_parameters(qs_env, bs_env)
183 :
184 28 : CALL allocate_matrices(qs_env, bs_env)
185 :
186 28 : CALL compute_V_xc(qs_env, bs_env)
187 :
188 28 : CALL create_tensors(qs_env, bs_env)
189 :
190 50 : SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
191 : CASE (large_cell_Gamma)
192 :
193 22 : CALL allocate_GW_eigenvalues(bs_env)
194 :
195 22 : CALL check_sparsity_3c(qs_env, bs_env)
196 :
197 22 : CALL set_sparsity_parallelization_parameters(bs_env)
198 :
199 22 : CALL check_for_restart_files(qs_env, bs_env)
200 :
201 : CASE (small_cell_full_kp)
202 :
203 6 : CALL compute_3c_integrals(qs_env, bs_env)
204 :
205 6 : CALL setup_cells_Delta_R(bs_env)
206 :
207 6 : CALL setup_parallelization_Delta_R(bs_env)
208 :
209 6 : CALL allocate_matrices_small_cell_full_kp(qs_env, bs_env)
210 :
211 6 : CALL trafo_V_xc_R_to_kp(qs_env, bs_env)
212 :
213 34 : CALL heuristic_RI_regularization(qs_env, bs_env)
214 :
215 : END SELECT
216 :
217 28 : CALL setup_time_and_frequency_minimax_grid(bs_env)
218 :
219 : ! free memory in qs_env; only if one is not calculating the LDOS because
220 : ! we need real-space grid operations in pw_env, task_list for the LDOS
221 : ! Recommendation in case of memory issues: first perform GW calculation without calculating
222 : ! LDOS (to safe memor). Then, use GW restart files
223 : ! in a subsequent calculation to calculate the LDOS
224 : ! Marek : TODO - boolean that does not interfere with RTP init but sets this to correct value
225 : IF (.NOT. bs_env%do_ldos .AND. .FALSE.) THEN
226 : CALL qs_env_part_release(qs_env)
227 : END IF
228 :
229 28 : CALL timestop(handle)
230 :
231 28 : END SUBROUTINE create_and_init_bs_env_for_gw
232 :
233 : ! **************************************************************************************************
234 : !> \brief ...
235 : !> \param bs_env ...
236 : ! **************************************************************************************************
237 28 : SUBROUTINE de_init_bs_env(bs_env)
238 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
239 :
240 : CHARACTER(LEN=*), PARAMETER :: routineN = 'de_init_bs_env'
241 :
242 : INTEGER :: handle
243 :
244 28 : CALL timeset(routineN, handle)
245 : ! deallocate quantities here which:
246 : ! 1. cannot be deallocated in bs_env_release due to circular dependencies
247 : ! 2. consume a lot of memory and should not be kept until the quantity is
248 : ! deallocated in bs_env_release
249 :
250 28 : IF (ASSOCIATED(bs_env%nl_3c%ij_list) .AND. (bs_env%rtp_method == rtp_method_bse)) THEN
251 12 : IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, *) "Retaining nl_3c for RTBSE"
252 : ELSE
253 16 : CALL neighbor_list_3c_destroy(bs_env%nl_3c)
254 : END IF
255 :
256 28 : CALL cp_libint_static_cleanup()
257 :
258 28 : CALL timestop(handle)
259 :
260 28 : END SUBROUTINE de_init_bs_env
261 :
262 : ! **************************************************************************************************
263 : !> \brief ...
264 : !> \param bs_env ...
265 : !> \param bs_sec ...
266 : ! **************************************************************************************************
267 28 : SUBROUTINE read_gw_input_parameters(bs_env, bs_sec)
268 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
269 : TYPE(section_vals_type), POINTER :: bs_sec
270 :
271 : CHARACTER(LEN=*), PARAMETER :: routineN = 'read_gw_input_parameters'
272 :
273 : INTEGER :: handle
274 : TYPE(section_vals_type), POINTER :: gw_sec
275 :
276 28 : CALL timeset(routineN, handle)
277 :
278 28 : NULLIFY (gw_sec)
279 28 : gw_sec => section_vals_get_subs_vals(bs_sec, "GW")
280 :
281 28 : CALL section_vals_val_get(gw_sec, "NUM_TIME_FREQ_POINTS", i_val=bs_env%num_time_freq_points)
282 28 : CALL section_vals_val_get(gw_sec, "EPS_FILTER", r_val=bs_env%eps_filter)
283 28 : CALL section_vals_val_get(gw_sec, "REGULARIZATION_RI", r_val=bs_env%input_regularization_RI)
284 28 : CALL section_vals_val_get(gw_sec, "REGULARIZATION_MINIMAX", r_val=bs_env%input_regularization_minimax)
285 28 : CALL section_vals_val_get(gw_sec, "CUTOFF_RADIUS_RI", r_val=bs_env%ri_metric%cutoff_radius)
286 28 : CALL section_vals_val_get(gw_sec, "MEMORY_PER_PROC", r_val=bs_env%input_memory_per_proc_GB)
287 28 : CALL section_vals_val_get(gw_sec, "APPROX_KP_EXTRAPOL", l_val=bs_env%approx_kp_extrapol)
288 28 : CALL section_vals_val_get(gw_sec, "SIZE_LATTICE_SUM", i_val=bs_env%size_lattice_sum_V)
289 28 : CALL section_vals_val_get(gw_sec, "KPOINTS_W", i_vals=bs_env%nkp_grid_chi_eps_W_input)
290 28 : CALL section_vals_val_get(gw_sec, "HEDIN_SHIFT", l_val=bs_env%do_hedin_shift)
291 28 : CALL section_vals_val_get(gw_sec, "FREQ_MAX_FIT", r_val=bs_env%freq_max_fit)
292 :
293 28 : CALL timestop(handle)
294 :
295 28 : END SUBROUTINE read_gw_input_parameters
296 :
297 : ! **************************************************************************************************
298 : !> \brief ...
299 : !> \param qs_env ...
300 : !> \param bs_env ...
301 : ! **************************************************************************************************
302 28 : SUBROUTINE setup_AO_and_RI_basis_set(qs_env, bs_env)
303 : TYPE(qs_environment_type), POINTER :: qs_env
304 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
305 :
306 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_AO_and_RI_basis_set'
307 :
308 : INTEGER :: handle, natom, nkind
309 28 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
310 28 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
311 :
312 28 : CALL timeset(routineN, handle)
313 :
314 : CALL get_qs_env(qs_env, &
315 : qs_kind_set=qs_kind_set, &
316 : particle_set=particle_set, &
317 28 : natom=natom, nkind=nkind)
318 :
319 : ! set up basis
320 140 : ALLOCATE (bs_env%sizes_RI(natom), bs_env%sizes_AO(natom))
321 228 : ALLOCATE (bs_env%basis_set_RI(nkind), bs_env%basis_set_AO(nkind))
322 :
323 28 : CALL basis_set_list_setup(bs_env%basis_set_RI, "RI_AUX", qs_kind_set)
324 28 : CALL basis_set_list_setup(bs_env%basis_set_AO, "ORB", qs_kind_set)
325 :
326 : CALL get_particle_set(particle_set, qs_kind_set, nsgf=bs_env%sizes_RI, &
327 28 : basis=bs_env%basis_set_RI)
328 : CALL get_particle_set(particle_set, qs_kind_set, nsgf=bs_env%sizes_AO, &
329 28 : basis=bs_env%basis_set_AO)
330 :
331 28 : CALL timestop(handle)
332 :
333 28 : END SUBROUTINE setup_AO_and_RI_basis_set
334 :
335 : ! **************************************************************************************************
336 : !> \brief ...
337 : !> \param qs_env ...
338 : !> \param bs_env ...
339 : ! **************************************************************************************************
340 28 : SUBROUTINE get_RI_basis_and_basis_function_indices(qs_env, bs_env)
341 : TYPE(qs_environment_type), POINTER :: qs_env
342 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
343 :
344 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_RI_basis_and_basis_function_indices'
345 :
346 : INTEGER :: handle, i_RI, iatom, ikind, iset, &
347 : max_AO_bf_per_atom, n_ao_test, n_atom, &
348 : n_kind, n_RI, nset, nsgf, u
349 28 : INTEGER, ALLOCATABLE, DIMENSION(:) :: kind_of
350 28 : INTEGER, DIMENSION(:), POINTER :: l_max, l_min, nsgf_set
351 28 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
352 : TYPE(gto_basis_set_type), POINTER :: basis_set_a
353 28 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
354 :
355 28 : CALL timeset(routineN, handle)
356 :
357 : ! determine RI basis set size
358 28 : CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
359 :
360 28 : n_kind = SIZE(qs_kind_set)
361 28 : n_atom = bs_env%n_atom
362 :
363 28 : CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of)
364 :
365 72 : DO ikind = 1, n_kind
366 : CALL get_qs_kind(qs_kind=qs_kind_set(ikind), basis_set=basis_set_a, &
367 44 : basis_type="RI_AUX")
368 72 : IF (.NOT. ASSOCIATED(basis_set_a)) THEN
369 : CALL cp_abort(__LOCATION__, &
370 0 : "At least one RI_AUX basis set was not explicitly invoked in &KIND-section.")
371 : END IF
372 : END DO
373 :
374 84 : ALLOCATE (bs_env%i_RI_start_from_atom(n_atom))
375 56 : ALLOCATE (bs_env%i_RI_end_from_atom(n_atom))
376 56 : ALLOCATE (bs_env%i_ao_start_from_atom(n_atom))
377 56 : ALLOCATE (bs_env%i_ao_end_from_atom(n_atom))
378 :
379 28 : n_RI = 0
380 92 : DO iatom = 1, n_atom
381 64 : bs_env%i_RI_start_from_atom(iatom) = n_RI + 1
382 64 : ikind = kind_of(iatom)
383 64 : CALL get_qs_kind(qs_kind=qs_kind_set(ikind), nsgf=nsgf, basis_type="RI_AUX")
384 64 : n_RI = n_RI + nsgf
385 92 : bs_env%i_RI_end_from_atom(iatom) = n_RI
386 : END DO
387 28 : bs_env%n_RI = n_RI
388 :
389 28 : max_AO_bf_per_atom = 0
390 28 : n_ao_test = 0
391 92 : DO iatom = 1, n_atom
392 64 : bs_env%i_ao_start_from_atom(iatom) = n_ao_test + 1
393 64 : ikind = kind_of(iatom)
394 64 : CALL get_qs_kind(qs_kind=qs_kind_set(ikind), nsgf=nsgf, basis_type="ORB")
395 64 : n_ao_test = n_ao_test + nsgf
396 64 : bs_env%i_ao_end_from_atom(iatom) = n_ao_test
397 92 : max_AO_bf_per_atom = MAX(max_AO_bf_per_atom, nsgf)
398 : END DO
399 28 : CPASSERT(n_ao_test == bs_env%n_ao)
400 28 : bs_env%max_AO_bf_per_atom = max_AO_bf_per_atom
401 :
402 84 : ALLOCATE (bs_env%l_RI(n_RI))
403 28 : i_RI = 0
404 92 : DO iatom = 1, n_atom
405 64 : ikind = kind_of(iatom)
406 :
407 64 : nset = bs_env%basis_set_RI(ikind)%gto_basis_set%nset
408 64 : l_max => bs_env%basis_set_RI(ikind)%gto_basis_set%lmax
409 64 : l_min => bs_env%basis_set_RI(ikind)%gto_basis_set%lmin
410 64 : nsgf_set => bs_env%basis_set_RI(ikind)%gto_basis_set%nsgf_set
411 :
412 268 : DO iset = 1, nset
413 176 : CPASSERT(l_max(iset) == l_min(iset))
414 536 : bs_env%l_RI(i_RI + 1:i_RI + nsgf_set(iset)) = l_max(iset)
415 240 : i_RI = i_RI + nsgf_set(iset)
416 : END DO
417 :
418 : END DO
419 28 : CPASSERT(i_RI == n_RI)
420 :
421 28 : u = bs_env%unit_nr
422 :
423 28 : IF (u > 0) THEN
424 14 : WRITE (u, FMT="(T2,A)") " "
425 14 : WRITE (u, FMT="(T2,2A,T75,I8)") "Number of auxiliary Gaussian basis functions ", &
426 28 : "for χ, ε, W", n_RI
427 : END IF
428 :
429 28 : CALL timestop(handle)
430 :
431 56 : END SUBROUTINE get_RI_basis_and_basis_function_indices
432 :
433 : ! **************************************************************************************************
434 : !> \brief ...
435 : !> \param bs_env ...
436 : !> \param kpoints ...
437 : ! **************************************************************************************************
438 28 : SUBROUTINE setup_kpoints_chi_eps_W(bs_env, kpoints)
439 :
440 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
441 : TYPE(kpoint_type), POINTER :: kpoints
442 :
443 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_kpoints_chi_eps_W'
444 :
445 : INTEGER :: handle, i_dim, n_dim, nkp, nkp_extra, &
446 : nkp_orig, u
447 : INTEGER, DIMENSION(3) :: nkp_grid, nkp_grid_extra, periodic
448 : REAL(KIND=dp) :: exp_s_p, n_dim_inv
449 :
450 28 : CALL timeset(routineN, handle)
451 :
452 : ! routine adapted from mp2_integrals.F
453 28 : NULLIFY (kpoints)
454 28 : CALL kpoint_create(kpoints)
455 :
456 28 : kpoints%kp_scheme = "GENERAL"
457 :
458 112 : periodic(1:3) = bs_env%periodic(1:3)
459 :
460 28 : CPASSERT(SIZE(bs_env%nkp_grid_chi_eps_W_input) == 3)
461 :
462 : IF (bs_env%nkp_grid_chi_eps_W_input(1) > 0 .AND. &
463 28 : bs_env%nkp_grid_chi_eps_W_input(2) > 0 .AND. &
464 : bs_env%nkp_grid_chi_eps_W_input(3) > 0) THEN
465 : ! 1. k-point mesh for χ, ε, W from input
466 0 : DO i_dim = 1, 3
467 0 : SELECT CASE (periodic(i_dim))
468 : CASE (0)
469 0 : nkp_grid(i_dim) = 1
470 0 : nkp_grid_extra(i_dim) = 1
471 : CASE (1)
472 0 : nkp_grid(i_dim) = bs_env%nkp_grid_chi_eps_W_input(i_dim)
473 0 : nkp_grid_extra(i_dim) = nkp_grid(i_dim)*2
474 : CASE DEFAULT
475 0 : CPABORT("Error in periodicity.")
476 : END SELECT
477 : END DO
478 :
479 : ELSE IF (bs_env%nkp_grid_chi_eps_W_input(1) == -1 .AND. &
480 28 : bs_env%nkp_grid_chi_eps_W_input(2) == -1 .AND. &
481 : bs_env%nkp_grid_chi_eps_W_input(3) == -1) THEN
482 : ! 2. automatic k-point mesh for χ, ε, W
483 :
484 112 : DO i_dim = 1, 3
485 :
486 84 : CPASSERT(periodic(i_dim) == 0 .OR. periodic(i_dim) == 1)
487 :
488 28 : SELECT CASE (periodic(i_dim))
489 : CASE (0)
490 52 : nkp_grid(i_dim) = 1
491 52 : nkp_grid_extra(i_dim) = 1
492 : CASE (1)
493 52 : SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
494 : CASE (large_cell_Gamma)
495 20 : nkp_grid(i_dim) = 4
496 20 : nkp_grid_extra(i_dim) = 6
497 : CASE (small_cell_full_kp)
498 12 : nkp_grid(i_dim) = bs_env%kpoints_scf_desymm%nkp_grid(i_dim)*4
499 32 : nkp_grid_extra(i_dim) = bs_env%kpoints_scf_desymm%nkp_grid(i_dim)*8
500 : END SELECT
501 : CASE DEFAULT
502 84 : CPABORT("Error in periodicity.")
503 : END SELECT
504 :
505 : END DO
506 :
507 : ELSE
508 :
509 0 : CPABORT("An error occured when setting up the k-mesh for W.")
510 :
511 : END IF
512 :
513 28 : nkp_orig = MAX(nkp_grid(1)*nkp_grid(2)*nkp_grid(3)/2, 1)
514 :
515 28 : nkp_extra = nkp_grid_extra(1)*nkp_grid_extra(2)*nkp_grid_extra(3)/2
516 :
517 28 : nkp = nkp_orig + nkp_extra
518 :
519 112 : kpoints%nkp_grid(1:3) = nkp_grid(1:3)
520 28 : kpoints%nkp = nkp
521 :
522 112 : bs_env%nkp_grid_chi_eps_W_orig(1:3) = nkp_grid(1:3)
523 112 : bs_env%nkp_grid_chi_eps_W_extra(1:3) = nkp_grid_extra(1:3)
524 28 : bs_env%nkp_chi_eps_W_orig = nkp_orig
525 28 : bs_env%nkp_chi_eps_W_extra = nkp_extra
526 28 : bs_env%nkp_chi_eps_W_orig_plus_extra = nkp
527 :
528 140 : ALLOCATE (kpoints%xkp(3, nkp), kpoints%wkp(nkp))
529 140 : ALLOCATE (bs_env%wkp_no_extra(nkp), bs_env%wkp_s_p(nkp))
530 :
531 28 : CALL compute_xkp(kpoints%xkp, 1, nkp_orig, nkp_grid)
532 28 : CALL compute_xkp(kpoints%xkp, nkp_orig + 1, nkp, nkp_grid_extra)
533 :
534 112 : n_dim = SUM(periodic)
535 28 : IF (n_dim == 0) THEN
536 : ! molecules
537 12 : kpoints%wkp(1) = 1.0_dp
538 12 : bs_env%wkp_s_p(1) = 1.0_dp
539 12 : bs_env%wkp_no_extra(1) = 1.0_dp
540 : ELSE
541 :
542 16 : n_dim_inv = 1.0_dp/REAL(n_dim, KIND=dp)
543 :
544 : ! k-point weights are chosen to automatically extrapolate the k-point mesh
545 16 : CALL compute_wkp(kpoints%wkp(1:nkp_orig), nkp_orig, nkp_extra, n_dim_inv)
546 16 : CALL compute_wkp(kpoints%wkp(nkp_orig + 1:nkp), nkp_extra, nkp_orig, n_dim_inv)
547 :
548 864 : bs_env%wkp_no_extra(1:nkp_orig) = 0.0_dp
549 3268 : bs_env%wkp_no_extra(nkp_orig + 1:nkp) = 1.0_dp/REAL(nkp_extra, KIND=dp)
550 :
551 16 : IF (n_dim == 3) THEN
552 : ! W_PQ(k) for an s-function P and a p-function Q diverges as 1/k at k=0
553 : ! (instead of 1/k^2 for P and Q both being s-functions).
554 0 : exp_s_p = 2.0_dp*n_dim_inv
555 0 : CALL compute_wkp(bs_env%wkp_s_p(1:nkp_orig), nkp_orig, nkp_extra, exp_s_p)
556 0 : CALL compute_wkp(bs_env%wkp_s_p(nkp_orig + 1:nkp), nkp_extra, nkp_orig, exp_s_p)
557 : ELSE
558 4116 : bs_env%wkp_s_p(1:nkp) = bs_env%wkp_no_extra(1:nkp)
559 : END IF
560 :
561 : END IF
562 :
563 28 : IF (bs_env%approx_kp_extrapol) THEN
564 2 : bs_env%wkp_orig = 1.0_dp/REAL(nkp_orig, KIND=dp)
565 : END IF
566 :
567 : ! heuristic parameter: how many k-points for χ, ε, and W are used simultaneously
568 : ! (less simultaneous k-points: less memory, but more computational effort because of
569 : ! recomputation of V(k))
570 28 : bs_env%nkp_chi_eps_W_batch = 4
571 :
572 : bs_env%num_chi_eps_W_batches = (bs_env%nkp_chi_eps_W_orig_plus_extra - 1)/ &
573 28 : bs_env%nkp_chi_eps_W_batch + 1
574 :
575 28 : u = bs_env%unit_nr
576 :
577 28 : IF (u > 0) THEN
578 14 : WRITE (u, FMT="(T2,A)") " "
579 14 : WRITE (u, FMT="(T2,1A,T71,3I4)") "K-point mesh 1 for χ, ε, W", nkp_grid(1:3)
580 14 : WRITE (u, FMT="(T2,2A,T71,3I4)") "K-point mesh 2 for χ, ε, W ", &
581 28 : "(for k-point extrapolation of W)", nkp_grid_extra(1:3)
582 14 : WRITE (u, FMT="(T2,A,T80,L)") "Approximate the k-point extrapolation", &
583 28 : bs_env%approx_kp_extrapol
584 : END IF
585 :
586 28 : CALL timestop(handle)
587 :
588 28 : END SUBROUTINE setup_kpoints_chi_eps_W
589 :
590 : ! **************************************************************************************************
591 : !> \brief ...
592 : !> \param xkp ...
593 : !> \param ikp_start ...
594 : !> \param ikp_end ...
595 : !> \param grid ...
596 : ! **************************************************************************************************
597 56 : SUBROUTINE compute_xkp(xkp, ikp_start, ikp_end, grid)
598 :
599 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: xkp
600 : INTEGER :: ikp_start, ikp_end
601 : INTEGER, DIMENSION(3) :: grid
602 :
603 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_xkp'
604 :
605 : INTEGER :: handle, i, ix, iy, iz
606 :
607 56 : CALL timeset(routineN, handle)
608 :
609 56 : i = ikp_start
610 236 : DO ix = 1, grid(1)
611 3280 : DO iy = 1, grid(2)
612 11448 : DO iz = 1, grid(3)
613 :
614 8224 : IF (i > ikp_end) CYCLE
615 :
616 4112 : xkp(1, i) = REAL(2*ix - grid(1) - 1, KIND=dp)/(2._dp*REAL(grid(1), KIND=dp))
617 4112 : xkp(2, i) = REAL(2*iy - grid(2) - 1, KIND=dp)/(2._dp*REAL(grid(2), KIND=dp))
618 4112 : xkp(3, i) = REAL(2*iz - grid(3) - 1, KIND=dp)/(2._dp*REAL(grid(3), KIND=dp))
619 11268 : i = i + 1
620 :
621 : END DO
622 : END DO
623 : END DO
624 :
625 56 : CALL timestop(handle)
626 :
627 56 : END SUBROUTINE compute_xkp
628 :
629 : ! **************************************************************************************************
630 : !> \brief ...
631 : !> \param wkp ...
632 : !> \param nkp_1 ...
633 : !> \param nkp_2 ...
634 : !> \param exponent ...
635 : ! **************************************************************************************************
636 32 : SUBROUTINE compute_wkp(wkp, nkp_1, nkp_2, exponent)
637 : REAL(KIND=dp), DIMENSION(:) :: wkp
638 : INTEGER :: nkp_1, nkp_2
639 : REAL(KIND=dp) :: exponent
640 :
641 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_wkp'
642 :
643 : INTEGER :: handle
644 : REAL(KIND=dp) :: nkp_ratio
645 :
646 32 : CALL timeset(routineN, handle)
647 :
648 32 : nkp_ratio = REAL(nkp_2, KIND=dp)/REAL(nkp_1, KIND=dp)
649 :
650 4132 : wkp(:) = 1.0_dp/REAL(nkp_1, KIND=dp)/(1.0_dp - nkp_ratio**exponent)
651 :
652 32 : CALL timestop(handle)
653 :
654 32 : END SUBROUTINE compute_wkp
655 :
656 : ! **************************************************************************************************
657 : !> \brief ...
658 : !> \param qs_env ...
659 : !> \param bs_env ...
660 : ! **************************************************************************************************
661 28 : SUBROUTINE allocate_matrices(qs_env, bs_env)
662 : TYPE(qs_environment_type), POINTER :: qs_env
663 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
664 :
665 : CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices'
666 :
667 : INTEGER :: handle, i_t
668 : TYPE(cp_blacs_env_type), POINTER :: blacs_env, blacs_env_tensor
669 : TYPE(cp_fm_struct_type), POINTER :: fm_struct, fm_struct_RI_global
670 : TYPE(mp_para_env_type), POINTER :: para_env
671 :
672 28 : CALL timeset(routineN, handle)
673 :
674 28 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
675 :
676 28 : fm_struct => bs_env%fm_ks_Gamma(1)%matrix_struct
677 :
678 28 : CALL cp_fm_create(bs_env%fm_Gocc, fm_struct)
679 28 : CALL cp_fm_create(bs_env%fm_Gvir, fm_struct)
680 :
681 28 : NULLIFY (fm_struct_RI_global)
682 : CALL cp_fm_struct_create(fm_struct_RI_global, context=blacs_env, nrow_global=bs_env%n_RI, &
683 28 : ncol_global=bs_env%n_RI, para_env=para_env)
684 28 : CALL cp_fm_create(bs_env%fm_RI_RI, fm_struct_RI_global)
685 28 : CALL cp_fm_create(bs_env%fm_chi_Gamma_freq, fm_struct_RI_global)
686 28 : CALL cp_fm_create(bs_env%fm_W_MIC_freq, fm_struct_RI_global)
687 28 : IF (bs_env%approx_kp_extrapol) THEN
688 2 : CALL cp_fm_create(bs_env%fm_W_MIC_freq_1_extra, fm_struct_RI_global)
689 2 : CALL cp_fm_create(bs_env%fm_W_MIC_freq_1_no_extra, fm_struct_RI_global)
690 2 : CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_1_extra, 0.0_dp)
691 2 : CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_1_no_extra, 0.0_dp)
692 : END IF
693 28 : CALL cp_fm_struct_release(fm_struct_RI_global)
694 :
695 : ! create blacs_env for subgroups of tensor operations
696 28 : NULLIFY (blacs_env_tensor)
697 28 : CALL cp_blacs_env_create(blacs_env=blacs_env_tensor, para_env=bs_env%para_env_tensor)
698 :
699 : ! allocate dbcsr matrices in the tensor subgroup; actually, one only needs a small
700 : ! subset of blocks in the tensor subgroup, however, all atomic blocks are allocated.
701 : ! One might think of creating a dbcsr matrix with only the blocks that are needed
702 : ! in the tensor subgroup
703 : CALL create_mat_munu(bs_env%mat_ao_ao_tensor, qs_env, bs_env%eps_atom_grid_2d_mat, &
704 28 : blacs_env_tensor, do_ri_aux_basis=.FALSE.)
705 :
706 : CALL create_mat_munu(bs_env%mat_RI_RI_tensor, qs_env, bs_env%eps_atom_grid_2d_mat, &
707 28 : blacs_env_tensor, do_ri_aux_basis=.TRUE.)
708 :
709 : CALL create_mat_munu(bs_env%mat_RI_RI, qs_env, bs_env%eps_atom_grid_2d_mat, &
710 28 : blacs_env, do_ri_aux_basis=.TRUE.)
711 :
712 28 : CALL cp_blacs_env_release(blacs_env_tensor)
713 :
714 28 : NULLIFY (bs_env%mat_chi_Gamma_tau)
715 28 : CALL dbcsr_allocate_matrix_set(bs_env%mat_chi_Gamma_tau, bs_env%num_time_freq_points)
716 :
717 396 : DO i_t = 1, bs_env%num_time_freq_points
718 368 : ALLOCATE (bs_env%mat_chi_Gamma_tau(i_t)%matrix)
719 396 : CALL dbcsr_create(bs_env%mat_chi_Gamma_tau(i_t)%matrix, template=bs_env%mat_RI_RI%matrix)
720 : END DO
721 :
722 28 : CALL timestop(handle)
723 :
724 28 : END SUBROUTINE allocate_matrices
725 :
726 : ! **************************************************************************************************
727 : !> \brief ...
728 : !> \param bs_env ...
729 : ! **************************************************************************************************
730 22 : SUBROUTINE allocate_GW_eigenvalues(bs_env)
731 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
732 :
733 : CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_GW_eigenvalues'
734 :
735 : INTEGER :: handle
736 :
737 22 : CALL timeset(routineN, handle)
738 :
739 110 : ALLOCATE (bs_env%eigenval_G0W0(bs_env%n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
740 110 : ALLOCATE (bs_env%eigenval_HF(bs_env%n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
741 :
742 22 : CALL timestop(handle)
743 :
744 22 : END SUBROUTINE allocate_GW_eigenvalues
745 :
746 : ! **************************************************************************************************
747 : !> \brief ...
748 : !> \param qs_env ...
749 : !> \param bs_env ...
750 : ! **************************************************************************************************
751 28 : SUBROUTINE create_tensors(qs_env, bs_env)
752 : TYPE(qs_environment_type), POINTER :: qs_env
753 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
754 :
755 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_tensors'
756 :
757 : INTEGER :: handle
758 :
759 28 : CALL timeset(routineN, handle)
760 :
761 28 : CALL init_interaction_radii(bs_env)
762 :
763 : ! split blocks does not improve load balancing/efficienfy for tensor contraction, so we go
764 : ! with the standard atomic blocks
765 : CALL create_3c_t(bs_env%t_RI_AO__AO, bs_env%para_env_tensor, "(RI AO | AO)", [1, 2], [3], &
766 : bs_env%sizes_RI, bs_env%sizes_AO, &
767 28 : create_nl_3c=.TRUE., nl_3c=bs_env%nl_3c, qs_env=qs_env)
768 : CALL create_3c_t(bs_env%t_RI__AO_AO, bs_env%para_env_tensor, "(RI | AO AO)", [1], [2, 3], &
769 28 : bs_env%sizes_RI, bs_env%sizes_AO)
770 :
771 28 : CALL create_2c_t(bs_env, bs_env%sizes_RI, bs_env%sizes_AO)
772 :
773 28 : CALL timestop(handle)
774 :
775 28 : END SUBROUTINE create_tensors
776 :
777 : ! **************************************************************************************************
778 : !> \brief ...
779 : !> \param qs_env ...
780 : !> \param bs_env ...
781 : ! **************************************************************************************************
782 22 : SUBROUTINE check_sparsity_3c(qs_env, bs_env)
783 : TYPE(qs_environment_type), POINTER :: qs_env
784 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
785 :
786 : CHARACTER(LEN=*), PARAMETER :: routineN = 'check_sparsity_3c'
787 :
788 : INTEGER :: handle, n_atom_step, RI_atom
789 : INTEGER(int_8) :: mem, non_zero_elements_sum, nze
790 : REAL(dp) :: max_dist_AO_atoms, occ, occupation_sum
791 : REAL(KIND=dp) :: t1, t2
792 154 : TYPE(dbt_type) :: t_3c_global
793 22 : TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_global_array
794 : TYPE(neighbor_list_3c_type) :: nl_3c_global
795 :
796 22 : CALL timeset(routineN, handle)
797 :
798 : ! check the sparsity of 3c integral tensor (µν|P); calculate maximum distance between
799 : ! AO atoms µ, ν where at least a single integral (µν|P) is larger than the filter threshold
800 : CALL create_3c_t(t_3c_global, bs_env%para_env, "(RI AO | AO)", [1, 2], [3], &
801 : bs_env%sizes_RI, bs_env%sizes_AO, &
802 22 : create_nl_3c=.TRUE., nl_3c=nl_3c_global, qs_env=qs_env)
803 :
804 22 : CALL m_memory(mem)
805 22 : CALL bs_env%para_env%max(mem)
806 :
807 198 : ALLOCATE (t_3c_global_array(1, 1))
808 22 : CALL dbt_create(t_3c_global, t_3c_global_array(1, 1))
809 :
810 22 : CALL bs_env%para_env%sync()
811 22 : t1 = m_walltime()
812 :
813 22 : occupation_sum = 0.0_dp
814 22 : non_zero_elements_sum = 0
815 22 : max_dist_AO_atoms = 0.0_dp
816 22 : n_atom_step = INT(SQRT(REAL(bs_env%n_atom, KIND=dp)))
817 : ! do not compute full 3c integrals at once because it may cause out of memory
818 70 : DO RI_atom = 1, bs_env%n_atom, n_atom_step
819 :
820 : CALL build_3c_integrals(t_3c_global_array, &
821 : bs_env%eps_filter, &
822 : qs_env, &
823 : nl_3c_global, &
824 : int_eps=bs_env%eps_filter, &
825 : basis_i=bs_env%basis_set_RI, &
826 : basis_j=bs_env%basis_set_AO, &
827 : basis_k=bs_env%basis_set_AO, &
828 : bounds_i=[RI_atom, MIN(RI_atom + n_atom_step - 1, bs_env%n_atom)], &
829 : potential_parameter=bs_env%ri_metric, &
830 144 : desymmetrize=.FALSE.)
831 :
832 48 : CALL dbt_filter(t_3c_global_array(1, 1), bs_env%eps_filter)
833 :
834 48 : CALL bs_env%para_env%sync()
835 :
836 48 : CALL get_tensor_occupancy(t_3c_global_array(1, 1), nze, occ)
837 48 : non_zero_elements_sum = non_zero_elements_sum + nze
838 48 : occupation_sum = occupation_sum + occ
839 :
840 48 : CALL get_max_dist_AO_atoms(t_3c_global_array(1, 1), max_dist_AO_atoms, qs_env)
841 :
842 118 : CALL dbt_clear(t_3c_global_array(1, 1))
843 :
844 : END DO
845 :
846 22 : t2 = m_walltime()
847 :
848 22 : bs_env%occupation_3c_int = occupation_sum
849 22 : bs_env%max_dist_AO_atoms = max_dist_AO_atoms
850 :
851 22 : CALL dbt_destroy(t_3c_global)
852 22 : CALL dbt_destroy(t_3c_global_array(1, 1))
853 44 : DEALLOCATE (t_3c_global_array)
854 :
855 22 : CALL neighbor_list_3c_destroy(nl_3c_global)
856 :
857 22 : IF (bs_env%unit_nr > 0) THEN
858 11 : WRITE (bs_env%unit_nr, '(T2,A)') ''
859 : WRITE (bs_env%unit_nr, '(T2,A,F27.1,A)') &
860 11 : 'Computed 3-center integrals (µν|P), execution time', t2 - t1, ' s'
861 11 : WRITE (bs_env%unit_nr, '(T2,A,F48.3,A)') 'Percentage of non-zero (µν|P)', &
862 22 : occupation_sum*100, ' %'
863 11 : WRITE (bs_env%unit_nr, '(T2,A,F33.1,A)') 'Max. distance between µ,ν in non-zero (µν|P)', &
864 22 : max_dist_AO_atoms*angstrom, ' A'
865 11 : WRITE (bs_env%unit_nr, '(T2,2A,I20,A)') 'Required memory if storing all 3-center ', &
866 22 : 'integrals (µν|P)', INT(REAL(non_zero_elements_sum, KIND=dp)*8.0E-9_dp), ' GB'
867 : END IF
868 :
869 22 : CALL timestop(handle)
870 :
871 88 : END SUBROUTINE check_sparsity_3c
872 :
873 : ! **************************************************************************************************
874 : !> \brief ...
875 : !> \param bs_env ...
876 : !> \param sizes_RI ...
877 : !> \param sizes_AO ...
878 : ! **************************************************************************************************
879 28 : SUBROUTINE create_2c_t(bs_env, sizes_RI, sizes_AO)
880 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
881 : INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_RI, sizes_AO
882 :
883 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_2c_t'
884 :
885 : INTEGER :: handle
886 28 : INTEGER, ALLOCATABLE, DIMENSION(:) :: dist_1, dist_2
887 : INTEGER, DIMENSION(2) :: pdims_2d
888 84 : TYPE(dbt_pgrid_type) :: pgrid_2d
889 :
890 28 : CALL timeset(routineN, handle)
891 :
892 : ! inspired from rpa_im_time.F / hfx_types.F
893 :
894 28 : pdims_2d = 0
895 28 : CALL dbt_pgrid_create(bs_env%para_env_tensor, pdims_2d, pgrid_2d)
896 :
897 : CALL create_2c_tensor(bs_env%t_G, dist_1, dist_2, pgrid_2d, sizes_AO, sizes_AO, &
898 28 : name="(AO | AO)")
899 28 : DEALLOCATE (dist_1, dist_2)
900 : CALL create_2c_tensor(bs_env%t_chi, dist_1, dist_2, pgrid_2d, sizes_RI, sizes_RI, &
901 28 : name="(RI | RI)")
902 28 : DEALLOCATE (dist_1, dist_2)
903 : CALL create_2c_tensor(bs_env%t_W, dist_1, dist_2, pgrid_2d, sizes_RI, sizes_RI, &
904 28 : name="(RI | RI)")
905 28 : DEALLOCATE (dist_1, dist_2)
906 28 : CALL dbt_pgrid_destroy(pgrid_2d)
907 :
908 28 : CALL timestop(handle)
909 :
910 28 : END SUBROUTINE create_2c_t
911 :
912 : ! **************************************************************************************************
913 : !> \brief ...
914 : !> \param tensor ...
915 : !> \param para_env ...
916 : !> \param tensor_name ...
917 : !> \param map1 ...
918 : !> \param map2 ...
919 : !> \param sizes_RI ...
920 : !> \param sizes_AO ...
921 : !> \param create_nl_3c ...
922 : !> \param nl_3c ...
923 : !> \param qs_env ...
924 : ! **************************************************************************************************
925 78 : SUBROUTINE create_3c_t(tensor, para_env, tensor_name, map1, map2, sizes_RI, sizes_AO, &
926 : create_nl_3c, nl_3c, qs_env)
927 : TYPE(dbt_type) :: tensor
928 : TYPE(mp_para_env_type), POINTER :: para_env
929 : CHARACTER(LEN=12) :: tensor_name
930 : INTEGER, DIMENSION(:) :: map1, map2
931 : INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_RI, sizes_AO
932 : LOGICAL, OPTIONAL :: create_nl_3c
933 : TYPE(neighbor_list_3c_type), OPTIONAL :: nl_3c
934 : TYPE(qs_environment_type), OPTIONAL, POINTER :: qs_env
935 :
936 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_3c_t'
937 :
938 : INTEGER :: handle, nkind
939 78 : INTEGER, ALLOCATABLE, DIMENSION(:) :: dist_AO_1, dist_AO_2, dist_RI
940 : INTEGER, DIMENSION(3) :: pcoord, pdims, pdims_3d
941 : LOGICAL :: my_create_nl_3c
942 234 : TYPE(dbt_pgrid_type) :: pgrid_3d
943 : TYPE(distribution_3d_type) :: dist_3d
944 78 : TYPE(mp_cart_type) :: mp_comm_t3c_2
945 78 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
946 :
947 78 : CALL timeset(routineN, handle)
948 :
949 78 : pdims_3d = 0
950 78 : CALL dbt_pgrid_create(para_env, pdims_3d, pgrid_3d)
951 : CALL create_3c_tensor(tensor, dist_RI, dist_AO_1, dist_AO_2, &
952 : pgrid_3d, sizes_RI, sizes_AO, sizes_AO, &
953 78 : map1=map1, map2=map2, name=tensor_name)
954 :
955 78 : IF (PRESENT(create_nl_3c)) THEN
956 50 : my_create_nl_3c = create_nl_3c
957 : ELSE
958 : my_create_nl_3c = .FALSE.
959 : END IF
960 :
961 50 : IF (my_create_nl_3c) THEN
962 50 : CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set)
963 50 : CALL dbt_mp_environ_pgrid(pgrid_3d, pdims, pcoord)
964 50 : CALL mp_comm_t3c_2%create(pgrid_3d%mp_comm_2d, 3, pdims)
965 : CALL distribution_3d_create(dist_3d, dist_RI, dist_AO_1, dist_AO_2, &
966 50 : nkind, particle_set, mp_comm_t3c_2, own_comm=.TRUE.)
967 :
968 : CALL build_3c_neighbor_lists(nl_3c, &
969 : qs_env%bs_env%basis_set_RI, &
970 : qs_env%bs_env%basis_set_AO, &
971 : qs_env%bs_env%basis_set_AO, &
972 : dist_3d, qs_env%bs_env%ri_metric, &
973 50 : "GW_3c_nl", qs_env, own_dist=.TRUE.)
974 : END IF
975 :
976 78 : DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
977 78 : CALL dbt_pgrid_destroy(pgrid_3d)
978 :
979 78 : CALL timestop(handle)
980 :
981 156 : END SUBROUTINE create_3c_t
982 :
983 : ! **************************************************************************************************
984 : !> \brief ...
985 : !> \param bs_env ...
986 : ! **************************************************************************************************
987 28 : SUBROUTINE init_interaction_radii(bs_env)
988 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
989 :
990 : CHARACTER(LEN=*), PARAMETER :: routineN = 'init_interaction_radii'
991 :
992 : INTEGER :: handle, ibasis
993 : TYPE(gto_basis_set_type), POINTER :: orb_basis, ri_basis
994 :
995 28 : CALL timeset(routineN, handle)
996 :
997 72 : DO ibasis = 1, SIZE(bs_env%basis_set_AO)
998 :
999 44 : orb_basis => bs_env%basis_set_AO(ibasis)%gto_basis_set
1000 44 : CALL init_interaction_radii_orb_basis(orb_basis, bs_env%eps_filter)
1001 :
1002 44 : ri_basis => bs_env%basis_set_RI(ibasis)%gto_basis_set
1003 72 : CALL init_interaction_radii_orb_basis(ri_basis, bs_env%eps_filter)
1004 :
1005 : END DO
1006 :
1007 28 : CALL timestop(handle)
1008 :
1009 28 : END SUBROUTINE init_interaction_radii
1010 :
1011 : ! **************************************************************************************************
1012 : !> \brief ...
1013 : !> \param t_3c_int ...
1014 : !> \param max_dist_AO_atoms ...
1015 : !> \param qs_env ...
1016 : ! **************************************************************************************************
1017 48 : SUBROUTINE get_max_dist_AO_atoms(t_3c_int, max_dist_AO_atoms, qs_env)
1018 : TYPE(dbt_type) :: t_3c_int
1019 : REAL(KIND=dp) :: max_dist_AO_atoms
1020 : TYPE(qs_environment_type), POINTER :: qs_env
1021 :
1022 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_max_dist_AO_atoms'
1023 :
1024 : INTEGER :: atom_1, atom_2, handle, num_cells
1025 : INTEGER, DIMENSION(3) :: atom_ind
1026 48 : INTEGER, DIMENSION(:, :), POINTER :: index_to_cell
1027 : REAL(KIND=dp) :: abs_rab
1028 : REAL(KIND=dp), DIMENSION(3) :: rab
1029 : TYPE(cell_type), POINTER :: cell
1030 : TYPE(dbt_iterator_type) :: iter
1031 : TYPE(mp_para_env_type), POINTER :: para_env
1032 48 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1033 :
1034 48 : CALL timeset(routineN, handle)
1035 :
1036 48 : NULLIFY (cell, particle_set, para_env)
1037 48 : CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set, para_env=para_env)
1038 :
1039 : !$OMP PARALLEL DEFAULT(NONE) &
1040 : !$OMP SHARED(t_3c_int, max_dist_AO_atoms, num_cells, index_to_cell, particle_set, cell) &
1041 48 : !$OMP PRIVATE(iter,atom_ind,rab, abs_rab, atom_1, atom_2)
1042 : CALL dbt_iterator_start(iter, t_3c_int)
1043 : DO WHILE (dbt_iterator_blocks_left(iter))
1044 : CALL dbt_iterator_next_block(iter, atom_ind)
1045 :
1046 : atom_1 = atom_ind(2)
1047 : atom_2 = atom_ind(3)
1048 :
1049 : rab = pbc(particle_set(atom_1)%r(1:3), particle_set(atom_2)%r(1:3), cell)
1050 :
1051 : abs_rab = SQRT(rab(1)**2 + rab(2)**2 + rab(3)**2)
1052 :
1053 : max_dist_AO_atoms = MAX(max_dist_AO_atoms, abs_rab)
1054 :
1055 : END DO
1056 : CALL dbt_iterator_stop(iter)
1057 : !$OMP END PARALLEL
1058 :
1059 48 : CALL para_env%max(max_dist_AO_atoms)
1060 :
1061 48 : CALL timestop(handle)
1062 :
1063 48 : END SUBROUTINE get_max_dist_AO_atoms
1064 :
1065 : ! **************************************************************************************************
1066 : !> \brief ...
1067 : !> \param bs_env ...
1068 : ! **************************************************************************************************
1069 22 : SUBROUTINE set_sparsity_parallelization_parameters(bs_env)
1070 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1071 :
1072 : CHARACTER(LEN=*), PARAMETER :: routineN = 'set_sparsity_parallelization_parameters'
1073 :
1074 : INTEGER :: handle, i_ivl, IL_ivl, j_ivl, n_atom_per_IL_ivl, n_atom_per_ivl, n_intervals_i, &
1075 : n_intervals_inner_loop_atoms, n_intervals_j, u
1076 : INTEGER(KIND=int_8) :: input_memory_per_proc
1077 :
1078 22 : CALL timeset(routineN, handle)
1079 :
1080 : ! heuristic parameter to prevent out of memory
1081 22 : bs_env%safety_factor_memory = 0.10_dp
1082 :
1083 22 : input_memory_per_proc = INT(bs_env%input_memory_per_proc_GB*1.0E9_dp, KIND=int_8)
1084 :
1085 : ! choose atomic range for λ ("i_atom"), ν ("j_atom") in
1086 : ! M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
1087 : ! N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
1088 : ! such that M and N fit into the memory
1089 : n_atom_per_ivl = INT(SQRT(bs_env%safety_factor_memory*input_memory_per_proc &
1090 : *bs_env%group_size_tensor/24/bs_env%n_RI &
1091 22 : /SQRT(bs_env%occupation_3c_int)))/bs_env%max_AO_bf_per_atom
1092 :
1093 22 : n_intervals_i = (bs_env%n_atom_i - 1)/n_atom_per_ivl + 1
1094 22 : n_intervals_j = (bs_env%n_atom_j - 1)/n_atom_per_ivl + 1
1095 :
1096 22 : bs_env%n_atom_per_interval_ij = n_atom_per_ivl
1097 22 : bs_env%n_intervals_i = n_intervals_i
1098 22 : bs_env%n_intervals_j = n_intervals_j
1099 :
1100 66 : ALLOCATE (bs_env%i_atom_intervals(2, n_intervals_i))
1101 66 : ALLOCATE (bs_env%j_atom_intervals(2, n_intervals_j))
1102 :
1103 44 : DO i_ivl = 1, n_intervals_i
1104 22 : bs_env%i_atom_intervals(1, i_ivl) = (i_ivl - 1)*n_atom_per_ivl + bs_env%atoms_i(1)
1105 : bs_env%i_atom_intervals(2, i_ivl) = MIN(i_ivl*n_atom_per_ivl + bs_env%atoms_i(1) - 1, &
1106 44 : bs_env%atoms_i(2))
1107 : END DO
1108 :
1109 44 : DO j_ivl = 1, n_intervals_j
1110 22 : bs_env%j_atom_intervals(1, j_ivl) = (j_ivl - 1)*n_atom_per_ivl + bs_env%atoms_j(1)
1111 : bs_env%j_atom_intervals(2, j_ivl) = MIN(j_ivl*n_atom_per_ivl + bs_env%atoms_j(1) - 1, &
1112 44 : bs_env%atoms_j(2))
1113 : END DO
1114 :
1115 88 : ALLOCATE (bs_env%skip_Sigma_occ(n_intervals_i, n_intervals_j))
1116 66 : ALLOCATE (bs_env%skip_Sigma_vir(n_intervals_i, n_intervals_j))
1117 66 : bs_env%skip_Sigma_occ(:, :) = .FALSE.
1118 66 : bs_env%skip_Sigma_vir(:, :) = .FALSE.
1119 :
1120 : ! choose atomic range for µ and σ ("inner loop (IL) atom") in
1121 : ! M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
1122 : ! N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
1123 : n_atom_per_IL_ivl = MIN(INT(bs_env%safety_factor_memory*input_memory_per_proc &
1124 : *bs_env%group_size_tensor/n_atom_per_ivl &
1125 : /bs_env%max_AO_bf_per_atom &
1126 : /bs_env%n_RI/8/SQRT(bs_env%occupation_3c_int) &
1127 22 : /bs_env%max_AO_bf_per_atom), bs_env%n_atom)
1128 :
1129 22 : n_intervals_inner_loop_atoms = (bs_env%n_atom - 1)/n_atom_per_IL_ivl + 1
1130 :
1131 22 : bs_env%n_atom_per_IL_interval = n_atom_per_IL_ivl
1132 22 : bs_env%n_intervals_inner_loop_atoms = n_intervals_inner_loop_atoms
1133 :
1134 66 : ALLOCATE (bs_env%inner_loop_atom_intervals(2, n_intervals_inner_loop_atoms))
1135 44 : DO IL_ivl = 1, n_intervals_inner_loop_atoms
1136 22 : bs_env%inner_loop_atom_intervals(1, IL_ivl) = (IL_ivl - 1)*n_atom_per_IL_ivl + 1
1137 44 : bs_env%inner_loop_atom_intervals(2, IL_ivl) = MIN(IL_ivl*n_atom_per_IL_ivl, bs_env%n_atom)
1138 : END DO
1139 :
1140 22 : u = bs_env%unit_nr
1141 22 : IF (u > 0) THEN
1142 11 : WRITE (u, '(T2,A)') ''
1143 11 : WRITE (u, '(T2,A,I33)') 'Number of i and j atoms in M_λνP(τ), N_νλQ(τ):', n_atom_per_ivl
1144 11 : WRITE (u, '(T2,A,I18)') 'Number of inner loop atoms for µ in M_λνP = sum_µ (µν|P) G_µλ', &
1145 22 : n_atom_per_IL_ivl
1146 : END IF
1147 :
1148 22 : CALL timestop(handle)
1149 :
1150 22 : END SUBROUTINE set_sparsity_parallelization_parameters
1151 :
1152 : ! **************************************************************************************************
1153 : !> \brief ...
1154 : !> \param qs_env ...
1155 : !> \param bs_env ...
1156 : ! **************************************************************************************************
1157 22 : SUBROUTINE check_for_restart_files(qs_env, bs_env)
1158 : TYPE(qs_environment_type), POINTER :: qs_env
1159 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1160 :
1161 : CHARACTER(LEN=*), PARAMETER :: routineN = 'check_for_restart_files'
1162 :
1163 : CHARACTER(LEN=9) :: frmt
1164 : CHARACTER(len=default_path_length) :: project_name
1165 : CHARACTER(len=default_string_length) :: f_chi, f_s_n, f_s_p, f_s_x, f_w_t, prefix
1166 : INTEGER :: handle, i_spin, i_t_or_w, ind, n_spin, &
1167 : num_time_freq_points
1168 : LOGICAL :: chi_exists, Sigma_neg_time_exists, &
1169 : Sigma_pos_time_exists, &
1170 : Sigma_x_spin_exists, W_time_exists
1171 : TYPE(cp_logger_type), POINTER :: logger
1172 : TYPE(section_vals_type), POINTER :: input, print_key
1173 :
1174 22 : CALL timeset(routineN, handle)
1175 :
1176 22 : num_time_freq_points = bs_env%num_time_freq_points
1177 22 : n_spin = bs_env%n_spin
1178 :
1179 66 : ALLOCATE (bs_env%read_chi(num_time_freq_points))
1180 44 : ALLOCATE (bs_env%calc_chi(num_time_freq_points))
1181 88 : ALLOCATE (bs_env%Sigma_c_exists(num_time_freq_points, n_spin))
1182 :
1183 22 : CALL get_qs_env(qs_env, input=input)
1184 :
1185 22 : logger => cp_get_default_logger()
1186 22 : print_key => section_vals_get_subs_vals(input, 'PROPERTIES%BANDSTRUCTURE%GW%PRINT%RESTART')
1187 : project_name = cp_print_key_generate_filename(logger, print_key, extension="", &
1188 22 : my_local=.FALSE.)
1189 22 : WRITE (prefix, '(2A)') TRIM(project_name), "-RESTART_"
1190 22 : bs_env%prefix = prefix
1191 :
1192 22 : bs_env%all_W_exist = .TRUE.
1193 :
1194 346 : DO i_t_or_w = 1, num_time_freq_points
1195 :
1196 324 : IF (i_t_or_w < 10) THEN
1197 186 : WRITE (frmt, '(A)') '(3A,I1,A)'
1198 186 : WRITE (f_chi, frmt) TRIM(prefix), bs_env%chi_name, "_0", i_t_or_w, ".matrix"
1199 186 : WRITE (f_W_t, frmt) TRIM(prefix), bs_env%W_time_name, "_0", i_t_or_w, ".matrix"
1200 138 : ELSE IF (i_t_or_w < 100) THEN
1201 138 : WRITE (frmt, '(A)') '(3A,I2,A)'
1202 138 : WRITE (f_chi, frmt) TRIM(prefix), bs_env%chi_name, "_", i_t_or_w, ".matrix"
1203 138 : WRITE (f_W_t, frmt) TRIM(prefix), bs_env%W_time_name, "_", i_t_or_w, ".matrix"
1204 : ELSE
1205 0 : CPABORT('Please implement more than 99 time/frequency points.')
1206 : END IF
1207 :
1208 324 : INQUIRE (file=TRIM(f_chi), exist=chi_exists)
1209 324 : INQUIRE (file=TRIM(f_W_t), exist=W_time_exists)
1210 :
1211 324 : bs_env%read_chi(i_t_or_w) = chi_exists
1212 324 : bs_env%calc_chi(i_t_or_w) = .NOT. chi_exists
1213 :
1214 324 : bs_env%all_W_exist = bs_env%all_W_exist .AND. W_time_exists
1215 :
1216 : ! the self-energy is spin-dependent
1217 710 : DO i_spin = 1, n_spin
1218 :
1219 364 : ind = i_t_or_w + (i_spin - 1)*num_time_freq_points
1220 :
1221 364 : IF (ind < 10) THEN
1222 186 : WRITE (frmt, '(A)') '(3A,I1,A)'
1223 186 : WRITE (f_S_p, frmt) TRIM(prefix), bs_env%Sigma_p_name, "_0", ind, ".matrix"
1224 186 : WRITE (f_S_n, frmt) TRIM(prefix), bs_env%Sigma_n_name, "_0", ind, ".matrix"
1225 178 : ELSE IF (i_t_or_w < 100) THEN
1226 178 : WRITE (frmt, '(A)') '(3A,I2,A)'
1227 178 : WRITE (f_S_p, frmt) TRIM(prefix), bs_env%Sigma_p_name, "_", ind, ".matrix"
1228 178 : WRITE (f_S_n, frmt) TRIM(prefix), bs_env%Sigma_n_name, "_", ind, ".matrix"
1229 : END IF
1230 :
1231 364 : INQUIRE (file=TRIM(f_S_p), exist=Sigma_pos_time_exists)
1232 364 : INQUIRE (file=TRIM(f_S_n), exist=Sigma_neg_time_exists)
1233 :
1234 : bs_env%Sigma_c_exists(i_t_or_w, i_spin) = Sigma_pos_time_exists .AND. &
1235 932 : Sigma_neg_time_exists
1236 :
1237 : END DO
1238 :
1239 : END DO
1240 :
1241 : ! Marek : In the RTBSE run, check also for zero frequency W
1242 22 : IF (bs_env%rtp_method == rtp_method_bse) THEN
1243 12 : WRITE (f_W_t, '(3A,I1,A)') TRIM(prefix), "W_freq_rtp", "_0", 0, ".matrix"
1244 12 : INQUIRE (file=TRIM(f_W_t), exist=W_time_exists)
1245 20 : bs_env%all_W_exist = bs_env%all_W_exist .AND. W_time_exists
1246 : END IF
1247 :
1248 22 : IF (bs_env%all_W_exist) THEN
1249 106 : bs_env%read_chi(:) = .FALSE.
1250 106 : bs_env%calc_chi(:) = .FALSE.
1251 : END IF
1252 :
1253 22 : bs_env%Sigma_x_exists = .TRUE.
1254 48 : DO i_spin = 1, n_spin
1255 26 : WRITE (f_S_x, '(3A,I1,A)') TRIM(prefix), bs_env%Sigma_x_name, "_0", i_spin, ".matrix"
1256 26 : INQUIRE (file=TRIM(f_S_x), exist=Sigma_x_spin_exists)
1257 66 : bs_env%Sigma_x_exists = bs_env%Sigma_x_exists .AND. Sigma_x_spin_exists
1258 : END DO
1259 :
1260 : ! If any restart files are read, check if the SCF converged in 1 step.
1261 : ! This is important because a re-iterated SCF can lead to spurious GW results
1262 : IF (ANY(bs_env%read_chi(:)) &
1263 : .OR. ANY(bs_env%Sigma_c_exists) &
1264 : .OR. bs_env%all_W_exist &
1265 608 : .OR. bs_env%Sigma_x_exists &
1266 : ) THEN
1267 :
1268 6 : IF (qs_env%scf_env%iter_count /= 1) THEN
1269 : CALL cp_warn(__LOCATION__, "SCF needed more than 1 step, "// &
1270 6 : "which might lead to spurious GW results when using GW restart files. ")
1271 : END IF
1272 : END IF
1273 :
1274 22 : CALL timestop(handle)
1275 :
1276 22 : END SUBROUTINE check_for_restart_files
1277 :
1278 : ! **************************************************************************************************
1279 : !> \brief ...
1280 : !> \param qs_env ...
1281 : !> \param bs_env ...
1282 : ! **************************************************************************************************
1283 28 : SUBROUTINE set_parallelization_parameters(qs_env, bs_env)
1284 : TYPE(qs_environment_type), POINTER :: qs_env
1285 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1286 :
1287 : CHARACTER(LEN=*), PARAMETER :: routineN = 'set_parallelization_parameters'
1288 :
1289 : INTEGER :: color_sub, dummy_1, dummy_2, handle, &
1290 : num_pe, num_t_groups, u
1291 : INTEGER(KIND=int_8) :: mem
1292 : TYPE(mp_para_env_type), POINTER :: para_env
1293 :
1294 28 : CALL timeset(routineN, handle)
1295 :
1296 28 : CALL get_qs_env(qs_env, para_env=para_env)
1297 :
1298 28 : num_pe = para_env%num_pe
1299 : ! if not already set, use all processors for the group (for large-cell GW, performance
1300 : ! seems to be best for a single group with all MPI processes per group)
1301 28 : IF (bs_env%group_size_tensor < 0 .OR. bs_env%group_size_tensor > num_pe) &
1302 22 : bs_env%group_size_tensor = num_pe
1303 :
1304 : ! group_size_tensor must divide num_pe without rest; otherwise everything will be complicated
1305 28 : IF (MODULO(num_pe, bs_env%group_size_tensor) /= 0) THEN
1306 0 : CALL find_good_group_size(num_pe, bs_env%group_size_tensor)
1307 : END IF
1308 :
1309 : ! para_env_tensor for tensor subgroups
1310 28 : color_sub = para_env%mepos/bs_env%group_size_tensor
1311 28 : bs_env%tensor_group_color = color_sub
1312 :
1313 28 : ALLOCATE (bs_env%para_env_tensor)
1314 28 : CALL bs_env%para_env_tensor%from_split(para_env, color_sub)
1315 :
1316 28 : num_t_groups = para_env%num_pe/bs_env%group_size_tensor
1317 28 : bs_env%num_tensor_groups = num_t_groups
1318 :
1319 : CALL get_i_j_atoms(bs_env%atoms_i, bs_env%atoms_j, bs_env%n_atom_i, bs_env%n_atom_j, &
1320 28 : color_sub, bs_env)
1321 :
1322 84 : ALLOCATE (bs_env%atoms_i_t_group(2, num_t_groups))
1323 84 : ALLOCATE (bs_env%atoms_j_t_group(2, num_t_groups))
1324 62 : DO color_sub = 0, num_t_groups - 1
1325 : CALL get_i_j_atoms(bs_env%atoms_i_t_group(1:2, color_sub + 1), &
1326 : bs_env%atoms_j_t_group(1:2, color_sub + 1), &
1327 62 : dummy_1, dummy_2, color_sub, bs_env)
1328 : END DO
1329 :
1330 28 : CALL m_memory(mem)
1331 28 : CALL bs_env%para_env%max(mem)
1332 :
1333 28 : u = bs_env%unit_nr
1334 28 : IF (u > 0) THEN
1335 14 : WRITE (u, '(T2,A,I47)') 'Group size for tensor operations', bs_env%group_size_tensor
1336 14 : IF (bs_env%group_size_tensor > 1 .AND. bs_env%n_atom < 5) THEN
1337 11 : WRITE (u, '(T2,A)') 'The requested group size is > 1 which can lead to bad performance.'
1338 11 : WRITE (u, '(T2,A)') 'Using more memory per MPI process might improve performance.'
1339 11 : WRITE (u, '(T2,A)') '(Also increase MEMORY_PER_PROC when using more memory per process.)'
1340 : END IF
1341 : END IF
1342 :
1343 28 : CALL timestop(handle)
1344 :
1345 56 : END SUBROUTINE set_parallelization_parameters
1346 :
1347 : ! **************************************************************************************************
1348 : !> \brief ...
1349 : !> \param num_pe ...
1350 : !> \param group_size ...
1351 : ! **************************************************************************************************
1352 0 : SUBROUTINE find_good_group_size(num_pe, group_size)
1353 :
1354 : INTEGER :: num_pe, group_size
1355 :
1356 : CHARACTER(LEN=*), PARAMETER :: routineN = 'find_good_group_size'
1357 :
1358 : INTEGER :: group_size_minus, group_size_orig, &
1359 : group_size_plus, handle, i_diff
1360 :
1361 0 : CALL timeset(routineN, handle)
1362 :
1363 0 : group_size_orig = group_size
1364 :
1365 0 : DO i_diff = 1, num_pe
1366 :
1367 0 : group_size_minus = group_size - i_diff
1368 :
1369 0 : IF (MODULO(num_pe, group_size_minus) == 0 .AND. group_size_minus > 0) THEN
1370 0 : group_size = group_size_minus
1371 0 : EXIT
1372 : END IF
1373 :
1374 0 : group_size_plus = group_size + i_diff
1375 :
1376 0 : IF (MODULO(num_pe, group_size_plus) == 0 .AND. group_size_plus <= num_pe) THEN
1377 0 : group_size = group_size_plus
1378 0 : EXIT
1379 : END IF
1380 :
1381 : END DO
1382 :
1383 0 : IF (group_size_orig == group_size) CPABORT("Group size error")
1384 :
1385 0 : CALL timestop(handle)
1386 :
1387 0 : END SUBROUTINE find_good_group_size
1388 :
1389 : ! **************************************************************************************************
1390 : !> \brief ...
1391 : !> \param atoms_i ...
1392 : !> \param atoms_j ...
1393 : !> \param n_atom_i ...
1394 : !> \param n_atom_j ...
1395 : !> \param color_sub ...
1396 : !> \param bs_env ...
1397 : ! **************************************************************************************************
1398 62 : SUBROUTINE get_i_j_atoms(atoms_i, atoms_j, n_atom_i, n_atom_j, color_sub, bs_env)
1399 :
1400 : INTEGER, DIMENSION(2) :: atoms_i, atoms_j
1401 : INTEGER :: n_atom_i, n_atom_j, color_sub
1402 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1403 :
1404 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_i_j_atoms'
1405 :
1406 : INTEGER :: handle, i_atoms_per_group, i_group, &
1407 : ipcol, ipcol_loop, iprow, iprow_loop, &
1408 : j_atoms_per_group, npcol, nprow
1409 :
1410 62 : CALL timeset(routineN, handle)
1411 :
1412 : ! create a square mesh of tensor groups for iatom and jatom; code from blacs_env_create
1413 62 : CALL square_mesh(nprow, npcol, bs_env%num_tensor_groups)
1414 :
1415 62 : i_group = 0
1416 124 : DO ipcol_loop = 0, npcol - 1
1417 204 : DO iprow_loop = 0, nprow - 1
1418 80 : IF (i_group == color_sub) THEN
1419 62 : iprow = iprow_loop
1420 62 : ipcol = ipcol_loop
1421 : END IF
1422 142 : i_group = i_group + 1
1423 : END DO
1424 : END DO
1425 :
1426 62 : IF (MODULO(bs_env%n_atom, nprow) == 0) THEN
1427 50 : i_atoms_per_group = bs_env%n_atom/nprow
1428 : ELSE
1429 12 : i_atoms_per_group = bs_env%n_atom/nprow + 1
1430 : END IF
1431 :
1432 62 : IF (MODULO(bs_env%n_atom, npcol) == 0) THEN
1433 62 : j_atoms_per_group = bs_env%n_atom/npcol
1434 : ELSE
1435 0 : j_atoms_per_group = bs_env%n_atom/npcol + 1
1436 : END IF
1437 :
1438 62 : atoms_i(1) = iprow*i_atoms_per_group + 1
1439 62 : atoms_i(2) = MIN((iprow + 1)*i_atoms_per_group, bs_env%n_atom)
1440 62 : n_atom_i = atoms_i(2) - atoms_i(1) + 1
1441 :
1442 62 : atoms_j(1) = ipcol*j_atoms_per_group + 1
1443 62 : atoms_j(2) = MIN((ipcol + 1)*j_atoms_per_group, bs_env%n_atom)
1444 62 : n_atom_j = atoms_j(2) - atoms_j(1) + 1
1445 :
1446 62 : CALL timestop(handle)
1447 :
1448 62 : END SUBROUTINE get_i_j_atoms
1449 :
1450 : ! **************************************************************************************************
1451 : !> \brief ...
1452 : !> \param nprow ...
1453 : !> \param npcol ...
1454 : !> \param nproc ...
1455 : ! **************************************************************************************************
1456 62 : SUBROUTINE square_mesh(nprow, npcol, nproc)
1457 : INTEGER :: nprow, npcol, nproc
1458 :
1459 : CHARACTER(LEN=*), PARAMETER :: routineN = 'square_mesh'
1460 :
1461 : INTEGER :: gcd_max, handle, ipe, jpe
1462 :
1463 62 : CALL timeset(routineN, handle)
1464 :
1465 62 : gcd_max = -1
1466 142 : DO ipe = 1, CEILING(SQRT(REAL(nproc, dp)))
1467 80 : jpe = nproc/ipe
1468 80 : IF (ipe*jpe /= nproc) CYCLE
1469 142 : IF (gcd(ipe, jpe) >= gcd_max) THEN
1470 80 : nprow = ipe
1471 80 : npcol = jpe
1472 80 : gcd_max = gcd(ipe, jpe)
1473 : END IF
1474 : END DO
1475 :
1476 62 : CALL timestop(handle)
1477 :
1478 62 : END SUBROUTINE square_mesh
1479 :
1480 : ! **************************************************************************************************
1481 : !> \brief ...
1482 : !> \param bs_env ...
1483 : !> \param qs_env ...
1484 : ! **************************************************************************************************
1485 28 : SUBROUTINE set_heuristic_parameters(bs_env, qs_env)
1486 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1487 : TYPE(qs_environment_type), OPTIONAL, POINTER :: qs_env
1488 :
1489 : CHARACTER(LEN=*), PARAMETER :: routineN = 'set_heuristic_parameters'
1490 :
1491 : INTEGER :: handle, u
1492 : LOGICAL :: do_BvK_cell
1493 :
1494 28 : CALL timeset(routineN, handle)
1495 :
1496 : ! for generating numerically stable minimax Fourier integration weights
1497 28 : bs_env%num_points_per_magnitude = 200
1498 :
1499 28 : IF (bs_env%input_regularization_minimax > -1.0E-12_dp) THEN
1500 0 : bs_env%regularization_minimax = bs_env%input_regularization_minimax
1501 : ELSE
1502 : ! for periodic systems and for 20 minimax points, we use a regularized minimax mesh
1503 : ! (from experience: regularized minimax meshes converges faster for periodic systems
1504 : ! and for 20 pts)
1505 112 : IF (SUM(bs_env%periodic) /= 0 .OR. bs_env%num_time_freq_points >= 20) THEN
1506 28 : bs_env%regularization_minimax = 1.0E-6_dp
1507 : ELSE
1508 0 : bs_env%regularization_minimax = 0.0_dp
1509 : END IF
1510 : END IF
1511 :
1512 28 : bs_env%stabilize_exp = 70.0_dp
1513 28 : bs_env%eps_atom_grid_2d_mat = 1.0E-50_dp
1514 :
1515 : ! use a 16-parameter Padé fit
1516 28 : bs_env%nparam_pade = 16
1517 :
1518 : ! resolution of the identity with the truncated Coulomb metric, cutoff radius 3 Angström
1519 28 : bs_env%ri_metric%potential_type = do_potential_truncated
1520 28 : bs_env%ri_metric%omega = 0.0_dp
1521 : ! cutoff radius is specified in the input
1522 28 : bs_env%ri_metric%filename = "t_c_g.dat"
1523 :
1524 28 : bs_env%eps_eigval_mat_RI = 0.0_dp
1525 :
1526 28 : IF (bs_env%input_regularization_RI > -1.0E-12_dp) THEN
1527 0 : bs_env%regularization_RI = bs_env%input_regularization_RI
1528 : ELSE
1529 : ! default case:
1530 :
1531 : ! 1. for periodic systems, we use the regularized resolution of the identity per default
1532 28 : bs_env%regularization_RI = 1.0E-2_dp
1533 :
1534 : ! 2. for molecules, no regularization is necessary
1535 112 : IF (SUM(bs_env%periodic) == 0) bs_env%regularization_RI = 0.0_dp
1536 :
1537 : END IF
1538 :
1539 : ! truncated Coulomb operator for exchange self-energy
1540 : ! (see details in Guidon, VandeVondele, Hutter, JCTC 5, 3010 (2009) and references therein)
1541 28 : do_BvK_cell = bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp
1542 : CALL trunc_coulomb_for_exchange(qs_env, bs_env%trunc_coulomb, &
1543 : rel_cutoff_trunc_coulomb_ri_x=0.5_dp, &
1544 : cell_grid=bs_env%cell_grid_scf_desymm, &
1545 28 : do_BvK_cell=do_BvK_cell)
1546 :
1547 : ! for small-cell GW, we need more cells than normally used by the filter bs_env%eps_filter
1548 : ! (in particular for computing the self-energy because of higher number of cells needed)
1549 28 : bs_env%heuristic_filter_factor = 1.0E-4
1550 :
1551 28 : u = bs_env%unit_nr
1552 28 : IF (u > 0) THEN
1553 14 : WRITE (u, FMT="(T2,2A,F21.1,A)") "Cutoff radius for the truncated Coulomb ", &
1554 28 : "operator in Σ^x:", bs_env%trunc_coulomb%cutoff_radius*angstrom, " Å"
1555 14 : WRITE (u, FMT="(T2,2A,F15.1,A)") "Cutoff radius for the truncated Coulomb ", &
1556 28 : "operator in RI metric:", bs_env%ri_metric%cutoff_radius*angstrom, " Å"
1557 14 : WRITE (u, FMT="(T2,A,ES48.1)") "Regularization parameter of RI ", bs_env%regularization_RI
1558 14 : WRITE (u, FMT="(T2,A,ES38.1)") "Regularization parameter of minimax grids", &
1559 28 : bs_env%regularization_minimax
1560 14 : WRITE (u, FMT="(T2,A,I53)") "Lattice sum size for V(k):", bs_env%size_lattice_sum_V
1561 : END IF
1562 :
1563 28 : CALL timestop(handle)
1564 :
1565 28 : END SUBROUTINE set_heuristic_parameters
1566 :
1567 : ! **************************************************************************************************
1568 : !> \brief ...
1569 : !> \param bs_env ...
1570 : ! **************************************************************************************************
1571 28 : SUBROUTINE print_header_and_input_parameters(bs_env)
1572 :
1573 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1574 :
1575 : CHARACTER(LEN=*), PARAMETER :: routineN = 'print_header_and_input_parameters'
1576 :
1577 : INTEGER :: handle, u
1578 :
1579 28 : CALL timeset(routineN, handle)
1580 :
1581 28 : u = bs_env%unit_nr
1582 :
1583 28 : IF (u > 0) THEN
1584 14 : WRITE (u, '(T2,A)') ' '
1585 14 : WRITE (u, '(T2,A)') REPEAT('-', 79)
1586 14 : WRITE (u, '(T2,A,A78)') '-', '-'
1587 14 : WRITE (u, '(T2,A,A46,A32)') '-', 'GW CALCULATION', '-'
1588 14 : WRITE (u, '(T2,A,A78)') '-', '-'
1589 14 : WRITE (u, '(T2,A)') REPEAT('-', 79)
1590 14 : WRITE (u, '(T2,A)') ' '
1591 14 : WRITE (u, '(T2,A,I45)') 'Input: Number of time/freq. points', bs_env%num_time_freq_points
1592 14 : WRITE (u, "(T2,A,F44.1,A)") 'Input: ω_max for fitting Σ(iω) (eV)', bs_env%freq_max_fit*evolt
1593 14 : WRITE (u, '(T2,A,ES27.1)') 'Input: Filter threshold for sparse tensor operations', &
1594 28 : bs_env%eps_filter
1595 14 : WRITE (u, "(T2,A,L55)") 'Input: Apply Hedin shift', bs_env%do_hedin_shift
1596 : END IF
1597 :
1598 28 : CALL timestop(handle)
1599 :
1600 28 : END SUBROUTINE print_header_and_input_parameters
1601 :
1602 : ! **************************************************************************************************
1603 : !> \brief ...
1604 : !> \param qs_env ...
1605 : !> \param bs_env ...
1606 : ! **************************************************************************************************
1607 56 : SUBROUTINE compute_V_xc(qs_env, bs_env)
1608 : TYPE(qs_environment_type), POINTER :: qs_env
1609 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1610 :
1611 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_V_xc'
1612 :
1613 : INTEGER :: handle, img, ispin, myfun, nimages
1614 : LOGICAL :: hf_present
1615 : REAL(KIND=dp) :: energy_ex, energy_exc, energy_total, &
1616 : myfraction
1617 28 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_ks_without_v_xc
1618 28 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks_kp
1619 : TYPE(dft_control_type), POINTER :: dft_control
1620 : TYPE(qs_energy_type), POINTER :: energy
1621 : TYPE(section_vals_type), POINTER :: hf_section, input, xc_section
1622 :
1623 28 : CALL timeset(routineN, handle)
1624 :
1625 28 : CALL get_qs_env(qs_env, input=input, energy=energy, dft_control=dft_control)
1626 :
1627 : ! previously, dft_control%nimages set to # neighbor cells, revert for Γ-only KS matrix
1628 28 : nimages = dft_control%nimages
1629 28 : dft_control%nimages = bs_env%nimages_scf
1630 :
1631 : ! we need to reset XC functional, therefore, get XC input
1632 28 : xc_section => section_vals_get_subs_vals(input, "DFT%XC")
1633 28 : CALL section_vals_val_get(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", i_val=myfun)
1634 28 : CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", i_val=xc_none)
1635 : ! IF (ASSOCIATED(section_vals_get_subs_vals(xc_section, "HF", can_return_null=.TRUE.))) THEN
1636 28 : hf_section => section_vals_get_subs_vals(input, "DFT%XC%HF", can_return_null=.TRUE.)
1637 28 : hf_present = .FALSE.
1638 28 : IF (ASSOCIATED(hf_section)) THEN
1639 28 : CALL section_vals_get(hf_section, explicit=hf_present)
1640 : END IF
1641 28 : IF (hf_present) THEN
1642 : ! Special case for handling hfx
1643 0 : CALL section_vals_val_get(xc_section, "HF%FRACTION", r_val=myfraction)
1644 0 : CALL section_vals_val_set(xc_section, "HF%FRACTION", r_val=0.0_dp)
1645 : END IF
1646 :
1647 : ! save the energy before the energy gets updated
1648 28 : energy_total = energy%total
1649 28 : energy_exc = energy%exc
1650 28 : energy_ex = energy%ex
1651 :
1652 50 : SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
1653 : CASE (large_cell_Gamma)
1654 :
1655 22 : NULLIFY (mat_ks_without_v_xc)
1656 22 : CALL dbcsr_allocate_matrix_set(mat_ks_without_v_xc, bs_env%n_spin)
1657 :
1658 48 : DO ispin = 1, bs_env%n_spin
1659 26 : ALLOCATE (mat_ks_without_v_xc(ispin)%matrix)
1660 48 : IF (hf_present) THEN
1661 : CALL dbcsr_create(mat_ks_without_v_xc(ispin)%matrix, template=bs_env%mat_ao_ao%matrix, &
1662 0 : matrix_type=dbcsr_type_symmetric)
1663 : ELSE
1664 26 : CALL dbcsr_create(mat_ks_without_v_xc(ispin)%matrix, template=bs_env%mat_ao_ao%matrix)
1665 : END IF
1666 : END DO
1667 :
1668 : ! calculate KS-matrix without XC
1669 : CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE., &
1670 22 : ext_ks_matrix=mat_ks_without_v_xc)
1671 :
1672 48 : DO ispin = 1, bs_env%n_spin
1673 : ! transfer dbcsr matrix to fm
1674 26 : CALL cp_fm_create(bs_env%fm_V_xc_Gamma(ispin), bs_env%fm_s_Gamma%matrix_struct)
1675 26 : CALL copy_dbcsr_to_fm(mat_ks_without_v_xc(ispin)%matrix, bs_env%fm_V_xc_Gamma(ispin))
1676 :
1677 : ! v_xc = h_ks - h_ks(v_xc = 0)
1678 : CALL cp_fm_scale_and_add(alpha=-1.0_dp, matrix_a=bs_env%fm_V_xc_Gamma(ispin), &
1679 48 : beta=1.0_dp, matrix_b=bs_env%fm_ks_Gamma(ispin))
1680 : END DO
1681 :
1682 22 : CALL dbcsr_deallocate_matrix_set(mat_ks_without_v_xc)
1683 :
1684 : CASE (small_cell_full_kp)
1685 :
1686 : ! calculate KS-matrix without XC
1687 6 : CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
1688 6 : CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_kp)
1689 :
1690 208 : ALLOCATE (bs_env%fm_V_xc_R(dft_control%nimages, bs_env%n_spin))
1691 40 : DO ispin = 1, bs_env%n_spin
1692 190 : DO img = 1, dft_control%nimages
1693 : ! safe fm_V_xc_R in fm_matrix because saving in dbcsr matrix caused trouble...
1694 178 : CALL copy_dbcsr_to_fm(matrix_ks_kp(ispin, img)%matrix, bs_env%fm_work_mo(1))
1695 : CALL cp_fm_create(bs_env%fm_V_xc_R(img, ispin), bs_env%fm_work_mo(1)%matrix_struct, &
1696 178 : set_zero=.TRUE.)
1697 : ! store h_ks(v_xc = 0) in fm_V_xc_R
1698 : CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=bs_env%fm_V_xc_R(img, ispin), &
1699 184 : beta=1.0_dp, matrix_b=bs_env%fm_work_mo(1))
1700 : END DO
1701 : END DO
1702 :
1703 : END SELECT
1704 :
1705 : ! set back the energy
1706 28 : energy%total = energy_total
1707 28 : energy%exc = energy_exc
1708 28 : energy%ex = energy_ex
1709 :
1710 : ! set back nimages
1711 28 : dft_control%nimages = nimages
1712 :
1713 : ! set the DFT functional and HF fraction back
1714 : CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", &
1715 28 : i_val=myfun)
1716 28 : IF (hf_present) THEN
1717 : CALL section_vals_val_set(xc_section, "HF%FRACTION", &
1718 0 : r_val=myfraction)
1719 : END IF
1720 :
1721 28 : IF (bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp) THEN
1722 : ! calculate KS-matrix again with XC
1723 6 : CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
1724 12 : DO ispin = 1, bs_env%n_spin
1725 190 : DO img = 1, dft_control%nimages
1726 : ! store h_ks in fm_work_mo
1727 178 : CALL copy_dbcsr_to_fm(matrix_ks_kp(ispin, img)%matrix, bs_env%fm_work_mo(1))
1728 : ! v_xc = h_ks - h_ks(v_xc = 0)
1729 : CALL cp_fm_scale_and_add(alpha=-1.0_dp, matrix_a=bs_env%fm_V_xc_R(img, ispin), &
1730 184 : beta=1.0_dp, matrix_b=bs_env%fm_work_mo(1))
1731 : END DO
1732 : END DO
1733 : END IF
1734 :
1735 28 : CALL timestop(handle)
1736 :
1737 28 : END SUBROUTINE compute_V_xc
1738 :
1739 : ! **************************************************************************************************
1740 : !> \brief ...
1741 : !> \param bs_env ...
1742 : ! **************************************************************************************************
1743 28 : SUBROUTINE setup_time_and_frequency_minimax_grid(bs_env)
1744 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1745 :
1746 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_time_and_frequency_minimax_grid'
1747 :
1748 : INTEGER :: handle, homo, i_w, ierr, ispin, j_w, &
1749 : n_mo, num_time_freq_points, u
1750 : REAL(KIND=dp) :: E_max, E_max_ispin, E_min, E_min_ispin, &
1751 : E_range, max_error_min
1752 28 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: points_and_weights
1753 :
1754 28 : CALL timeset(routineN, handle)
1755 :
1756 28 : n_mo = bs_env%n_ao
1757 28 : num_time_freq_points = bs_env%num_time_freq_points
1758 :
1759 84 : ALLOCATE (bs_env%imag_freq_points(num_time_freq_points))
1760 84 : ALLOCATE (bs_env%imag_time_points(num_time_freq_points))
1761 84 : ALLOCATE (bs_env%imag_time_weights_freq_zero(num_time_freq_points))
1762 112 : ALLOCATE (bs_env%weights_cos_t_to_w(num_time_freq_points, num_time_freq_points))
1763 112 : ALLOCATE (bs_env%weights_cos_w_to_t(num_time_freq_points, num_time_freq_points))
1764 112 : ALLOCATE (bs_env%weights_sin_t_to_w(num_time_freq_points, num_time_freq_points))
1765 :
1766 : ! minimum and maximum difference between eigenvalues of unoccupied and an occupied MOs
1767 28 : E_min = 1000.0_dp
1768 28 : E_max = -1000.0_dp
1769 60 : DO ispin = 1, bs_env%n_spin
1770 32 : homo = bs_env%n_occ(ispin)
1771 58 : SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
1772 : CASE (large_cell_Gamma)
1773 : E_min_ispin = bs_env%eigenval_scf_Gamma(homo + 1, ispin) - &
1774 26 : bs_env%eigenval_scf_Gamma(homo, ispin)
1775 : E_max_ispin = bs_env%eigenval_scf_Gamma(n_mo, ispin) - &
1776 26 : bs_env%eigenval_scf_Gamma(1, ispin)
1777 : CASE (small_cell_full_kp)
1778 : E_min_ispin = MINVAL(bs_env%eigenval_scf(homo + 1, :, ispin)) - &
1779 334 : MAXVAL(bs_env%eigenval_scf(homo, :, ispin))
1780 : E_max_ispin = MAXVAL(bs_env%eigenval_scf(n_mo, :, ispin)) - &
1781 366 : MINVAL(bs_env%eigenval_scf(1, :, ispin))
1782 : END SELECT
1783 32 : E_min = MIN(E_min, E_min_ispin)
1784 60 : E_max = MAX(E_max, E_max_ispin)
1785 : END DO
1786 :
1787 28 : E_range = E_max/E_min
1788 :
1789 84 : ALLOCATE (points_and_weights(2*num_time_freq_points))
1790 :
1791 : ! frequency points
1792 28 : IF (num_time_freq_points <= 20) THEN
1793 28 : CALL get_rpa_minimax_coeff(num_time_freq_points, E_range, points_and_weights, ierr, .FALSE.)
1794 : ELSE
1795 0 : CALL get_rpa_minimax_coeff_larger_grid(num_time_freq_points, E_range, points_and_weights)
1796 : END IF
1797 :
1798 : ! one needs to scale the minimax grids, see Azizi, Wilhelm, Golze, Panades-Barrueta,
1799 : ! Giantomassi, Rinke, Draxl, Gonze et al., 2 publications
1800 396 : bs_env%imag_freq_points(:) = points_and_weights(1:num_time_freq_points)*E_min
1801 :
1802 : ! determine number of fit points in the interval [0,ω_max] for virt, or [-ω_max,0] for occ
1803 28 : bs_env%num_freq_points_fit = 0
1804 396 : DO i_w = 1, num_time_freq_points
1805 396 : IF (bs_env%imag_freq_points(i_w) < bs_env%freq_max_fit) THEN
1806 126 : bs_env%num_freq_points_fit = bs_env%num_freq_points_fit + 1
1807 : END IF
1808 : END DO
1809 :
1810 : ! iω values for the analytic continuation Σ^c_n(iω,k) -> Σ^c_n(ϵ,k)
1811 84 : ALLOCATE (bs_env%imag_freq_points_fit(bs_env%num_freq_points_fit))
1812 28 : j_w = 0
1813 396 : DO i_w = 1, num_time_freq_points
1814 396 : IF (bs_env%imag_freq_points(i_w) < bs_env%freq_max_fit) THEN
1815 126 : j_w = j_w + 1
1816 126 : bs_env%imag_freq_points_fit(j_w) = bs_env%imag_freq_points(i_w)
1817 : END IF
1818 : END DO
1819 :
1820 : ! reset the number of Padé parameters if smaller than the number of
1821 : ! imaginary-frequency points for the fit
1822 28 : IF (bs_env%num_freq_points_fit < bs_env%nparam_pade) THEN
1823 28 : bs_env%nparam_pade = bs_env%num_freq_points_fit
1824 : END IF
1825 :
1826 : ! time points
1827 28 : IF (num_time_freq_points <= 20) THEN
1828 28 : CALL get_exp_minimax_coeff(num_time_freq_points, E_range, points_and_weights)
1829 : ELSE
1830 0 : CALL get_exp_minimax_coeff_gw(num_time_freq_points, E_range, points_and_weights)
1831 : END IF
1832 :
1833 396 : bs_env%imag_time_points(:) = points_and_weights(1:num_time_freq_points)/(2.0_dp*E_min)
1834 396 : bs_env%imag_time_weights_freq_zero(:) = points_and_weights(num_time_freq_points + 1:)/(E_min)
1835 :
1836 28 : DEALLOCATE (points_and_weights)
1837 :
1838 28 : u = bs_env%unit_nr
1839 28 : IF (u > 0) THEN
1840 14 : WRITE (u, '(T2,A)') ''
1841 14 : WRITE (u, '(T2,A,F55.2)') 'SCF direct band gap (eV)', E_min*evolt
1842 14 : WRITE (u, '(T2,A,F53.2)') 'Max. SCF eigval diff. (eV)', E_max*evolt
1843 14 : WRITE (u, '(T2,A,F55.2)') 'E-Range for minimax grid', E_range
1844 14 : WRITE (u, '(T2,A,I27)') 'Number of Padé parameters for analytic continuation:', &
1845 28 : bs_env%nparam_pade
1846 14 : WRITE (u, '(T2,A)') ''
1847 : END IF
1848 :
1849 : ! in minimax grids, Fourier transforms t -> w and w -> t are split using
1850 : ! e^(iwt) = cos(wt) + i sin(wt); we thus calculate weights for trafos with a cos and
1851 : ! sine prefactor; details in Azizi, Wilhelm, Golze, Giantomassi, Panades-Barrueta,
1852 : ! Rinke, Draxl, Gonze et al., 2 publications
1853 :
1854 : ! cosine transform weights imaginary time to imaginary frequency
1855 : CALL get_l_sq_wghts_cos_tf_t_to_w(num_time_freq_points, &
1856 : bs_env%imag_time_points, &
1857 : bs_env%weights_cos_t_to_w, &
1858 : bs_env%imag_freq_points, &
1859 : E_min, E_max, max_error_min, &
1860 : bs_env%num_points_per_magnitude, &
1861 28 : bs_env%regularization_minimax)
1862 :
1863 : ! cosine transform weights imaginary frequency to imaginary time
1864 : CALL get_l_sq_wghts_cos_tf_w_to_t(num_time_freq_points, &
1865 : bs_env%imag_time_points, &
1866 : bs_env%weights_cos_w_to_t, &
1867 : bs_env%imag_freq_points, &
1868 : E_min, E_max, max_error_min, &
1869 : bs_env%num_points_per_magnitude, &
1870 28 : bs_env%regularization_minimax)
1871 :
1872 : ! sine transform weights imaginary time to imaginary frequency
1873 : CALL get_l_sq_wghts_sin_tf_t_to_w(num_time_freq_points, &
1874 : bs_env%imag_time_points, &
1875 : bs_env%weights_sin_t_to_w, &
1876 : bs_env%imag_freq_points, &
1877 : E_min, E_max, max_error_min, &
1878 : bs_env%num_points_per_magnitude, &
1879 28 : bs_env%regularization_minimax)
1880 :
1881 28 : CALL timestop(handle)
1882 :
1883 56 : END SUBROUTINE setup_time_and_frequency_minimax_grid
1884 :
1885 : ! **************************************************************************************************
1886 : !> \brief ...
1887 : !> \param qs_env ...
1888 : !> \param bs_env ...
1889 : ! **************************************************************************************************
1890 6 : SUBROUTINE setup_cells_3c(qs_env, bs_env)
1891 :
1892 : TYPE(qs_environment_type), POINTER :: qs_env
1893 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
1894 :
1895 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_cells_3c'
1896 :
1897 : INTEGER :: atom_i, atom_j, atom_k, block_count, handle, i, i_cell_x, i_cell_x_max, &
1898 : i_cell_x_min, i_size, ikind, img, j, j_cell, j_cell_max, j_cell_y, j_cell_y_max, &
1899 : j_cell_y_min, j_size, k_cell, k_cell_max, k_cell_z, k_cell_z_max, k_cell_z_min, k_size, &
1900 : nimage_pairs_3c, nimages_3c, nimages_3c_max, nkind, u
1901 : INTEGER(KIND=int_8) :: mem_occ_per_proc
1902 6 : INTEGER, ALLOCATABLE, DIMENSION(:) :: kind_of, n_other_3c_images_max
1903 6 : INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell_3c_max, nblocks_3c_max
1904 : INTEGER, DIMENSION(3) :: cell_index, n_max
1905 : REAL(KIND=dp) :: avail_mem_per_proc_GB, cell_dist, cell_radius_3c, dij, dik, djk, eps, &
1906 : exp_min_ao, exp_min_RI, frobenius_norm, mem_3c_GB, mem_occ_per_proc_GB, radius_ao, &
1907 : radius_ao_product, radius_RI
1908 6 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: exp_ao_kind, exp_RI_kind, &
1909 6 : radius_ao_kind, &
1910 6 : radius_ao_product_kind, radius_RI_kind
1911 6 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: int_3c
1912 : REAL(KIND=dp), DIMENSION(3) :: rij, rik, rjk, vec_cell_j, vec_cell_k
1913 6 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: exp_ao, exp_RI
1914 6 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1915 : TYPE(cell_type), POINTER :: cell
1916 6 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1917 :
1918 6 : CALL timeset(routineN, handle)
1919 :
1920 6 : CALL get_qs_env(qs_env, nkind=nkind, atomic_kind_set=atomic_kind_set, particle_set=particle_set, cell=cell)
1921 :
1922 : ALLOCATE (exp_ao_kind(nkind), exp_RI_kind(nkind), radius_ao_kind(nkind), &
1923 42 : radius_ao_product_kind(nkind), radius_RI_kind(nkind))
1924 :
1925 18 : exp_min_RI = 10.0_dp
1926 18 : exp_min_ao = 10.0_dp
1927 18 : exp_RI_kind = 10.0_dp
1928 18 : exp_AO_kind = 10.0_dp
1929 :
1930 6 : eps = bs_env%eps_filter*bs_env%heuristic_filter_factor
1931 :
1932 18 : DO ikind = 1, nkind
1933 :
1934 12 : CALL get_gto_basis_set(bs_env%basis_set_RI(ikind)%gto_basis_set, zet=exp_RI)
1935 12 : CALL get_gto_basis_set(bs_env%basis_set_ao(ikind)%gto_basis_set, zet=exp_ao)
1936 :
1937 : ! we need to remove all exponents lower than a lower bound, e.g. 1E-3, because
1938 : ! for contracted basis sets, there might be exponents = 0 in zet
1939 24 : DO i = 1, SIZE(exp_RI, 1)
1940 42 : DO j = 1, SIZE(exp_RI, 2)
1941 18 : IF (exp_RI(i, j) < exp_min_RI .AND. exp_RI(i, j) > 1E-3_dp) exp_min_RI = exp_RI(i, j)
1942 18 : IF (exp_RI(i, j) < exp_RI_kind(ikind) .AND. exp_RI(i, j) > 1E-3_dp) &
1943 24 : exp_RI_kind(ikind) = exp_RI(i, j)
1944 : END DO
1945 : END DO
1946 60 : DO i = 1, SIZE(exp_ao, 1)
1947 144 : DO j = 1, SIZE(exp_ao, 2)
1948 84 : IF (exp_ao(i, j) < exp_min_ao .AND. exp_ao(i, j) > 1E-3_dp) exp_min_ao = exp_ao(i, j)
1949 84 : IF (exp_ao(i, j) < exp_ao_kind(ikind) .AND. exp_ao(i, j) > 1E-3_dp) &
1950 84 : exp_ao_kind(ikind) = exp_ao(i, j)
1951 : END DO
1952 : END DO
1953 12 : radius_ao_kind(ikind) = SQRT(-LOG(eps)/exp_ao_kind(ikind))
1954 12 : radius_ao_product_kind(ikind) = SQRT(-LOG(eps)/(2.0_dp*exp_ao_kind(ikind)))
1955 18 : radius_RI_kind(ikind) = SQRT(-LOG(eps)/exp_RI_kind(ikind))
1956 : END DO
1957 :
1958 6 : radius_ao = SQRT(-LOG(eps)/exp_min_ao)
1959 6 : radius_ao_product = SQRT(-LOG(eps)/(2.0_dp*exp_min_ao))
1960 6 : radius_RI = SQRT(-LOG(eps)/exp_min_RI)
1961 :
1962 6 : CALL get_atomic_kind_set(atomic_kind_set=atomic_kind_set, kind_of=kind_of)
1963 :
1964 : ! For a 3c integral (μR υS | P0) we have that cell R and cell S need to be within radius_3c
1965 6 : cell_radius_3c = radius_ao_product + radius_RI + bs_env%ri_metric%cutoff_radius
1966 :
1967 24 : n_max(1:3) = bs_env%periodic(1:3)*30
1968 :
1969 6 : nimages_3c_max = 0
1970 :
1971 6 : i_cell_x_min = 0
1972 6 : i_cell_x_max = 0
1973 6 : j_cell_y_min = 0
1974 6 : j_cell_y_max = 0
1975 6 : k_cell_z_min = 0
1976 6 : k_cell_z_max = 0
1977 :
1978 132 : DO i_cell_x = -n_max(1), n_max(1)
1979 7818 : DO j_cell_y = -n_max(2), n_max(2)
1980 30138 : DO k_cell_z = -n_max(3), n_max(3)
1981 :
1982 89304 : cell_index(1:3) = [i_cell_x, j_cell_y, k_cell_z]
1983 :
1984 22326 : CALL get_cell_dist(cell_index, bs_env%hmat, cell_dist)
1985 :
1986 30012 : IF (cell_dist < cell_radius_3c) THEN
1987 142 : nimages_3c_max = nimages_3c_max + 1
1988 142 : i_cell_x_min = MIN(i_cell_x_min, i_cell_x)
1989 142 : i_cell_x_max = MAX(i_cell_x_max, i_cell_x)
1990 142 : j_cell_y_min = MIN(j_cell_y_min, j_cell_y)
1991 142 : j_cell_y_max = MAX(j_cell_y_max, j_cell_y)
1992 142 : k_cell_z_min = MIN(k_cell_z_min, k_cell_z)
1993 142 : k_cell_z_max = MAX(k_cell_z_max, k_cell_z)
1994 : END IF
1995 :
1996 : END DO
1997 : END DO
1998 : END DO
1999 :
2000 : ! get index_to_cell_3c_max for the maximum possible cell range;
2001 : ! compute 3c integrals later in this routine and check really which cell is needed
2002 18 : ALLOCATE (index_to_cell_3c_max(3, nimages_3c_max))
2003 :
2004 6 : img = 0
2005 132 : DO i_cell_x = -n_max(1), n_max(1)
2006 7818 : DO j_cell_y = -n_max(2), n_max(2)
2007 30138 : DO k_cell_z = -n_max(3), n_max(3)
2008 :
2009 89304 : cell_index(1:3) = [i_cell_x, j_cell_y, k_cell_z]
2010 :
2011 22326 : CALL get_cell_dist(cell_index, bs_env%hmat, cell_dist)
2012 :
2013 30012 : IF (cell_dist < cell_radius_3c) THEN
2014 142 : img = img + 1
2015 568 : index_to_cell_3c_max(1:3, img) = cell_index(1:3)
2016 : END IF
2017 :
2018 : END DO
2019 : END DO
2020 : END DO
2021 :
2022 : ! get pairs of R and S which have non-zero 3c integral (μR υS | P0)
2023 24 : ALLOCATE (nblocks_3c_max(nimages_3c_max, nimages_3c_max))
2024 3530 : nblocks_3c_max(:, :) = 0
2025 :
2026 : block_count = 0
2027 148 : DO j_cell = 1, nimages_3c_max
2028 3530 : DO k_cell = 1, nimages_3c_max
2029 :
2030 12788 : DO atom_j = 1, bs_env%n_atom
2031 38674 : DO atom_k = 1, bs_env%n_atom
2032 109848 : DO atom_i = 1, bs_env%n_atom
2033 :
2034 74556 : block_count = block_count + 1
2035 74556 : IF (MODULO(block_count, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
2036 :
2037 149112 : CALL scaled_to_real(vec_cell_j, REAL(index_to_cell_3c_max(1:3, j_cell), kind=dp), cell)
2038 149112 : CALL scaled_to_real(vec_cell_k, REAL(index_to_cell_3c_max(1:3, k_cell), kind=dp), cell)
2039 :
2040 149112 : rij = pbc(particle_set(atom_j)%r(:), cell) - pbc(particle_set(atom_i)%r(:), cell) + vec_cell_j(:)
2041 : rjk = pbc(particle_set(atom_k)%r(:), cell) - pbc(particle_set(atom_j)%r(:), cell) &
2042 149112 : + vec_cell_k(:) - vec_cell_j(:)
2043 149112 : rik(:) = rij(:) + rjk(:)
2044 149112 : dij = NORM2(rij)
2045 149112 : dik = NORM2(rik)
2046 149112 : djk = NORM2(rjk)
2047 37278 : IF (djk > radius_ao_kind(kind_of(atom_j)) + radius_ao_kind(kind_of(atom_k))) CYCLE
2048 11682 : IF (dij > radius_ao_kind(kind_of(atom_j)) + radius_RI_kind(kind_of(atom_i)) &
2049 : + bs_env%ri_metric%cutoff_radius) CYCLE
2050 5932 : IF (dik > radius_RI_kind(kind_of(atom_i)) + radius_ao_kind(kind_of(atom_k)) &
2051 : + bs_env%ri_metric%cutoff_radius) CYCLE
2052 :
2053 3867 : j_size = bs_env%i_ao_end_from_atom(atom_j) - bs_env%i_ao_start_from_atom(atom_j) + 1
2054 3867 : k_size = bs_env%i_ao_end_from_atom(atom_k) - bs_env%i_ao_start_from_atom(atom_k) + 1
2055 3867 : i_size = bs_env%i_RI_end_from_atom(atom_i) - bs_env%i_RI_start_from_atom(atom_i) + 1
2056 :
2057 19335 : ALLOCATE (int_3c(j_size, k_size, i_size))
2058 :
2059 : ! compute 3-c int. ( μ(atom j) R , ν (atom k) S | P (atom i) 0 )
2060 : ! ("|": truncated Coulomb operator), inside build_3c_integrals: (j k | i)
2061 : CALL build_3c_integral_block(int_3c, qs_env, bs_env%ri_metric, &
2062 : basis_j=bs_env%basis_set_AO, &
2063 : basis_k=bs_env%basis_set_AO, &
2064 : basis_i=bs_env%basis_set_RI, &
2065 : cell_j=index_to_cell_3c_max(1:3, j_cell), &
2066 : cell_k=index_to_cell_3c_max(1:3, k_cell), &
2067 3867 : atom_k=atom_k, atom_j=atom_j, atom_i=atom_i)
2068 :
2069 206126 : frobenius_norm = SQRT(SUM(int_3c(:, :, :)**2))
2070 :
2071 3867 : DEALLOCATE (int_3c)
2072 :
2073 : ! we use a higher threshold here to safe memory when storing the 3c integrals
2074 : ! in every tensor group
2075 29895 : IF (frobenius_norm > eps) THEN
2076 825 : nblocks_3c_max(j_cell, k_cell) = nblocks_3c_max(j_cell, k_cell) + 1
2077 : END IF
2078 :
2079 : END DO
2080 : END DO
2081 : END DO
2082 :
2083 : END DO
2084 : END DO
2085 :
2086 6 : CALL bs_env%para_env%sum(nblocks_3c_max)
2087 :
2088 18 : ALLOCATE (n_other_3c_images_max(nimages_3c_max))
2089 148 : n_other_3c_images_max(:) = 0
2090 :
2091 6 : nimages_3c = 0
2092 6 : nimage_pairs_3c = 0
2093 :
2094 148 : DO j_cell = 1, nimages_3c_max
2095 3524 : DO k_cell = 1, nimages_3c_max
2096 3524 : IF (nblocks_3c_max(j_cell, k_cell) > 0) THEN
2097 290 : n_other_3c_images_max(j_cell) = n_other_3c_images_max(j_cell) + 1
2098 290 : nimage_pairs_3c = nimage_pairs_3c + 1
2099 : END IF
2100 : END DO
2101 :
2102 148 : IF (n_other_3c_images_max(j_cell) > 0) nimages_3c = nimages_3c + 1
2103 :
2104 : END DO
2105 :
2106 6 : bs_env%nimages_3c = nimages_3c
2107 18 : ALLOCATE (bs_env%index_to_cell_3c(3, nimages_3c))
2108 : ALLOCATE (bs_env%cell_to_index_3c(i_cell_x_min:i_cell_x_max, &
2109 : j_cell_y_min:j_cell_y_max, &
2110 30 : k_cell_z_min:k_cell_z_max))
2111 288 : bs_env%cell_to_index_3c(:, :, :) = -1
2112 :
2113 24 : ALLOCATE (bs_env%nblocks_3c(nimages_3c, nimages_3c))
2114 6 : bs_env%nblocks_3c(nimages_3c, nimages_3c) = 0
2115 :
2116 6 : j_cell = 0
2117 148 : DO j_cell_max = 1, nimages_3c_max
2118 142 : IF (n_other_3c_images_max(j_cell_max) == 0) CYCLE
2119 58 : j_cell = j_cell + 1
2120 232 : cell_index(1:3) = index_to_cell_3c_max(1:3, j_cell_max)
2121 232 : bs_env%index_to_cell_3c(1:3, j_cell) = cell_index(1:3)
2122 58 : bs_env%cell_to_index_3c(cell_index(1), cell_index(2), cell_index(3)) = j_cell
2123 :
2124 58 : k_cell = 0
2125 1474 : DO k_cell_max = 1, nimages_3c_max
2126 1410 : IF (n_other_3c_images_max(k_cell_max) == 0) CYCLE
2127 626 : k_cell = k_cell + 1
2128 :
2129 1552 : bs_env%nblocks_3c(j_cell, k_cell) = nblocks_3c_max(j_cell_max, k_cell_max)
2130 : END DO
2131 :
2132 : END DO
2133 :
2134 : ! we use: 8*10^-9 GB / double precision number
2135 : mem_3c_GB = REAL(bs_env%n_RI, KIND=dp)*REAL(bs_env%n_ao, KIND=dp)**2 &
2136 6 : *REAL(nimage_pairs_3c, KIND=dp)*8E-9_dp
2137 :
2138 6 : CALL m_memory(mem_occ_per_proc)
2139 6 : CALL bs_env%para_env%max(mem_occ_per_proc)
2140 :
2141 6 : mem_occ_per_proc_GB = REAL(mem_occ_per_proc, KIND=dp)/1.0E9_dp
2142 :
2143 : ! number of processors per group that entirely stores the 3c integrals and does tensor ops
2144 6 : avail_mem_per_proc_GB = bs_env%input_memory_per_proc_GB - mem_occ_per_proc_GB
2145 :
2146 : ! careful: downconvering real to integer, 1.9 -> 1; thus add 1.0 for upconversion, 1.9 -> 2
2147 6 : bs_env%group_size_tensor = MAX(INT(mem_3c_GB/avail_mem_per_proc_GB + 1.0_dp), 1)
2148 :
2149 6 : u = bs_env%unit_nr
2150 :
2151 6 : IF (u > 0) THEN
2152 3 : WRITE (u, FMT="(T2,A,F52.1,A)") "Radius of atomic orbitals", radius_ao*angstrom, " Å"
2153 3 : WRITE (u, FMT="(T2,A,F55.1,A)") "Radius of RI functions", radius_RI*angstrom, " Å"
2154 3 : WRITE (u, FMT="(T2,A,I47)") "Number of cells for 3c integrals", nimages_3c
2155 3 : WRITE (u, FMT="(T2,A,I42)") "Number of cell pairs for 3c integrals", nimage_pairs_3c
2156 3 : WRITE (u, '(T2,A)') ''
2157 3 : WRITE (u, '(T2,A,F37.1,A)') 'Input: Available memory per MPI process', &
2158 6 : bs_env%input_memory_per_proc_GB, ' GB'
2159 3 : WRITE (u, '(T2,A,F35.1,A)') 'Used memory per MPI process before GW run', &
2160 6 : mem_occ_per_proc_GB, ' GB'
2161 3 : WRITE (u, '(T2,A,F44.1,A)') 'Memory of three-center integrals', mem_3c_GB, ' GB'
2162 : END IF
2163 :
2164 6 : CALL timestop(handle)
2165 :
2166 18 : END SUBROUTINE setup_cells_3c
2167 :
2168 : ! **************************************************************************************************
2169 : !> \brief ...
2170 : !> \param index_to_cell_1 ...
2171 : !> \param index_to_cell_2 ...
2172 : !> \param nimages_1 ...
2173 : !> \param nimages_2 ...
2174 : !> \param index_to_cell ...
2175 : !> \param cell_to_index ...
2176 : !> \param nimages ...
2177 : ! **************************************************************************************************
2178 6 : SUBROUTINE sum_two_R_grids(index_to_cell_1, index_to_cell_2, nimages_1, nimages_2, &
2179 : index_to_cell, cell_to_index, nimages)
2180 :
2181 : INTEGER, DIMENSION(:, :) :: index_to_cell_1, index_to_cell_2
2182 : INTEGER :: nimages_1, nimages_2
2183 : INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell
2184 : INTEGER, DIMENSION(:, :, :), POINTER :: cell_to_index
2185 : INTEGER :: nimages
2186 :
2187 : CHARACTER(LEN=*), PARAMETER :: routineN = 'sum_two_R_grids'
2188 :
2189 : INTEGER :: handle, i_dim, img_1, img_2, nimages_max
2190 6 : INTEGER, ALLOCATABLE, DIMENSION(:, :) :: index_to_cell_tmp
2191 : INTEGER, DIMENSION(3) :: cell_1, cell_2, R, R_max, R_min
2192 :
2193 6 : CALL timeset(routineN, handle)
2194 :
2195 24 : DO i_dim = 1, 3
2196 366 : R_min(i_dim) = MINVAL(index_to_cell_1(i_dim, :)) + MINVAL(index_to_cell_2(i_dim, :))
2197 390 : R_max(i_dim) = MAXVAL(index_to_cell_1(i_dim, :)) + MAXVAL(index_to_cell_2(i_dim, :))
2198 : END DO
2199 :
2200 6 : nimages_max = (R_max(1) - R_min(1) + 1)*(R_max(2) - R_min(2) + 1)*(R_max(3) - R_min(3) + 1)
2201 :
2202 18 : ALLOCATE (index_to_cell_tmp(3, nimages_max))
2203 766 : index_to_cell_tmp(:, :) = -1
2204 :
2205 30 : ALLOCATE (cell_to_index(R_min(1):R_max(1), R_min(2):R_max(2), R_min(3):R_max(3)))
2206 376 : cell_to_index(:, :, :) = -1
2207 :
2208 6 : nimages = 0
2209 :
2210 64 : DO img_1 = 1, nimages_1
2211 :
2212 690 : DO img_2 = 1, nimages_2
2213 :
2214 2504 : cell_1(1:3) = index_to_cell_1(1:3, img_1)
2215 2504 : cell_2(1:3) = index_to_cell_2(1:3, img_2)
2216 :
2217 2504 : R(1:3) = cell_1(1:3) + cell_2(1:3)
2218 :
2219 : ! check whether we have found a new cell
2220 684 : IF (cell_to_index(R(1), R(2), R(3)) == -1) THEN
2221 :
2222 166 : nimages = nimages + 1
2223 166 : cell_to_index(R(1), R(2), R(3)) = nimages
2224 664 : index_to_cell_tmp(1:3, nimages) = R(1:3)
2225 :
2226 : END IF
2227 :
2228 : END DO
2229 :
2230 : END DO
2231 :
2232 18 : ALLOCATE (index_to_cell(3, nimages))
2233 670 : index_to_cell(:, :) = index_to_cell_tmp(1:3, 1:nimages)
2234 :
2235 6 : CALL timestop(handle)
2236 :
2237 12 : END SUBROUTINE sum_two_R_grids
2238 :
2239 : ! **************************************************************************************************
2240 : !> \brief ...
2241 : !> \param qs_env ...
2242 : !> \param bs_env ...
2243 : ! **************************************************************************************************
2244 6 : SUBROUTINE compute_3c_integrals(qs_env, bs_env)
2245 :
2246 : TYPE(qs_environment_type), POINTER :: qs_env
2247 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2248 :
2249 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_3c_integrals'
2250 :
2251 : INTEGER :: handle, j_cell, k_cell, nimages_3c
2252 :
2253 6 : CALL timeset(routineN, handle)
2254 :
2255 6 : nimages_3c = bs_env%nimages_3c
2256 756 : ALLOCATE (bs_env%t_3c_int(nimages_3c, nimages_3c))
2257 64 : DO j_cell = 1, nimages_3c
2258 690 : DO k_cell = 1, nimages_3c
2259 684 : CALL dbt_create(bs_env%t_RI_AO__AO, bs_env%t_3c_int(j_cell, k_cell))
2260 : END DO
2261 : END DO
2262 :
2263 : CALL build_3c_integrals(bs_env%t_3c_int, &
2264 : bs_env%eps_filter, &
2265 : qs_env, &
2266 : bs_env%nl_3c, &
2267 : int_eps=bs_env%eps_filter*0.05_dp, &
2268 : basis_i=bs_env%basis_set_RI, &
2269 : basis_j=bs_env%basis_set_AO, &
2270 : basis_k=bs_env%basis_set_AO, &
2271 : potential_parameter=bs_env%ri_metric, &
2272 : desymmetrize=.FALSE., do_kpoints=.TRUE., cell_sym=.TRUE., &
2273 6 : cell_to_index_ext=bs_env%cell_to_index_3c)
2274 :
2275 6 : CALL bs_env%para_env%sync()
2276 :
2277 6 : CALL timestop(handle)
2278 :
2279 6 : END SUBROUTINE compute_3c_integrals
2280 :
2281 : ! **************************************************************************************************
2282 : !> \brief ...
2283 : !> \param cell_index ...
2284 : !> \param hmat ...
2285 : !> \param cell_dist ...
2286 : ! **************************************************************************************************
2287 44652 : SUBROUTINE get_cell_dist(cell_index, hmat, cell_dist)
2288 :
2289 : INTEGER, DIMENSION(3) :: cell_index
2290 : REAL(KIND=dp) :: hmat(3, 3), cell_dist
2291 :
2292 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_cell_dist'
2293 :
2294 : INTEGER :: handle, i_dim
2295 : INTEGER, DIMENSION(3) :: cell_index_adj
2296 : REAL(KIND=dp) :: cell_dist_3(3)
2297 :
2298 44652 : CALL timeset(routineN, handle)
2299 :
2300 : ! the distance of cells needs to be taken to adjacent neighbors, not
2301 : ! between the center of the cells. We thus need to rescale the cell index
2302 178608 : DO i_dim = 1, 3
2303 133956 : IF (cell_index(i_dim) > 0) cell_index_adj(i_dim) = cell_index(i_dim) - 1
2304 133956 : IF (cell_index(i_dim) < 0) cell_index_adj(i_dim) = cell_index(i_dim) + 1
2305 178608 : IF (cell_index(i_dim) == 0) cell_index_adj(i_dim) = cell_index(i_dim)
2306 : END DO
2307 :
2308 714432 : cell_dist_3(1:3) = MATMUL(hmat, REAL(cell_index_adj, KIND=dp))
2309 :
2310 178608 : cell_dist = SQRT(ABS(SUM(cell_dist_3(1:3)**2)))
2311 :
2312 44652 : CALL timestop(handle)
2313 :
2314 44652 : END SUBROUTINE get_cell_dist
2315 :
2316 : ! **************************************************************************************************
2317 : !> \brief ...
2318 : !> \param qs_env ...
2319 : !> \param bs_env ...
2320 : !> \param kpoints ...
2321 : !> \param do_print ...
2322 : ! **************************************************************************************************
2323 0 : SUBROUTINE setup_kpoints_scf_desymm(qs_env, bs_env, kpoints, do_print)
2324 : TYPE(qs_environment_type), POINTER :: qs_env
2325 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2326 : TYPE(kpoint_type), POINTER :: kpoints
2327 :
2328 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_kpoints_scf_desymm'
2329 :
2330 : INTEGER :: handle, i_cell_x, i_dim, img, j_cell_y, &
2331 : k_cell_z, nimages, nkp, u
2332 : INTEGER, DIMENSION(3) :: cell_grid, cixd, nkp_grid
2333 : TYPE(kpoint_type), POINTER :: kpoints_scf
2334 :
2335 : LOGICAL:: do_print
2336 :
2337 0 : CALL timeset(routineN, handle)
2338 :
2339 0 : NULLIFY (kpoints)
2340 0 : CALL kpoint_create(kpoints)
2341 :
2342 0 : CALL get_qs_env(qs_env=qs_env, kpoints=kpoints_scf)
2343 :
2344 0 : nkp_grid(1:3) = kpoints_scf%nkp_grid(1:3)
2345 0 : nkp = nkp_grid(1)*nkp_grid(2)*nkp_grid(3)
2346 :
2347 : ! we need in periodic directions at least 2 k-points in the SCF
2348 0 : DO i_dim = 1, 3
2349 0 : IF (bs_env%periodic(i_dim) == 1) THEN
2350 0 : CPASSERT(nkp_grid(i_dim) > 1)
2351 : END IF
2352 : END DO
2353 :
2354 0 : kpoints%kp_scheme = "GENERAL"
2355 0 : kpoints%nkp_grid(1:3) = nkp_grid(1:3)
2356 0 : kpoints%nkp = nkp
2357 0 : bs_env%nkp_scf_desymm = nkp
2358 :
2359 0 : ALLOCATE (kpoints%xkp(1:3, nkp))
2360 0 : CALL compute_xkp(kpoints%xkp, 1, nkp, nkp_grid)
2361 :
2362 0 : ALLOCATE (kpoints%wkp(nkp))
2363 0 : kpoints%wkp(:) = 1.0_dp/REAL(nkp, KIND=dp)
2364 :
2365 : ! for example 4x3x6 kpoint grid -> 3x3x5 cell grid because we need the same number of
2366 : ! neighbor cells on both sides of the unit cell
2367 0 : cell_grid(1:3) = nkp_grid(1:3) - MODULO(nkp_grid(1:3) + 1, 2)
2368 : ! cell index: for example for x: from -n_x/2 to +n_x/2, n_x: number of cells in x direction
2369 0 : cixd(1:3) = cell_grid(1:3)/2
2370 :
2371 0 : nimages = cell_grid(1)*cell_grid(2)*cell_grid(3)
2372 :
2373 0 : bs_env%nimages_scf_desymm = nimages
2374 :
2375 0 : ALLOCATE (kpoints%cell_to_index(-cixd(1):cixd(1), -cixd(2):cixd(2), -cixd(3):cixd(3)))
2376 0 : ALLOCATE (kpoints%index_to_cell(3, nimages))
2377 :
2378 0 : img = 0
2379 0 : DO i_cell_x = -cixd(1), cixd(1)
2380 0 : DO j_cell_y = -cixd(2), cixd(2)
2381 0 : DO k_cell_z = -cixd(3), cixd(3)
2382 0 : img = img + 1
2383 0 : kpoints%cell_to_index(i_cell_x, j_cell_y, k_cell_z) = img
2384 0 : kpoints%index_to_cell(1:3, img) = [i_cell_x, j_cell_y, k_cell_z]
2385 : END DO
2386 : END DO
2387 : END DO
2388 :
2389 0 : u = bs_env%unit_nr
2390 0 : IF (u > 0 .AND. do_print) THEN
2391 0 : WRITE (u, FMT="(T2,A,I49)") "Number of cells for G, χ, W, Σ", nimages
2392 : END IF
2393 :
2394 0 : CALL timestop(handle)
2395 :
2396 0 : END SUBROUTINE setup_kpoints_scf_desymm
2397 :
2398 : ! **************************************************************************************************
2399 : !> \brief ...
2400 : !> \param bs_env ...
2401 : ! **************************************************************************************************
2402 6 : SUBROUTINE setup_cells_Delta_R(bs_env)
2403 :
2404 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2405 :
2406 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_cells_Delta_R'
2407 :
2408 : INTEGER :: handle
2409 :
2410 6 : CALL timeset(routineN, handle)
2411 :
2412 : ! cell sums batch wise for fixed ΔR = S_1 - R_1; for example:
2413 : ! Σ_λσ^R = sum_PR1νS1 M^G_λ0,νS1,PR1 M^W_σR,νS1,PR1
2414 :
2415 : CALL sum_two_R_grids(bs_env%index_to_cell_3c, &
2416 : bs_env%index_to_cell_3c, &
2417 : bs_env%nimages_3c, bs_env%nimages_3c, &
2418 : bs_env%index_to_cell_Delta_R, &
2419 : bs_env%cell_to_index_Delta_R, &
2420 6 : bs_env%nimages_Delta_R)
2421 :
2422 6 : IF (bs_env%unit_nr > 0) THEN
2423 3 : WRITE (bs_env%unit_nr, FMT="(T2,A,I61)") "Number of cells ΔR", bs_env%nimages_Delta_R
2424 : END IF
2425 :
2426 6 : CALL timestop(handle)
2427 :
2428 6 : END SUBROUTINE setup_cells_Delta_R
2429 :
2430 : ! **************************************************************************************************
2431 : !> \brief ...
2432 : !> \param bs_env ...
2433 : ! **************************************************************************************************
2434 6 : SUBROUTINE setup_parallelization_Delta_R(bs_env)
2435 :
2436 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2437 :
2438 : CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_parallelization_Delta_R'
2439 :
2440 : INTEGER :: handle, i_cell_Delta_R, i_task_local, &
2441 : n_tasks_local
2442 6 : INTEGER, ALLOCATABLE, DIMENSION(:) :: i_cell_Delta_R_group, &
2443 6 : n_tensor_ops_Delta_R
2444 :
2445 6 : CALL timeset(routineN, handle)
2446 :
2447 6 : CALL compute_n_tensor_ops_Delta_R(bs_env, n_tensor_ops_Delta_R)
2448 :
2449 6 : CALL compute_Delta_R_dist(bs_env, n_tensor_ops_Delta_R, i_cell_Delta_R_group, n_tasks_local)
2450 :
2451 6 : bs_env%n_tasks_Delta_R_local = n_tasks_local
2452 :
2453 18 : ALLOCATE (bs_env%task_Delta_R(n_tasks_local))
2454 :
2455 6 : i_task_local = 0
2456 172 : DO i_cell_Delta_R = 1, bs_env%nimages_Delta_R
2457 :
2458 166 : IF (i_cell_Delta_R_group(i_cell_Delta_R) /= bs_env%tensor_group_color) CYCLE
2459 :
2460 73 : i_task_local = i_task_local + 1
2461 :
2462 172 : bs_env%task_Delta_R(i_task_local) = i_cell_Delta_R
2463 :
2464 : END DO
2465 :
2466 18 : ALLOCATE (bs_env%skip_DR_chi(n_tasks_local))
2467 79 : bs_env%skip_DR_chi(:) = .FALSE.
2468 18 : ALLOCATE (bs_env%skip_DR_Sigma(n_tasks_local))
2469 79 : bs_env%skip_DR_Sigma(:) = .FALSE.
2470 :
2471 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R12_S_Goccx3c_chi, bs_env)
2472 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R12_S_Gvirx3c_chi, bs_env)
2473 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R_R2_MxM_chi, bs_env)
2474 :
2475 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R1_S2_Gx3c_Sigma, bs_env)
2476 6 : CALL allocate_skip_3xR(bs_env%skip_DR_R1_R_MxM_Sigma, bs_env)
2477 :
2478 6 : CALL timestop(handle)
2479 :
2480 12 : END SUBROUTINE setup_parallelization_Delta_R
2481 :
2482 : ! **************************************************************************************************
2483 : !> \brief ...
2484 : !> \param skip ...
2485 : !> \param bs_env ...
2486 : ! **************************************************************************************************
2487 30 : SUBROUTINE allocate_skip_3xR(skip, bs_env)
2488 : LOGICAL, ALLOCATABLE, DIMENSION(:, :, :) :: skip
2489 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2490 :
2491 : CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_skip_3xR'
2492 :
2493 : INTEGER :: handle
2494 :
2495 30 : CALL timeset(routineN, handle)
2496 :
2497 150 : ALLOCATE (skip(bs_env%n_tasks_Delta_R_local, bs_env%nimages_3c, bs_env%nimages_scf_desymm))
2498 38235 : skip(:, :, :) = .FALSE.
2499 :
2500 30 : CALL timestop(handle)
2501 :
2502 30 : END SUBROUTINE allocate_skip_3xR
2503 :
2504 : ! **************************************************************************************************
2505 : !> \brief ...
2506 : !> \param bs_env ...
2507 : !> \param n_tensor_ops_Delta_R ...
2508 : !> \param i_cell_Delta_R_group ...
2509 : !> \param n_tasks_local ...
2510 : ! **************************************************************************************************
2511 6 : SUBROUTINE compute_Delta_R_dist(bs_env, n_tensor_ops_Delta_R, i_cell_Delta_R_group, n_tasks_local)
2512 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2513 : INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_Delta_R, &
2514 : i_cell_Delta_R_group
2515 : INTEGER :: n_tasks_local
2516 :
2517 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Delta_R_dist'
2518 :
2519 : INTEGER :: handle, i_Delta_R_max_op, i_group_min, &
2520 : nimages_Delta_R, u
2521 6 : INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_Delta_R_in_group
2522 :
2523 6 : CALL timeset(routineN, handle)
2524 :
2525 6 : nimages_Delta_R = bs_env%nimages_Delta_R
2526 :
2527 6 : u = bs_env%unit_nr
2528 :
2529 6 : IF (u > 0 .AND. nimages_Delta_R < bs_env%num_tensor_groups) THEN
2530 0 : WRITE (u, FMT="(T2,A,I5,A,I5,A)") "There are only ", nimages_Delta_R, &
2531 0 : " tasks to work on but there are ", bs_env%num_tensor_groups, " groups."
2532 0 : WRITE (u, FMT="(T2,A)") "Please reduce the number of MPI processes."
2533 0 : WRITE (u, '(T2,A)') ''
2534 : END IF
2535 :
2536 18 : ALLOCATE (n_tensor_ops_Delta_R_in_group(bs_env%num_tensor_groups))
2537 18 : n_tensor_ops_Delta_R_in_group(:) = 0
2538 18 : ALLOCATE (i_cell_Delta_R_group(nimages_Delta_R))
2539 172 : i_cell_Delta_R_group(:) = -1
2540 :
2541 6 : n_tasks_local = 0
2542 :
2543 624 : DO WHILE (ANY(n_tensor_ops_Delta_R(:) /= 0))
2544 :
2545 : ! get largest element of n_tensor_ops_Delta_R
2546 4684 : i_Delta_R_max_op = MAXLOC(n_tensor_ops_Delta_R, 1)
2547 :
2548 : ! distribute i_Delta_R_max_op to tensor group which has currently the smallest load
2549 584 : i_group_min = MINLOC(n_tensor_ops_Delta_R_in_group, 1)
2550 :
2551 : ! the tensor groups are 0-index based; but i_group_min is 1-index based
2552 146 : i_cell_Delta_R_group(i_Delta_R_max_op) = i_group_min - 1
2553 : n_tensor_ops_Delta_R_in_group(i_group_min) = n_tensor_ops_Delta_R_in_group(i_group_min) + &
2554 146 : n_tensor_ops_Delta_R(i_Delta_R_max_op)
2555 :
2556 : ! remove i_Delta_R_max_op from n_tensor_ops_Delta_R
2557 146 : n_tensor_ops_Delta_R(i_Delta_R_max_op) = 0
2558 :
2559 152 : IF (bs_env%tensor_group_color == i_group_min - 1) n_tasks_local = n_tasks_local + 1
2560 :
2561 : END DO
2562 :
2563 6 : CALL timestop(handle)
2564 :
2565 12 : END SUBROUTINE compute_Delta_R_dist
2566 :
2567 : ! **************************************************************************************************
2568 : !> \brief ...
2569 : !> \param bs_env ...
2570 : !> \param n_tensor_ops_Delta_R ...
2571 : ! **************************************************************************************************
2572 6 : SUBROUTINE compute_n_tensor_ops_Delta_R(bs_env, n_tensor_ops_Delta_R)
2573 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2574 : INTEGER, ALLOCATABLE, DIMENSION(:) :: n_tensor_ops_Delta_R
2575 :
2576 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_n_tensor_ops_Delta_R'
2577 :
2578 : INTEGER :: handle, i_cell_Delta_R, i_cell_R, i_cell_R1, i_cell_R1_minus_R, i_cell_R2, &
2579 : i_cell_R2_m_R1, i_cell_S1, i_cell_S1_m_R1_p_R2, i_cell_S1_minus_R, i_cell_S2, &
2580 : nimages_Delta_R
2581 : INTEGER, DIMENSION(3) :: cell_DR, cell_m_R1, cell_R, cell_R1, cell_R1_minus_R, cell_R2, &
2582 : cell_R2_m_R1, cell_S1, cell_S1_m_R2_p_R1, cell_S1_minus_R, cell_S1_p_S2_m_R1, cell_S2
2583 : LOGICAL :: cell_found
2584 :
2585 6 : CALL timeset(routineN, handle)
2586 :
2587 6 : nimages_Delta_R = bs_env%nimages_Delta_R
2588 :
2589 18 : ALLOCATE (n_tensor_ops_Delta_R(nimages_Delta_R))
2590 172 : n_tensor_ops_Delta_R(:) = 0
2591 :
2592 : ! compute number of tensor operations for specific Delta_R
2593 172 : DO i_cell_Delta_R = 1, nimages_Delta_R
2594 :
2595 166 : IF (MODULO(i_cell_Delta_R, bs_env%num_tensor_groups) /= bs_env%tensor_group_color) CYCLE
2596 :
2597 994 : DO i_cell_R1 = 1, bs_env%nimages_3c
2598 :
2599 3620 : cell_R1(1:3) = bs_env%index_to_cell_3c(1:3, i_cell_R1)
2600 3620 : cell_DR(1:3) = bs_env%index_to_cell_Delta_R(1:3, i_cell_Delta_R)
2601 :
2602 : ! S_1 = R_1 + ΔR (from ΔR = S_1 - R_1)
2603 : CALL add_R(cell_R1, cell_DR, bs_env%index_to_cell_3c, cell_S1, &
2604 905 : cell_found, bs_env%cell_to_index_3c, i_cell_S1)
2605 905 : IF (.NOT. cell_found) CYCLE
2606 :
2607 2950 : DO i_cell_R2 = 1, bs_env%nimages_scf_desymm
2608 :
2609 10620 : cell_R2(1:3) = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_R2)
2610 :
2611 : ! R_2 - R_1
2612 : CALL add_R(cell_R2, -cell_R1, bs_env%index_to_cell_3c, cell_R2_m_R1, &
2613 10620 : cell_found, bs_env%cell_to_index_3c, i_cell_R2_m_R1)
2614 2655 : IF (.NOT. cell_found) CYCLE
2615 :
2616 : ! S_1 - R_1 + R_2
2617 : CALL add_R(cell_S1, cell_R2_m_R1, bs_env%index_to_cell_3c, cell_S1_m_R2_p_R1, &
2618 1575 : cell_found, bs_env%cell_to_index_3c, i_cell_S1_m_R1_p_R2)
2619 1575 : IF (.NOT. cell_found) CYCLE
2620 :
2621 3993 : n_tensor_ops_Delta_R(i_cell_Delta_R) = n_tensor_ops_Delta_R(i_cell_Delta_R) + 1
2622 :
2623 : END DO ! i_cell_R2
2624 :
2625 2950 : DO i_cell_S2 = 1, bs_env%nimages_scf_desymm
2626 :
2627 10620 : cell_S2(1:3) = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_S2)
2628 10620 : cell_m_R1(1:3) = -cell_R1(1:3)
2629 10620 : cell_S1_p_S2_m_R1(1:3) = cell_S1(1:3) + cell_S2(1:3) - cell_R1(1:3)
2630 :
2631 2655 : CALL is_cell_in_index_to_cell(cell_m_R1, bs_env%index_to_cell_3c, cell_found)
2632 2655 : IF (.NOT. cell_found) CYCLE
2633 :
2634 2169 : CALL is_cell_in_index_to_cell(cell_S1_p_S2_m_R1, bs_env%index_to_cell_3c, cell_found)
2635 295 : IF (.NOT. cell_found) CYCLE
2636 :
2637 : END DO ! i_cell_S2
2638 :
2639 4021 : DO i_cell_R = 1, bs_env%nimages_scf_desymm
2640 :
2641 10620 : cell_R = bs_env%kpoints_scf_desymm%index_to_cell(1:3, i_cell_R)
2642 :
2643 : ! R_1 - R
2644 : CALL add_R(cell_R1, -cell_R, bs_env%index_to_cell_3c, cell_R1_minus_R, &
2645 10620 : cell_found, bs_env%cell_to_index_3c, i_cell_R1_minus_R)
2646 2655 : IF (.NOT. cell_found) CYCLE
2647 :
2648 : ! S_1 - R
2649 : CALL add_R(cell_S1, -cell_R, bs_env%index_to_cell_3c, cell_S1_minus_R, &
2650 6804 : cell_found, bs_env%cell_to_index_3c, i_cell_S1_minus_R)
2651 905 : IF (.NOT. cell_found) CYCLE
2652 :
2653 : END DO ! i_cell_R
2654 :
2655 : END DO ! i_cell_R1
2656 :
2657 : END DO ! i_cell_Delta_R
2658 :
2659 6 : CALL bs_env%para_env%sum(n_tensor_ops_Delta_R)
2660 :
2661 6 : CALL timestop(handle)
2662 :
2663 6 : END SUBROUTINE compute_n_tensor_ops_Delta_R
2664 :
2665 : ! **************************************************************************************************
2666 : !> \brief ...
2667 : !> \param cell_1 ...
2668 : !> \param cell_2 ...
2669 : !> \param index_to_cell ...
2670 : !> \param cell_1_plus_2 ...
2671 : !> \param cell_found ...
2672 : !> \param cell_to_index ...
2673 : !> \param i_cell_1_plus_2 ...
2674 : ! **************************************************************************************************
2675 85114 : SUBROUTINE add_R(cell_1, cell_2, index_to_cell, cell_1_plus_2, cell_found, &
2676 : cell_to_index, i_cell_1_plus_2)
2677 :
2678 : INTEGER, DIMENSION(3) :: cell_1, cell_2
2679 : INTEGER, DIMENSION(:, :) :: index_to_cell
2680 : INTEGER, DIMENSION(3) :: cell_1_plus_2
2681 : LOGICAL :: cell_found
2682 : INTEGER, DIMENSION(:, :, :), INTENT(IN), &
2683 : OPTIONAL, POINTER :: cell_to_index
2684 : INTEGER, INTENT(OUT), OPTIONAL :: i_cell_1_plus_2
2685 :
2686 : CHARACTER(LEN=*), PARAMETER :: routineN = 'add_R'
2687 :
2688 : INTEGER :: handle
2689 :
2690 85114 : CALL timeset(routineN, handle)
2691 :
2692 340456 : cell_1_plus_2(1:3) = cell_1(1:3) + cell_2(1:3)
2693 :
2694 85114 : CALL is_cell_in_index_to_cell(cell_1_plus_2, index_to_cell, cell_found)
2695 :
2696 85114 : IF (PRESENT(i_cell_1_plus_2)) THEN
2697 85114 : IF (cell_found) THEN
2698 48214 : CPASSERT(PRESENT(cell_to_index))
2699 48214 : i_cell_1_plus_2 = cell_to_index(cell_1_plus_2(1), cell_1_plus_2(2), cell_1_plus_2(3))
2700 : ELSE
2701 36900 : i_cell_1_plus_2 = -1000
2702 : END IF
2703 : END IF
2704 :
2705 85114 : CALL timestop(handle)
2706 :
2707 85114 : END SUBROUTINE add_R
2708 :
2709 : ! **************************************************************************************************
2710 : !> \brief ...
2711 : !> \param cell ...
2712 : !> \param index_to_cell ...
2713 : !> \param cell_found ...
2714 : ! **************************************************************************************************
2715 133779 : SUBROUTINE is_cell_in_index_to_cell(cell, index_to_cell, cell_found)
2716 : INTEGER, DIMENSION(3) :: cell
2717 : INTEGER, DIMENSION(:, :) :: index_to_cell
2718 : LOGICAL :: cell_found
2719 :
2720 : CHARACTER(LEN=*), PARAMETER :: routineN = 'is_cell_in_index_to_cell'
2721 :
2722 : INTEGER :: handle, i_cell, nimg
2723 : INTEGER, DIMENSION(3) :: cell_i
2724 :
2725 133779 : CALL timeset(routineN, handle)
2726 :
2727 133779 : nimg = SIZE(index_to_cell, 2)
2728 :
2729 133779 : cell_found = .FALSE.
2730 :
2731 1653594 : DO i_cell = 1, nimg
2732 :
2733 6079260 : cell_i(1:3) = index_to_cell(1:3, i_cell)
2734 :
2735 1653594 : IF (cell_i(1) == cell(1) .AND. cell_i(2) == cell(2) .AND. cell_i(3) == cell(3)) THEN
2736 79661 : cell_found = .TRUE.
2737 : END IF
2738 :
2739 : END DO
2740 :
2741 133779 : CALL timestop(handle)
2742 :
2743 133779 : END SUBROUTINE is_cell_in_index_to_cell
2744 :
2745 : ! **************************************************************************************************
2746 : !> \brief ...
2747 : !> \param qs_env ...
2748 : !> \param bs_env ...
2749 : ! **************************************************************************************************
2750 6 : SUBROUTINE allocate_matrices_small_cell_full_kp(qs_env, bs_env)
2751 : TYPE(qs_environment_type), POINTER :: qs_env
2752 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2753 :
2754 : CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_small_cell_full_kp'
2755 :
2756 : INTEGER :: handle, i_spin, i_t, img, n_spin, &
2757 : nimages_scf, num_time_freq_points
2758 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2759 : TYPE(mp_para_env_type), POINTER :: para_env
2760 :
2761 6 : CALL timeset(routineN, handle)
2762 :
2763 6 : nimages_scf = bs_env%nimages_scf_desymm
2764 6 : num_time_freq_points = bs_env%num_time_freq_points
2765 6 : n_spin = bs_env%n_spin
2766 :
2767 6 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
2768 :
2769 72 : ALLOCATE (bs_env%fm_G_S(nimages_scf))
2770 72 : ALLOCATE (bs_env%fm_Sigma_x_R(nimages_scf))
2771 464 : ALLOCATE (bs_env%fm_chi_R_t(nimages_scf, num_time_freq_points))
2772 464 : ALLOCATE (bs_env%fm_MWM_R_t(nimages_scf, num_time_freq_points))
2773 476 : ALLOCATE (bs_env%fm_Sigma_c_R_neg_tau(nimages_scf, num_time_freq_points, n_spin))
2774 476 : ALLOCATE (bs_env%fm_Sigma_c_R_pos_tau(nimages_scf, num_time_freq_points, n_spin))
2775 60 : DO img = 1, nimages_scf
2776 54 : CALL cp_fm_create(bs_env%fm_G_S(img), bs_env%fm_work_mo(1)%matrix_struct)
2777 54 : CALL cp_fm_create(bs_env%fm_Sigma_x_R(img), bs_env%fm_work_mo(1)%matrix_struct)
2778 456 : DO i_t = 1, num_time_freq_points
2779 396 : CALL cp_fm_create(bs_env%fm_chi_R_t(img, i_t), bs_env%fm_RI_RI%matrix_struct)
2780 396 : CALL cp_fm_create(bs_env%fm_MWM_R_t(img, i_t), bs_env%fm_RI_RI%matrix_struct)
2781 396 : CALL cp_fm_set_all(bs_env%fm_MWM_R_t(img, i_t), 0.0_dp)
2782 846 : DO i_spin = 1, n_spin
2783 : CALL cp_fm_create(bs_env%fm_Sigma_c_R_neg_tau(img, i_t, i_spin), &
2784 396 : bs_env%fm_work_mo(1)%matrix_struct)
2785 : CALL cp_fm_create(bs_env%fm_Sigma_c_R_pos_tau(img, i_t, i_spin), &
2786 396 : bs_env%fm_work_mo(1)%matrix_struct)
2787 396 : CALL cp_fm_set_all(bs_env%fm_Sigma_c_R_neg_tau(img, i_t, i_spin), 0.0_dp)
2788 792 : CALL cp_fm_set_all(bs_env%fm_Sigma_c_R_pos_tau(img, i_t, i_spin), 0.0_dp)
2789 : END DO
2790 : END DO
2791 : END DO
2792 :
2793 6 : CALL timestop(handle)
2794 :
2795 6 : END SUBROUTINE allocate_matrices_small_cell_full_kp
2796 :
2797 : ! **************************************************************************************************
2798 : !> \brief ...
2799 : !> \param qs_env ...
2800 : !> \param bs_env ...
2801 : ! **************************************************************************************************
2802 6 : SUBROUTINE trafo_V_xc_R_to_kp(qs_env, bs_env)
2803 : TYPE(qs_environment_type), POINTER :: qs_env
2804 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2805 :
2806 : CHARACTER(LEN=*), PARAMETER :: routineN = 'trafo_V_xc_R_to_kp'
2807 :
2808 : INTEGER :: handle, ikp, img, ispin, n_ao
2809 6 : INTEGER, DIMENSION(:, :, :), POINTER :: cell_to_index_scf
2810 : TYPE(cp_cfm_type) :: cfm_mo_coeff, cfm_tmp, cfm_V_xc
2811 : TYPE(cp_fm_type) :: fm_V_xc_re
2812 6 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks
2813 : TYPE(kpoint_type), POINTER :: kpoints_scf
2814 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
2815 6 : POINTER :: sab_nl
2816 :
2817 6 : CALL timeset(routineN, handle)
2818 :
2819 6 : n_ao = bs_env%n_ao
2820 :
2821 6 : CALL get_qs_env(qs_env, matrix_ks_kp=matrix_ks, kpoints=kpoints_scf)
2822 :
2823 6 : NULLIFY (sab_nl)
2824 6 : CALL get_kpoint_info(kpoints_scf, sab_nl=sab_nl, cell_to_index=cell_to_index_scf)
2825 :
2826 6 : CALL cp_cfm_create(cfm_V_xc, bs_env%cfm_work_mo%matrix_struct)
2827 6 : CALL cp_cfm_create(cfm_mo_coeff, bs_env%cfm_work_mo%matrix_struct)
2828 6 : CALL cp_cfm_create(cfm_tmp, bs_env%cfm_work_mo%matrix_struct)
2829 6 : CALL cp_fm_create(fm_V_xc_re, bs_env%cfm_work_mo%matrix_struct)
2830 :
2831 184 : DO img = 1, bs_env%nimages_scf
2832 362 : DO ispin = 1, bs_env%n_spin
2833 : ! JW kind of hack because the format of matrix_ks remains dubious...
2834 178 : CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
2835 356 : CALL copy_fm_to_dbcsr(bs_env%fm_V_xc_R(img, ispin), matrix_ks(ispin, img)%matrix)
2836 : END DO
2837 : END DO
2838 :
2839 30 : ALLOCATE (bs_env%v_xc_n(n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
2840 :
2841 12 : DO ispin = 1, bs_env%n_spin
2842 170 : DO ikp = 1, bs_env%nkp_bs_and_DOS
2843 :
2844 : ! v^xc^R -> v^xc(k) (matrix_ks stores v^xc^R, see SUBROUTINE compute_V_xc)
2845 : CALL rsmat_to_kp(matrix_ks, ispin, bs_env%kpoints_DOS%xkp(1:3, ikp), &
2846 158 : cell_to_index_scf, sab_nl, bs_env, cfm_V_xc)
2847 :
2848 : ! get C_µn(k)
2849 158 : CALL cp_cfm_to_cfm(bs_env%cfm_mo_coeff_kp(ikp, ispin), cfm_mo_coeff)
2850 :
2851 : ! v^xc_nm(k_i) = sum_µν C^*_µn(k_i) v^xc_µν(k_i) C_νn(k_i)
2852 : CALL parallel_gemm('N', 'N', n_ao, n_ao, n_ao, z_one, cfm_V_xc, cfm_mo_coeff, &
2853 158 : z_zero, cfm_tmp)
2854 : CALL parallel_gemm('C', 'N', n_ao, n_ao, n_ao, z_one, cfm_mo_coeff, cfm_tmp, &
2855 158 : z_zero, cfm_V_xc)
2856 :
2857 : ! get v^xc_nn(k_i) which is a real quantity as v^xc is Hermitian
2858 158 : CALL cp_cfm_to_fm(cfm_V_xc, fm_V_xc_re)
2859 164 : CALL cp_fm_get_diag(fm_V_xc_re, bs_env%v_xc_n(:, ikp, ispin))
2860 :
2861 : END DO
2862 :
2863 : END DO
2864 :
2865 : ! just rebuild the overwritten KS matrix again
2866 6 : CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
2867 :
2868 6 : CALL cp_cfm_release(cfm_V_xc)
2869 6 : CALL cp_cfm_release(cfm_mo_coeff)
2870 6 : CALL cp_cfm_release(cfm_tmp)
2871 6 : CALL cp_fm_release(fm_V_xc_re)
2872 :
2873 6 : CALL timestop(handle)
2874 :
2875 12 : END SUBROUTINE trafo_V_xc_R_to_kp
2876 :
2877 : ! **************************************************************************************************
2878 : !> \brief ...
2879 : !> \param qs_env ...
2880 : !> \param bs_env ...
2881 : ! **************************************************************************************************
2882 6 : SUBROUTINE heuristic_RI_regularization(qs_env, bs_env)
2883 : TYPE(qs_environment_type), POINTER :: qs_env
2884 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2885 :
2886 : CHARACTER(LEN=*), PARAMETER :: routineN = 'heuristic_RI_regularization'
2887 :
2888 6 : COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: M
2889 : INTEGER :: handle, ikp, ikp_local, n_RI, nkp, &
2890 : nkp_local, u
2891 : REAL(KIND=dp) :: cond_nr, cond_nr_max, max_ev, &
2892 : max_ev_ikp, min_ev, min_ev_ikp
2893 6 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: M_R
2894 :
2895 6 : CALL timeset(routineN, handle)
2896 :
2897 : ! compute M^R_PQ = <phi_P,0|V^tr(rc)|phi_Q,R> for RI metric
2898 6 : CALL get_V_tr_R(M_R, bs_env%ri_metric, 0.0_dp, bs_env, qs_env)
2899 :
2900 6 : nkp = bs_env%nkp_chi_eps_W_orig_plus_extra
2901 6 : n_RI = bs_env%n_RI
2902 :
2903 6 : nkp_local = 0
2904 3846 : DO ikp = 1, nkp
2905 : ! trivial parallelization over k-points
2906 3840 : IF (MODULO(ikp, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
2907 3846 : nkp_local = nkp_local + 1
2908 : END DO
2909 :
2910 30 : ALLOCATE (M(n_RI, n_RI, nkp_local))
2911 :
2912 6 : ikp_local = 0
2913 6 : cond_nr_max = 0.0_dp
2914 6 : min_ev = 1000.0_dp
2915 6 : max_ev = -1000.0_dp
2916 :
2917 3846 : DO ikp = 1, nkp
2918 :
2919 : ! trivial parallelization
2920 3840 : IF (MODULO(ikp, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
2921 :
2922 1920 : ikp_local = ikp_local + 1
2923 :
2924 : ! M(k) = sum_R e^ikR M^R
2925 : CALL rs_to_kp(M_R, M(:, :, ikp_local), &
2926 : bs_env%kpoints_scf_desymm%index_to_cell, &
2927 1920 : bs_env%kpoints_chi_eps_W%xkp(1:3, ikp))
2928 :
2929 : ! compute condition number of M_PQ(k)
2930 1920 : CALL power(M(:, :, ikp_local), 1.0_dp, 0.0_dp, cond_nr, min_ev_ikp, max_ev_ikp)
2931 :
2932 1920 : IF (cond_nr > cond_nr_max) cond_nr_max = cond_nr
2933 1920 : IF (max_ev_ikp > max_ev) max_ev = max_ev_ikp
2934 1926 : IF (min_ev_ikp < min_ev) min_ev = min_ev_ikp
2935 :
2936 : END DO ! ikp
2937 :
2938 6 : CALL bs_env%para_env%max(cond_nr_max)
2939 :
2940 6 : u = bs_env%unit_nr
2941 6 : IF (u > 0) THEN
2942 3 : WRITE (u, FMT="(T2,A,ES34.1)") "Min. abs. eigenvalue of RI metric matrix M(k)", min_ev
2943 3 : WRITE (u, FMT="(T2,A,ES34.1)") "Max. abs. eigenvalue of RI metric matrix M(k)", max_ev
2944 3 : WRITE (u, FMT="(T2,A,ES50.1)") "Max. condition number of M(k)", cond_nr_max
2945 : END IF
2946 :
2947 6 : CALL timestop(handle)
2948 :
2949 12 : END SUBROUTINE heuristic_RI_regularization
2950 :
2951 : ! **************************************************************************************************
2952 : !> \brief ...
2953 : !> \param V_tr_R ...
2954 : !> \param pot_type ...
2955 : !> \param regularization_RI ...
2956 : !> \param bs_env ...
2957 : !> \param qs_env ...
2958 : ! **************************************************************************************************
2959 68 : SUBROUTINE get_V_tr_R(V_tr_R, pot_type, regularization_RI, bs_env, qs_env)
2960 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: V_tr_R
2961 : TYPE(libint_potential_type) :: pot_type
2962 : REAL(KIND=dp) :: regularization_RI
2963 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
2964 : TYPE(qs_environment_type), POINTER :: qs_env
2965 :
2966 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_V_tr_R'
2967 :
2968 : INTEGER :: handle, img, nimages_scf_desymm
2969 : INTEGER, ALLOCATABLE, DIMENSION(:) :: sizes_RI
2970 68 : INTEGER, DIMENSION(:), POINTER :: col_bsize, row_bsize
2971 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2972 68 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_V_tr_R
2973 : TYPE(dbcsr_distribution_type) :: dbcsr_dist
2974 68 : TYPE(dbcsr_type), ALLOCATABLE, DIMENSION(:) :: mat_V_tr_R
2975 : TYPE(distribution_2d_type), POINTER :: dist_2d
2976 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
2977 68 : POINTER :: sab_RI
2978 68 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
2979 68 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
2980 :
2981 68 : CALL timeset(routineN, handle)
2982 :
2983 68 : NULLIFY (sab_RI, dist_2d)
2984 :
2985 : CALL get_qs_env(qs_env=qs_env, &
2986 : blacs_env=blacs_env, &
2987 : distribution_2d=dist_2d, &
2988 : qs_kind_set=qs_kind_set, &
2989 68 : particle_set=particle_set)
2990 :
2991 204 : ALLOCATE (sizes_RI(bs_env%n_atom))
2992 68 : CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_RI, basis=bs_env%basis_set_RI)
2993 : CALL build_2c_neighbor_lists(sab_RI, bs_env%basis_set_RI, bs_env%basis_set_RI, &
2994 : pot_type, "2c_nl_RI", qs_env, sym_ij=.FALSE., &
2995 68 : dist_2d=dist_2d)
2996 68 : CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
2997 204 : ALLOCATE (row_bsize(SIZE(sizes_RI)))
2998 204 : ALLOCATE (col_bsize(SIZE(sizes_RI)))
2999 244 : row_bsize(:) = sizes_RI
3000 244 : col_bsize(:) = sizes_RI
3001 :
3002 68 : nimages_scf_desymm = bs_env%nimages_scf_desymm
3003 816 : ALLOCATE (mat_V_tr_R(nimages_scf_desymm))
3004 : CALL dbcsr_create(mat_V_tr_R(1), "(RI|RI)", dbcsr_dist, dbcsr_type_no_symmetry, &
3005 68 : row_bsize, col_bsize)
3006 68 : DEALLOCATE (row_bsize, col_bsize)
3007 :
3008 612 : DO img = 2, nimages_scf_desymm
3009 612 : CALL dbcsr_create(mat_V_tr_R(img), template=mat_V_tr_R(1))
3010 : END DO
3011 :
3012 : CALL build_2c_integrals(mat_V_tr_R, 0.0_dp, qs_env, sab_RI, bs_env%basis_set_RI, &
3013 : bs_env%basis_set_RI, pot_type, do_kpoints=.TRUE., &
3014 : ext_kpoints=bs_env%kpoints_scf_desymm, &
3015 68 : regularization_RI=regularization_RI)
3016 :
3017 816 : ALLOCATE (fm_V_tr_R(nimages_scf_desymm))
3018 680 : DO img = 1, nimages_scf_desymm
3019 612 : CALL cp_fm_create(fm_V_tr_R(img), bs_env%fm_RI_RI%matrix_struct)
3020 612 : CALL copy_dbcsr_to_fm(mat_V_tr_R(img), fm_V_tr_R(img))
3021 680 : CALL dbcsr_release(mat_V_tr_R(img))
3022 : END DO
3023 :
3024 68 : IF (.NOT. ALLOCATED(V_tr_R)) THEN
3025 340 : ALLOCATE (V_tr_R(bs_env%n_RI, bs_env%n_RI, nimages_scf_desymm))
3026 : END IF
3027 :
3028 68 : CALL fm_to_local_array(fm_V_tr_R, V_tr_R)
3029 :
3030 68 : CALL cp_fm_release(fm_V_tr_R)
3031 68 : CALL dbcsr_distribution_release(dbcsr_dist)
3032 68 : CALL release_neighbor_list_sets(sab_RI)
3033 :
3034 68 : CALL timestop(handle)
3035 :
3036 204 : END SUBROUTINE get_V_tr_R
3037 :
3038 : ! **************************************************************************************************
3039 : !> \brief ...
3040 : !> \param matrix ...
3041 : !> \param exponent ...
3042 : !> \param eps ...
3043 : !> \param cond_nr ...
3044 : !> \param min_ev ...
3045 : !> \param max_ev ...
3046 : ! **************************************************************************************************
3047 34320 : SUBROUTINE power(matrix, exponent, eps, cond_nr, min_ev, max_ev)
3048 : COMPLEX(KIND=dp), DIMENSION(:, :) :: matrix
3049 : REAL(KIND=dp) :: exponent, eps
3050 : REAL(KIND=dp), OPTIONAL :: cond_nr, min_ev, max_ev
3051 :
3052 : CHARACTER(len=*), PARAMETER :: routineN = 'power'
3053 :
3054 34320 : COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: eigenvectors
3055 : INTEGER :: handle, i, n
3056 : REAL(KIND=dp) :: pos_eval
3057 34320 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: eigenvalues
3058 :
3059 34320 : CALL timeset(routineN, handle)
3060 :
3061 : ! make matrix perfectly Hermitian
3062 2559696 : matrix(:, :) = 0.5_dp*(matrix(:, :) + CONJG(TRANSPOSE(matrix(:, :))))
3063 :
3064 34320 : n = SIZE(matrix, 1)
3065 205920 : ALLOCATE (eigenvalues(n), eigenvectors(n, n))
3066 34320 : CALL diag_complex(matrix, eigenvectors, eigenvalues)
3067 :
3068 59920 : IF (PRESENT(cond_nr)) cond_nr = MAXVAL(ABS(eigenvalues))/MINVAL(ABS(eigenvalues))
3069 47120 : IF (PRESENT(min_ev)) min_ev = MINVAL(ABS(eigenvalues))
3070 47120 : IF (PRESENT(max_ev)) max_ev = MAXVAL(ABS(eigenvalues))
3071 :
3072 225344 : DO i = 1, n
3073 191024 : IF (eps < eigenvalues(i)) THEN
3074 191024 : pos_eval = (eigenvalues(i))**(0.5_dp*exponent)
3075 : ELSE
3076 : pos_eval = 0.0_dp
3077 : END IF
3078 1297008 : eigenvectors(:, i) = eigenvectors(:, i)*pos_eval
3079 : END DO
3080 :
3081 34320 : CALL ZGEMM("N", "C", n, n, n, z_one, eigenvectors, n, eigenvectors, n, z_zero, matrix, n)
3082 :
3083 34320 : DEALLOCATE (eigenvalues, eigenvectors)
3084 :
3085 34320 : CALL timestop(handle)
3086 :
3087 34320 : END SUBROUTINE power
3088 :
3089 : ! **************************************************************************************************
3090 : !> \brief ...
3091 : !> \param bs_env ...
3092 : !> \param Sigma_c_n_time ...
3093 : !> \param Sigma_c_n_freq ...
3094 : !> \param ispin ...
3095 : ! **************************************************************************************************
3096 196 : SUBROUTINE time_to_freq(bs_env, Sigma_c_n_time, Sigma_c_n_freq, ispin)
3097 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3098 : REAL(KIND=dp), DIMENSION(:, :, :) :: Sigma_c_n_time, Sigma_c_n_freq
3099 : INTEGER :: ispin
3100 :
3101 : CHARACTER(LEN=*), PARAMETER :: routineN = 'time_to_freq'
3102 :
3103 : INTEGER :: handle, i_t, j_w, n_occ
3104 : REAL(KIND=dp) :: freq_j, time_i, w_cos_ij, w_sin_ij
3105 196 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: Sigma_c_n_cos_time, Sigma_c_n_sin_time
3106 :
3107 196 : CALL timeset(routineN, handle)
3108 :
3109 784 : ALLOCATE (Sigma_c_n_cos_time(bs_env%n_ao, bs_env%num_time_freq_points))
3110 588 : ALLOCATE (Sigma_c_n_sin_time(bs_env%n_ao, bs_env%num_time_freq_points))
3111 :
3112 19028 : Sigma_c_n_cos_time(:, :) = 0.5_dp*(Sigma_c_n_time(:, :, 1) + Sigma_c_n_time(:, :, 2))
3113 19028 : Sigma_c_n_sin_time(:, :) = 0.5_dp*(Sigma_c_n_time(:, :, 1) - Sigma_c_n_time(:, :, 2))
3114 :
3115 38252 : Sigma_c_n_freq(:, :, :) = 0.0_dp
3116 :
3117 1988 : DO i_t = 1, bs_env%num_time_freq_points
3118 :
3119 20580 : DO j_w = 1, bs_env%num_time_freq_points
3120 :
3121 18592 : freq_j = bs_env%imag_freq_points(j_w)
3122 18592 : time_i = bs_env%imag_time_points(i_t)
3123 : ! integration weights for cosine and sine transform
3124 18592 : w_cos_ij = bs_env%weights_cos_t_to_w(j_w, i_t)*COS(freq_j*time_i)
3125 18592 : w_sin_ij = bs_env%weights_sin_t_to_w(j_w, i_t)*SIN(freq_j*time_i)
3126 :
3127 : ! 1. Re(Σ^c_nn(k_i,iω)) from cosine transform
3128 : Sigma_c_n_freq(:, j_w, 1) = Sigma_c_n_freq(:, j_w, 1) + &
3129 167872 : w_cos_ij*Sigma_c_n_cos_time(:, i_t)
3130 :
3131 : ! 2. Im(Σ^c_nn(k_i,iω)) from sine transform
3132 : Sigma_c_n_freq(:, j_w, 2) = Sigma_c_n_freq(:, j_w, 2) + &
3133 169664 : w_sin_ij*Sigma_c_n_sin_time(:, i_t)
3134 :
3135 : END DO
3136 :
3137 : END DO
3138 :
3139 : ! for occupied levels, we need the correlation self-energy for negative omega.
3140 : ! Therefore, weight_sin should be computed with -omega, which results in an
3141 : ! additional minus for the imaginary part:
3142 196 : n_occ = bs_env%n_occ(ispin)
3143 8356 : Sigma_c_n_freq(1:n_occ, :, 2) = -Sigma_c_n_freq(1:n_occ, :, 2)
3144 :
3145 196 : CALL timestop(handle)
3146 :
3147 392 : END SUBROUTINE time_to_freq
3148 :
3149 : ! **************************************************************************************************
3150 : !> \brief ...
3151 : !> \param bs_env ...
3152 : !> \param Sigma_c_ikp_n_freq ...
3153 : !> \param Sigma_x_ikp_n ...
3154 : !> \param V_xc_ikp_n ...
3155 : !> \param eigenval_scf ...
3156 : !> \param ikp ...
3157 : !> \param ispin ...
3158 : ! **************************************************************************************************
3159 196 : SUBROUTINE analyt_conti_and_print(bs_env, Sigma_c_ikp_n_freq, Sigma_x_ikp_n, V_xc_ikp_n, &
3160 196 : eigenval_scf, ikp, ispin)
3161 :
3162 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3163 : REAL(KIND=dp), DIMENSION(:, :, :) :: Sigma_c_ikp_n_freq
3164 : REAL(KIND=dp), DIMENSION(:) :: Sigma_x_ikp_n, V_xc_ikp_n, eigenval_scf
3165 : INTEGER :: ikp, ispin
3166 :
3167 : CHARACTER(LEN=*), PARAMETER :: routineN = 'analyt_conti_and_print'
3168 :
3169 : CHARACTER(len=3) :: occ_vir
3170 : CHARACTER(len=default_string_length) :: fname
3171 : INTEGER :: handle, i_mo, ikp_for_print, iunit, &
3172 : n_mo, nkp
3173 : LOGICAL :: is_bandstruc_kpoint, print_DOS_kpoints, &
3174 : print_ikp
3175 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: dummy, Sigma_c_ikp_n_qp
3176 :
3177 196 : CALL timeset(routineN, handle)
3178 :
3179 196 : n_mo = bs_env%n_ao
3180 784 : ALLOCATE (dummy(n_mo), Sigma_c_ikp_n_qp(n_mo))
3181 2308 : Sigma_c_ikp_n_qp(:) = 0.0_dp
3182 :
3183 2308 : DO i_mo = 1, n_mo
3184 :
3185 : ! parallelization
3186 2112 : IF (MODULO(i_mo, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
3187 :
3188 : CALL continuation_pade(Sigma_c_ikp_n_qp, &
3189 : bs_env%imag_freq_points_fit, dummy, dummy, &
3190 : Sigma_c_ikp_n_freq(:, 1:bs_env%num_freq_points_fit, 1)*z_one + &
3191 : Sigma_c_ikp_n_freq(:, 1:bs_env%num_freq_points_fit, 2)*gaussi, &
3192 : Sigma_x_ikp_n(:) - V_xc_ikp_n(:), &
3193 : eigenval_scf(:), eigenval_scf(:), &
3194 : bs_env%do_hedin_shift, &
3195 : i_mo, bs_env%n_occ(ispin), bs_env%n_vir(ispin), &
3196 : bs_env%nparam_pade, bs_env%num_freq_points_fit, &
3197 : ri_rpa_g0w0_crossing_newton, bs_env%n_occ(ispin), &
3198 68230 : 0.0_dp, .TRUE., .FALSE., 1, e_fermi_ext=bs_env%e_fermi(ispin))
3199 : END DO
3200 :
3201 196 : CALL bs_env%para_env%sum(Sigma_c_ikp_n_qp)
3202 :
3203 196 : CALL correct_obvious_fitting_fails(Sigma_c_ikp_n_qp, ispin, bs_env)
3204 :
3205 : bs_env%eigenval_G0W0(:, ikp, ispin) = eigenval_scf(:) + &
3206 : Sigma_c_ikp_n_qp(:) + &
3207 : Sigma_x_ikp_n(:) - &
3208 2308 : V_xc_ikp_n(:)
3209 :
3210 2308 : bs_env%eigenval_HF(:, ikp, ispin) = eigenval_scf(:) + Sigma_x_ikp_n(:) - V_xc_ikp_n(:)
3211 :
3212 : ! only print eigenvalues of DOS k-points in case no bandstructure path has been given
3213 196 : print_DOS_kpoints = (bs_env%nkp_only_bs <= 0)
3214 : ! in kpoints_DOS, the last nkp_only_bs are bandstructure k-points
3215 196 : is_bandstruc_kpoint = (ikp > bs_env%nkp_only_DOS)
3216 196 : print_ikp = print_DOS_kpoints .OR. is_bandstruc_kpoint
3217 :
3218 196 : IF (bs_env%para_env%is_source() .AND. print_ikp) THEN
3219 :
3220 82 : IF (print_DOS_kpoints) THEN
3221 51 : nkp = bs_env%nkp_only_DOS
3222 51 : ikp_for_print = ikp
3223 : ELSE
3224 31 : nkp = bs_env%nkp_only_bs
3225 31 : ikp_for_print = ikp - bs_env%nkp_only_DOS
3226 : END IF
3227 :
3228 82 : fname = "bandstructure_SCF_and_G0W0"
3229 :
3230 82 : IF (ikp_for_print == 1) THEN
3231 : CALL open_file(TRIM(fname), unit_number=iunit, file_status="REPLACE", &
3232 16 : file_action="WRITE")
3233 : ELSE
3234 : CALL open_file(TRIM(fname), unit_number=iunit, file_status="OLD", &
3235 66 : file_action="WRITE", file_position="APPEND")
3236 : END IF
3237 :
3238 82 : WRITE (iunit, "(A)") " "
3239 82 : WRITE (iunit, "(A10,I7,A25,3F10.4)") "kpoint: ", ikp_for_print, "coordinate: ", &
3240 164 : bs_env%kpoints_DOS%xkp(:, ikp)
3241 82 : WRITE (iunit, "(A)") " "
3242 82 : WRITE (iunit, "(A5,A12,3A17,A16,A18)") "n", "k", "ϵ_nk^DFT (eV)", "Σ^c_nk (eV)", &
3243 164 : "Σ^x_nk (eV)", "v_nk^xc (eV)", "ϵ_nk^G0W0 (eV)"
3244 82 : WRITE (iunit, "(A)") " "
3245 :
3246 994 : DO i_mo = 1, n_mo
3247 912 : IF (i_mo <= bs_env%n_occ(ispin)) occ_vir = 'occ'
3248 912 : IF (i_mo > bs_env%n_occ(ispin)) occ_vir = 'vir'
3249 912 : WRITE (iunit, "(I5,3A,I5,4F16.3,F17.3)") i_mo, ' (', occ_vir, ') ', ikp_for_print, &
3250 912 : eigenval_scf(i_mo)*evolt, &
3251 912 : Sigma_c_ikp_n_qp(i_mo)*evolt, &
3252 912 : Sigma_x_ikp_n(i_mo)*evolt, &
3253 912 : V_xc_ikp_n(i_mo)*evolt, &
3254 1906 : bs_env%eigenval_G0W0(i_mo, ikp, ispin)*evolt
3255 : END DO
3256 :
3257 82 : WRITE (iunit, "(A)") " "
3258 :
3259 82 : CALL close_file(iunit)
3260 :
3261 : END IF
3262 :
3263 196 : CALL timestop(handle)
3264 :
3265 392 : END SUBROUTINE analyt_conti_and_print
3266 :
3267 : ! **************************************************************************************************
3268 : !> \brief ...
3269 : !> \param Sigma_c_ikp_n_qp ...
3270 : !> \param ispin ...
3271 : !> \param bs_env ...
3272 : ! **************************************************************************************************
3273 196 : SUBROUTINE correct_obvious_fitting_fails(Sigma_c_ikp_n_qp, ispin, bs_env)
3274 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: Sigma_c_ikp_n_qp
3275 : INTEGER :: ispin
3276 : TYPE(post_scf_bandstructure_type), POINTER :: bs_env
3277 :
3278 : CHARACTER(LEN=*), PARAMETER :: routineN = 'correct_obvious_fitting_fails'
3279 :
3280 : INTEGER :: handle, homo, i_mo, j_mo, &
3281 : n_levels_scissor, n_mo
3282 : LOGICAL :: is_occ, is_vir
3283 : REAL(KIND=dp) :: sum_Sigma_c
3284 :
3285 196 : CALL timeset(routineN, handle)
3286 :
3287 196 : n_mo = bs_env%n_ao
3288 196 : homo = bs_env%n_occ(ispin)
3289 :
3290 2308 : DO i_mo = 1, n_mo
3291 :
3292 : ! if |𝚺^c| > 13 eV, we use a scissors shift
3293 2308 : IF (ABS(Sigma_c_ikp_n_qp(i_mo)) > 13.0_dp/evolt) THEN
3294 :
3295 0 : is_occ = (i_mo <= homo)
3296 0 : is_vir = (i_mo > homo)
3297 :
3298 0 : n_levels_scissor = 0
3299 0 : sum_Sigma_c = 0.0_dp
3300 :
3301 : ! compute scissor
3302 0 : DO j_mo = 1, n_mo
3303 :
3304 : ! only compute scissor from other GW levels close in energy
3305 0 : IF (is_occ .AND. j_mo > homo) CYCLE
3306 0 : IF (is_vir .AND. j_mo <= homo) CYCLE
3307 0 : IF (ABS(i_mo - j_mo) > 10) CYCLE
3308 0 : IF (i_mo == j_mo) CYCLE
3309 :
3310 0 : n_levels_scissor = n_levels_scissor + 1
3311 0 : sum_Sigma_c = sum_Sigma_c + Sigma_c_ikp_n_qp(j_mo)
3312 :
3313 : END DO
3314 :
3315 : ! overwrite the self-energy with scissor shift
3316 0 : Sigma_c_ikp_n_qp(i_mo) = sum_Sigma_c/REAL(n_levels_scissor, KIND=dp)
3317 :
3318 : END IF
3319 :
3320 : END DO ! i_mo
3321 :
3322 196 : CALL timestop(handle)
3323 :
3324 196 : END SUBROUTINE correct_obvious_fitting_fails
3325 :
3326 : END MODULE gw_utils
|