LCOV - code coverage report
Current view: top level - src - hfx_ri.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:34ef472) Lines: 1535 1834 83.7 %
Date: 2024-04-26 08:30:29 Functions: 16 22 72.7 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief RI-methods for HFX
      10             : ! **************************************************************************************************
      11             : 
      12             : MODULE hfx_ri
      13             : 
      14             :    USE OMP_LIB,                         ONLY: omp_get_num_threads,&
      15             :                                               omp_get_thread_num
      16             :    USE arnoldi_api,                     ONLY: arnoldi_extremal
      17             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      18             :                                               get_atomic_kind_set
      19             :    USE basis_set_types,                 ONLY: gto_basis_set_p_type,&
      20             :                                               gto_basis_set_type
      21             :    USE cell_types,                      ONLY: cell_type
      22             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      23             :    USE cp_control_types,                ONLY: dft_control_type
      24             :    USE cp_dbcsr_cholesky,               ONLY: cp_dbcsr_cholesky_decompose,&
      25             :                                               cp_dbcsr_cholesky_invert
      26             :    USE cp_dbcsr_diag,                   ONLY: cp_dbcsr_power
      27             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      28             :                                               copy_fm_to_dbcsr,&
      29             :                                               cp_dbcsr_dist2d_to_dist,&
      30             :                                               dbcsr_deallocate_matrix_set
      31             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      32             :                                               cp_fm_struct_release,&
      33             :                                               cp_fm_struct_type
      34             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      35             :                                               cp_fm_release,&
      36             :                                               cp_fm_type,&
      37             :                                               cp_fm_write_unformatted
      38             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      39             :                                               cp_logger_type
      40             :    USE cp_output_handling,              ONLY: cp_p_file,&
      41             :                                               cp_print_key_finished_output,&
      42             :                                               cp_print_key_should_output,&
      43             :                                               cp_print_key_unit_nr
      44             :    USE dbcsr_api,                       ONLY: &
      45             :         dbcsr_add, dbcsr_add_on_diag, dbcsr_complete_redistribute, dbcsr_copy, dbcsr_create, &
      46             :         dbcsr_desymmetrize, dbcsr_distribution_get, dbcsr_distribution_release, &
      47             :         dbcsr_distribution_type, dbcsr_dot, dbcsr_filter, dbcsr_frobenius_norm, dbcsr_get_info, &
      48             :         dbcsr_get_num_blocks, dbcsr_multiply, dbcsr_p_type, dbcsr_release, dbcsr_scale, &
      49             :         dbcsr_type, dbcsr_type_antisymmetric, dbcsr_type_no_symmetry, dbcsr_type_symmetric
      50             :    USE dbt_api,                         ONLY: &
      51             :         dbt_batched_contract_finalize, dbt_batched_contract_init, dbt_clear, dbt_contract, &
      52             :         dbt_copy, dbt_copy_matrix_to_tensor, dbt_copy_tensor_to_matrix, dbt_create, &
      53             :         dbt_default_distvec, dbt_destroy, dbt_distribution_destroy, dbt_distribution_new, &
      54             :         dbt_distribution_type, dbt_filter, dbt_get_block, dbt_get_info, dbt_get_num_blocks_total, &
      55             :         dbt_iterator_blocks_left, dbt_iterator_next_block, dbt_iterator_start, dbt_iterator_stop, &
      56             :         dbt_iterator_type, dbt_mp_environ_pgrid, dbt_nd_mp_comm, dbt_pgrid_create, &
      57             :         dbt_pgrid_destroy, dbt_pgrid_type, dbt_put_block, dbt_reserve_blocks, dbt_scale, dbt_type
      58             :    USE distribution_2d_types,           ONLY: distribution_2d_type
      59             :    USE hfx_types,                       ONLY: alloc_containers,&
      60             :                                               block_ind_type,&
      61             :                                               dealloc_containers,&
      62             :                                               hfx_compression_type,&
      63             :                                               hfx_ri_init,&
      64             :                                               hfx_ri_release,&
      65             :                                               hfx_ri_type
      66             :    USE input_constants,                 ONLY: hfx_ri_do_2c_cholesky,&
      67             :                                               hfx_ri_do_2c_diag,&
      68             :                                               hfx_ri_do_2c_iter
      69             :    USE input_cp2k_hfx,                  ONLY: ri_mo,&
      70             :                                               ri_pmat
      71             :    USE input_section_types,             ONLY: section_vals_get_subs_vals,&
      72             :                                               section_vals_type,&
      73             :                                               section_vals_val_get
      74             :    USE iterate_matrix,                  ONLY: invert_hotelling,&
      75             :                                               matrix_sqrt_newton_schulz
      76             :    USE kinds,                           ONLY: default_string_length,&
      77             :                                               dp,&
      78             :                                               int_8
      79             :    USE machine,                         ONLY: m_walltime
      80             :    USE message_passing,                 ONLY: mp_cart_type,&
      81             :                                               mp_comm_type,&
      82             :                                               mp_para_env_type
      83             :    USE particle_methods,                ONLY: get_particle_set
      84             :    USE particle_types,                  ONLY: particle_type
      85             :    USE qs_environment_types,            ONLY: get_qs_env,&
      86             :                                               qs_environment_type
      87             :    USE qs_force_types,                  ONLY: qs_force_type
      88             :    USE qs_integral_utils,               ONLY: basis_set_list_setup
      89             :    USE qs_interactions,                 ONLY: init_interaction_radii_orb_basis
      90             :    USE qs_kind_types,                   ONLY: qs_kind_type
      91             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
      92             :    USE qs_mo_types,                     ONLY: get_mo_set,&
      93             :                                               mo_set_type
      94             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type,&
      95             :                                               release_neighbor_list_sets
      96             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
      97             :                                               qs_rho_type
      98             :    USE qs_tensors,                      ONLY: &
      99             :         build_2c_derivatives, build_2c_integrals, build_2c_neighbor_lists, build_3c_derivatives, &
     100             :         build_3c_integrals, build_3c_neighbor_lists, calc_2c_virial, calc_3c_virial, &
     101             :         compress_tensor, decompress_tensor, get_tensor_occupancy, neighbor_list_3c_destroy
     102             :    USE qs_tensors_types,                ONLY: create_2c_tensor,&
     103             :                                               create_3c_tensor,&
     104             :                                               create_tensor_batches,&
     105             :                                               distribution_3d_create,&
     106             :                                               distribution_3d_type,&
     107             :                                               neighbor_list_3c_type,&
     108             :                                               split_block_sizes
     109             :    USE util,                            ONLY: sort
     110             :    USE virial_types,                    ONLY: virial_type
     111             : #include "./base/base_uses.f90"
     112             : 
     113             : !$ USE OMP_LIB, ONLY: omp_get_num_threads
     114             : 
     115             :    IMPLICIT NONE
     116             :    PRIVATE
     117             : 
     118             :    PUBLIC :: hfx_ri_update_ks, hfx_ri_update_forces, get_force_from_3c_trace, get_2c_der_force, &
     119             :              get_idx_to_atom, print_ri_hfx, hfx_ri_pre_scf_calc_tensors, check_inverse
     120             : 
     121             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'hfx_ri'
     122             : CONTAINS
     123             : 
     124             : ! **************************************************************************************************
     125             : !> \brief Switches the RI_FLAVOR from MO to RHO or vice-versa
     126             : !> \param ri_data ...
     127             : !> \param qs_env ...
     128             : !> \note As a side product, the ri_data is mostly reinitialized and the integrals recomputed
     129             : ! **************************************************************************************************
     130          22 :    SUBROUTINE switch_ri_flavor(ri_data, qs_env)
     131             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
     132             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     133             : 
     134             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'switch_ri_flavor'
     135             : 
     136             :       INTEGER                                            :: handle, n_mem, new_flavor
     137          22 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     138             :       TYPE(dft_control_type), POINTER                    :: dft_control
     139             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     140          22 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     141          22 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     142             : 
     143          22 :       NULLIFY (qs_kind_set, particle_set, atomic_kind_set, para_env, dft_control)
     144             : 
     145          22 :       CALL timeset(routineN, handle)
     146             : 
     147             :       CALL get_qs_env(qs_env, para_env=para_env, dft_control=dft_control, atomic_kind_set=atomic_kind_set, &
     148          22 :                       particle_set=particle_set, qs_kind_set=qs_kind_set)
     149             : 
     150          22 :       CALL hfx_ri_release(ri_data, write_stats=.FALSE.)
     151             : 
     152          22 :       IF (ri_data%flavor == ri_pmat) THEN
     153             :          new_flavor = ri_mo
     154             :       ELSE
     155          12 :          new_flavor = ri_pmat
     156             :       END IF
     157          22 :       ri_data%flavor = new_flavor
     158             : 
     159          22 :       n_mem = ri_data%n_mem_input
     160          22 :       ri_data%n_mem_input = ri_data%n_mem_flavor_switch
     161          22 :       ri_data%n_mem_flavor_switch = n_mem
     162             : 
     163          22 :       CALL hfx_ri_init(ri_data, qs_kind_set, particle_set, atomic_kind_set, para_env)
     164             : 
     165             :       !Need to recalculate the integrals in the new flavor
     166             :       !TODO: should we backup the integrals and symmetrize/desymmetrize them instead of recomputing ?!?
     167             :       !      that only makes sense if actual integral calculation is not negligible
     168          22 :       IF (ri_data%flavor == ri_pmat) THEN
     169          12 :          CALL hfx_ri_pre_scf_Pmat(qs_env, ri_data)
     170             :       ELSE
     171          10 :          CALL hfx_ri_pre_scf_mo(qs_env, ri_data, dft_control%nspins)
     172             :       END IF
     173             : 
     174          22 :       IF (ri_data%unit_nr > 0) THEN
     175           0 :          IF (ri_data%flavor == ri_pmat) THEN
     176           0 :             WRITE (ri_data%unit_nr, '(T2,A)') "HFX_RI_INFO| temporarily switched to RI_FLAVOR RHO"
     177             :          ELSE
     178           0 :             WRITE (ri_data%unit_nr, '(T2,A)') "HFX_RI_INFO| temporarily switched to RI_FLAVOR MO"
     179             :          END IF
     180             :       END IF
     181             : 
     182          22 :       CALL timestop(handle)
     183             : 
     184          22 :    END SUBROUTINE switch_ri_flavor
     185             : 
     186             : ! **************************************************************************************************
     187             : !> \brief Pre-SCF steps in MO flavor of RI HFX
     188             : !>
     189             : !> Calculate 2-center & 3-center integrals (see hfx_ri_pre_scf_calc_tensors) and contract
     190             : !> K(P, S) = sum_R K_2(P, R)^{-1} K_1(R, S)^{1/2}
     191             : !> B(mu, lambda, R) = sum_P int_3c(mu, lambda, P) K(P, R)
     192             : !> \param qs_env ...
     193             : !> \param ri_data ...
     194             : !> \param nspins ...
     195             : ! **************************************************************************************************
     196          26 :    SUBROUTINE hfx_ri_pre_scf_mo(qs_env, ri_data, nspins)
     197             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     198             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
     199             :       INTEGER, INTENT(IN)                                :: nspins
     200             : 
     201             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'hfx_ri_pre_scf_mo'
     202             : 
     203             :       INTEGER                                            :: handle, handle2, ispin, n_dependent, &
     204             :                                                             unit_nr, unit_nr_dbcsr
     205             :       REAL(KIND=dp)                                      :: threshold
     206             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     207         156 :       TYPE(dbcsr_type), DIMENSION(1) :: dbcsr_work_1, dbcsr_work_2, t_2c_int_mat, t_2c_op_pot, &
     208         130 :          t_2c_op_pot_sqrt, t_2c_op_pot_sqrt_inv, t_2c_op_RI, t_2c_op_RI_inv
     209          26 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:)          :: t_2c_int, t_2c_work
     210          26 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int
     211             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     212             : 
     213          26 :       CALL timeset(routineN, handle)
     214             : 
     215          26 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
     216          26 :       unit_nr = ri_data%unit_nr
     217             : 
     218          26 :       CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
     219             : 
     220          26 :       CALL timeset(routineN//"_int", handle2)
     221             : 
     222         806 :       ALLOCATE (t_2c_int(1), t_2c_work(1), t_3c_int(1, 1))
     223          26 :       CALL hfx_ri_pre_scf_calc_tensors(qs_env, ri_data, t_2c_op_RI, t_2c_op_pot, t_3c_int)
     224             : 
     225          26 :       CALL timestop(handle2)
     226             : 
     227          26 :       CALL timeset(routineN//"_2c", handle2)
     228          26 :       IF (.NOT. ri_data%same_op) THEN
     229           4 :          SELECT CASE (ri_data%t2c_method)
     230             :          CASE (hfx_ri_do_2c_iter)
     231           0 :             CALL dbcsr_create(t_2c_op_RI_inv(1), template=t_2c_op_RI(1), matrix_type=dbcsr_type_no_symmetry)
     232           0 :             threshold = MAX(ri_data%filter_eps, 1.0e-12_dp)
     233           0 :             CALL invert_hotelling(t_2c_op_RI_inv(1), t_2c_op_RI(1), threshold=threshold, silent=.FALSE.)
     234             :          CASE (hfx_ri_do_2c_cholesky)
     235           4 :             CALL dbcsr_copy(t_2c_op_RI_inv(1), t_2c_op_RI(1))
     236           4 :             CALL cp_dbcsr_cholesky_decompose(t_2c_op_RI_inv(1), para_env=para_env, blacs_env=blacs_env)
     237           4 :             CALL cp_dbcsr_cholesky_invert(t_2c_op_RI_inv(1), para_env=para_env, blacs_env=blacs_env, upper_to_full=.TRUE.)
     238             :          CASE (hfx_ri_do_2c_diag)
     239           0 :             CALL dbcsr_copy(t_2c_op_RI_inv(1), t_2c_op_RI(1))
     240             :             CALL cp_dbcsr_power(t_2c_op_RI_inv(1), -1.0_dp, ri_data%eps_eigval, n_dependent, &
     241           4 :                                 para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
     242             :          END SELECT
     243             : 
     244           4 :          IF (ri_data%check_2c_inv) THEN
     245           0 :             CALL check_inverse(t_2c_op_RI_inv(1), t_2c_op_RI(1), unit_nr=unit_nr)
     246             :          END IF
     247             : 
     248           4 :          CALL dbcsr_release(t_2c_op_RI(1))
     249             : 
     250           4 :          SELECT CASE (ri_data%t2c_method)
     251             :          CASE (hfx_ri_do_2c_iter)
     252           0 :             CALL dbcsr_create(t_2c_op_pot_sqrt(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_symmetric)
     253           0 :             CALL dbcsr_create(t_2c_op_pot_sqrt_inv(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_symmetric)
     254             :             CALL matrix_sqrt_newton_schulz(t_2c_op_pot_sqrt(1), t_2c_op_pot_sqrt_inv(1), t_2c_op_pot(1), &
     255             :                                            ri_data%filter_eps, ri_data%t2c_sqrt_order, ri_data%eps_lanczos, &
     256           0 :                                            ri_data%max_iter_lanczos)
     257             : 
     258           0 :             CALL dbcsr_release(t_2c_op_pot_sqrt_inv(1))
     259             :          CASE (hfx_ri_do_2c_diag, hfx_ri_do_2c_cholesky)
     260           4 :             CALL dbcsr_copy(t_2c_op_pot_sqrt(1), t_2c_op_pot(1))
     261             :             CALL cp_dbcsr_power(t_2c_op_pot_sqrt(1), 0.5_dp, ri_data%eps_eigval, n_dependent, &
     262           8 :                                 para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
     263             :          END SELECT
     264             : 
     265             :          !We need S^-1 and (P|Q) for the forces.
     266           4 :          CALL dbt_create(t_2c_op_RI_inv(1), t_2c_work(1))
     267           4 :          CALL dbt_copy_matrix_to_tensor(t_2c_op_RI_inv(1), t_2c_work(1))
     268           4 :          CALL dbt_copy(t_2c_work(1), ri_data%t_2c_inv(1, 1), move_data=.TRUE.)
     269           4 :          CALL dbt_destroy(t_2c_work(1))
     270           4 :          CALL dbt_filter(ri_data%t_2c_inv(1, 1), ri_data%filter_eps)
     271             : 
     272           4 :          CALL dbt_create(t_2c_op_pot(1), t_2c_work(1))
     273           4 :          CALL dbt_copy_matrix_to_tensor(t_2c_op_pot(1), t_2c_work(1))
     274           4 :          CALL dbt_copy(t_2c_work(1), ri_data%t_2c_pot(1, 1), move_data=.TRUE.)
     275           4 :          CALL dbt_destroy(t_2c_work(1))
     276           4 :          CALL dbt_filter(ri_data%t_2c_pot(1, 1), ri_data%filter_eps)
     277             : 
     278           4 :          IF (ri_data%check_2c_inv) THEN
     279           0 :             CALL check_sqrt(t_2c_op_pot(1), matrix_sqrt=t_2c_op_pot_sqrt(1), unit_nr=unit_nr)
     280             :          END IF
     281           4 :          CALL dbcsr_create(t_2c_int_mat(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_no_symmetry)
     282             :          CALL dbcsr_multiply("N", "N", 1.0_dp, t_2c_op_RI_inv(1), t_2c_op_pot_sqrt(1), &
     283           4 :                              0.0_dp, t_2c_int_mat(1), filter_eps=ri_data%filter_eps)
     284           4 :          CALL dbcsr_release(t_2c_op_RI_inv(1))
     285           4 :          CALL dbcsr_release(t_2c_op_pot_sqrt(1))
     286             :       ELSE
     287          22 :          SELECT CASE (ri_data%t2c_method)
     288             :          CASE (hfx_ri_do_2c_iter)
     289           0 :             CALL dbcsr_create(t_2c_int_mat(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_symmetric)
     290           0 :             CALL dbcsr_create(t_2c_op_pot_sqrt(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_symmetric)
     291             :             CALL matrix_sqrt_newton_schulz(t_2c_op_pot_sqrt(1), t_2c_int_mat(1), t_2c_op_pot(1), &
     292             :                                            ri_data%filter_eps, ri_data%t2c_sqrt_order, ri_data%eps_lanczos, &
     293           0 :                                            ri_data%max_iter_lanczos)
     294           0 :             CALL dbcsr_release(t_2c_op_pot_sqrt(1))
     295             :          CASE (hfx_ri_do_2c_diag, hfx_ri_do_2c_cholesky)
     296          22 :             CALL dbcsr_copy(t_2c_int_mat(1), t_2c_op_pot(1))
     297             :             CALL cp_dbcsr_power(t_2c_int_mat(1), -0.5_dp, ri_data%eps_eigval, n_dependent, &
     298          44 :                                 para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
     299             :          END SELECT
     300          22 :          IF (ri_data%check_2c_inv) THEN
     301           0 :             CALL check_sqrt(t_2c_op_pot(1), matrix_sqrt_inv=t_2c_int_mat(1), unit_nr=unit_nr)
     302             :          END IF
     303             : 
     304             :          !We need (P|Q)^-1 for the forces
     305          22 :          CALL dbcsr_copy(dbcsr_work_1(1), t_2c_int_mat(1))
     306          22 :          CALL dbcsr_create(dbcsr_work_2(1), template=t_2c_int_mat(1))
     307          22 :          CALL dbcsr_multiply("N", "N", 1.0_dp, dbcsr_work_1(1), t_2c_int_mat(1), 0.0_dp, dbcsr_work_2(1))
     308          22 :          CALL dbcsr_release(dbcsr_work_1(1))
     309          22 :          CALL dbt_create(dbcsr_work_2(1), t_2c_work(1))
     310          22 :          CALL dbt_copy_matrix_to_tensor(dbcsr_work_2(1), t_2c_work(1))
     311          22 :          CALL dbcsr_release(dbcsr_work_2(1))
     312          22 :          CALL dbt_copy(t_2c_work(1), ri_data%t_2c_inv(1, 1), move_data=.TRUE.)
     313          22 :          CALL dbt_destroy(t_2c_work(1))
     314          22 :          CALL dbt_filter(ri_data%t_2c_inv(1, 1), ri_data%filter_eps)
     315             :       END IF
     316             : 
     317          26 :       CALL dbcsr_release(t_2c_op_pot(1))
     318             : 
     319          26 :       CALL dbt_create(t_2c_int_mat(1), t_2c_int(1), name="(RI|RI)")
     320          26 :       CALL dbt_copy_matrix_to_tensor(t_2c_int_mat(1), t_2c_int(1))
     321          26 :       CALL dbcsr_release(t_2c_int_mat(1))
     322          58 :       DO ispin = 1, nspins
     323          58 :          CALL dbt_copy(t_2c_int(1), ri_data%t_2c_int(ispin, 1))
     324             :       END DO
     325          26 :       CALL dbt_destroy(t_2c_int(1))
     326          26 :       CALL timestop(handle2)
     327             : 
     328          26 :       CALL timeset(routineN//"_3c", handle2)
     329          26 :       CALL dbt_copy(t_3c_int(1, 1), ri_data%t_3c_int_ctr_1(1, 1), order=[2, 1, 3], move_data=.TRUE.)
     330          26 :       CALL dbt_filter(ri_data%t_3c_int_ctr_1(1, 1), ri_data%filter_eps)
     331          26 :       CALL dbt_copy(ri_data%t_3c_int_ctr_1(1, 1), ri_data%t_3c_int_ctr_2(1, 1))
     332          26 :       CALL dbt_destroy(t_3c_int(1, 1))
     333          26 :       CALL timestop(handle2)
     334             : 
     335          26 :       CALL timestop(handle)
     336             : 
     337         260 :    END SUBROUTINE
     338             : 
     339             : ! **************************************************************************************************
     340             : !> \brief ...
     341             : !> \param matrix_1 ...
     342             : !> \param matrix_2 ...
     343             : !> \param name ...
     344             : !> \param unit_nr ...
     345             : ! **************************************************************************************************
     346           0 :    SUBROUTINE check_inverse(matrix_1, matrix_2, name, unit_nr)
     347             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: matrix_1, matrix_2
     348             :       CHARACTER(len=*), INTENT(IN), OPTIONAL             :: name
     349             :       INTEGER, INTENT(IN)                                :: unit_nr
     350             : 
     351             :       CHARACTER(len=default_string_length)               :: name_prv
     352             :       REAL(KIND=dp)                                      :: error, frob_matrix, frob_matrix_base
     353             :       TYPE(dbcsr_type)                                   :: matrix_tmp
     354             : 
     355           0 :       IF (PRESENT(name)) THEN
     356           0 :          name_prv = name
     357             :       ELSE
     358           0 :          CALL dbcsr_get_info(matrix_1, name=name_prv)
     359             :       END IF
     360             : 
     361           0 :       CALL dbcsr_create(matrix_tmp, template=matrix_1)
     362             :       CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_1, matrix_2, &
     363           0 :                           0.0_dp, matrix_tmp)
     364           0 :       frob_matrix_base = dbcsr_frobenius_norm(matrix_tmp)
     365           0 :       CALL dbcsr_add_on_diag(matrix_tmp, -1.0_dp)
     366           0 :       frob_matrix = dbcsr_frobenius_norm(matrix_tmp)
     367           0 :       error = frob_matrix/frob_matrix_base
     368           0 :       IF (unit_nr > 0) THEN
     369             :          WRITE (UNIT=unit_nr, FMT="(T3,A,A,A,T73,ES8.1)") &
     370           0 :             "HFX_RI_INFO| Error for INV(", TRIM(name_prv), "):", error
     371             :       END IF
     372             : 
     373           0 :       CALL dbcsr_release(matrix_tmp)
     374           0 :    END SUBROUTINE
     375             : 
     376             : ! **************************************************************************************************
     377             : !> \brief ...
     378             : !> \param matrix ...
     379             : !> \param matrix_sqrt ...
     380             : !> \param matrix_sqrt_inv ...
     381             : !> \param name ...
     382             : !> \param unit_nr ...
     383             : ! **************************************************************************************************
     384           0 :    SUBROUTINE check_sqrt(matrix, matrix_sqrt, matrix_sqrt_inv, name, unit_nr)
     385             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: matrix
     386             :       TYPE(dbcsr_type), INTENT(IN), OPTIONAL             :: matrix_sqrt, matrix_sqrt_inv
     387             :       CHARACTER(len=*), INTENT(IN), OPTIONAL             :: name
     388             :       INTEGER, INTENT(IN)                                :: unit_nr
     389             : 
     390             :       CHARACTER(len=default_string_length)               :: name_prv
     391             :       REAL(KIND=dp)                                      :: frob_matrix
     392             :       TYPE(dbcsr_type)                                   :: matrix_copy, matrix_tmp
     393             : 
     394           0 :       IF (PRESENT(name)) THEN
     395           0 :          name_prv = name
     396             :       ELSE
     397           0 :          CALL dbcsr_get_info(matrix, name=name_prv)
     398             :       END IF
     399           0 :       IF (PRESENT(matrix_sqrt)) THEN
     400           0 :          CALL dbcsr_create(matrix_tmp, template=matrix)
     401           0 :          CALL dbcsr_copy(matrix_copy, matrix_sqrt)
     402             :          CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_sqrt, matrix_copy, &
     403           0 :                              0.0_dp, matrix_tmp)
     404           0 :          CALL dbcsr_add(matrix_tmp, matrix, 1.0_dp, -1.0_dp)
     405           0 :          frob_matrix = dbcsr_frobenius_norm(matrix_tmp)
     406           0 :          IF (unit_nr > 0) THEN
     407             :             WRITE (UNIT=unit_nr, FMT="(T3,A,A,A,T73,ES8.1)") &
     408           0 :                "HFX_RI_INFO| Error for SQRT(", TRIM(name_prv), "):", frob_matrix
     409             :          END IF
     410           0 :          CALL dbcsr_release(matrix_tmp)
     411           0 :          CALL dbcsr_release(matrix_copy)
     412             :       END IF
     413             : 
     414           0 :       IF (PRESENT(matrix_sqrt_inv)) THEN
     415           0 :          CALL dbcsr_create(matrix_tmp, template=matrix)
     416           0 :          CALL dbcsr_copy(matrix_copy, matrix_sqrt_inv)
     417             :          CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_sqrt_inv, matrix_copy, &
     418           0 :                              0.0_dp, matrix_tmp)
     419           0 :          CALL check_inverse(matrix_tmp, matrix, name="SQRT("//TRIM(name_prv)//")", unit_nr=unit_nr)
     420           0 :          CALL dbcsr_release(matrix_tmp)
     421           0 :          CALL dbcsr_release(matrix_copy)
     422             :       END IF
     423             : 
     424           0 :    END SUBROUTINE
     425             : 
     426             : ! **************************************************************************************************
     427             : !> \brief Calculate 2-center and 3-center integrals
     428             : !>
     429             : !> 2c: K_1(P, R) = (P|v1|R) and K_2(P, R) = (P|v2|R)
     430             : !> 3c: int_3c(mu, lambda, P) = (mu lambda |v2| P)
     431             : !> v_1 is HF operator, v_2 is RI metric
     432             : !> \param qs_env ...
     433             : !> \param ri_data ...
     434             : !> \param t_2c_int_RI K_2(P, R) note: even with k-point, only need on central cell
     435             : !> \param t_2c_int_pot K_1(P, R)
     436             : !> \param t_3c_int int_3c(mu, lambda, P)
     437             : !> \param do_kpoints ...
     438             : !> \notes the integral tensor arrays are already allocated on entry
     439             : ! **************************************************************************************************
     440        3860 :    SUBROUTINE hfx_ri_pre_scf_calc_tensors(qs_env, ri_data, t_2c_int_RI, t_2c_int_pot, t_3c_int, do_kpoints)
     441             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     442             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
     443             :       TYPE(dbcsr_type), DIMENSION(:), INTENT(OUT)        :: t_2c_int_RI, t_2c_int_pot
     444             :       TYPE(dbt_type), DIMENSION(:, :)                    :: t_3c_int
     445             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_kpoints
     446             : 
     447             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_pre_scf_calc_tensors'
     448             : 
     449             :       CHARACTER                                          :: symm
     450             :       INTEGER                                            :: handle, i_img, i_mem, ibasis, j_img, &
     451             :                                                             n_mem, natom, nblks, nimg, nkind, &
     452             :                                                             nthreads
     453             :       INTEGER(int_8)                                     :: nze
     454         178 :       INTEGER, ALLOCATABLE, DIMENSION(:) :: dist_AO_1, dist_AO_2, dist_RI, dist_RI_ext, &
     455         356 :          ends_array_mc_block_int, ends_array_mc_int, sizes_AO, sizes_RI, sizes_RI_ext, &
     456         178 :          sizes_RI_ext_split, starts_array_mc_block_int, starts_array_mc_int
     457             :       INTEGER, DIMENSION(3)                              :: pcoord, pdims
     458         356 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
     459             :       LOGICAL                                            :: converged, do_kpoints_prv
     460             :       REAL(dp)                                           :: max_ev, min_ev, occ, RI_range
     461         178 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     462             :       TYPE(dbcsr_distribution_type)                      :: dbcsr_dist
     463        1246 :       TYPE(dbt_distribution_type)                        :: t_dist
     464         534 :       TYPE(dbt_pgrid_type)                               :: pgrid
     465        1246 :       TYPE(dbt_type)                                     :: t_3c_tmp
     466         178 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int_batched
     467             :       TYPE(dft_control_type), POINTER                    :: dft_control
     468             :       TYPE(distribution_2d_type), POINTER                :: dist_2d
     469             :       TYPE(distribution_3d_type)                         :: dist_3d
     470             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
     471         178 :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
     472             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
     473         178 :       TYPE(mp_cart_type)                                 :: mp_comm_t3c
     474             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     475             :       TYPE(neighbor_list_3c_type)                        :: nl_3c
     476             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     477         178 :          POINTER                                         :: nl_2c_pot, nl_2c_RI
     478         178 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     479         178 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     480             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     481             : 
     482         178 :       CALL timeset(routineN, handle)
     483         178 :       NULLIFY (col_bsize, row_bsize, dist_2d, nl_2c_pot, nl_2c_RI, &
     484         178 :                particle_set, qs_kind_set, ks_env, para_env)
     485             : 
     486             :       CALL get_qs_env(qs_env, natom=natom, nkind=nkind, qs_kind_set=qs_kind_set, particle_set=particle_set, &
     487         178 :                       distribution_2d=dist_2d, ks_env=ks_env, dft_control=dft_control, para_env=para_env)
     488             : 
     489         178 :       RI_range = 0.0_dp
     490         178 :       do_kpoints_prv = .FALSE.
     491         178 :       IF (PRESENT(do_kpoints)) do_kpoints_prv = do_kpoints
     492         178 :       nimg = 1
     493         178 :       IF (do_kpoints_prv) THEN
     494          70 :          nimg = ri_data%nimg
     495          70 :          RI_range = ri_data%kp_RI_range
     496             :       END IF
     497             : 
     498         890 :       ALLOCATE (sizes_RI(natom), sizes_AO(natom))
     499        1510 :       ALLOCATE (basis_set_RI(nkind), basis_set_AO(nkind))
     500         178 :       CALL basis_set_list_setup(basis_set_RI, ri_data%ri_basis_type, qs_kind_set)
     501         178 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_RI, basis=basis_set_RI)
     502         178 :       CALL basis_set_list_setup(basis_set_AO, ri_data%orb_basis_type, qs_kind_set)
     503         178 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_AO, basis=basis_set_AO)
     504             : 
     505         488 :       DO ibasis = 1, SIZE(basis_set_AO)
     506         310 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
     507         310 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
     508             :          ! interaction radii should be based on eps_pgf_orb controlled in RI section
     509             :          ! (since hartree-fock needs very tight eps_pgf_orb for Kohn-Sham/Fock matrix but eps_pgf_orb
     510             :          ! can be much looser in RI HFX since no systematic error is introduced with tensor sparsity)
     511         310 :          CALL init_interaction_radii_orb_basis(orb_basis, ri_data%eps_pgf_orb)
     512         488 :          CALL init_interaction_radii_orb_basis(ri_basis, ri_data%eps_pgf_orb)
     513             :       END DO
     514             : 
     515         178 :       n_mem = ri_data%n_mem
     516             :       CALL create_tensor_batches(sizes_RI, n_mem, starts_array_mc_int, ends_array_mc_int, &
     517             :                                  starts_array_mc_block_int, ends_array_mc_block_int)
     518             : 
     519         178 :       DEALLOCATE (starts_array_mc_int, ends_array_mc_int)
     520             : 
     521             :       !We separate the K-points and standard 3c integrals, because handle quite differently
     522         178 :       IF (.NOT. do_kpoints_prv) THEN
     523             : 
     524         108 :          nthreads = 1
     525         108 : !$       nthreads = omp_get_num_threads()
     526         108 :          pdims = 0
     527         432 :          CALL dbt_pgrid_create(para_env, pdims, pgrid, tensor_dims=[MAX(1, natom/(n_mem*nthreads)), natom, natom])
     528             : 
     529         972 :          ALLOCATE (t_3c_int_batched(1, 1))
     530             :          CALL create_3c_tensor(t_3c_int_batched(1, 1), dist_RI, dist_AO_1, dist_AO_2, pgrid, &
     531             :                                sizes_RI, sizes_AO, sizes_AO, map1=[1], map2=[2, 3], &
     532         108 :                                name="(RI | AO AO)")
     533             : 
     534         108 :          CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set, atomic_kind_set=atomic_kind_set)
     535         108 :          CALL dbt_mp_environ_pgrid(pgrid, pdims, pcoord)
     536         108 :          CALL mp_comm_t3c%create(pgrid%mp_comm_2d, 3, pdims)
     537             :          CALL distribution_3d_create(dist_3d, dist_RI, dist_AO_1, dist_AO_2, &
     538         108 :                                      nkind, particle_set, mp_comm_t3c, own_comm=.TRUE.)
     539         108 :          DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
     540             : 
     541             :          CALL create_3c_tensor(t_3c_int(1, 1), dist_RI, dist_AO_1, dist_AO_2, ri_data%pgrid, &
     542             :                                ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
     543             :                                map1=[1], map2=[2, 3], &
     544         108 :                                name="O (RI AO | AO)")
     545             : 
     546             :          CALL build_3c_neighbor_lists(nl_3c, basis_set_RI, basis_set_AO, basis_set_AO, dist_3d, ri_data%ri_metric, &
     547         108 :                                       "HFX_3c_nl", qs_env, op_pos=1, sym_jk=.TRUE., own_dist=.TRUE.)
     548             : 
     549         424 :          DO i_mem = 1, n_mem
     550             :             CALL build_3c_integrals(t_3c_int_batched, ri_data%filter_eps/2, qs_env, nl_3c, &
     551             :                                     basis_set_RI, basis_set_AO, basis_set_AO, &
     552             :                                     ri_data%ri_metric, int_eps=ri_data%eps_schwarz, op_pos=1, &
     553             :                                     desymmetrize=.FALSE., &
     554         948 :                                     bounds_i=[starts_array_mc_block_int(i_mem), ends_array_mc_block_int(i_mem)])
     555         316 :             CALL dbt_copy(t_3c_int_batched(1, 1), t_3c_int(1, 1), summation=.TRUE., move_data=.TRUE.)
     556         424 :             CALL dbt_filter(t_3c_int(1, 1), ri_data%filter_eps/2)
     557             :          END DO
     558             : 
     559         108 :          CALL dbt_destroy(t_3c_int_batched(1, 1))
     560             : 
     561         108 :          CALL neighbor_list_3c_destroy(nl_3c)
     562             : 
     563         108 :          CALL dbt_create(t_3c_int(1, 1), t_3c_tmp)
     564             : 
     565         108 :          IF (ri_data%flavor == ri_pmat) THEN ! desymmetrize
     566             :             ! desymmetrize
     567          82 :             CALL dbt_copy(t_3c_int(1, 1), t_3c_tmp)
     568          82 :             CALL dbt_copy(t_3c_tmp, t_3c_int(1, 1), order=[1, 3, 2], summation=.TRUE., move_data=.TRUE.)
     569             : 
     570             :             ! For RI-RHO filter_eps_storage is reserved for screening tensor contracted with RI-metric
     571             :             ! with RI metric but not to bare integral tensor
     572          82 :             CALL dbt_filter(t_3c_int(1, 1), ri_data%filter_eps)
     573             :          ELSE
     574          26 :             CALL dbt_filter(t_3c_int(1, 1), ri_data%filter_eps_storage/2)
     575             :          END IF
     576             : 
     577         108 :          CALL dbt_destroy(t_3c_tmp)
     578             : 
     579             :       ELSE !do_kpoints
     580             : 
     581          70 :          nthreads = 1
     582          70 : !$       nthreads = omp_get_num_threads()
     583          70 :          pdims = 0
     584         280 :          CALL dbt_pgrid_create(para_env, pdims, pgrid, tensor_dims=[natom, natom, MAX(1, natom/(n_mem*nthreads))])
     585             : 
     586             :          !In k-points HFX, we stack all images along the RI direction in the same tensors, in order
     587             :          !to avoid storing nimg x ncell_RI different tensors (very memory intensive)
     588          70 :          nblks = SIZE(ri_data%bsizes_RI_split)
     589         350 :          ALLOCATE (sizes_RI_ext(natom*ri_data%ncell_RI), sizes_RI_ext_split(nblks*ri_data%ncell_RI))
     590         506 :          DO i_img = 1, ri_data%ncell_RI
     591        1308 :             sizes_RI_ext((i_img - 1)*natom + 1:i_img*natom) = sizes_RI(:)
     592        2344 :             sizes_RI_ext_split((i_img - 1)*nblks + 1:i_img*nblks) = ri_data%bsizes_RI_split(:)
     593             :          END DO
     594             : 
     595             :          CALL create_3c_tensor(t_3c_tmp, dist_AO_1, dist_AO_2, dist_RI, &
     596             :                                pgrid, sizes_AO, sizes_AO, sizes_RI, map1=[1, 2], map2=[3], &
     597          70 :                                name="(AO AO | RI)")
     598          70 :          CALL dbt_destroy(t_3c_tmp)
     599             : 
     600             :          !For the integrals to work, the distribution along the RI direction must be repeated
     601         210 :          ALLOCATE (dist_RI_ext(natom*ri_data%ncell_RI))
     602         506 :          DO i_img = 1, ri_data%ncell_RI
     603        1378 :             dist_RI_ext((i_img - 1)*natom + 1:i_img*natom) = dist_RI(:)
     604             :          END DO
     605             : 
     606        2344 :          ALLOCATE (t_3c_int_batched(nimg, 1))
     607          70 :          CALL dbt_distribution_new(t_dist, pgrid, dist_AO_1, dist_AO_2, dist_RI_ext)
     608             :          CALL dbt_create(t_3c_int_batched(1, 1), "KP_3c_ints", t_dist, [1, 2], [3], &
     609          70 :                          sizes_AO, sizes_AO, sizes_RI_ext)
     610        1644 :          DO i_img = 2, nimg
     611        1644 :             CALL dbt_create(t_3c_int_batched(1, 1), t_3c_int_batched(i_img, 1))
     612             :          END DO
     613          70 :          CALL dbt_distribution_destroy(t_dist)
     614             : 
     615          70 :          CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set, atomic_kind_set=atomic_kind_set)
     616          70 :          CALL dbt_mp_environ_pgrid(pgrid, pdims, pcoord)
     617          70 :          CALL mp_comm_t3c%create(pgrid%mp_comm_2d, 3, pdims)
     618             :          CALL distribution_3d_create(dist_3d, dist_AO_1, dist_AO_2, dist_RI, &
     619          70 :                                      nkind, particle_set, mp_comm_t3c, own_comm=.TRUE.)
     620          70 :          DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
     621             : 
     622             :          ! create 3c tensor for storage of ints
     623             :          CALL build_3c_neighbor_lists(nl_3c, basis_set_AO, basis_set_AO, basis_set_RI, dist_3d, ri_data%ri_metric, &
     624          70 :                                       "HFX_3c_nl", qs_env, op_pos=2, sym_ij=.FALSE., own_dist=.TRUE.)
     625             : 
     626             :          CALL create_3c_tensor(t_3c_int(1, 1), dist_RI, dist_AO_1, dist_AO_2, ri_data%pgrid, &
     627             :                                sizes_RI_ext_split, ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
     628             :                                map1=[1], map2=[2, 3], &
     629          70 :                                name="O (RI AO | AO)")
     630        1644 :          DO j_img = 2, nimg
     631        1644 :             CALL dbt_create(t_3c_int(1, 1), t_3c_int(1, j_img))
     632             :          END DO
     633             : 
     634          70 :          CALL dbt_create(t_3c_int(1, 1), t_3c_tmp)
     635         192 :          DO i_mem = 1, n_mem
     636             :             CALL build_3c_integrals(t_3c_int_batched, ri_data%filter_eps, qs_env, nl_3c, &
     637             :                                     basis_set_AO, basis_set_AO, basis_set_RI, &
     638             :                                     ri_data%ri_metric, int_eps=ri_data%eps_schwarz, op_pos=2, &
     639             :                                     desymmetrize=.FALSE., do_kpoints=.TRUE., do_hfx_kpoints=.TRUE., &
     640             :                                     bounds_k=[starts_array_mc_block_int(i_mem), ends_array_mc_block_int(i_mem)], &
     641         366 :                                     RI_range=RI_range, img_to_RI_cell=ri_data%img_to_RI_cell)
     642             : 
     643        3296 :             DO i_img = 1, nimg
     644             :                !we start with (mu^0 sigma^i | P^j) and finish with (P^i | mu^0 sigma^j)
     645        3104 :                CALL get_tensor_occupancy(t_3c_int_batched(i_img, 1), nze, occ)
     646        3226 :                IF (nze > 0) THEN
     647        2156 :                   CALL dbt_copy(t_3c_int_batched(i_img, 1), t_3c_tmp, order=[3, 2, 1], move_data=.TRUE.)
     648        2156 :                   CALL dbt_filter(t_3c_tmp, ri_data%filter_eps)
     649             :                   CALL dbt_copy(t_3c_tmp, t_3c_int(1, i_img), order=[1, 3, 2], &
     650        2156 :                                 summation=.TRUE., move_data=.TRUE.)
     651             :                END IF
     652             :             END DO
     653             :          END DO
     654             : 
     655        1714 :          DO i_img = 1, nimg
     656        1714 :             CALL dbt_destroy(t_3c_int_batched(i_img, 1))
     657             :          END DO
     658        1714 :          DEALLOCATE (t_3c_int_batched)
     659          70 :          CALL neighbor_list_3c_destroy(nl_3c)
     660          70 :          CALL dbt_destroy(t_3c_tmp)
     661             :       END IF
     662         178 :       CALL dbt_pgrid_destroy(pgrid)
     663             : 
     664             :       CALL build_2c_neighbor_lists(nl_2c_pot, basis_set_RI, basis_set_RI, ri_data%hfx_pot, &
     665             :                                    "HFX_2c_nl_pot", qs_env, sym_ij=.NOT. do_kpoints_prv, &
     666         178 :                                    dist_2d=dist_2d)
     667             : 
     668         178 :       CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
     669         534 :       ALLOCATE (row_bsize(SIZE(sizes_RI)))
     670         534 :       ALLOCATE (col_bsize(SIZE(sizes_RI)))
     671         676 :       row_bsize(:) = sizes_RI
     672         676 :       col_bsize(:) = sizes_RI
     673             : 
     674             :       !Use non-symmetric nl and matrices for k-points
     675         178 :       symm = dbcsr_type_symmetric
     676         178 :       IF (do_kpoints_prv) symm = dbcsr_type_no_symmetry
     677             : 
     678         178 :       CALL dbcsr_create(t_2c_int_pot(1), "(R|P) HFX", dbcsr_dist, symm, row_bsize, col_bsize)
     679        1752 :       DO i_img = 2, nimg
     680        1752 :          CALL dbcsr_create(t_2c_int_pot(i_img), template=t_2c_int_pot(1))
     681             :       END DO
     682             : 
     683         178 :       IF (.NOT. ri_data%same_op) THEN
     684          88 :          CALL dbcsr_create(t_2c_int_RI(1), "(R|P) HFX", dbcsr_dist, symm, row_bsize, col_bsize)
     685        1662 :          DO i_img = 2, nimg
     686        1662 :             CALL dbcsr_create(t_2c_int_RI(i_img), template=t_2c_int_RI(1))
     687             :          END DO
     688             :       END IF
     689         178 :       DEALLOCATE (col_bsize, row_bsize)
     690             : 
     691         178 :       CALL dbcsr_distribution_release(dbcsr_dist)
     692             : 
     693             :       CALL build_2c_integrals(t_2c_int_pot, ri_data%filter_eps_2c, qs_env, nl_2c_pot, basis_set_RI, basis_set_RI, &
     694         178 :                               ri_data%hfx_pot, do_kpoints=do_kpoints_prv, do_hfx_kpoints=do_kpoints_prv)
     695         178 :       CALL release_neighbor_list_sets(nl_2c_pot)
     696             : 
     697         178 :       IF (.NOT. ri_data%same_op) THEN
     698             :          CALL build_2c_neighbor_lists(nl_2c_RI, basis_set_RI, basis_set_RI, ri_data%ri_metric, &
     699             :                                       "HFX_2c_nl_RI", qs_env, sym_ij=.NOT. do_kpoints_prv, &
     700          88 :                                       dist_2d=dist_2d)
     701             : 
     702             :          CALL build_2c_integrals(t_2c_int_RI, ri_data%filter_eps_2c, qs_env, nl_2c_RI, basis_set_RI, basis_set_RI, &
     703          88 :                                  ri_data%ri_metric, do_kpoints=do_kpoints_prv, do_hfx_kpoints=do_kpoints_prv)
     704             : 
     705          88 :          CALL release_neighbor_list_sets(nl_2c_RI)
     706             :       END IF
     707             : 
     708         488 :       DO ibasis = 1, SIZE(basis_set_AO)
     709         310 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
     710         310 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
     711             :          ! reset interaction radii of orb basis
     712         310 :          CALL init_interaction_radii_orb_basis(orb_basis, dft_control%qs_control%eps_pgf_orb)
     713         488 :          CALL init_interaction_radii_orb_basis(ri_basis, dft_control%qs_control%eps_pgf_orb)
     714             :       END DO
     715             : 
     716         178 :       IF (ri_data%calc_condnum) THEN
     717             :          CALL arnoldi_extremal(t_2c_int_pot(1), max_ev, min_ev, threshold=ri_data%eps_lanczos, &
     718           4 :                                max_iter=ri_data%max_iter_lanczos, converged=converged)
     719             : 
     720           4 :          IF (.NOT. converged) THEN
     721           0 :             CPWARN("Condition number estimate of (P|Q) (HFX potential) is not reliable (not converged).")
     722             :          END IF
     723             : 
     724           4 :          IF (ri_data%unit_nr > 0) THEN
     725           2 :             WRITE (ri_data%unit_nr, '(T2,A)') "2-Norm Condition Number of (P|Q) integrals (HFX potential)"
     726           2 :             IF (min_ev > 0) THEN
     727             :                WRITE (ri_data%unit_nr, '(T4,A,ES11.3E3,T32,A,ES11.3E3,A4,ES11.3E3,T63,A,F8.4)') &
     728           2 :                   "CN : max/min ev: ", max_ev, " / ", min_ev, "=", max_ev/min_ev, "Log(2-CN):", LOG10(max_ev/min_ev)
     729             :             ELSE
     730             :                WRITE (ri_data%unit_nr, '(T4,A,ES11.3E3,T32,A,ES11.3E3,T63,A)') &
     731           0 :                   "CN : max/min ev: ", max_ev, " / ", min_ev, "Log(CN): infinity"
     732             :             END IF
     733             :          END IF
     734             : 
     735           4 :          IF (.NOT. ri_data%same_op) THEN
     736             :             CALL arnoldi_extremal(t_2c_int_RI(1), max_ev, min_ev, threshold=ri_data%eps_lanczos, &
     737           2 :                                   max_iter=ri_data%max_iter_lanczos, converged=converged)
     738             : 
     739           2 :             IF (.NOT. converged) THEN
     740           0 :                CPWARN("Condition number estimate of (P|Q) matrix (RI metric) is not reliable (not converged).")
     741             :             END IF
     742             : 
     743           2 :             IF (ri_data%unit_nr > 0) THEN
     744           1 :                WRITE (ri_data%unit_nr, '(T2,A)') "2-Norm Condition Number of (P|Q) integrals (RI metric)"
     745           1 :                IF (min_ev > 0) THEN
     746             :                   WRITE (ri_data%unit_nr, '(T4,A,ES11.3E3,T32,A,ES11.3E3,A4,ES11.3E3,T63,A,F8.4)') &
     747           1 :                      "CN : max/min ev: ", max_ev, " / ", min_ev, "=", max_ev/min_ev, "Log(2-CN):", LOG10(max_ev/min_ev)
     748             :                ELSE
     749             :                   WRITE (ri_data%unit_nr, '(T4,A,ES11.3E3,T32,A,ES11.3E3,T63,A)') &
     750           0 :                      "CN : max/min ev: ", max_ev, " / ", min_ev, "Log(CN): infinity"
     751             :                END IF
     752             :             END IF
     753             :          END IF
     754             :       END IF
     755             : 
     756         178 :       CALL timestop(handle)
     757         998 :    END SUBROUTINE
     758             : 
     759             : ! **************************************************************************************************
     760             : !> \brief Pre-SCF steps in rho flavor of RI HFX
     761             : !>
     762             : !> K(P, S) = sum_{R,Q} K_2(P, R)^{-1} K_1(R, Q) K_2(Q, S)^{-1}
     763             : !> Calculate B(mu, lambda, R) = sum_P int_3c(mu, lambda, P) K(P, R)
     764             : !> \param qs_env ...
     765             : !> \param ri_data ...
     766             : ! **************************************************************************************************
     767          82 :    SUBROUTINE hfx_ri_pre_scf_Pmat(qs_env, ri_data)
     768             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     769             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
     770             : 
     771             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_pre_scf_Pmat'
     772             : 
     773             :       INTEGER                                            :: handle, handle2, i_mem, j_mem, &
     774             :                                                             n_dependent, unit_nr, unit_nr_dbcsr
     775             :       INTEGER(int_8)                                     :: nflop, nze, nze_O
     776          82 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_ranges_AO, batch_ranges_RI
     777             :       INTEGER, DIMENSION(2, 1)                           :: bounds_i
     778             :       INTEGER, DIMENSION(2, 2)                           :: bounds_j
     779             :       INTEGER, DIMENSION(3)                              :: dims_3c
     780             :       REAL(KIND=dp)                                      :: compression_factor, memory_3c, occ, &
     781             :                                                             threshold
     782             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     783         328 :       TYPE(dbcsr_type), DIMENSION(1)                     :: t_2c_int_mat, t_2c_op_pot, t_2c_op_RI, &
     784         246 :                                                             t_2c_tmp, t_2c_tmp_2
     785         738 :       TYPE(dbt_type)                                     :: t_3c_2
     786         164 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:)          :: t_2c_int, t_2c_work
     787          82 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int_1
     788             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     789             : 
     790          82 :       CALL timeset(routineN, handle)
     791             : 
     792          82 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
     793          82 :       unit_nr = ri_data%unit_nr
     794             : 
     795          82 :       CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
     796             : 
     797          82 :       CALL timeset(routineN//"_int", handle2)
     798             : 
     799        2542 :       ALLOCATE (t_2c_int(1), t_2c_work(1), t_3c_int_1(1, 1))
     800          82 :       CALL hfx_ri_pre_scf_calc_tensors(qs_env, ri_data, t_2c_op_RI, t_2c_op_pot, t_3c_int_1)
     801             : 
     802          82 :       CALL dbt_copy(t_3c_int_1(1, 1), ri_data%t_3c_int_ctr_3(1, 1), order=[1, 2, 3], move_data=.TRUE.)
     803             : 
     804          82 :       CALL dbt_destroy(t_3c_int_1(1, 1))
     805             : 
     806          82 :       CALL timestop(handle2)
     807             : 
     808          82 :       CALL timeset(routineN//"_2c", handle2)
     809             : 
     810          82 :       IF (ri_data%same_op) t_2c_op_RI(1) = t_2c_op_pot(1)
     811          82 :       CALL dbcsr_create(t_2c_int_mat(1), template=t_2c_op_RI(1), matrix_type=dbcsr_type_no_symmetry)
     812          82 :       threshold = MAX(ri_data%filter_eps, 1.0e-12_dp)
     813             : 
     814          82 :       SELECT CASE (ri_data%t2c_method)
     815             :       CASE (hfx_ri_do_2c_iter)
     816             :          CALL invert_hotelling(t_2c_int_mat(1), t_2c_op_RI(1), &
     817           0 :                                threshold=threshold, silent=.FALSE.)
     818             :       CASE (hfx_ri_do_2c_cholesky)
     819          82 :          CALL dbcsr_copy(t_2c_int_mat(1), t_2c_op_RI(1))
     820          82 :          CALL cp_dbcsr_cholesky_decompose(t_2c_int_mat(1), para_env=para_env, blacs_env=blacs_env)
     821          82 :          CALL cp_dbcsr_cholesky_invert(t_2c_int_mat(1), para_env=para_env, blacs_env=blacs_env, upper_to_full=.TRUE.)
     822             :       CASE (hfx_ri_do_2c_diag)
     823           0 :          CALL dbcsr_copy(t_2c_int_mat(1), t_2c_op_RI(1))
     824             :          CALL cp_dbcsr_power(t_2c_int_mat(1), -1.0_dp, ri_data%eps_eigval, n_dependent, &
     825          82 :                              para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
     826             :       END SELECT
     827             : 
     828          82 :       IF (ri_data%check_2c_inv) THEN
     829           0 :          CALL check_inverse(t_2c_int_mat(1), t_2c_op_RI(1), unit_nr=unit_nr)
     830             :       END IF
     831             : 
     832             :       !Need to save the (P|Q)^-1 tensor for forces (inverse metric if not same_op)
     833          82 :       CALL dbt_create(t_2c_int_mat(1), t_2c_work(1))
     834          82 :       CALL dbt_copy_matrix_to_tensor(t_2c_int_mat(1), t_2c_work(1))
     835          82 :       CALL dbt_copy(t_2c_work(1), ri_data%t_2c_inv(1, 1), move_data=.TRUE.)
     836          82 :       CALL dbt_destroy(t_2c_work(1))
     837          82 :       CALL dbt_filter(ri_data%t_2c_inv(1, 1), ri_data%filter_eps)
     838          82 :       IF (.NOT. ri_data%same_op) THEN
     839             :          !Also save the RI (P|Q) integral
     840          14 :          CALL dbt_create(t_2c_op_pot(1), t_2c_work(1))
     841          14 :          CALL dbt_copy_matrix_to_tensor(t_2c_op_pot(1), t_2c_work(1))
     842          14 :          CALL dbt_copy(t_2c_work(1), ri_data%t_2c_pot(1, 1), move_data=.TRUE.)
     843          14 :          CALL dbt_destroy(t_2c_work(1))
     844          14 :          CALL dbt_filter(ri_data%t_2c_pot(1, 1), ri_data%filter_eps)
     845             :       END IF
     846             : 
     847          82 :       IF (ri_data%same_op) THEN
     848          68 :          CALL dbcsr_release(t_2c_op_pot(1))
     849             :       ELSE
     850          14 :          CALL dbcsr_create(t_2c_tmp(1), template=t_2c_op_RI(1), matrix_type=dbcsr_type_no_symmetry)
     851          14 :          CALL dbcsr_create(t_2c_tmp_2(1), template=t_2c_op_RI(1), matrix_type=dbcsr_type_no_symmetry)
     852          14 :          CALL dbcsr_release(t_2c_op_RI(1))
     853             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, t_2c_int_mat(1), t_2c_op_pot(1), 0.0_dp, t_2c_tmp(1), &
     854          14 :                              filter_eps=ri_data%filter_eps)
     855             : 
     856          14 :          CALL dbcsr_release(t_2c_op_pot(1))
     857             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, t_2c_tmp(1), t_2c_int_mat(1), 0.0_dp, t_2c_tmp_2(1), &
     858          14 :                              filter_eps=ri_data%filter_eps)
     859          14 :          CALL dbcsr_release(t_2c_tmp(1))
     860          14 :          CALL dbcsr_release(t_2c_int_mat(1))
     861          14 :          t_2c_int_mat(1) = t_2c_tmp_2(1)
     862             :       END IF
     863             : 
     864          82 :       CALL dbt_create(t_2c_int_mat(1), t_2c_int(1), name="(RI|RI)")
     865          82 :       CALL dbt_copy_matrix_to_tensor(t_2c_int_mat(1), t_2c_int(1))
     866          82 :       CALL dbcsr_release(t_2c_int_mat(1))
     867          82 :       CALL dbt_copy(t_2c_int(1), ri_data%t_2c_int(1, 1), move_data=.TRUE.)
     868          82 :       CALL dbt_destroy(t_2c_int(1))
     869          82 :       CALL dbt_filter(ri_data%t_2c_int(1, 1), ri_data%filter_eps)
     870             : 
     871          82 :       CALL timestop(handle2)
     872             : 
     873          82 :       CALL dbt_create(ri_data%t_3c_int_ctr_3(1, 1), t_3c_2)
     874             : 
     875          82 :       CALL dbt_get_info(ri_data%t_3c_int_ctr_3(1, 1), nfull_total=dims_3c)
     876             : 
     877          82 :       memory_3c = 0.0_dp
     878          82 :       nze_O = 0
     879             : 
     880         246 :       ALLOCATE (batch_ranges_RI(ri_data%n_mem_RI + 1))
     881         246 :       ALLOCATE (batch_ranges_AO(ri_data%n_mem + 1))
     882         328 :       batch_ranges_RI(:ri_data%n_mem_RI) = ri_data%starts_array_RI_mem_block(:)
     883          82 :       batch_ranges_RI(ri_data%n_mem_RI + 1) = ri_data%ends_array_RI_mem_block(ri_data%n_mem_RI) + 1
     884         328 :       batch_ranges_AO(:ri_data%n_mem) = ri_data%starts_array_mem_block(:)
     885          82 :       batch_ranges_AO(ri_data%n_mem + 1) = ri_data%ends_array_mem_block(ri_data%n_mem) + 1
     886             : 
     887             :       CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_3(1, 1), batch_range_1=batch_ranges_RI, &
     888          82 :                                      batch_range_2=batch_ranges_AO)
     889             :       CALL dbt_batched_contract_init(t_3c_2, batch_range_1=batch_ranges_RI, &
     890          82 :                                      batch_range_2=batch_ranges_AO)
     891             : 
     892         328 :       DO i_mem = 1, ri_data%n_mem_RI
     893         738 :          bounds_i(:, 1) = [ri_data%starts_array_RI_mem(i_mem), ri_data%ends_array_RI_mem(i_mem)]
     894             : 
     895         246 :          CALL dbt_batched_contract_init(ri_data%t_2c_int(1, 1))
     896         984 :          DO j_mem = 1, ri_data%n_mem
     897        2214 :             bounds_j(:, 1) = [ri_data%starts_array_mem(j_mem), ri_data%ends_array_mem(j_mem)]
     898        2214 :             bounds_j(:, 2) = [1, dims_3c(3)]
     899         738 :             CALL timeset(routineN//"_RIx3C", handle2)
     900             :             CALL dbt_contract(1.0_dp, ri_data%t_2c_int(1, 1), ri_data%t_3c_int_ctr_3(1, 1), &
     901             :                               0.0_dp, t_3c_2, &
     902             :                               contract_1=[2], notcontract_1=[1], &
     903             :                               contract_2=[1], notcontract_2=[2, 3], &
     904             :                               map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps_storage, &
     905             :                               bounds_2=bounds_i, &
     906             :                               bounds_3=bounds_j, &
     907             :                               unit_nr=unit_nr_dbcsr, &
     908         738 :                               flop=nflop)
     909             : 
     910         738 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
     911         738 :             CALL timestop(handle2)
     912             : 
     913         738 :             CALL timeset(routineN//"_copy_2", handle2)
     914         738 :             CALL dbt_copy(t_3c_2, ri_data%t_3c_int_ctr_1(1, 1), order=[2, 1, 3], move_data=.TRUE.)
     915             : 
     916         738 :             CALL get_tensor_occupancy(ri_data%t_3c_int_ctr_1(1, 1), nze, occ)
     917         738 :             nze_O = nze_O + nze
     918             : 
     919             :             CALL compress_tensor(ri_data%t_3c_int_ctr_1(1, 1), ri_data%blk_indices(j_mem, i_mem)%ind, &
     920         738 :                                  ri_data%store_3c(j_mem, i_mem), ri_data%filter_eps_storage, memory_3c)
     921             : 
     922        3198 :             CALL timestop(handle2)
     923             :          END DO
     924         328 :          CALL dbt_batched_contract_finalize(ri_data%t_2c_int(1, 1))
     925             :       END DO
     926          82 :       CALL dbt_batched_contract_finalize(t_3c_2)
     927          82 :       CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_3(1, 1))
     928             : 
     929          82 :       CALL para_env%sum(memory_3c)
     930          82 :       compression_factor = REAL(nze_O, dp)*1.0E-06*8.0_dp/memory_3c
     931             : 
     932          82 :       IF (unit_nr > 0) THEN
     933             :          WRITE (UNIT=unit_nr, FMT="((T3,A,T66,F11.2,A4))") &
     934          20 :             "MEMORY_INFO| Memory for 3-center HFX integrals (compressed):", memory_3c, ' MiB'
     935             : 
     936             :          WRITE (UNIT=unit_nr, FMT="((T3,A,T60,F21.2))") &
     937          20 :             "MEMORY_INFO| Compression factor:                  ", compression_factor
     938             :       END IF
     939             : 
     940          82 :       CALL dbt_clear(ri_data%t_2c_int(1, 1))
     941          82 :       CALL dbt_destroy(t_3c_2)
     942             : 
     943          82 :       CALL dbt_copy(ri_data%t_3c_int_ctr_3(1, 1), ri_data%t_3c_int_ctr_2(1, 1), order=[2, 1, 3], move_data=.TRUE.)
     944             : 
     945          82 :       CALL timestop(handle)
     946         738 :    END SUBROUTINE
     947             : 
     948             : ! **************************************************************************************************
     949             : !> \brief Sorts 2d indices w.r.t. rows and columns
     950             : !> \param blk_ind ...
     951             : ! **************************************************************************************************
     952           0 :    SUBROUTINE sort_unique_blkind_2d(blk_ind)
     953             :       INTEGER, ALLOCATABLE, DIMENSION(:, :), &
     954             :          INTENT(INOUT)                                   :: blk_ind
     955             : 
     956             :       INTEGER                                            :: end_ind, iblk, iblk_all, irow, nblk, &
     957             :                                                             ncols, start_ind
     958           0 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: ind_1, ind_2, sort_1, sort_2
     959           0 :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: blk_ind_tmp
     960             : 
     961           0 :       nblk = SIZE(blk_ind, 1)
     962             : 
     963           0 :       ALLOCATE (sort_1(nblk))
     964           0 :       ALLOCATE (ind_1(nblk))
     965             : 
     966           0 :       sort_1(:) = blk_ind(:, 1)
     967           0 :       CALL sort(sort_1, nblk, ind_1)
     968             : 
     969           0 :       blk_ind(:, :) = blk_ind(ind_1, :)
     970             : 
     971           0 :       start_ind = 1
     972             : 
     973           0 :       DO WHILE (start_ind <= nblk)
     974           0 :          irow = blk_ind(start_ind, 1)
     975           0 :          end_ind = start_ind
     976             : 
     977           0 :          IF (end_ind + 1 <= nblk) THEN
     978           0 :          DO WHILE (blk_ind(end_ind + 1, 1) == irow)
     979           0 :             end_ind = end_ind + 1
     980           0 :             IF (end_ind + 1 > nblk) EXIT
     981             :          END DO
     982             :          END IF
     983             : 
     984           0 :          ncols = end_ind - start_ind + 1
     985           0 :          ALLOCATE (sort_2(ncols))
     986           0 :          ALLOCATE (ind_2(ncols))
     987           0 :          sort_2(:) = blk_ind(start_ind:end_ind, 2)
     988           0 :          CALL sort(sort_2, ncols, ind_2)
     989           0 :          ind_2 = ind_2 + start_ind - 1
     990             : 
     991           0 :          blk_ind(start_ind:end_ind, :) = blk_ind(ind_2, :)
     992           0 :          start_ind = end_ind + 1
     993             : 
     994           0 :          DEALLOCATE (sort_2, ind_2)
     995             :       END DO
     996             : 
     997           0 :       ALLOCATE (blk_ind_tmp(nblk, 2))
     998           0 :       blk_ind_tmp = 0
     999             : 
    1000             :       iblk = 0
    1001           0 :       DO iblk_all = 1, nblk
    1002           0 :          IF (iblk >= 1) THEN
    1003           0 :             IF (ALL(blk_ind_tmp(iblk, :) == blk_ind(iblk_all, :))) THEN
    1004             :                CYCLE
    1005             :             END IF
    1006             :          END IF
    1007           0 :          iblk = iblk + 1
    1008           0 :          blk_ind_tmp(iblk, :) = blk_ind(iblk_all, :)
    1009             :       END DO
    1010           0 :       nblk = iblk
    1011             : 
    1012           0 :       DEALLOCATE (blk_ind)
    1013           0 :       ALLOCATE (blk_ind(nblk, 2))
    1014             : 
    1015           0 :       blk_ind(:, :) = blk_ind_tmp(:nblk, :)
    1016             : 
    1017           0 :    END SUBROUTINE
    1018             : 
    1019             : ! **************************************************************************************************
    1020             : !> \brief ...
    1021             : !> \param qs_env ...
    1022             : !> \param ri_data ...
    1023             : !> \param ks_matrix ...
    1024             : !> \param ehfx ...
    1025             : !> \param mos ...
    1026             : !> \param rho_ao ...
    1027             : !> \param geometry_did_change ...
    1028             : !> \param nspins ...
    1029             : !> \param hf_fraction ...
    1030             : ! **************************************************************************************************
    1031        1726 :    SUBROUTINE hfx_ri_update_ks(qs_env, ri_data, ks_matrix, ehfx, mos, rho_ao, &
    1032             :                                geometry_did_change, nspins, hf_fraction)
    1033             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1034             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    1035             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: ks_matrix
    1036             :       REAL(KIND=dp), INTENT(OUT)                         :: ehfx
    1037             :       TYPE(mo_set_type), DIMENSION(:), INTENT(IN), &
    1038             :          OPTIONAL                                        :: mos
    1039             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao
    1040             :       LOGICAL, INTENT(IN)                                :: geometry_did_change
    1041             :       INTEGER, INTENT(IN)                                :: nspins
    1042             :       REAL(KIND=dp), INTENT(IN)                          :: hf_fraction
    1043             : 
    1044             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'hfx_ri_update_ks'
    1045             : 
    1046             :       CHARACTER(1)                                       :: mtype
    1047             :       INTEGER                                            :: handle, handle2, i, ispin, j
    1048             :       INTEGER(int_8)                                     :: nblks
    1049             :       INTEGER, DIMENSION(2)                              :: homo
    1050             :       LOGICAL                                            :: is_antisymmetric
    1051             :       REAL(dp)                                           :: etmp, fac
    1052        1726 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
    1053             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    1054        1726 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: my_ks_matrix, my_rho_ao
    1055        5178 :       TYPE(dbcsr_type), DIMENSION(2)                     :: mo_coeff_b
    1056             :       TYPE(dbcsr_type), POINTER                          :: mo_coeff_b_tmp
    1057             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1058             : 
    1059        1726 :       CALL timeset(routineN, handle)
    1060             : 
    1061        1726 :       IF (nspins == 1) THEN
    1062        1380 :          fac = 0.5_dp*hf_fraction
    1063             :       ELSE
    1064         346 :          fac = 1.0_dp*hf_fraction
    1065             :       END IF
    1066             : 
    1067             :       !If incoming assymetric matrices, need to convert to normal
    1068        1726 :       NULLIFY (my_ks_matrix, my_rho_ao)
    1069        1726 :       CALL dbcsr_get_info(ks_matrix(1, 1)%matrix, matrix_type=mtype)
    1070        1726 :       is_antisymmetric = mtype == dbcsr_type_antisymmetric
    1071        1726 :       IF (is_antisymmetric) THEN
    1072        1104 :          ALLOCATE (my_ks_matrix(SIZE(ks_matrix, 1), SIZE(ks_matrix, 2)))
    1073        1104 :          ALLOCATE (my_rho_ao(SIZE(rho_ao, 1), SIZE(rho_ao, 2)))
    1074             : 
    1075         368 :          DO i = 1, SIZE(ks_matrix, 1)
    1076         552 :             DO j = 1, SIZE(ks_matrix, 2)
    1077         184 :                ALLOCATE (my_ks_matrix(i, j)%matrix, my_rho_ao(i, j)%matrix)
    1078             :                CALL dbcsr_create(my_ks_matrix(i, j)%matrix, template=ks_matrix(i, j)%matrix, &
    1079         184 :                                  matrix_type=dbcsr_type_no_symmetry)
    1080         184 :                CALL dbcsr_desymmetrize(ks_matrix(i, j)%matrix, my_ks_matrix(i, j)%matrix)
    1081             :                CALL dbcsr_create(my_rho_ao(i, j)%matrix, template=rho_ao(i, j)%matrix, &
    1082         184 :                                  matrix_type=dbcsr_type_no_symmetry)
    1083         368 :                CALL dbcsr_desymmetrize(rho_ao(i, j)%matrix, my_rho_ao(i, j)%matrix)
    1084             :             END DO
    1085             :          END DO
    1086             :       ELSE
    1087        1542 :          my_ks_matrix => ks_matrix
    1088        1542 :          my_rho_ao => rho_ao
    1089             :       END IF
    1090             : 
    1091             :       !Case analysis on RI_FLAVOR: we switch if the input flavor is MO, there is no provided MO, and
    1092             :       !                            the current flavor is not yet RHO. We switch back to MO if there are
    1093             :       !                            MOs available and the current flavor is actually RHO
    1094        1726 :       IF (ri_data%input_flavor == ri_mo .AND. (.NOT. PRESENT(mos)) .AND. ri_data%flavor == ri_mo) THEN
    1095          12 :          CALL switch_ri_flavor(ri_data, qs_env)
    1096        1714 :       ELSE IF (ri_data%input_flavor == ri_mo .AND. PRESENT(mos) .AND. ri_data%flavor == ri_pmat) THEN
    1097          10 :          CALL switch_ri_flavor(ri_data, qs_env)
    1098             :       END IF
    1099             : 
    1100        1954 :       SELECT CASE (ri_data%flavor)
    1101             :       CASE (ri_mo)
    1102         228 :          CPASSERT(PRESENT(mos))
    1103         228 :          CALL timeset(routineN//"_MO", handle2)
    1104             : 
    1105         550 :          DO ispin = 1, nspins
    1106         322 :             NULLIFY (mo_coeff_b_tmp)
    1107         322 :             CPASSERT(mos(ispin)%uniform_occupation)
    1108         322 :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, eigenvalues=mo_eigenvalues, mo_coeff_b=mo_coeff_b_tmp)
    1109             : 
    1110         322 :             IF (.NOT. mos(ispin)%use_mo_coeff_b) CALL copy_fm_to_dbcsr(mo_coeff, mo_coeff_b_tmp)
    1111         550 :             CALL dbcsr_copy(mo_coeff_b(ispin), mo_coeff_b_tmp)
    1112             :          END DO
    1113             : 
    1114         550 :          DO ispin = 1, nspins
    1115         322 :             CALL dbcsr_scale(mo_coeff_b(ispin), SQRT(mos(ispin)%maxocc))
    1116         550 :             homo(ispin) = mos(ispin)%homo
    1117             :          END DO
    1118             : 
    1119         228 :          CALL timestop(handle2)
    1120             : 
    1121             :          CALL hfx_ri_update_ks_mo(qs_env, ri_data, my_ks_matrix, mo_coeff_b, homo, &
    1122         228 :                                   geometry_did_change, nspins, fac)
    1123             :       CASE (ri_pmat)
    1124             : 
    1125        1498 :          NULLIFY (para_env)
    1126        1498 :          CALL get_qs_env(qs_env, para_env=para_env)
    1127        3248 :          DO ispin = 1, SIZE(my_rho_ao, 1)
    1128        1750 :             nblks = dbcsr_get_num_blocks(my_rho_ao(ispin, 1)%matrix)
    1129        1750 :             CALL para_env%sum(nblks)
    1130        3248 :             IF (nblks == 0) THEN
    1131           0 :                CPABORT("received empty density matrix")
    1132             :             END IF
    1133             :          END DO
    1134             : 
    1135             :          CALL hfx_ri_update_ks_pmat(qs_env, ri_data, my_ks_matrix, my_rho_ao, &
    1136        3452 :                                     geometry_did_change, nspins, fac)
    1137             : 
    1138             :       END SELECT
    1139             : 
    1140        3798 :       DO ispin = 1, nspins
    1141        3798 :          CALL dbcsr_release(mo_coeff_b(ispin))
    1142             :       END DO
    1143             : 
    1144        3798 :       DO ispin = 1, nspins
    1145        3798 :          CALL dbcsr_filter(my_ks_matrix(ispin, 1)%matrix, ri_data%filter_eps)
    1146             :       END DO
    1147             : 
    1148        1726 :       CALL timeset(routineN//"_energy", handle2)
    1149             :       ! Calculate the exchange energy
    1150        1726 :       ehfx = 0.0_dp
    1151        3798 :       DO ispin = 1, nspins
    1152             :          CALL dbcsr_dot(my_ks_matrix(ispin, 1)%matrix, my_rho_ao(ispin, 1)%matrix, &
    1153        2072 :                         etmp)
    1154        3798 :          ehfx = ehfx + 0.5_dp*etmp
    1155             : 
    1156             :       END DO
    1157        1726 :       CALL timestop(handle2)
    1158             : 
    1159             :       !Anti-symmetric case
    1160        1726 :       IF (is_antisymmetric) THEN
    1161         368 :          DO i = 1, SIZE(ks_matrix, 1)
    1162         552 :             DO j = 1, SIZE(ks_matrix, 2)
    1163         184 :                CALL dbcsr_complete_redistribute(my_ks_matrix(i, j)%matrix, ks_matrix(i, j)%matrix)
    1164         368 :                CALL dbcsr_complete_redistribute(my_rho_ao(i, j)%matrix, rho_ao(i, j)%matrix)
    1165             :             END DO
    1166             :          END DO
    1167         184 :          CALL dbcsr_deallocate_matrix_set(my_ks_matrix)
    1168         184 :          CALL dbcsr_deallocate_matrix_set(my_rho_ao)
    1169             :       END IF
    1170             : 
    1171        1726 :       CALL timestop(handle)
    1172        1726 :    END SUBROUTINE
    1173             : 
    1174             : ! **************************************************************************************************
    1175             : !> \brief Calculate Fock (AKA Kohn-Sham) matrix in MO flavor
    1176             : !>
    1177             : !> C(mu, i) (MO coefficients)
    1178             : !> M(mu, i, R) = sum_nu B(mu, nu, R) C(nu, i)
    1179             : !> KS(mu, lambda) = sum_{i,R} M(mu, i, R) M(lambda, i, R)
    1180             : !> \param qs_env ...
    1181             : !> \param ri_data ...
    1182             : !> \param ks_matrix ...
    1183             : !> \param mo_coeff C(mu, i)
    1184             : !> \param homo ...
    1185             : !> \param geometry_did_change ...
    1186             : !> \param nspins ...
    1187             : !> \param fac ...
    1188             : ! **************************************************************************************************
    1189         228 :    SUBROUTINE hfx_ri_update_ks_mo(qs_env, ri_data, ks_matrix, mo_coeff, &
    1190         228 :                                   homo, geometry_did_change, nspins, fac)
    1191             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1192             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    1193             :       TYPE(dbcsr_p_type), DIMENSION(:, :)                :: ks_matrix
    1194             :       TYPE(dbcsr_type), DIMENSION(:), INTENT(IN)         :: mo_coeff
    1195             :       INTEGER, DIMENSION(:)                              :: homo
    1196             :       LOGICAL, INTENT(IN)                                :: geometry_did_change
    1197             :       INTEGER, INTENT(IN)                                :: nspins
    1198             :       REAL(dp), INTENT(IN)                               :: fac
    1199             : 
    1200             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_update_ks_mo'
    1201             : 
    1202             :       INTEGER                                            :: bsize, bsum, comm_2d_handle, handle, &
    1203             :                                                             handle2, i_mem, iblock, iproc, ispin, &
    1204             :                                                             n_mem, n_mos, nblock, unit_nr_dbcsr
    1205             :       INTEGER(int_8)                                     :: nblks, nflop
    1206         228 :       INTEGER, ALLOCATABLE, DIMENSION(:) :: batch_ranges_1, batch_ranges_2, dist1, dist2, dist3, &
    1207         228 :          mem_end, mem_end_block_1, mem_end_block_2, mem_size, mem_start, mem_start_block_1, &
    1208         228 :          mem_start_block_2, mo_bsizes_1, mo_bsizes_2
    1209         228 :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: bounds
    1210             :       INTEGER, DIMENSION(2)                              :: pdims_2d
    1211             :       INTEGER, DIMENSION(3)                              :: pdims
    1212             :       LOGICAL                                            :: do_initialize
    1213             :       REAL(dp)                                           :: t1, t2
    1214             :       TYPE(dbcsr_distribution_type)                      :: ks_dist
    1215        1140 :       TYPE(dbt_pgrid_type)                               :: pgrid, pgrid_2d
    1216        5700 :       TYPE(dbt_type)                                     :: ks_t, ks_t_mat, mo_coeff_t, &
    1217        2052 :                                                             mo_coeff_t_split
    1218         228 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int_mo_1, t_3c_int_mo_2
    1219             :       TYPE(mp_comm_type)                                 :: comm_2d
    1220             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1221             : 
    1222         228 :       CALL timeset(routineN, handle)
    1223             : 
    1224         228 :       CPASSERT(SIZE(ks_matrix, 2) == 1)
    1225             : 
    1226         228 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
    1227             : 
    1228         228 :       IF (geometry_did_change) THEN
    1229          16 :          CALL hfx_ri_pre_scf_mo(qs_env, ri_data, nspins)
    1230             :       END IF
    1231             : 
    1232         228 :       nblks = dbt_get_num_blocks_total(ri_data%t_3c_int_ctr_1(1, 1))
    1233         228 :       IF (nblks == 0) THEN
    1234           0 :          CPABORT("3-center integrals are not available (first call requires geometry_did_change=.TRUE.)")
    1235             :       END IF
    1236             : 
    1237         550 :       DO ispin = 1, nspins
    1238         322 :          nblks = dbt_get_num_blocks_total(ri_data%t_2c_int(ispin, 1))
    1239         550 :          IF (nblks == 0) THEN
    1240           0 :             CPABORT("2-center integrals are not available (first call requires geometry_did_change=.TRUE.)")
    1241             :          END IF
    1242             :       END DO
    1243             : 
    1244         228 :       IF (.NOT. ALLOCATED(ri_data%t_3c_int_mo)) THEN
    1245          18 :          do_initialize = .TRUE.
    1246          18 :          CPASSERT(.NOT. ALLOCATED(ri_data%t_3c_ctr_RI))
    1247          18 :          CPASSERT(.NOT. ALLOCATED(ri_data%t_3c_ctr_KS))
    1248          18 :          CPASSERT(.NOT. ALLOCATED(ri_data%t_3c_ctr_KS_copy))
    1249         256 :          ALLOCATE (ri_data%t_3c_int_mo(nspins, 1, 1))
    1250         256 :          ALLOCATE (ri_data%t_3c_ctr_RI(nspins, 1, 1))
    1251         256 :          ALLOCATE (ri_data%t_3c_ctr_KS(nspins, 1, 1))
    1252         256 :          ALLOCATE (ri_data%t_3c_ctr_KS_copy(nspins, 1, 1))
    1253             :       ELSE
    1254             :          do_initialize = .FALSE.
    1255             :       END IF
    1256             : 
    1257         228 :       CALL get_qs_env(qs_env, para_env=para_env)
    1258             : 
    1259         228 :       ALLOCATE (bounds(2, 1))
    1260             : 
    1261         228 :       CALL dbcsr_get_info(ks_matrix(1, 1)%matrix, distribution=ks_dist)
    1262         228 :       CALL dbcsr_distribution_get(ks_dist, group=comm_2d_handle, nprows=pdims_2d(1), npcols=pdims_2d(2))
    1263             : 
    1264         228 :       CALL comm_2d%set_handle(comm_2d_handle)
    1265         228 :       pgrid_2d = dbt_nd_mp_comm(comm_2d, [1], [2], pdims_2d=pdims_2d)
    1266             : 
    1267             :       CALL create_2c_tensor(ks_t, dist1, dist2, pgrid_2d, ri_data%bsizes_AO_fit, ri_data%bsizes_AO_fit, &
    1268         228 :                             name="(AO | AO)")
    1269             : 
    1270         228 :       DEALLOCATE (dist1, dist2)
    1271             : 
    1272         228 :       CALL para_env%sync()
    1273         228 :       t1 = m_walltime()
    1274             : 
    1275        5244 :       ALLOCATE (t_3c_int_mo_1(1, 1), t_3c_int_mo_2(1, 1))
    1276         550 :       DO ispin = 1, nspins
    1277             : 
    1278         322 :          CALL dbcsr_get_info(mo_coeff(ispin), nfullcols_total=n_mos)
    1279         966 :          ALLOCATE (mo_bsizes_2(n_mos))
    1280        2020 :          mo_bsizes_2 = 1
    1281             : 
    1282             :          CALL create_tensor_batches(mo_bsizes_2, ri_data%n_mem, mem_start, mem_end, &
    1283         322 :                                     mem_start_block_2, mem_end_block_2)
    1284         322 :          n_mem = ri_data%n_mem
    1285         966 :          ALLOCATE (mem_size(n_mem))
    1286             : 
    1287        1542 :          DO i_mem = 1, n_mem
    1288        2918 :             bsize = SUM(mo_bsizes_2(mem_start_block_2(i_mem):mem_end_block_2(i_mem)))
    1289        1542 :             mem_size(i_mem) = bsize
    1290             :          END DO
    1291             : 
    1292         322 :          CALL split_block_sizes(mem_size, mo_bsizes_1, ri_data%max_bsize_MO)
    1293         966 :          ALLOCATE (mem_start_block_1(n_mem))
    1294         966 :          ALLOCATE (mem_end_block_1(n_mem))
    1295         322 :          nblock = SIZE(mo_bsizes_1)
    1296         322 :          iblock = 0
    1297        1542 :          DO i_mem = 1, n_mem
    1298             :             bsum = 0
    1299         322 :             DO
    1300        1220 :                iblock = iblock + 1
    1301        1220 :                CPASSERT(iblock <= nblock)
    1302        1220 :                bsum = bsum + mo_bsizes_1(iblock)
    1303        1220 :                IF (bsum == mem_size(i_mem)) THEN
    1304        1220 :                   IF (i_mem == 1) THEN
    1305         322 :                      mem_start_block_1(i_mem) = 1
    1306             :                   ELSE
    1307         898 :                      mem_start_block_1(i_mem) = mem_end_block_1(i_mem - 1) + 1
    1308             :                   END IF
    1309        1220 :                   mem_end_block_1(i_mem) = iblock
    1310             :                   EXIT
    1311             :                END IF
    1312             :             END DO
    1313             :          END DO
    1314             : 
    1315         966 :          ALLOCATE (batch_ranges_1(ri_data%n_mem + 1))
    1316        1542 :          batch_ranges_1(:ri_data%n_mem) = mem_start_block_1(:)
    1317         322 :          batch_ranges_1(ri_data%n_mem + 1) = mem_end_block_1(ri_data%n_mem) + 1
    1318             : 
    1319         966 :          ALLOCATE (batch_ranges_2(ri_data%n_mem + 1))
    1320        1542 :          batch_ranges_2(:ri_data%n_mem) = mem_start_block_2(:)
    1321         322 :          batch_ranges_2(ri_data%n_mem + 1) = mem_end_block_2(ri_data%n_mem) + 1
    1322             : 
    1323         322 :          iproc = para_env%mepos
    1324             : 
    1325             :          CALL create_3c_tensor(t_3c_int_mo_1(1, 1), dist1, dist2, dist3, ri_data%pgrid_1, &
    1326             :                                ri_data%bsizes_AO_split, ri_data%bsizes_RI_split, mo_bsizes_1, &
    1327             :                                [1, 2], [3], &
    1328         322 :                                name="(AO RI | MO)")
    1329             : 
    1330         322 :          DEALLOCATE (dist1, dist2, dist3)
    1331             : 
    1332             :          CALL create_3c_tensor(t_3c_int_mo_2(1, 1), dist1, dist2, dist3, ri_data%pgrid_2, &
    1333             :                                mo_bsizes_1, ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, &
    1334             :                                [1], [2, 3], &
    1335         322 :                                name="(MO | RI AO)")
    1336             : 
    1337         322 :          DEALLOCATE (dist1, dist2, dist3)
    1338             : 
    1339             :          CALL create_2c_tensor(mo_coeff_t_split, dist1, dist2, pgrid_2d, ri_data%bsizes_AO_split, mo_bsizes_1, &
    1340             :                                name="(AO | MO)")
    1341             : 
    1342         322 :          DEALLOCATE (dist1, dist2)
    1343             : 
    1344         322 :          CPASSERT(homo(ispin)/ri_data%n_mem > 0)
    1345             : 
    1346         322 :          IF (do_initialize) THEN
    1347          22 :             pdims(:) = 0
    1348             : 
    1349             :             CALL dbt_pgrid_create(para_env, pdims, pgrid, &
    1350             :                                   tensor_dims=[SIZE(ri_data%bsizes_RI_fit), &
    1351             :                                                (homo(ispin) - 1)/ri_data%n_mem + 1, &
    1352          88 :                                                SIZE(ri_data%bsizes_AO_fit)])
    1353             :             CALL create_3c_tensor(ri_data%t_3c_int_mo(ispin, 1, 1), dist1, dist2, dist3, pgrid, &
    1354             :                                   ri_data%bsizes_RI_fit, mo_bsizes_2, ri_data%bsizes_AO_fit, &
    1355             :                                   [1], [2, 3], &
    1356          22 :                                   name="(RI | MO AO)")
    1357             : 
    1358          22 :             DEALLOCATE (dist1, dist2, dist3)
    1359             : 
    1360             :             CALL create_3c_tensor(ri_data%t_3c_ctr_KS(ispin, 1, 1), dist1, dist2, dist3, pgrid, &
    1361             :                                   ri_data%bsizes_RI_fit, mo_bsizes_2, ri_data%bsizes_AO_fit, &
    1362             :                                   [1, 2], [3], &
    1363          22 :                                   name="(RI MO | AO)")
    1364          22 :             DEALLOCATE (dist1, dist2, dist3)
    1365          22 :             CALL dbt_pgrid_destroy(pgrid)
    1366             : 
    1367          22 :             CALL dbt_create(ri_data%t_3c_int_mo(ispin, 1, 1), ri_data%t_3c_ctr_RI(ispin, 1, 1), name="(RI | MO AO)")
    1368          22 :             CALL dbt_create(ri_data%t_3c_ctr_KS(ispin, 1, 1), ri_data%t_3c_ctr_KS_copy(ispin, 1, 1))
    1369             :          END IF
    1370             : 
    1371         322 :          CALL dbt_create(mo_coeff(ispin), mo_coeff_t, name="MO coeffs")
    1372         322 :          CALL dbt_copy_matrix_to_tensor(mo_coeff(ispin), mo_coeff_t)
    1373         322 :          CALL dbt_copy(mo_coeff_t, mo_coeff_t_split, move_data=.TRUE.)
    1374         322 :          CALL dbt_filter(mo_coeff_t_split, ri_data%filter_eps_mo)
    1375         322 :          CALL dbt_destroy(mo_coeff_t)
    1376             : 
    1377         322 :          CALL dbt_batched_contract_init(ks_t)
    1378         322 :          CALL dbt_batched_contract_init(ri_data%t_3c_ctr_KS(ispin, 1, 1), batch_range_2=batch_ranges_2)
    1379         322 :          CALL dbt_batched_contract_init(ri_data%t_3c_ctr_KS_copy(ispin, 1, 1), batch_range_2=batch_ranges_2)
    1380             : 
    1381         322 :          CALL dbt_batched_contract_init(ri_data%t_2c_int(ispin, 1))
    1382         322 :          CALL dbt_batched_contract_init(ri_data%t_3c_int_mo(ispin, 1, 1), batch_range_2=batch_ranges_2)
    1383         322 :          CALL dbt_batched_contract_init(ri_data%t_3c_ctr_RI(ispin, 1, 1), batch_range_2=batch_ranges_2)
    1384             : 
    1385        1542 :          DO i_mem = 1, n_mem
    1386             : 
    1387        3660 :             bounds(:, 1) = [mem_start(i_mem), mem_end(i_mem)]
    1388             : 
    1389        1220 :             CALL dbt_batched_contract_init(mo_coeff_t_split)
    1390        1220 :             CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_1(1, 1))
    1391             :             CALL dbt_batched_contract_init(t_3c_int_mo_1(1, 1), &
    1392        1220 :                                            batch_range_3=batch_ranges_1)
    1393        1220 :             CALL timeset(routineN//"_MOx3C_R", handle2)
    1394             :             CALL dbt_contract(1.0_dp, mo_coeff_t_split, ri_data%t_3c_int_ctr_1(1, 1), &
    1395             :                               0.0_dp, t_3c_int_mo_1(1, 1), &
    1396             :                               contract_1=[1], notcontract_1=[2], &
    1397             :                               contract_2=[3], notcontract_2=[1, 2], &
    1398             :                               map_1=[3], map_2=[1, 2], &
    1399             :                               bounds_2=bounds, &
    1400             :                               filter_eps=ri_data%filter_eps_mo/2, &
    1401             :                               unit_nr=unit_nr_dbcsr, &
    1402             :                               move_data=.FALSE., &
    1403        1220 :                               flop=nflop)
    1404             : 
    1405        1220 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1406             : 
    1407        1220 :             CALL timestop(handle2)
    1408        1220 :             CALL dbt_batched_contract_finalize(mo_coeff_t_split)
    1409        1220 :             CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_1(1, 1))
    1410        1220 :             CALL dbt_batched_contract_finalize(t_3c_int_mo_1(1, 1))
    1411             : 
    1412        1220 :             CALL timeset(routineN//"_copy_1", handle2)
    1413        1220 :             CALL dbt_copy(t_3c_int_mo_1(1, 1), ri_data%t_3c_int_mo(ispin, 1, 1), order=[3, 1, 2], move_data=.TRUE.)
    1414        1220 :             CALL timestop(handle2)
    1415             : 
    1416        1220 :             CALL dbt_batched_contract_init(mo_coeff_t_split)
    1417        1220 :             CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_2(1, 1))
    1418             :             CALL dbt_batched_contract_init(t_3c_int_mo_2(1, 1), &
    1419        1220 :                                            batch_range_1=batch_ranges_1)
    1420             : 
    1421        1220 :             CALL timeset(routineN//"_MOx3C_L", handle2)
    1422             :             CALL dbt_contract(1.0_dp, mo_coeff_t_split, ri_data%t_3c_int_ctr_2(1, 1), &
    1423             :                               0.0_dp, t_3c_int_mo_2(1, 1), &
    1424             :                               contract_1=[1], notcontract_1=[2], &
    1425             :                               contract_2=[1], notcontract_2=[2, 3], &
    1426             :                               map_1=[1], map_2=[2, 3], &
    1427             :                               bounds_2=bounds, &
    1428             :                               filter_eps=ri_data%filter_eps_mo/2, &
    1429             :                               unit_nr=unit_nr_dbcsr, &
    1430             :                               move_data=.FALSE., &
    1431        1220 :                               flop=nflop)
    1432             : 
    1433        1220 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1434             : 
    1435        1220 :             CALL timestop(handle2)
    1436             : 
    1437        1220 :             CALL dbt_batched_contract_finalize(mo_coeff_t_split)
    1438        1220 :             CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_2(1, 1))
    1439        1220 :             CALL dbt_batched_contract_finalize(t_3c_int_mo_2(1, 1))
    1440             : 
    1441        1220 :             CALL timeset(routineN//"_copy_1", handle2)
    1442             :             CALL dbt_copy(t_3c_int_mo_2(1, 1), ri_data%t_3c_int_mo(ispin, 1, 1), order=[2, 1, 3], &
    1443        1220 :                           summation=.TRUE., move_data=.TRUE.)
    1444             : 
    1445        1220 :             CALL dbt_filter(ri_data%t_3c_int_mo(ispin, 1, 1), ri_data%filter_eps_mo)
    1446        1220 :             CALL timestop(handle2)
    1447             : 
    1448        1220 :             CALL timeset(routineN//"_RIx3C", handle2)
    1449             : 
    1450             :             CALL dbt_contract(1.0_dp, ri_data%t_2c_int(ispin, 1), ri_data%t_3c_int_mo(ispin, 1, 1), &
    1451             :                               0.0_dp, ri_data%t_3c_ctr_RI(ispin, 1, 1), &
    1452             :                               contract_1=[1], notcontract_1=[2], &
    1453             :                               contract_2=[1], notcontract_2=[2, 3], &
    1454             :                               map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps, &
    1455             :                               unit_nr=unit_nr_dbcsr, &
    1456        1220 :                               flop=nflop)
    1457             : 
    1458        1220 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1459             : 
    1460        1220 :             CALL timestop(handle2)
    1461             : 
    1462        1220 :             CALL timeset(routineN//"_copy_2", handle2)
    1463             : 
    1464             :             ! note: this copy should not involve communication (same block sizes, same 3d distribution on same process grid)
    1465        1220 :             CALL dbt_copy(ri_data%t_3c_ctr_RI(ispin, 1, 1), ri_data%t_3c_ctr_KS(ispin, 1, 1), move_data=.TRUE.)
    1466        1220 :             CALL dbt_copy(ri_data%t_3c_ctr_KS(ispin, 1, 1), ri_data%t_3c_ctr_KS_copy(ispin, 1, 1))
    1467        1220 :             CALL timestop(handle2)
    1468             : 
    1469        1220 :             CALL timeset(routineN//"_3Cx3C", handle2)
    1470             :             CALL dbt_contract(-fac, ri_data%t_3c_ctr_KS(ispin, 1, 1), ri_data%t_3c_ctr_KS_copy(ispin, 1, 1), &
    1471             :                               1.0_dp, ks_t, &
    1472             :                               contract_1=[1, 2], notcontract_1=[3], &
    1473             :                               contract_2=[1, 2], notcontract_2=[3], &
    1474             :                               map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps/n_mem, &
    1475             :                               unit_nr=unit_nr_dbcsr, move_data=.TRUE., &
    1476        1220 :                               flop=nflop)
    1477             : 
    1478        1220 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1479             : 
    1480       10082 :             CALL timestop(handle2)
    1481             :          END DO
    1482             : 
    1483         322 :          CALL dbt_batched_contract_finalize(ks_t)
    1484         322 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_ctr_KS(ispin, 1, 1))
    1485         322 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_ctr_KS_copy(ispin, 1, 1))
    1486             : 
    1487         322 :          CALL dbt_batched_contract_finalize(ri_data%t_2c_int(ispin, 1))
    1488         322 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_int_mo(ispin, 1, 1))
    1489         322 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_ctr_RI(ispin, 1, 1))
    1490             : 
    1491         322 :          CALL dbt_destroy(t_3c_int_mo_1(1, 1))
    1492         322 :          CALL dbt_destroy(t_3c_int_mo_2(1, 1))
    1493         322 :          CALL dbt_clear(ri_data%t_3c_int_mo(ispin, 1, 1))
    1494             : 
    1495         322 :          CALL dbt_destroy(mo_coeff_t_split)
    1496             : 
    1497         322 :          CALL dbt_filter(ks_t, ri_data%filter_eps)
    1498             : 
    1499         322 :          CALL dbt_create(ks_matrix(ispin, 1)%matrix, ks_t_mat)
    1500         322 :          CALL dbt_copy(ks_t, ks_t_mat, move_data=.TRUE.)
    1501         322 :          CALL dbt_copy_tensor_to_matrix(ks_t_mat, ks_matrix(ispin, 1)%matrix, summation=.TRUE.)
    1502         322 :          CALL dbt_destroy(ks_t_mat)
    1503             : 
    1504           0 :          DEALLOCATE (mem_end, mem_start, mo_bsizes_2, mem_size, mem_start_block_1, mem_end_block_1, &
    1505        1838 :                      mem_start_block_2, mem_end_block_2, batch_ranges_1, batch_ranges_2)
    1506             : 
    1507             :       END DO
    1508             : 
    1509         228 :       CALL dbt_pgrid_destroy(pgrid_2d)
    1510         228 :       CALL dbt_destroy(ks_t)
    1511             : 
    1512         228 :       CALL para_env%sync()
    1513         228 :       t2 = m_walltime()
    1514             : 
    1515         228 :       ri_data%dbcsr_time = ri_data%dbcsr_time + t2 - t1
    1516             : 
    1517         228 :       CALL timestop(handle)
    1518             : 
    1519        1824 :    END SUBROUTINE
    1520             : 
    1521             : ! **************************************************************************************************
    1522             : !> \brief Calculate Fock (AKA Kohn-Sham) matrix in rho flavor
    1523             : !>
    1524             : !> M(mu, lambda, R) = sum_{nu} int_3c(mu, nu, R) P(nu, lambda)
    1525             : !> KS(mu, lambda) = sum_{nu,R} B(mu, nu, R) M(lambda, nu, R)
    1526             : !> \param qs_env ...
    1527             : !> \param ri_data ...
    1528             : !> \param ks_matrix ...
    1529             : !> \param rho_ao ...
    1530             : !> \param geometry_did_change ...
    1531             : !> \param nspins ...
    1532             : !> \param fac ...
    1533             : ! **************************************************************************************************
    1534        1498 :    SUBROUTINE hfx_ri_update_ks_Pmat(qs_env, ri_data, ks_matrix, rho_ao, &
    1535             :                                     geometry_did_change, nspins, fac)
    1536             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1537             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    1538             :       TYPE(dbcsr_p_type), DIMENSION(:, :)                :: ks_matrix, rho_ao
    1539             :       LOGICAL, INTENT(IN)                                :: geometry_did_change
    1540             :       INTEGER, INTENT(IN)                                :: nspins
    1541             :       REAL(dp), INTENT(IN)                               :: fac
    1542             : 
    1543             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_update_ks_Pmat'
    1544             : 
    1545             :       INTEGER                                            :: handle, handle2, i_mem, ispin, j_mem, &
    1546             :                                                             n_mem, n_mem_RI, unit_nr, unit_nr_dbcsr
    1547             :       INTEGER(int_8)                                     :: flops_ks_max, flops_p_max, nblks, nflop, &
    1548             :                                                             nze, nze_3c, nze_3c_1, nze_3c_2, &
    1549             :                                                             nze_ks, nze_rho
    1550        1498 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_ranges_AO, batch_ranges_RI, dist1, &
    1551        1498 :                                                             dist2
    1552             :       INTEGER, DIMENSION(2, 1)                           :: bounds_i
    1553             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ij, bounds_j
    1554             :       INTEGER, DIMENSION(3)                              :: dims_3c
    1555             :       REAL(dp)                                           :: memory_3c, occ, occ_3c, occ_3c_1, &
    1556             :                                                             occ_3c_2, occ_ks, occ_rho, t1, t2, &
    1557             :                                                             unused
    1558       37450 :       TYPE(dbt_type)                                     :: ks_t, ks_tmp, rho_ao_tmp, t_3c_1, &
    1559       19474 :                                                             t_3c_3, tensor_old
    1560             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1561             : 
    1562        1498 :       IF (.NOT. fac > EPSILON(0.0_dp)) RETURN
    1563             : 
    1564        1498 :       CALL timeset(routineN, handle)
    1565             : 
    1566        1498 :       NULLIFY (para_env)
    1567             : 
    1568             :       ! get a useful output_unit
    1569        1498 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
    1570        1498 :       unit_nr = ri_data%unit_nr
    1571             : 
    1572        1498 :       CALL get_qs_env(qs_env, para_env=para_env)
    1573             : 
    1574        1498 :       CPASSERT(SIZE(ks_matrix, 2) == 1)
    1575             : 
    1576        1498 :       IF (geometry_did_change) THEN
    1577          70 :          CALL hfx_ri_pre_scf_Pmat(qs_env, ri_data)
    1578         160 :          DO ispin = 1, nspins
    1579          90 :             CALL dbt_scale(ri_data%rho_ao_t(ispin, 1), 0.0_dp)
    1580         160 :             CALL dbt_scale(ri_data%ks_t(ispin, 1), 0.0_dp)
    1581             :          END DO
    1582             :       END IF
    1583             : 
    1584        1498 :       nblks = dbt_get_num_blocks_total(ri_data%t_3c_int_ctr_2(1, 1))
    1585        1498 :       IF (nblks == 0) THEN
    1586           0 :          CPABORT("3-center integrals are not available (first call requires geometry_did_change=.TRUE.)")
    1587             :       END IF
    1588             : 
    1589        1498 :       n_mem = ri_data%n_mem
    1590        1498 :       n_mem_RI = ri_data%n_mem_RI
    1591             : 
    1592        1498 :       CALL dbt_create(ks_matrix(1, 1)%matrix, ks_tmp)
    1593        1498 :       CALL dbt_create(rho_ao(1, 1)%matrix, rho_ao_tmp)
    1594             : 
    1595             :       CALL create_2c_tensor(ks_t, dist1, dist2, ri_data%pgrid_2d, &
    1596             :                             ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    1597             :                             name="(AO | AO)")
    1598        1498 :       DEALLOCATE (dist1, dist2)
    1599             : 
    1600        1498 :       CALL dbt_create(ri_data%t_3c_int_ctr_2(1, 1), t_3c_1)
    1601        1498 :       CALL dbt_create(ri_data%t_3c_int_ctr_1(1, 1), t_3c_3)
    1602             : 
    1603        1498 :       CALL para_env%sync()
    1604        1498 :       t1 = m_walltime()
    1605             : 
    1606        1498 :       flops_ks_max = 0; flops_p_max = 0
    1607             : 
    1608        4494 :       ALLOCATE (batch_ranges_RI(ri_data%n_mem_RI + 1))
    1609        4494 :       ALLOCATE (batch_ranges_AO(ri_data%n_mem + 1))
    1610        5992 :       batch_ranges_RI(:ri_data%n_mem_RI) = ri_data%starts_array_RI_mem_block(:)
    1611        1498 :       batch_ranges_RI(ri_data%n_mem_RI + 1) = ri_data%ends_array_RI_mem_block(ri_data%n_mem_RI) + 1
    1612        5992 :       batch_ranges_AO(:ri_data%n_mem) = ri_data%starts_array_mem_block(:)
    1613        1498 :       batch_ranges_AO(ri_data%n_mem + 1) = ri_data%ends_array_mem_block(ri_data%n_mem) + 1
    1614             : 
    1615        1498 :       memory_3c = 0.0_dp
    1616        3248 :       DO ispin = 1, nspins
    1617             : 
    1618        1750 :          CALL get_tensor_occupancy(ri_data%t_3c_int_ctr_2(1, 1), nze_3c, occ_3c)
    1619             : 
    1620             :          nze_rho = 0
    1621             :          occ_rho = 0.0_dp
    1622        1750 :          nze_3c_1 = 0
    1623        1750 :          occ_3c_1 = 0.0_dp
    1624        1750 :          nze_3c_2 = 0
    1625        1750 :          occ_3c_2 = 0.0_dp
    1626             : 
    1627        1750 :          CALL dbt_copy_matrix_to_tensor(rho_ao(ispin, 1)%matrix, rho_ao_tmp)
    1628             : 
    1629             :          !We work with Delta P: the diff between previous SCF step and this one, for increased sparsity
    1630        1750 :          CALL dbt_scale(ri_data%rho_ao_t(ispin, 1), -1.0_dp)
    1631        1750 :          CALL dbt_copy(rho_ao_tmp, ri_data%rho_ao_t(ispin, 1), summation=.TRUE., move_data=.TRUE.)
    1632             : 
    1633        1750 :          CALL get_tensor_occupancy(ri_data%rho_ao_t(ispin, 1), nze_rho, occ_rho)
    1634             : 
    1635             :          CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_1(1, 1), batch_range_1=batch_ranges_AO, &
    1636        1750 :                                         batch_range_2=batch_ranges_RI)
    1637        1750 :          CALL dbt_batched_contract_init(t_3c_3, batch_range_1=batch_ranges_AO, batch_range_2=batch_ranges_RI)
    1638             : 
    1639        1750 :          CALL dbt_create(ri_data%t_3c_int_ctr_1(1, 1), tensor_old)
    1640             : 
    1641        7000 :          DO i_mem = 1, n_mem
    1642             : 
    1643        5250 :             CALL dbt_batched_contract_init(ri_data%rho_ao_t(ispin, 1))
    1644             :             CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_2(1, 1), batch_range_2=batch_ranges_RI, &
    1645        5250 :                                            batch_range_3=batch_ranges_AO)
    1646        5250 :             CALL dbt_batched_contract_init(t_3c_1, batch_range_2=batch_ranges_RI, batch_range_3=batch_ranges_AO)
    1647       21000 :             DO j_mem = 1, n_mem_RI
    1648             : 
    1649       15750 :                CALL timeset(routineN//"_Px3C", handle2)
    1650             : 
    1651       15750 :                CALL dbt_get_info(t_3c_1, nfull_total=dims_3c)
    1652       47250 :                bounds_i(:, 1) = [ri_data%starts_array_mem(i_mem), ri_data%ends_array_mem(i_mem)]
    1653       47250 :                bounds_j(:, 1) = [1, dims_3c(1)]
    1654       47250 :                bounds_j(:, 2) = [ri_data%starts_array_RI_mem(j_mem), ri_data%ends_array_RI_mem(j_mem)]
    1655             : 
    1656             :                CALL dbt_contract(1.0_dp, ri_data%rho_ao_t(ispin, 1), ri_data%t_3c_int_ctr_2(1, 1), &
    1657             :                                  0.0_dp, t_3c_1, &
    1658             :                                  contract_1=[2], notcontract_1=[1], &
    1659             :                                  contract_2=[3], notcontract_2=[1, 2], &
    1660             :                                  map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    1661             :                                  bounds_2=bounds_i, &
    1662             :                                  bounds_3=bounds_j, &
    1663             :                                  unit_nr=unit_nr_dbcsr, &
    1664       15750 :                                  flop=nflop)
    1665             : 
    1666       15750 :                CALL timestop(handle2)
    1667             : 
    1668       15750 :                ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1669             : 
    1670       15750 :                CALL get_tensor_occupancy(t_3c_1, nze, occ)
    1671       15750 :                nze_3c_1 = nze_3c_1 + nze
    1672       15750 :                occ_3c_1 = occ_3c_1 + occ
    1673             : 
    1674       15750 :                CALL timeset(routineN//"_copy_2", handle2)
    1675       15750 :                CALL dbt_copy(t_3c_1, t_3c_3, order=[3, 2, 1], move_data=.TRUE.)
    1676       15750 :                CALL timestop(handle2)
    1677             : 
    1678       47250 :                bounds_ij(:, 1) = [ri_data%starts_array_mem(i_mem), ri_data%ends_array_mem(i_mem)]
    1679       47250 :                bounds_ij(:, 2) = [ri_data%starts_array_RI_mem(j_mem), ri_data%ends_array_RI_mem(j_mem)]
    1680             : 
    1681             :                CALL decompress_tensor(tensor_old, ri_data%blk_indices(i_mem, j_mem)%ind, &
    1682       15750 :                                       ri_data%store_3c(i_mem, j_mem), ri_data%filter_eps_storage)
    1683             : 
    1684       15750 :                CALL dbt_copy(tensor_old, ri_data%t_3c_int_ctr_1(1, 1), move_data=.TRUE.)
    1685             : 
    1686       15750 :                CALL get_tensor_occupancy(ri_data%t_3c_int_ctr_1(1, 1), nze, occ)
    1687       15750 :                nze_3c_2 = nze_3c_2 + nze
    1688       15750 :                occ_3c_2 = occ_3c_2 + occ
    1689       15750 :                CALL timeset(routineN//"_KS", handle2)
    1690       15750 :                CALL dbt_batched_contract_init(ks_t)
    1691             :                CALL dbt_contract(-fac, ri_data%t_3c_int_ctr_1(1, 1), t_3c_3, &
    1692             :                                  1.0_dp, ks_t, &
    1693             :                                  contract_1=[1, 2], notcontract_1=[3], &
    1694             :                                  contract_2=[1, 2], notcontract_2=[3], &
    1695             :                                  map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps/n_mem, &
    1696             :                                  bounds_1=bounds_ij, &
    1697             :                                  unit_nr=unit_nr_dbcsr, &
    1698       15750 :                                  flop=nflop, move_data=.TRUE.)
    1699             : 
    1700       15750 :                CALL dbt_batched_contract_finalize(ks_t, unit_nr=unit_nr_dbcsr)
    1701       15750 :                CALL timestop(handle2)
    1702             : 
    1703       68250 :                ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1704             : 
    1705             :             END DO
    1706        5250 :             CALL dbt_batched_contract_finalize(ri_data%rho_ao_t(ispin, 1), unit_nr=unit_nr_dbcsr)
    1707        5250 :             CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_2(1, 1))
    1708        7000 :             CALL dbt_batched_contract_finalize(t_3c_1)
    1709             :          END DO
    1710        1750 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_1(1, 1))
    1711        1750 :          CALL dbt_batched_contract_finalize(t_3c_3)
    1712             : 
    1713        7000 :          DO i_mem = 1, n_mem
    1714       22750 :             DO j_mem = 1, n_mem_RI
    1715        5250 :                ASSOCIATE (blk_indices => ri_data%blk_indices(i_mem, j_mem), t_3c => ri_data%t_3c_int_ctr_1(1, 1))
    1716             :                   CALL decompress_tensor(tensor_old, blk_indices%ind, &
    1717       15750 :                                          ri_data%store_3c(i_mem, j_mem), ri_data%filter_eps_storage)
    1718       15750 :                   CALL dbt_copy(tensor_old, t_3c, move_data=.TRUE.)
    1719             : 
    1720       15750 :                   unused = 0
    1721             :                   CALL compress_tensor(t_3c, blk_indices%ind, ri_data%store_3c(i_mem, j_mem), &
    1722       31500 :                                        ri_data%filter_eps_storage, unused)
    1723             :                END ASSOCIATE
    1724             :             END DO
    1725             :          END DO
    1726             : 
    1727        1750 :          CALL dbt_destroy(tensor_old)
    1728             : 
    1729        1750 :          CALL get_tensor_occupancy(ks_t, nze_ks, occ_ks)
    1730             : 
    1731             :          !rho_ao_t holds the density difference, and ks_t is built upon it => need the full picture
    1732        1750 :          CALL dbt_copy_matrix_to_tensor(rho_ao(ispin, 1)%matrix, rho_ao_tmp)
    1733        1750 :          CALL dbt_copy(rho_ao_tmp, ri_data%rho_ao_t(ispin, 1), move_data=.TRUE.)
    1734        1750 :          CALL dbt_copy(ks_t, ri_data%ks_t(ispin, 1), summation=.TRUE., move_data=.TRUE.)
    1735             : 
    1736        1750 :          CALL dbt_copy(ri_data%ks_t(ispin, 1), ks_tmp)
    1737        1750 :          CALL dbt_copy_tensor_to_matrix(ks_tmp, ks_matrix(ispin, 1)%matrix, summation=.TRUE.)
    1738        1750 :          CALL dbt_clear(ks_tmp)
    1739             : 
    1740        8498 :          IF (unit_nr > 0 .AND. geometry_did_change) THEN
    1741             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1742          28 :                'Occupancy of density matrix P:', REAL(nze_rho, dp), '/', occ_rho*100, '%'
    1743             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1744          28 :                'Occupancy of 3c ints:', REAL(nze_3c, dp), '/', occ_3c*100, '%'
    1745             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1746          28 :                'Occupancy after contraction with K:', REAL(nze_3c_2, dp), '/', occ_3c_2*100, '%'
    1747             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1748          28 :                'Occupancy after contraction with P:', REAL(nze_3c_1, dp), '/', occ_3c_1*100, '%'
    1749             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1750          28 :                'Occupancy of Kohn-Sham matrix:', REAL(nze_ks, dp), '/', occ_ks*100, '%'
    1751             :          END IF
    1752             : 
    1753             :       END DO
    1754             : 
    1755        1498 :       CALL para_env%sync()
    1756        1498 :       t2 = m_walltime()
    1757             : 
    1758        1498 :       ri_data%dbcsr_time = ri_data%dbcsr_time + t2 - t1
    1759             : 
    1760        1498 :       CALL dbt_destroy(t_3c_1)
    1761        1498 :       CALL dbt_destroy(t_3c_3)
    1762             : 
    1763        1498 :       CALL dbt_destroy(rho_ao_tmp)
    1764        1498 :       CALL dbt_destroy(ks_t)
    1765        1498 :       CALL dbt_destroy(ks_tmp)
    1766             : 
    1767        1498 :       CALL timestop(handle)
    1768             : 
    1769        4494 :    END SUBROUTINE
    1770             : 
    1771             : ! **************************************************************************************************
    1772             : !> \brief Implementation based on the MO flavor
    1773             : !> \param qs_env ...
    1774             : !> \param ri_data ...
    1775             : !> \param nspins ...
    1776             : !> \param hf_fraction ...
    1777             : !> \param mo_coeff ...
    1778             : !> \param use_virial ...
    1779             : !> \note There is no response code for forces with the MO flavor
    1780             : ! **************************************************************************************************
    1781          14 :    SUBROUTINE hfx_ri_forces_mo(qs_env, ri_data, nspins, hf_fraction, mo_coeff, use_virial)
    1782             : 
    1783             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1784             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    1785             :       INTEGER, INTENT(IN)                                :: nspins
    1786             :       REAL(dp), INTENT(IN)                               :: hf_fraction
    1787             :       TYPE(dbcsr_type), DIMENSION(:), INTENT(IN)         :: mo_coeff
    1788             :       LOGICAL, INTENT(IN), OPTIONAL                      :: use_virial
    1789             : 
    1790             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'hfx_ri_forces_mo'
    1791             : 
    1792             :       INTEGER :: dummy_int, handle, i_mem, i_xyz, ibasis, ispin, j_mem, k_mem, n_mem, n_mem_input, &
    1793             :          n_mem_input_RI, n_mem_RI, n_mem_RI_fit, n_mos, natom, nkind, unit_nr_dbcsr
    1794             :       INTEGER(int_8)                                     :: nflop
    1795          14 :       INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_of_kind, batch_blk_end, batch_blk_start, &
    1796          14 :          batch_end, batch_end_RI, batch_end_RI_fit, batch_ranges, batch_ranges_RI, &
    1797          14 :          batch_ranges_RI_fit, batch_start, batch_start_RI, batch_start_RI_fit, bsizes_MO, dist1, &
    1798          14 :          dist2, dist3, idx_to_at_AO, idx_to_at_RI, kind_of
    1799             :       INTEGER, DIMENSION(2, 1)                           :: bounds_ctr_1d
    1800             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ctr_2d
    1801             :       INTEGER, DIMENSION(3)                              :: pdims
    1802             :       LOGICAL                                            :: use_virial_prv
    1803             :       REAL(dp)                                           :: pref, spin_fac, t1, t2
    1804          14 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1805          14 :       TYPE(block_ind_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_der_AO_ind, t_3c_der_RI_ind
    1806             :       TYPE(cell_type), POINTER                           :: cell
    1807          14 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
    1808          70 :       TYPE(dbt_pgrid_type)                               :: pgrid_1, pgrid_2
    1809         602 :       TYPE(dbt_type) :: t_2c_RI, t_2c_RI_inv, t_2c_RI_met, t_2c_RI_PQ, t_2c_tmp, t_3c_0, t_3c_1, &
    1810         700 :          t_3c_2, t_3c_3, t_3c_4, t_3c_5, t_3c_6, t_3c_ao_ri_ao, t_3c_ao_ri_mo, t_3c_desymm, &
    1811         434 :          t_3c_mo_ri_ao, t_3c_mo_ri_mo, t_3c_ri_ao_ao, t_3c_RI_ctr, t_3c_ri_mo_mo, &
    1812         350 :          t_3c_ri_mo_mo_fit, t_3c_work, t_mo_coeff, t_mo_cpy
    1813          14 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:) :: t_2c_der_metric, t_2c_der_RI, t_2c_MO_AO, &
    1814          28 :          t_2c_MO_AO_ctr, t_3c_der_AO, t_3c_der_AO_ctr_1, t_3c_der_RI, t_3c_der_RI_ctr_1, &
    1815          14 :          t_3c_der_RI_ctr_2
    1816             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1817             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
    1818          14 :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
    1819             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
    1820             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    1821          14 :          DIMENSION(:, :)                                 :: t_3c_der_AO_comp, t_3c_der_RI_comp
    1822             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1823          14 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1824          14 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    1825          14 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1826             : 
    1827             :       ! 1) Precompute the derivatives that are needed (3c, 3c RI and metric)
    1828             :       ! 2) Go over batched of occupied MOs so as to save memory and optimize contractions
    1829             :       ! 3) Contract all 3c integrals and derivatives with MO coeffs
    1830             :       ! 4) Contract relevant quantities with the inverse 2c RI (metric or pot)
    1831             :       ! 5) First force contribution with the 2c RI derivative d/dx (Q|R)
    1832             :       ! 6) If metric, do the additional contraction  with S_pq^-1 (Q|R)
    1833             :       ! 7) Do the force contribution due to 3c integrals (a'b|P) and (ab|P')
    1834             :       ! 8) If metric, do the last force contribution due to d/dx S^-1 (First contract (ab|P), then S^-1)
    1835             : 
    1836          14 :       use_virial_prv = .FALSE.
    1837          14 :       IF (PRESENT(use_virial)) use_virial_prv = use_virial
    1838          14 :       IF (use_virial_prv) THEN
    1839           0 :          CPABORT("Stress tensor with RI-HFX MO flavor not implemented.")
    1840             :       END IF
    1841             : 
    1842          14 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
    1843             : 
    1844             :       CALL get_qs_env(qs_env, natom=natom, particle_set=particle_set, nkind=nkind, &
    1845             :                       atomic_kind_set=atomic_kind_set, cell=cell, force=force, &
    1846             :                       matrix_s=matrix_s, para_env=para_env, dft_control=dft_control, &
    1847          14 :                       qs_kind_set=qs_kind_set)
    1848             : 
    1849          14 :       pdims(:) = 0
    1850             :       CALL dbt_pgrid_create(para_env, pdims, pgrid_1, tensor_dims=[SIZE(ri_data%bsizes_AO_split), &
    1851             :                                                                    SIZE(ri_data%bsizes_RI_split), &
    1852          56 :                                                                    SIZE(ri_data%bsizes_AO_split)])
    1853          14 :       pdims(:) = 0
    1854             :       CALL dbt_pgrid_create(para_env, pdims, pgrid_2, tensor_dims=[SIZE(ri_data%bsizes_RI_split), &
    1855             :                                                                    SIZE(ri_data%bsizes_AO_split), &
    1856          56 :                                                                    SIZE(ri_data%bsizes_AO_split)])
    1857             : 
    1858             :       CALL create_3c_tensor(t_3c_ao_ri_ao, dist1, dist2, dist3, pgrid_1, &
    1859             :                             ri_data%bsizes_AO_split, ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, &
    1860          14 :                             [1, 2], [3], name="(AO RI | AO)")
    1861          14 :       DEALLOCATE (dist1, dist2, dist3)
    1862             :       CALL create_3c_tensor(t_3c_ri_ao_ao, dist1, dist2, dist3, pgrid_2, &
    1863             :                             ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    1864          14 :                             [1], [2, 3], name="(RI | AO AO)")
    1865          14 :       DEALLOCATE (dist1, dist2, dist3)
    1866             : 
    1867         118 :       ALLOCATE (basis_set_RI(nkind), basis_set_AO(nkind))
    1868          14 :       CALL basis_set_list_setup(basis_set_RI, ri_data%ri_basis_type, qs_kind_set)
    1869          14 :       CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_RI)
    1870          14 :       CALL basis_set_list_setup(basis_set_AO, ri_data%orb_basis_type, qs_kind_set)
    1871          14 :       CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_AO)
    1872             : 
    1873          38 :       DO ibasis = 1, SIZE(basis_set_AO)
    1874          24 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
    1875          24 :          CALL init_interaction_radii_orb_basis(orb_basis, ri_data%eps_pgf_orb)
    1876          24 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
    1877          38 :          CALL init_interaction_radii_orb_basis(ri_basis, ri_data%eps_pgf_orb)
    1878             :       END DO
    1879             : 
    1880             :       ALLOCATE (t_2c_der_metric(3), t_2c_der_RI(3), t_2c_MO_AO(3), t_2c_MO_AO_ctr(3), t_3c_der_AO(3), &
    1881        1148 :                 t_3c_der_AO_ctr_1(3), t_3c_der_RI(3), t_3c_der_RI_ctr_1(3), t_3c_der_RI_ctr_2(3))
    1882             : 
    1883             :       ! 1) Precompute the derivatives
    1884             :       CALL precalc_derivatives(t_3c_der_RI_comp, t_3c_der_AO_comp, t_3c_der_RI_ind, t_3c_der_AO_ind, &
    1885             :                                t_2c_der_RI, t_2c_der_metric, t_3c_ri_ao_ao, &
    1886          14 :                                basis_set_AO, basis_set_RI, ri_data, qs_env)
    1887             : 
    1888          38 :       DO ibasis = 1, SIZE(basis_set_AO)
    1889          24 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
    1890          24 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
    1891          24 :          CALL init_interaction_radii_orb_basis(orb_basis, dft_control%qs_control%eps_pgf_orb)
    1892          38 :          CALL init_interaction_radii_orb_basis(ri_basis, dft_control%qs_control%eps_pgf_orb)
    1893             :       END DO
    1894             : 
    1895          14 :       n_mem = SIZE(t_3c_der_RI_comp, 1)
    1896          56 :       DO i_xyz = 1, 3
    1897          42 :          CALL dbt_create(t_3c_ao_ri_ao, t_3c_der_RI(i_xyz))
    1898          42 :          CALL dbt_create(t_3c_ao_ri_ao, t_3c_der_AO(i_xyz))
    1899             : 
    1900         194 :          DO i_mem = 1, n_mem
    1901             :             CALL decompress_tensor(t_3c_ri_ao_ao, t_3c_der_RI_ind(i_mem, i_xyz)%ind, &
    1902         138 :                                    t_3c_der_RI_comp(i_mem, i_xyz), ri_data%filter_eps_storage)
    1903         138 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_der_RI(i_xyz), order=[2, 1, 3], move_data=.TRUE., summation=.TRUE.)
    1904             : 
    1905             :             CALL decompress_tensor(t_3c_ri_ao_ao, t_3c_der_AO_ind(i_mem, i_xyz)%ind, &
    1906         138 :                                    t_3c_der_AO_comp(i_mem, i_xyz), ri_data%filter_eps_storage)
    1907         180 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_der_AO(i_xyz), order=[2, 1, 3], move_data=.TRUE., summation=.TRUE.)
    1908             :          END DO
    1909             :       END DO
    1910             : 
    1911          56 :       DO i_xyz = 1, 3
    1912         194 :          DO i_mem = 1, n_mem
    1913         138 :             CALL dealloc_containers(t_3c_der_AO_comp(i_mem, i_xyz), dummy_int)
    1914         180 :             CALL dealloc_containers(t_3c_der_RI_comp(i_mem, i_xyz), dummy_int)
    1915             :          END DO
    1916             :       END DO
    1917         290 :       DEALLOCATE (t_3c_der_AO_ind, t_3c_der_RI_ind)
    1918             : 
    1919             :       ! Get the 3c integrals (desymmetrized)
    1920          14 :       CALL dbt_create(t_3c_ao_ri_ao, t_3c_desymm)
    1921          14 :       CALL dbt_copy(ri_data%t_3c_int_ctr_1(1, 1), t_3c_desymm)
    1922             :       CALL dbt_copy(ri_data%t_3c_int_ctr_1(1, 1), t_3c_desymm, order=[3, 2, 1], &
    1923          14 :                     summation=.TRUE., move_data=.TRUE.)
    1924             : 
    1925          14 :       CALL dbt_destroy(t_3c_ao_ri_ao)
    1926          14 :       CALL dbt_destroy(t_3c_ri_ao_ao)
    1927             : 
    1928             :       ! Some utilities
    1929          14 :       spin_fac = 0.5_dp
    1930          14 :       IF (nspins == 2) spin_fac = 1.0_dp
    1931             : 
    1932          42 :       ALLOCATE (idx_to_at_RI(SIZE(ri_data%bsizes_RI_split)))
    1933          14 :       CALL get_idx_to_atom(idx_to_at_RI, ri_data%bsizes_RI_split, ri_data%bsizes_RI)
    1934             : 
    1935          42 :       ALLOCATE (idx_to_at_AO(SIZE(ri_data%bsizes_AO_split)))
    1936          14 :       CALL get_idx_to_atom(idx_to_at_AO, ri_data%bsizes_AO_split, ri_data%bsizes_AO)
    1937             : 
    1938          14 :       CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of, atom_of_kind=atom_of_kind)
    1939             : 
    1940             :       ! 2-center RI tensors
    1941             :       CALL create_2c_tensor(t_2c_RI, dist1, dist2, ri_data%pgrid_2d, &
    1942          14 :                             ri_data%bsizes_RI_split, ri_data%bsizes_RI_split, name="(RI | RI)")
    1943          14 :       DEALLOCATE (dist1, dist2)
    1944             : 
    1945             :       CALL create_2c_tensor(t_2c_RI_PQ, dist1, dist2, ri_data%pgrid_2d, &
    1946             :                             ri_data%bsizes_RI_fit, ri_data%bsizes_RI_fit, name="(RI | RI)")
    1947          14 :       DEALLOCATE (dist1, dist2)
    1948             : 
    1949          14 :       IF (.NOT. ri_data%same_op) THEN
    1950             :          !precompute the (P|Q)*S^-1 product
    1951           4 :          CALL dbt_create(t_2c_RI_PQ, t_2c_RI_inv)
    1952           4 :          CALL dbt_create(t_2c_RI_PQ, t_2c_RI_met)
    1953           4 :          CALL dbt_create(ri_data%t_2c_inv(1, 1), t_2c_tmp)
    1954             : 
    1955             :          CALL dbt_contract(1.0_dp, ri_data%t_2c_inv(1, 1), ri_data%t_2c_pot(1, 1), &
    1956             :                            0.0_dp, t_2c_tmp, &
    1957             :                            contract_1=[2], notcontract_1=[1], &
    1958             :                            contract_2=[1], notcontract_2=[2], &
    1959             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    1960           4 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    1961           4 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1962             : 
    1963           4 :          CALL dbt_copy(t_2c_tmp, t_2c_RI_inv, move_data=.TRUE.)
    1964           4 :          CALL dbt_destroy(t_2c_tmp)
    1965             :       END IF
    1966             : 
    1967             :       !3 loops in MO force evaluations. To be consistent with input MEMORY_CUT, need to take the cubic root
    1968             :       !No need to cut memory further because SCF tensors alrady dense
    1969          14 :       n_mem_input = FLOOR((ri_data%n_mem_input - 0.1_dp)**(1._dp/3._dp)) + 1
    1970          14 :       n_mem_input_RI = FLOOR((ri_data%n_mem_input - 0.1_dp)/n_mem_input**2) + 1
    1971             : 
    1972             :       !batches on RI_split and RI_fit blocks
    1973          14 :       n_mem_RI = n_mem_input_RI
    1974             :       CALL create_tensor_batches(ri_data%bsizes_RI_split, n_mem_RI, batch_start_RI, batch_end_RI, &
    1975          14 :                                  batch_blk_start, batch_blk_end)
    1976          42 :       ALLOCATE (batch_ranges_RI(n_mem_RI + 1))
    1977          28 :       batch_ranges_RI(1:n_mem_RI) = batch_blk_start(1:n_mem_RI)
    1978          14 :       batch_ranges_RI(n_mem_RI + 1) = batch_blk_end(n_mem_RI) + 1
    1979          14 :       DEALLOCATE (batch_blk_start, batch_blk_end)
    1980             : 
    1981          14 :       n_mem_RI_fit = n_mem_input_RI
    1982             :       CALL create_tensor_batches(ri_data%bsizes_RI_fit, n_mem_RI_fit, batch_start_RI_fit, batch_end_RI_fit, &
    1983          14 :                                  batch_blk_start, batch_blk_end)
    1984          42 :       ALLOCATE (batch_ranges_RI_fit(n_mem_RI_fit + 1))
    1985          28 :       batch_ranges_RI_fit(1:n_mem_RI_fit) = batch_blk_start(1:n_mem_RI_fit)
    1986          14 :       batch_ranges_RI_fit(n_mem_RI_fit + 1) = batch_blk_end(n_mem_RI_fit) + 1
    1987          14 :       DEALLOCATE (batch_blk_start, batch_blk_end)
    1988             : 
    1989          32 :       DO ispin = 1, nspins
    1990             : 
    1991             :          ! 2 )Prepare the batches for this spin
    1992          18 :          CALL dbcsr_get_info(mo_coeff(ispin), nfullcols_total=n_mos)
    1993             :          !note: optimized GPU block size for SCF is 64x1x64. Here we do 8x8x64
    1994          36 :          CALL split_block_sizes([n_mos], bsizes_MO, max_size=FLOOR(SQRT(ri_data%max_bsize_MO - 0.1)) + 1)
    1995             : 
    1996             :          !batching on MO blocks
    1997          18 :          n_mem = n_mem_input
    1998             :          CALL create_tensor_batches(bsizes_MO, n_mem, batch_start, batch_end, &
    1999          18 :                                     batch_blk_start, batch_blk_end)
    2000          54 :          ALLOCATE (batch_ranges(n_mem + 1))
    2001          40 :          batch_ranges(1:n_mem) = batch_blk_start(1:n_mem)
    2002          18 :          batch_ranges(n_mem + 1) = batch_blk_end(n_mem) + 1
    2003          18 :          DEALLOCATE (batch_blk_start, batch_blk_end)
    2004             : 
    2005             :          ! Initialize the different tensors needed (Note: keep MO coeffs as (MO | AO) for less transpose)
    2006             :          CALL create_2c_tensor(t_mo_coeff, dist1, dist2, ri_data%pgrid_2d, bsizes_MO, &
    2007          18 :                                ri_data%bsizes_AO_split, name="MO coeffs")
    2008          18 :          DEALLOCATE (dist1, dist2)
    2009          18 :          CALL dbt_create(mo_coeff(ispin), t_2c_tmp, name="MO coeffs")
    2010          18 :          CALL dbt_copy_matrix_to_tensor(mo_coeff(ispin), t_2c_tmp)
    2011          18 :          CALL dbt_copy(t_2c_tmp, t_mo_coeff, order=[2, 1], move_data=.TRUE.)
    2012          18 :          CALL dbt_destroy(t_2c_tmp)
    2013             : 
    2014          18 :          CALL dbt_create(t_mo_coeff, t_mo_cpy)
    2015          18 :          CALL dbt_copy(t_mo_coeff, t_mo_cpy)
    2016          72 :          DO i_xyz = 1, 3
    2017          54 :             CALL dbt_create(t_mo_coeff, t_2c_MO_AO_ctr(i_xyz))
    2018          72 :             CALL dbt_create(t_mo_coeff, t_2c_MO_AO(i_xyz))
    2019             :          END DO
    2020             : 
    2021             :          CALL create_3c_tensor(t_3c_ao_ri_mo, dist1, dist2, dist3, pgrid_1, ri_data%bsizes_AO_split, &
    2022          18 :                                ri_data%bsizes_RI_split, bsizes_MO, [1, 2], [3], name="(AO RI| MO)")
    2023          18 :          DEALLOCATE (dist1, dist2, dist3)
    2024             : 
    2025          18 :          CALL dbt_create(t_3c_ao_ri_mo, t_3c_0)
    2026          18 :          CALL dbt_destroy(t_3c_ao_ri_mo)
    2027             : 
    2028             :          CALL create_3c_tensor(t_3c_mo_ri_ao, dist1, dist2, dist3, pgrid_1, bsizes_MO, ri_data%bsizes_RI_split, &
    2029          18 :                                ri_data%bsizes_AO_split, [1, 2], [3], name="(MO RI | AO)")
    2030          18 :          DEALLOCATE (dist1, dist2, dist3)
    2031          18 :          CALL dbt_create(t_3c_mo_ri_ao, t_3c_1)
    2032             : 
    2033          72 :          DO i_xyz = 1, 3
    2034          54 :             CALL dbt_create(t_3c_mo_ri_ao, t_3c_der_RI_ctr_1(i_xyz))
    2035          72 :             CALL dbt_create(t_3c_mo_ri_ao, t_3c_der_AO_ctr_1(i_xyz))
    2036             :          END DO
    2037             : 
    2038             :          CALL create_3c_tensor(t_3c_mo_ri_mo, dist1, dist2, dist3, pgrid_1, bsizes_MO, &
    2039          18 :                                ri_data%bsizes_RI_split, bsizes_MO, [1, 2], [3], name="(MO RI | MO)")
    2040          18 :          DEALLOCATE (dist1, dist2, dist3)
    2041          18 :          CALL dbt_create(t_3c_mo_ri_mo, t_3c_work)
    2042             : 
    2043             :          CALL create_3c_tensor(t_3c_ri_mo_mo, dist1, dist2, dist3, pgrid_2, ri_data%bsizes_RI_split, &
    2044          18 :                                bsizes_MO, bsizes_MO, [1], [2, 3], name="(RI| MO MO)")
    2045          18 :          DEALLOCATE (dist1, dist2, dist3)
    2046             : 
    2047          18 :          CALL dbt_create(t_3c_ri_mo_mo, t_3c_2)
    2048          18 :          CALL dbt_create(t_3c_ri_mo_mo, t_3c_3)
    2049          18 :          CALL dbt_create(t_3c_ri_mo_mo, t_3c_RI_ctr)
    2050          72 :          DO i_xyz = 1, 3
    2051          72 :             CALL dbt_create(t_3c_ri_mo_mo, t_3c_der_RI_ctr_2(i_xyz))
    2052             :          END DO
    2053             : 
    2054             :          !Very large RI_fit blocks => new pgrid to make sure distribution is ideal
    2055          18 :          pdims(:) = 0
    2056             :          CALL create_3c_tensor(t_3c_ri_mo_mo_fit, dist1, dist2, dist3, pgrid_2, ri_data%bsizes_RI_fit, &
    2057          18 :                                bsizes_MO, bsizes_MO, [1], [2, 3], name="(RI| MO MO)")
    2058          18 :          DEALLOCATE (dist1, dist2, dist3)
    2059             : 
    2060          18 :          CALL dbt_create(t_3c_ri_mo_mo_fit, t_3c_4)
    2061          18 :          CALL dbt_create(t_3c_ri_mo_mo_fit, t_3c_5)
    2062          18 :          CALL dbt_create(t_3c_ri_mo_mo_fit, t_3c_6)
    2063             : 
    2064          18 :          CALL dbt_batched_contract_init(t_3c_desymm, batch_range_2=batch_ranges_RI)
    2065          18 :          CALL dbt_batched_contract_init(t_3c_0, batch_range_2=batch_ranges_RI, batch_range_3=batch_ranges)
    2066             : 
    2067          72 :          DO i_xyz = 1, 3
    2068          54 :             CALL dbt_batched_contract_init(t_3c_der_AO(i_xyz), batch_range_2=batch_ranges_RI)
    2069          72 :             CALL dbt_batched_contract_init(t_3c_der_RI(i_xyz), batch_range_2=batch_ranges_RI)
    2070             :          END DO
    2071             : 
    2072          18 :          CALL para_env%sync()
    2073          18 :          t1 = m_walltime()
    2074             : 
    2075             :          ! 2) Loop over batches
    2076          40 :          DO i_mem = 1, n_mem
    2077             : 
    2078          22 :             bounds_ctr_1d(1, 1) = batch_start(i_mem)
    2079          22 :             bounds_ctr_1d(2, 1) = batch_end(i_mem)
    2080             : 
    2081          22 :             bounds_ctr_2d(1, 1) = 1
    2082          96 :             bounds_ctr_2d(2, 1) = SUM(ri_data%bsizes_AO)
    2083             : 
    2084             :             ! 3) Do the first AO to MO contraction here
    2085          22 :             CALL timeset(routineN//"_AO2MO_1", handle)
    2086          22 :             CALL dbt_batched_contract_init(t_mo_coeff)
    2087          44 :             DO k_mem = 1, n_mem_RI
    2088          22 :                bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2089          22 :                bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2090             : 
    2091             :                CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_desymm, &
    2092             :                                  1.0_dp, t_3c_0, &
    2093             :                                  contract_1=[2], notcontract_1=[1], &
    2094             :                                  contract_2=[3], notcontract_2=[1, 2], &
    2095             :                                  map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2096             :                                  bounds_2=bounds_ctr_1d, &
    2097             :                                  bounds_3=bounds_ctr_2d, &
    2098          22 :                                  unit_nr=unit_nr_dbcsr, flop=nflop)
    2099          44 :                ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2100             :             END DO
    2101          22 :             CALL dbt_copy(t_3c_0, t_3c_1, order=[3, 2, 1], move_data=.TRUE.)
    2102             : 
    2103          88 :             DO i_xyz = 1, 3
    2104         132 :                DO k_mem = 1, n_mem_RI
    2105          66 :                   bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2106          66 :                   bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2107             : 
    2108             :                   CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_der_AO(i_xyz), &
    2109             :                                     1.0_dp, t_3c_0, &
    2110             :                                     contract_1=[2], notcontract_1=[1], &
    2111             :                                     contract_2=[3], notcontract_2=[1, 2], &
    2112             :                                     map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2113             :                                     bounds_2=bounds_ctr_1d, &
    2114             :                                     bounds_3=bounds_ctr_2d, &
    2115          66 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2116         132 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2117             :                END DO
    2118          66 :                CALL dbt_copy(t_3c_0, t_3c_der_AO_ctr_1(i_xyz), order=[3, 2, 1], move_data=.TRUE.)
    2119             : 
    2120         132 :                DO k_mem = 1, n_mem_RI
    2121          66 :                   bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2122          66 :                   bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2123             : 
    2124             :                   CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_der_RI(i_xyz), &
    2125             :                                     1.0_dp, t_3c_0, &
    2126             :                                     contract_1=[2], notcontract_1=[1], &
    2127             :                                     contract_2=[3], notcontract_2=[1, 2], &
    2128             :                                     map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2129             :                                     bounds_2=bounds_ctr_1d, &
    2130             :                                     bounds_3=bounds_ctr_2d, &
    2131          66 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2132         132 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2133             :                END DO
    2134          88 :                CALL dbt_copy(t_3c_0, t_3c_der_RI_ctr_1(i_xyz), order=[3, 2, 1], move_data=.TRUE.)
    2135             :             END DO
    2136          22 :             CALL dbt_batched_contract_finalize(t_mo_coeff)
    2137          22 :             CALL timestop(handle)
    2138             : 
    2139          22 :             CALL dbt_batched_contract_init(t_3c_1, batch_range_1=batch_ranges, batch_range_2=batch_ranges_RI)
    2140             :             CALL dbt_batched_contract_init(t_3c_work, batch_range_1=batch_ranges, batch_range_2=batch_ranges_RI, &
    2141          22 :                                            batch_range_3=batch_ranges)
    2142          22 :             CALL dbt_batched_contract_init(t_3c_2, batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2143             :             CALL dbt_batched_contract_init(t_3c_3, batch_range_1=batch_ranges_RI, &
    2144          22 :                                            batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2145             : 
    2146             :             CALL dbt_batched_contract_init(t_3c_4, batch_range_1=batch_ranges_RI_fit, &
    2147          22 :                                            batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2148          22 :             CALL dbt_batched_contract_init(t_3c_5, batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2149             : 
    2150          88 :             DO i_xyz = 1, 3
    2151             :                CALL dbt_batched_contract_init(t_3c_der_RI_ctr_1(i_xyz), batch_range_1=batch_ranges, &
    2152          66 :                                               batch_range_2=batch_ranges_RI)
    2153             :                CALL dbt_batched_contract_init(t_3c_der_AO_ctr_1(i_xyz), batch_range_1=batch_ranges, &
    2154          88 :                                               batch_range_2=batch_ranges_RI)
    2155             : 
    2156             :             END DO
    2157             : 
    2158          22 :             IF (.NOT. ri_data%same_op) THEN
    2159           8 :                CALL dbt_batched_contract_init(t_3c_6, batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2160             :             END IF
    2161             : 
    2162          52 :             DO j_mem = 1, n_mem
    2163             : 
    2164          30 :                bounds_ctr_1d(1, 1) = batch_start(j_mem)
    2165          30 :                bounds_ctr_1d(2, 1) = batch_end(j_mem)
    2166             : 
    2167          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2168          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2169             : 
    2170             :                ! 3) Do the second AO to MO contraction here, followed by the S^-1 contraction
    2171          30 :                CALL timeset(routineN//"_AO2MO_2", handle)
    2172          30 :                CALL dbt_batched_contract_init(t_mo_coeff)
    2173          60 :                DO k_mem = 1, n_mem_RI
    2174          30 :                   bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2175          30 :                   bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2176             : 
    2177             :                   CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_1, &
    2178             :                                     1.0_dp, t_3c_work, &
    2179             :                                     contract_1=[2], notcontract_1=[1], &
    2180             :                                     contract_2=[3], notcontract_2=[1, 2], &
    2181             :                                     map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2182             :                                     bounds_2=bounds_ctr_1d, &
    2183             :                                     bounds_3=bounds_ctr_2d, &
    2184          30 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2185          60 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2186             :                END DO
    2187          30 :                CALL dbt_batched_contract_finalize(t_mo_coeff)
    2188          30 :                CALL timestop(handle)
    2189             : 
    2190          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2191          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2192          30 :                bounds_ctr_2d(1, 2) = batch_start(j_mem)
    2193          30 :                bounds_ctr_2d(2, 2) = batch_end(j_mem)
    2194             : 
    2195             :                ! 4) Contract 3c MO integrals with S^-1 as well
    2196          30 :                CALL timeset(routineN//"_2c_inv", handle)
    2197          30 :                CALL dbt_copy(t_3c_work, t_3c_3, order=[2, 1, 3], move_data=.TRUE.)
    2198          60 :                DO k_mem = 1, n_mem_RI
    2199          30 :                   bounds_ctr_1d(1, 1) = batch_start_RI(k_mem)
    2200          30 :                   bounds_ctr_1d(2, 1) = batch_end_RI(k_mem)
    2201             : 
    2202          30 :                   CALL dbt_batched_contract_init(ri_data%t_2c_inv(1, 1))
    2203             :                   CALL dbt_contract(1.0_dp, ri_data%t_2c_inv(1, 1), t_3c_3, &
    2204             :                                     1.0_dp, t_3c_2, &
    2205             :                                     contract_1=[2], notcontract_1=[1], &
    2206             :                                     contract_2=[1], notcontract_2=[2, 3], &
    2207             :                                     map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps, &
    2208             :                                     bounds_1=bounds_ctr_1d, &
    2209             :                                     bounds_3=bounds_ctr_2d, &
    2210          30 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2211          30 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2212          60 :                   CALL dbt_batched_contract_finalize(ri_data%t_2c_inv(1, 1))
    2213             :                END DO
    2214          30 :                CALL dbt_copy(t_3c_ri_mo_mo, t_3c_3)
    2215          30 :                CALL timestop(handle)
    2216             : 
    2217             :                !Only contract (ab|P') with MO coeffs since need AO rep for the force of (a'b|P)
    2218          30 :                bounds_ctr_1d(1, 1) = batch_start(j_mem)
    2219          30 :                bounds_ctr_1d(2, 1) = batch_end(j_mem)
    2220             : 
    2221          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2222          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2223             : 
    2224          30 :                CALL timeset(routineN//"_AO2MO_2", handle)
    2225          30 :                CALL dbt_batched_contract_init(t_mo_coeff)
    2226         120 :                DO i_xyz = 1, 3
    2227         180 :                   DO k_mem = 1, n_mem_RI
    2228          90 :                      bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2229          90 :                      bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2230             : 
    2231             :                      CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_der_RI_ctr_1(i_xyz), &
    2232             :                                        1.0_dp, t_3c_work, &
    2233             :                                        contract_1=[2], notcontract_1=[1], &
    2234             :                                        contract_2=[3], notcontract_2=[1, 2], &
    2235             :                                        map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2236             :                                        bounds_2=bounds_ctr_1d, &
    2237             :                                        bounds_3=bounds_ctr_2d, &
    2238          90 :                                        unit_nr=unit_nr_dbcsr, flop=nflop)
    2239         180 :                      ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2240             :                   END DO
    2241         120 :                   CALL dbt_copy(t_3c_work, t_3c_der_RI_ctr_2(i_xyz), order=[2, 1, 3], move_data=.TRUE.)
    2242             :                END DO
    2243          30 :                CALL dbt_batched_contract_finalize(t_mo_coeff)
    2244          30 :                CALL timestop(handle)
    2245             : 
    2246          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2247          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2248          30 :                bounds_ctr_2d(1, 2) = batch_start(j_mem)
    2249          30 :                bounds_ctr_2d(2, 2) = batch_end(j_mem)
    2250             : 
    2251             :                ! 5) Force due to d/dx (P|Q)
    2252          30 :                CALL timeset(routineN//"_PQ_der", handle)
    2253          30 :                CALL dbt_copy(t_3c_2, t_3c_4, move_data=.TRUE.)
    2254          30 :                CALL dbt_copy(t_3c_4, t_3c_5)
    2255          60 :                DO k_mem = 1, n_mem_RI_fit
    2256          30 :                   bounds_ctr_1d(1, 1) = batch_start_RI_fit(k_mem)
    2257          30 :                   bounds_ctr_1d(2, 1) = batch_end_RI_fit(k_mem)
    2258             : 
    2259          30 :                   CALL dbt_batched_contract_init(t_2c_RI_PQ)
    2260             :                   CALL dbt_contract(1.0_dp, t_3c_4, t_3c_5, &
    2261             :                                     1.0_dp, t_2c_RI_PQ, &
    2262             :                                     contract_1=[2, 3], notcontract_1=[1], &
    2263             :                                     contract_2=[2, 3], notcontract_2=[1], &
    2264             :                                     bounds_1=bounds_ctr_2d, &
    2265             :                                     bounds_2=bounds_ctr_1d, &
    2266             :                                     map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2267          30 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2268          30 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2269          60 :                   CALL dbt_batched_contract_finalize(t_2c_RI_PQ)
    2270             :                END DO
    2271          30 :                CALL timestop(handle)
    2272             : 
    2273             :                ! 6) If metric, do the additional contraction  with S_pq^-1 (Q|R) (not on the derivatives)
    2274          30 :                IF (.NOT. ri_data%same_op) THEN
    2275          16 :                   CALL timeset(routineN//"_metric", handle)
    2276          32 :                   DO k_mem = 1, n_mem_RI_fit
    2277          16 :                      bounds_ctr_1d(1, 1) = batch_start_RI_fit(k_mem)
    2278          16 :                      bounds_ctr_1d(2, 1) = batch_end_RI_fit(k_mem)
    2279             : 
    2280          16 :                      CALL dbt_batched_contract_init(t_2c_RI_inv)
    2281             :                      CALL dbt_contract(1.0_dp, t_2c_RI_inv, t_3c_4, &
    2282             :                                        1.0_dp, t_3c_6, &
    2283             :                                        contract_1=[2], notcontract_1=[1], &
    2284             :                                        contract_2=[1], notcontract_2=[2, 3], &
    2285             :                                        bounds_1=bounds_ctr_1d, &
    2286             :                                        bounds_3=bounds_ctr_2d, &
    2287             :                                        map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps, &
    2288          16 :                                        unit_nr=unit_nr_dbcsr, flop=nflop)
    2289          16 :                      ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2290          32 :                      CALL dbt_batched_contract_finalize(t_2c_RI_inv)
    2291             :                   END DO
    2292          16 :                   CALL dbt_copy(t_3c_6, t_3c_4, move_data=.TRUE.)
    2293             : 
    2294             :                   ! 8) and get the force due to d/dx S^-1
    2295          32 :                   DO k_mem = 1, n_mem_RI_fit
    2296          16 :                      bounds_ctr_1d(1, 1) = batch_start_RI_fit(k_mem)
    2297          16 :                      bounds_ctr_1d(2, 1) = batch_end_RI_fit(k_mem)
    2298             : 
    2299          16 :                      CALL dbt_batched_contract_init(t_2c_RI_met)
    2300             :                      CALL dbt_contract(1.0_dp, t_3c_4, t_3c_5, &
    2301             :                                        1.0_dp, t_2c_RI_met, &
    2302             :                                        contract_1=[2, 3], notcontract_1=[1], &
    2303             :                                        contract_2=[2, 3], notcontract_2=[1], &
    2304             :                                        bounds_1=bounds_ctr_2d, &
    2305             :                                        bounds_2=bounds_ctr_1d, &
    2306             :                                        map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2307          16 :                                        unit_nr=unit_nr_dbcsr, flop=nflop)
    2308          16 :                      ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2309          32 :                      CALL dbt_batched_contract_finalize(t_2c_RI_met)
    2310             :                   END DO
    2311          16 :                   CALL timestop(handle)
    2312             :                END IF
    2313          30 :                CALL dbt_copy(t_3c_ri_mo_mo_fit, t_3c_5)
    2314             : 
    2315             :                ! 7) Do the force contribution due to 3c integrals (a'b|P) and (ab|P')
    2316             : 
    2317             :                ! (ab|P')
    2318          30 :                CALL timeset(routineN//"_3c_RI", handle)
    2319          30 :                pref = -0.5_dp*2.0_dp*hf_fraction*spin_fac
    2320          30 :                CALL dbt_copy(t_3c_4, t_3c_RI_ctr, move_data=.TRUE.)
    2321             :                CALL get_force_from_3c_trace(force, t_3c_RI_ctr, t_3c_der_RI_ctr_2, atom_of_kind, kind_of, &
    2322          30 :                                             idx_to_at_RI, pref)
    2323          30 :                CALL timestop(handle)
    2324             : 
    2325             :                ! (a'b|P) Note that derivative remains in AO rep until the actual force evaluation,
    2326             :                ! which also prevents doing a direct 3-center trace
    2327          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2328          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2329             : 
    2330          30 :                bounds_ctr_1d(1, 1) = batch_start(j_mem)
    2331          30 :                bounds_ctr_1d(2, 1) = batch_end(j_mem)
    2332             : 
    2333          30 :                CALL timeset(routineN//"_3c_AO", handle)
    2334          30 :                CALL dbt_copy(t_3c_RI_ctr, t_3c_work, order=[2, 1, 3], move_data=.TRUE.)
    2335         120 :                DO i_xyz = 1, 3
    2336             : 
    2337          90 :                   CALL dbt_batched_contract_init(t_2c_MO_AO_ctr(i_xyz))
    2338         180 :                   DO k_mem = 1, n_mem_RI
    2339          90 :                      bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2340          90 :                      bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2341             : 
    2342             :                      CALL dbt_contract(1.0_dp, t_3c_work, t_3c_der_AO_ctr_1(i_xyz), &
    2343             :                                        1.0_dp, t_2c_MO_AO_ctr(i_xyz), &
    2344             :                                        contract_1=[1, 2], notcontract_1=[3], &
    2345             :                                        contract_2=[1, 2], notcontract_2=[3], &
    2346             :                                        map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2347             :                                        bounds_1=bounds_ctr_2d, &
    2348             :                                        bounds_2=bounds_ctr_1d, &
    2349          90 :                                        unit_nr=unit_nr_dbcsr, flop=nflop)
    2350         180 :                      ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2351             :                   END DO
    2352         120 :                   CALL dbt_batched_contract_finalize(t_2c_MO_AO_ctr(i_xyz))
    2353             :                END DO
    2354         232 :                CALL timestop(handle)
    2355             : 
    2356             :             END DO !j_mem
    2357          22 :             CALL dbt_batched_contract_finalize(t_3c_1)
    2358          22 :             CALL dbt_batched_contract_finalize(t_3c_work)
    2359          22 :             CALL dbt_batched_contract_finalize(t_3c_2)
    2360          22 :             CALL dbt_batched_contract_finalize(t_3c_3)
    2361          22 :             CALL dbt_batched_contract_finalize(t_3c_4)
    2362          22 :             CALL dbt_batched_contract_finalize(t_3c_5)
    2363             : 
    2364          88 :             DO i_xyz = 1, 3
    2365          66 :                CALL dbt_batched_contract_finalize(t_3c_der_RI_ctr_1(i_xyz))
    2366          88 :                CALL dbt_batched_contract_finalize(t_3c_der_AO_ctr_1(i_xyz))
    2367             :             END DO
    2368             : 
    2369          62 :             IF (.NOT. ri_data%same_op) THEN
    2370           8 :                CALL dbt_batched_contract_finalize(t_3c_6)
    2371             :             END IF
    2372             : 
    2373             :          END DO !i_mem
    2374          18 :          CALL dbt_batched_contract_finalize(t_3c_desymm)
    2375          18 :          CALL dbt_batched_contract_finalize(t_3c_0)
    2376             : 
    2377          72 :          DO i_xyz = 1, 3
    2378          54 :             CALL dbt_batched_contract_finalize(t_3c_der_AO(i_xyz))
    2379          72 :             CALL dbt_batched_contract_finalize(t_3c_der_RI(i_xyz))
    2380             :          END DO
    2381             : 
    2382             :          !Force contribution due to 3-center AO derivatives (a'b|P)
    2383          18 :          pref = -0.5_dp*4.0_dp*hf_fraction*spin_fac
    2384          72 :          DO i_xyz = 1, 3
    2385          54 :             CALL dbt_copy(t_2c_MO_AO_ctr(i_xyz), t_2c_MO_AO(i_xyz), move_data=.TRUE.) !ensures matching distributions
    2386          54 :             CALL get_mo_ao_force(force, t_mo_cpy, t_2c_MO_AO(i_xyz), atom_of_kind, kind_of, idx_to_at_AO, pref, i_xyz)
    2387          72 :             CALL dbt_clear(t_2c_MO_AO(i_xyz))
    2388             :          END DO
    2389             : 
    2390             :          !Force contribution of d/dx (P|Q)
    2391          18 :          pref = 0.5_dp*hf_fraction*spin_fac
    2392          18 :          IF (.NOT. ri_data%same_op) pref = -pref
    2393             : 
    2394             :          !Making sure dists of the t_2c_RI tensors match
    2395          18 :          CALL dbt_copy(t_2c_RI_PQ, t_2c_RI, move_data=.TRUE.)
    2396             :          CALL get_2c_der_force(force, t_2c_RI, t_2c_der_RI, atom_of_kind, &
    2397          18 :                                kind_of, idx_to_at_RI, pref)
    2398          18 :          CALL dbt_clear(t_2c_RI)
    2399             : 
    2400             :          !Force contribution due to the inverse metric
    2401          18 :          IF (.NOT. ri_data%same_op) THEN
    2402           4 :             pref = 0.5_dp*2.0_dp*hf_fraction*spin_fac
    2403             : 
    2404           4 :             CALL dbt_copy(t_2c_RI_met, t_2c_RI, move_data=.TRUE.)
    2405             :             CALL get_2c_der_force(force, t_2c_RI, t_2c_der_metric, atom_of_kind, &
    2406           4 :                                   kind_of, idx_to_at_RI, pref)
    2407           4 :             CALL dbt_clear(t_2c_RI)
    2408             :          END IF
    2409             : 
    2410          18 :          CALL dbt_destroy(t_3c_0)
    2411          18 :          CALL dbt_destroy(t_3c_1)
    2412          18 :          CALL dbt_destroy(t_3c_2)
    2413          18 :          CALL dbt_destroy(t_3c_3)
    2414          18 :          CALL dbt_destroy(t_3c_4)
    2415          18 :          CALL dbt_destroy(t_3c_5)
    2416          18 :          CALL dbt_destroy(t_3c_6)
    2417          18 :          CALL dbt_destroy(t_3c_work)
    2418          18 :          CALL dbt_destroy(t_3c_RI_ctr)
    2419          18 :          CALL dbt_destroy(t_3c_mo_ri_ao)
    2420          18 :          CALL dbt_destroy(t_3c_mo_ri_mo)
    2421          18 :          CALL dbt_destroy(t_3c_ri_mo_mo)
    2422          18 :          CALL dbt_destroy(t_3c_ri_mo_mo_fit)
    2423          18 :          CALL dbt_destroy(t_mo_coeff)
    2424          18 :          CALL dbt_destroy(t_mo_cpy)
    2425          72 :          DO i_xyz = 1, 3
    2426          54 :             CALL dbt_destroy(t_2c_MO_AO(i_xyz))
    2427          54 :             CALL dbt_destroy(t_2c_MO_AO_ctr(i_xyz))
    2428          54 :             CALL dbt_destroy(t_3c_der_RI_ctr_1(i_xyz))
    2429          54 :             CALL dbt_destroy(t_3c_der_AO_ctr_1(i_xyz))
    2430          72 :             CALL dbt_destroy(t_3c_der_RI_ctr_2(i_xyz))
    2431             :          END DO
    2432          86 :          DEALLOCATE (batch_ranges, batch_start, batch_end)
    2433             :       END DO !ispin
    2434             : 
    2435             :       ! Clean-up
    2436          14 :       CALL dbt_pgrid_destroy(pgrid_1)
    2437          14 :       CALL dbt_pgrid_destroy(pgrid_2)
    2438          14 :       CALL dbt_destroy(t_3c_desymm)
    2439          14 :       CALL dbt_destroy(t_2c_RI)
    2440          14 :       CALL dbt_destroy(t_2c_RI_PQ)
    2441          14 :       IF (.NOT. ri_data%same_op) THEN
    2442           4 :          CALL dbt_destroy(t_2c_RI_met)
    2443           4 :          CALL dbt_destroy(t_2c_RI_inv)
    2444             :       END IF
    2445          56 :       DO i_xyz = 1, 3
    2446          42 :          CALL dbt_destroy(t_3c_der_AO(i_xyz))
    2447          42 :          CALL dbt_destroy(t_3c_der_RI(i_xyz))
    2448          42 :          CALL dbt_destroy(t_2c_der_RI(i_xyz))
    2449          56 :          IF (.NOT. ri_data%same_op) CALL dbt_destroy(t_2c_der_metric(i_xyz))
    2450             :       END DO
    2451          14 :       CALL dbt_copy(ri_data%t_3c_int_ctr_2(1, 1), ri_data%t_3c_int_ctr_1(1, 1))
    2452             : 
    2453          14 :       CALL para_env%sync()
    2454          14 :       t2 = m_walltime()
    2455             : 
    2456          14 :       ri_data%dbcsr_time = ri_data%dbcsr_time + t2 - t1
    2457             : 
    2458         476 :    END SUBROUTINE hfx_ri_forces_mo
    2459             : 
    2460             : ! **************************************************************************************************
    2461             : !> \brief New sparser implementation
    2462             : !> \param qs_env ...
    2463             : !> \param ri_data ...
    2464             : !> \param nspins ...
    2465             : !> \param hf_fraction ...
    2466             : !> \param rho_ao ...
    2467             : !> \param rho_ao_resp ...
    2468             : !> \param use_virial ...
    2469             : !> \param resp_only ...
    2470             : !> \param rescale_factor ...
    2471             : ! **************************************************************************************************
    2472         116 :    SUBROUTINE hfx_ri_forces_Pmat(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, &
    2473             :                                  use_virial, resp_only, rescale_factor)
    2474             : 
    2475             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2476             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    2477             :       INTEGER, INTENT(IN)                                :: nspins
    2478             :       REAL(dp), INTENT(IN)                               :: hf_fraction
    2479             :       TYPE(dbcsr_p_type), DIMENSION(:, :)                :: rho_ao
    2480             :       TYPE(dbcsr_p_type), DIMENSION(:), OPTIONAL         :: rho_ao_resp
    2481             :       LOGICAL, INTENT(IN), OPTIONAL                      :: use_virial, resp_only
    2482             :       REAL(dp), INTENT(IN), OPTIONAL                     :: rescale_factor
    2483             : 
    2484             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_forces_Pmat'
    2485             : 
    2486             :       INTEGER                                            :: dummy_int, handle, i_mem, i_spin, i_xyz, &
    2487             :                                                             ibasis, j_mem, j_xyz, k_mem, k_xyz, &
    2488             :                                                             n_mem, n_mem_RI, natom, nkind, &
    2489             :                                                             unit_nr_dbcsr
    2490             :       INTEGER(int_8)                                     :: nflop
    2491         116 :       INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_of_kind, batch_end, batch_end_RI, batch_ranges, &
    2492         116 :          batch_ranges_RI, batch_start, batch_start_RI, dist1, dist2, dist3, idx_to_at_AO, &
    2493         116 :          idx_to_at_RI, kind_of
    2494             :       INTEGER, DIMENSION(2, 1)                           :: ibounds, jbounds, kbounds
    2495             :       INTEGER, DIMENSION(2, 2)                           :: ijbounds
    2496             :       INTEGER, DIMENSION(2, 3)                           :: bounds_cpy
    2497         232 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
    2498             :       LOGICAL                                            :: do_resp, resp_only_prv, use_virial_prv
    2499             :       REAL(dp)                                           :: pref, spin_fac, t1, t2
    2500             :       REAL(dp), DIMENSION(3, 3)                          :: work_virial
    2501         116 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    2502         116 :       TYPE(block_ind_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_der_AO_ind, t_3c_der_RI_ind
    2503             :       TYPE(cell_type), POINTER                           :: cell
    2504             :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
    2505             :       TYPE(dbcsr_type)                                   :: dbcsr_tmp, virial_trace
    2506        6728 :       TYPE(dbt_type) :: rho_ao_1, rho_ao_2, t_2c_RI, t_2c_RI_tmp, t_2c_tmp, t_2c_virial, t_3c_1, &
    2507        7656 :          t_3c_2, t_3c_3, t_3c_4, t_3c_5, t_3c_ao_ri_ao, t_3c_help_1, t_3c_help_2, t_3c_int, &
    2508        5684 :          t_3c_int_2, t_3c_ri_ao_ao, t_3c_sparse, t_3c_virial, t_R, t_SVS
    2509         116 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:)          :: t_2c_der_metric, t_2c_der_RI, &
    2510         116 :                                                             t_3c_der_AO, t_3c_der_RI
    2511             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2512             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
    2513         116 :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
    2514             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
    2515             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    2516         116 :          DIMENSION(:, :)                                 :: t_3c_der_AO_comp, t_3c_der_RI_comp
    2517             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2518             :       TYPE(neighbor_list_3c_type)                        :: nl_3c
    2519             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2520         116 :          POINTER                                         :: nl_2c_met, nl_2c_pot
    2521         116 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    2522         116 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    2523         116 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2524             :       TYPE(virial_type), POINTER                         :: virial
    2525             : 
    2526             :       !The idea is the following: we need to compute the gradients
    2527             :       ! d/dx [P_ab P_cd (acP) S^-1_PQ (Q|R) S^-1_RS (Sbd)]
    2528             :       ! Which we do in a few steps:
    2529             :       ! 1) Contract the density matrices with the 3c integrals: M_acS = P_ab P_cd (Sbd)
    2530             :       ! 2) Calculate the 3c contributions: d/dx (acP) [S^-1_PQ (Q|R) S^-1_RS M_acS]
    2531             :       !    For maximum perf, we first multiply all 2c matrices together, than contract with retain_sparsity
    2532             :       ! 3) Contract the 3c integrals and the M tensor together in order to only work with 2c quantities:
    2533             :       !    R_PS = (acP) M_acS
    2534             :       ! 4) From there, we can easily calculate the 2c contributions to the force:
    2535             :       !    Potential: [S^-1*R*S^-1]_QR d/dx (Q|R)
    2536             :       !    Metric:    [S^-1*R*S^-1*(Q|R)*S^-1]_UV d/dx S_UV
    2537             : 
    2538         116 :       NULLIFY (particle_set, virial, cell, force, atomic_kind_set, nl_2c_pot, nl_2c_met)
    2539         116 :       NULLIFY (orb_basis, ri_basis, qs_kind_set, particle_set, dft_control, dbcsr_dist)
    2540             : 
    2541         116 :       use_virial_prv = .FALSE.
    2542         116 :       IF (PRESENT(use_virial)) use_virial_prv = use_virial
    2543             : 
    2544         116 :       do_resp = .FALSE.
    2545         116 :       IF (PRESENT(rho_ao_resp)) THEN
    2546          30 :          IF (ASSOCIATED(rho_ao_resp(1)%matrix)) do_resp = .TRUE.
    2547             :       END IF
    2548             : 
    2549         116 :       resp_only_prv = .FALSE.
    2550         116 :       IF (PRESENT(resp_only)) resp_only_prv = resp_only
    2551             : 
    2552         116 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
    2553             : 
    2554             :       CALL get_qs_env(qs_env, natom=natom, particle_set=particle_set, nkind=nkind, &
    2555             :                       atomic_kind_set=atomic_kind_set, virial=virial, &
    2556             :                       cell=cell, force=force, para_env=para_env, dft_control=dft_control, &
    2557         116 :                       qs_kind_set=qs_kind_set, dbcsr_dist=dbcsr_dist)
    2558             : 
    2559             :       CALL create_3c_tensor(t_3c_ao_ri_ao, dist1, dist2, dist3, ri_data%pgrid_1, &
    2560             :                             ri_data%bsizes_AO_split, ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, &
    2561         116 :                             [1, 2], [3], name="(AO RI | AO)")
    2562         116 :       DEALLOCATE (dist1, dist2, dist3)
    2563             : 
    2564             :       CALL create_3c_tensor(t_3c_ri_ao_ao, dist1, dist2, dist3, ri_data%pgrid_2, &
    2565             :                             ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    2566         116 :                             [1], [2, 3], name="(RI | AO AO)")
    2567         116 :       DEALLOCATE (dist1, dist2, dist3)
    2568             : 
    2569        1032 :       ALLOCATE (basis_set_RI(nkind), basis_set_AO(nkind))
    2570         116 :       CALL basis_set_list_setup(basis_set_RI, ri_data%ri_basis_type, qs_kind_set)
    2571         116 :       CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_RI)
    2572         116 :       CALL basis_set_list_setup(basis_set_AO, ri_data%orb_basis_type, qs_kind_set)
    2573         116 :       CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_AO)
    2574             : 
    2575         342 :       DO ibasis = 1, SIZE(basis_set_AO)
    2576         226 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
    2577         226 :          CALL init_interaction_radii_orb_basis(orb_basis, ri_data%eps_pgf_orb)
    2578         226 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
    2579         342 :          CALL init_interaction_radii_orb_basis(ri_basis, ri_data%eps_pgf_orb)
    2580             :       END DO
    2581             : 
    2582             :       ! Precompute the derivatives
    2583        5684 :       ALLOCATE (t_2c_der_metric(3), t_2c_der_RI(3), t_3c_der_AO(3), t_3c_der_RI(3))
    2584         116 :       IF (use_virial) THEN
    2585             :          CALL precalc_derivatives(t_3c_der_RI_comp, t_3c_der_AO_comp, t_3c_der_RI_ind, t_3c_der_AO_ind, &
    2586             :                                   t_2c_der_RI, t_2c_der_metric, t_3c_ri_ao_ao, &
    2587             :                                   basis_set_AO, basis_set_RI, ri_data, qs_env, &
    2588             :                                   nl_2c_pot=nl_2c_pot, nl_2c_met=nl_2c_met, &
    2589           4 :                                   nl_3c_out=nl_3c, t_3c_virial=t_3c_virial)
    2590             : 
    2591          20 :          ALLOCATE (col_bsize(natom), row_bsize(natom))
    2592          16 :          col_bsize(:) = ri_data%bsizes_RI
    2593          16 :          row_bsize(:) = ri_data%bsizes_RI
    2594           4 :          CALL dbcsr_create(virial_trace, "virial_trace", dbcsr_dist, dbcsr_type_no_symmetry, row_bsize, col_bsize)
    2595           4 :          CALL dbt_create(virial_trace, t_2c_virial)
    2596           4 :          DEALLOCATE (col_bsize, row_bsize)
    2597             :       ELSE
    2598             :          CALL precalc_derivatives(t_3c_der_RI_comp, t_3c_der_AO_comp, t_3c_der_RI_ind, t_3c_der_AO_ind, &
    2599             :                                   t_2c_der_RI, t_2c_der_metric, t_3c_ri_ao_ao, &
    2600         112 :                                   basis_set_AO, basis_set_RI, ri_data, qs_env)
    2601             :       END IF
    2602             : 
    2603             :       ! Keep track of derivative sparsity to be able to use retain_sparsity in contraction
    2604         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_sparse)
    2605         464 :       DO i_xyz = 1, 3
    2606        1490 :          DO i_mem = 1, SIZE(t_3c_der_RI_comp, 1)
    2607             :             CALL decompress_tensor(t_3c_ri_ao_ao, t_3c_der_RI_ind(i_mem, i_xyz)%ind, &
    2608        1026 :                                    t_3c_der_RI_comp(i_mem, i_xyz), ri_data%filter_eps_storage)
    2609        1026 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_sparse, summation=.TRUE., move_data=.TRUE.)
    2610             : 
    2611             :             CALL decompress_tensor(t_3c_ri_ao_ao, t_3c_der_AO_ind(i_mem, i_xyz)%ind, &
    2612        1026 :                                    t_3c_der_AO_comp(i_mem, i_xyz), ri_data%filter_eps_storage)
    2613        1026 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_sparse, summation=.TRUE.)
    2614        1374 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_sparse, order=[1, 3, 2], summation=.TRUE., move_data=.TRUE.)
    2615             :          END DO
    2616             :       END DO
    2617             : 
    2618         464 :       DO i_xyz = 1, 3
    2619         348 :          CALL dbt_create(t_3c_ri_ao_ao, t_3c_der_RI(i_xyz))
    2620         464 :          CALL dbt_create(t_3c_ri_ao_ao, t_3c_der_AO(i_xyz))
    2621             :       END DO
    2622             : 
    2623             :       ! Some utilities
    2624         116 :       spin_fac = 0.5_dp
    2625         116 :       IF (nspins == 2) spin_fac = 1.0_dp
    2626         116 :       IF (PRESENT(rescale_factor)) spin_fac = spin_fac*rescale_factor
    2627             : 
    2628         348 :       ALLOCATE (idx_to_at_RI(SIZE(ri_data%bsizes_RI_split)))
    2629         116 :       CALL get_idx_to_atom(idx_to_at_RI, ri_data%bsizes_RI_split, ri_data%bsizes_RI)
    2630             : 
    2631         348 :       ALLOCATE (idx_to_at_AO(SIZE(ri_data%bsizes_AO_split)))
    2632         116 :       CALL get_idx_to_atom(idx_to_at_AO, ri_data%bsizes_AO_split, ri_data%bsizes_AO)
    2633             : 
    2634         116 :       CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of, atom_of_kind=atom_of_kind)
    2635             : 
    2636             :       ! Go over batches of the 2 AO indices to save memory
    2637         116 :       n_mem = ri_data%n_mem
    2638         580 :       ALLOCATE (batch_start(n_mem), batch_end(n_mem))
    2639         464 :       batch_start(:) = ri_data%starts_array_mem(:)
    2640         464 :       batch_end(:) = ri_data%ends_array_mem(:)
    2641             : 
    2642         348 :       ALLOCATE (batch_ranges(n_mem + 1))
    2643         464 :       batch_ranges(:n_mem) = ri_data%starts_array_mem_block(:)
    2644         116 :       batch_ranges(n_mem + 1) = ri_data%ends_array_mem_block(n_mem) + 1
    2645             : 
    2646         116 :       n_mem_RI = ri_data%n_mem_RI
    2647         580 :       ALLOCATE (batch_start_RI(n_mem_RI), batch_end_RI(n_mem_RI))
    2648         464 :       batch_start_RI(:) = ri_data%starts_array_RI_mem(:)
    2649         464 :       batch_end_RI(:) = ri_data%ends_array_RI_mem(:)
    2650             : 
    2651         348 :       ALLOCATE (batch_ranges_RI(n_mem_RI + 1))
    2652         464 :       batch_ranges_RI(:n_mem_RI) = ri_data%starts_array_RI_mem_block(:)
    2653         116 :       batch_ranges_RI(n_mem_RI + 1) = ri_data%ends_array_RI_mem_block(n_mem_RI) + 1
    2654             : 
    2655             :       ! Pre-create all the needed tensors
    2656             :       CALL create_2c_tensor(rho_ao_1, dist1, dist2, ri_data%pgrid_2d, &
    2657             :                             ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    2658         116 :                             name="(AO | AO)")
    2659         116 :       DEALLOCATE (dist1, dist2)
    2660         116 :       CALL dbt_create(rho_ao_1, rho_ao_2)
    2661             : 
    2662             :       CALL create_2c_tensor(t_2c_RI, dist1, dist2, ri_data%pgrid_2d, &
    2663             :                             ri_data%bsizes_RI_split, ri_data%bsizes_RI_split, name="(RI | RI)")
    2664         116 :       DEALLOCATE (dist1, dist2)
    2665         116 :       CALL dbt_create(t_2c_RI, t_SVS)
    2666         116 :       CALL dbt_create(t_2c_RI, t_R)
    2667         116 :       CALL dbt_create(t_2c_RI, t_2c_RI_tmp)
    2668             : 
    2669         116 :       CALL dbt_create(t_3c_ao_ri_ao, t_3c_1)
    2670         116 :       CALL dbt_create(t_3c_ao_ri_ao, t_3c_2)
    2671         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_3)
    2672         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_4)
    2673         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_5)
    2674         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_help_1)
    2675         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_help_2)
    2676             : 
    2677         116 :       CALL dbt_create(t_3c_ao_ri_ao, t_3c_int)
    2678         116 :       CALL dbt_copy(ri_data%t_3c_int_ctr_2(1, 1), t_3c_int)
    2679             : 
    2680         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_int_2)
    2681             : 
    2682         116 :       CALL para_env%sync()
    2683         116 :       t1 = m_walltime()
    2684             : 
    2685             :       !Pre-calculate the necessary 2-center quantities
    2686         116 :       IF (.NOT. ri_data%same_op) THEN
    2687             :          !S^-1 * V * S^-1
    2688             :          CALL dbt_contract(1.0_dp, ri_data%t_2c_inv(1, 1), ri_data%t_2c_pot(1, 1), 0.0_dp, t_2c_RI, &
    2689             :                            contract_1=[2], notcontract_1=[1], &
    2690             :                            contract_2=[1], notcontract_2=[2], &
    2691             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2692          28 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    2693          28 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2694             : 
    2695             :          CALL dbt_contract(1.0_dp, t_2c_RI, ri_data%t_2c_inv(1, 1), 0.0_dp, t_SVS, &
    2696             :                            contract_1=[2], notcontract_1=[1], &
    2697             :                            contract_2=[1], notcontract_2=[2], &
    2698             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2699          28 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    2700          28 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2701             :       ELSE
    2702             :          ! Simply V^-1
    2703          88 :          CALL dbt_copy(ri_data%t_2c_inv(1, 1), t_SVS)
    2704             :       END IF
    2705             : 
    2706         116 :       CALL dbt_batched_contract_init(t_3c_int, batch_range_1=batch_ranges, batch_range_3=batch_ranges)
    2707             :       CALL dbt_batched_contract_init(t_3c_int_2, batch_range_1=batch_ranges_RI, &
    2708         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2709         116 :       CALL dbt_batched_contract_init(t_3c_1, batch_range_1=batch_ranges, batch_range_3=batch_ranges)
    2710         116 :       CALL dbt_batched_contract_init(t_3c_2, batch_range_1=batch_ranges, batch_range_3=batch_ranges)
    2711             :       CALL dbt_batched_contract_init(t_3c_3, batch_range_1=batch_ranges_RI, &
    2712         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2713             :       CALL dbt_batched_contract_init(t_3c_4, batch_range_1=batch_ranges_RI, &
    2714         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2715             :       CALL dbt_batched_contract_init(t_3c_5, batch_range_1=batch_ranges_RI, &
    2716         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2717             :       CALL dbt_batched_contract_init(t_3c_sparse, batch_range_1=batch_ranges_RI, &
    2718         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2719             : 
    2720         242 :       DO i_spin = 1, nspins
    2721             : 
    2722             :          !Prepare Pmat in tensor format
    2723         126 :          CALL dbt_create(rho_ao(i_spin, 1)%matrix, t_2c_tmp)
    2724         126 :          CALL dbt_copy_matrix_to_tensor(rho_ao(i_spin, 1)%matrix, t_2c_tmp)
    2725         126 :          CALL dbt_copy(t_2c_tmp, rho_ao_1, move_data=.TRUE.)
    2726         126 :          CALL dbt_destroy(t_2c_tmp)
    2727             : 
    2728         126 :          IF (.NOT. do_resp) THEN
    2729          94 :             CALL dbt_copy(rho_ao_1, rho_ao_2)
    2730          32 :          ELSE IF (do_resp .AND. resp_only_prv) THEN
    2731             : 
    2732          24 :             CALL dbt_create(rho_ao_resp(i_spin)%matrix, t_2c_tmp)
    2733          24 :             CALL dbt_copy_matrix_to_tensor(rho_ao_resp(i_spin)%matrix, t_2c_tmp)
    2734          24 :             CALL dbt_copy(t_2c_tmp, rho_ao_2)
    2735             :             !symmetry allows to take 2*P_resp rasther than explicitely take all cross products
    2736          24 :             CALL dbt_copy(t_2c_tmp, rho_ao_2, summation=.TRUE., move_data=.TRUE.)
    2737          24 :             CALL dbt_destroy(t_2c_tmp)
    2738             :          ELSE
    2739             : 
    2740             :             !if not resp_only, need P-P_resp and P+P_resp
    2741           8 :             CALL dbt_copy(rho_ao_1, rho_ao_2)
    2742           8 :             CALL dbcsr_create(dbcsr_tmp, template=rho_ao_resp(i_spin)%matrix)
    2743           8 :             CALL dbcsr_add(dbcsr_tmp, rho_ao_resp(i_spin)%matrix, 0.0_dp, -1.0_dp)
    2744           8 :             CALL dbt_create(dbcsr_tmp, t_2c_tmp)
    2745           8 :             CALL dbt_copy_matrix_to_tensor(dbcsr_tmp, t_2c_tmp)
    2746           8 :             CALL dbt_copy(t_2c_tmp, rho_ao_1, summation=.TRUE., move_data=.TRUE.)
    2747           8 :             CALL dbcsr_release(dbcsr_tmp)
    2748             : 
    2749           8 :             CALL dbt_copy_matrix_to_tensor(rho_ao_resp(i_spin)%matrix, t_2c_tmp)
    2750           8 :             CALL dbt_copy(t_2c_tmp, rho_ao_2, summation=.TRUE., move_data=.TRUE.)
    2751           8 :             CALL dbt_destroy(t_2c_tmp)
    2752             : 
    2753             :          END IF
    2754         126 :          work_virial = 0.0_dp
    2755             : 
    2756         126 :          CALL timeset(routineN//"_3c", handle)
    2757             :          !Start looping of the batches
    2758         504 :          DO i_mem = 1, n_mem
    2759        1134 :             ibounds(:, 1) = [batch_start(i_mem), batch_end(i_mem)]
    2760             : 
    2761         378 :             CALL dbt_batched_contract_init(rho_ao_1)
    2762             :             CALL dbt_contract(1.0_dp, rho_ao_1, t_3c_int, 0.0_dp, t_3c_1, &
    2763             :                               contract_1=[1], notcontract_1=[2], &
    2764             :                               contract_2=[3], notcontract_2=[1, 2], &
    2765             :                               map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2766         378 :                               bounds_2=ibounds, unit_nr=unit_nr_dbcsr, flop=nflop)
    2767         378 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2768         378 :             CALL dbt_batched_contract_finalize(rho_ao_1)
    2769             : 
    2770         378 :             CALL dbt_copy(t_3c_1, t_3c_2, order=[3, 2, 1], move_data=.TRUE.)
    2771             : 
    2772        1512 :             DO j_mem = 1, n_mem
    2773        3402 :                jbounds(:, 1) = [batch_start(j_mem), batch_end(j_mem)]
    2774             : 
    2775        1134 :                CALL dbt_batched_contract_init(rho_ao_2)
    2776             :                CALL dbt_contract(1.0_dp, rho_ao_2, t_3c_2, 0.0_dp, t_3c_1, &
    2777             :                                  contract_1=[1], notcontract_1=[2], &
    2778             :                                  contract_2=[3], notcontract_2=[1, 2], &
    2779             :                                  map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2780        1134 :                                  bounds_2=jbounds, unit_nr=unit_nr_dbcsr, flop=nflop)
    2781        1134 :                ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2782        1134 :                CALL dbt_batched_contract_finalize(rho_ao_2)
    2783             : 
    2784        3402 :                bounds_cpy(:, 1) = [batch_start(i_mem), batch_end(i_mem)]
    2785        6840 :                bounds_cpy(:, 2) = [1, SUM(ri_data%bsizes_RI)]
    2786        3402 :                bounds_cpy(:, 3) = [batch_start(j_mem), batch_end(j_mem)]
    2787        1134 :                CALL dbt_copy(t_3c_int, t_3c_int_2, order=[2, 1, 3], bounds=bounds_cpy)
    2788        1134 :                CALL dbt_copy(t_3c_1, t_3c_3, order=[2, 1, 3], move_data=.TRUE.)
    2789             : 
    2790        4914 :                DO k_mem = 1, n_mem_RI
    2791       10206 :                   kbounds(:, 1) = [batch_start_RI(k_mem), batch_end_RI(k_mem)]
    2792             : 
    2793       10206 :                   bounds_cpy(:, 1) = [batch_start_RI(k_mem), batch_end_RI(k_mem)]
    2794       10206 :                   bounds_cpy(:, 2) = [batch_start(i_mem), batch_end(i_mem)]
    2795       10206 :                   bounds_cpy(:, 3) = [batch_start(j_mem), batch_end(j_mem)]
    2796        3402 :                   CALL dbt_copy(t_3c_sparse, t_3c_4, bounds=bounds_cpy)
    2797             : 
    2798             :                   !Contract with the 2-center product S^-1 * V * S^-1 while keeping sparsity of derivatives
    2799        3402 :                   CALL dbt_batched_contract_init(t_SVS)
    2800             :                   CALL dbt_contract(1.0_dp, t_SVS, t_3c_3, 0.0_dp, t_3c_4, &
    2801             :                                     contract_1=[2], notcontract_1=[1], &
    2802             :                                     contract_2=[1], notcontract_2=[2, 3], &
    2803             :                                     map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps, &
    2804        3402 :                                     retain_sparsity=.TRUE., unit_nr=unit_nr_dbcsr, flop=nflop)
    2805        3402 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2806        3402 :                   CALL dbt_batched_contract_finalize(t_SVS)
    2807             : 
    2808        3402 :                   CALL dbt_copy(t_3c_4, t_3c_5, summation=.TRUE., move_data=.TRUE.)
    2809             : 
    2810       10206 :                   ijbounds(:, 1) = ibounds(:, 1)
    2811       10206 :                   ijbounds(:, 2) = jbounds(:, 1)
    2812             : 
    2813             :                   !Contract R_PS = (acP) M_acS
    2814        3402 :                   CALL dbt_batched_contract_init(t_R)
    2815             :                   CALL dbt_contract(1.0_dp, t_3c_int_2, t_3c_3, 1.0_dp, t_R, &
    2816             :                                     contract_1=[2, 3], notcontract_1=[1], &
    2817             :                                     contract_2=[2, 3], notcontract_2=[1], &
    2818             :                                     map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2819             :                                     bounds_1=ijbounds, bounds_3=kbounds, &
    2820        3402 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2821        3402 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2822        4536 :                   CALL dbt_batched_contract_finalize(t_R)
    2823             : 
    2824             :                END DO !k_mem
    2825             :             END DO !j_mem
    2826             : 
    2827         378 :             CALL dbt_copy(t_3c_5, t_3c_help_1, move_data=.TRUE.)
    2828             : 
    2829             :             !The force from the 3c derivatives
    2830         378 :             pref = -0.5_dp*2.0_dp*hf_fraction*spin_fac
    2831             : 
    2832        1476 :             DO k_mem = 1, SIZE(t_3c_der_RI_comp, 1)
    2833        4392 :                DO i_xyz = 1, 3
    2834        3294 :                   CALL dbt_clear(t_3c_der_RI(i_xyz))
    2835             :                   CALL decompress_tensor(t_3c_der_RI(i_xyz), t_3c_der_RI_ind(k_mem, i_xyz)%ind, &
    2836        4392 :                                          t_3c_der_RI_comp(k_mem, i_xyz), ri_data%filter_eps_storage)
    2837             :                END DO
    2838             :                CALL get_force_from_3c_trace(force, t_3c_help_1, t_3c_der_RI, atom_of_kind, kind_of, &
    2839        1476 :                                             idx_to_at_RI, pref)
    2840             :             END DO
    2841             : 
    2842         378 :             pref = -0.5_dp*4.0_dp*hf_fraction*spin_fac
    2843         378 :             IF (do_resp) THEN
    2844          96 :                pref = 0.5_dp*pref
    2845          96 :                CALL dbt_copy(t_3c_help_1, t_3c_help_2, order=[1, 3, 2])
    2846             :             END IF
    2847             : 
    2848        1476 :             DO k_mem = 1, SIZE(t_3c_der_AO_comp, 1)
    2849        4392 :                DO i_xyz = 1, 3
    2850        3294 :                   CALL dbt_clear(t_3c_der_AO(i_xyz))
    2851             :                   CALL decompress_tensor(t_3c_der_AO(i_xyz), t_3c_der_AO_ind(k_mem, i_xyz)%ind, &
    2852        4392 :                                          t_3c_der_AO_comp(k_mem, i_xyz), ri_data%filter_eps_storage)
    2853             :                END DO
    2854             :                CALL get_force_from_3c_trace(force, t_3c_help_1, t_3c_der_AO, atom_of_kind, kind_of, &
    2855        1098 :                                             idx_to_at_AO, pref, deriv_dim=2)
    2856             : 
    2857        1476 :                IF (do_resp) THEN
    2858             :                   CALL get_force_from_3c_trace(force, t_3c_help_2, t_3c_der_AO, atom_of_kind, kind_of, &
    2859         276 :                                                idx_to_at_AO, pref, deriv_dim=2)
    2860             :                END IF
    2861             :             END DO
    2862             : 
    2863             :             !The 3c virial contribution. Note: only fraction of integrals correspondig to i_mem calculated
    2864         378 :             IF (use_virial) THEN
    2865          12 :                pref = -0.5_dp*2.0_dp*hf_fraction*spin_fac
    2866          12 :                CALL dbt_copy(t_3c_help_1, t_3c_virial, move_data=.TRUE.)
    2867             :                CALL calc_3c_virial(work_virial, t_3c_virial, pref, qs_env, nl_3c, basis_set_RI, &
    2868             :                                    basis_set_AO, basis_set_AO, ri_data%ri_metric, &
    2869          12 :                                    der_eps=ri_data%eps_schwarz_forces, op_pos=1)
    2870             : 
    2871          12 :                CALL dbt_clear(t_3c_virial)
    2872             :             END IF
    2873             : 
    2874         378 :             CALL dbt_clear(t_3c_help_1)
    2875         504 :             CALL dbt_clear(t_3c_help_2)
    2876             :          END DO !i_mem
    2877         126 :          CALL timestop(handle)
    2878             : 
    2879         126 :          CALL timeset(routineN//"_2c", handle)
    2880             :          !Now we deal with all the 2-center quantities
    2881             :          !Calculate S^-1 * R * S^-1
    2882             :          CALL dbt_contract(1.0_dp, ri_data%t_2c_inv(1, 1), t_R, 0.0_dp, t_2c_RI_tmp, &
    2883             :                            contract_1=[2], notcontract_1=[1], &
    2884             :                            contract_2=[1], notcontract_2=[2], &
    2885             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2886         126 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    2887         126 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2888             : 
    2889             :          CALL dbt_contract(1.0_dp, t_2c_RI_tmp, ri_data%t_2c_inv(1, 1), 0.0_dp, t_2c_RI, &
    2890             :                            contract_1=[2], notcontract_1=[1], &
    2891             :                            contract_2=[1], notcontract_2=[2], &
    2892             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2893         126 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    2894         126 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2895             : 
    2896             :          !Calculate the potential contribution to the force: [S^-1*R*S^-1]_QR d/dx (Q|R)
    2897         126 :          pref = 0.5_dp*hf_fraction*spin_fac
    2898         126 :          IF (.NOT. ri_data%same_op) pref = -pref
    2899         126 :          CALL get_2c_der_force(force, t_2c_RI, t_2c_der_RI, atom_of_kind, kind_of, idx_to_at_RI, pref)
    2900             : 
    2901             :          !Calculate the contribution to the virial on the fly
    2902         126 :          IF (use_virial_prv) THEN
    2903           4 :             CALL dbt_copy(t_2c_RI, t_2c_virial)
    2904           4 :             CALL dbt_copy_tensor_to_matrix(t_2c_virial, virial_trace)
    2905             :             CALL calc_2c_virial(work_virial, virial_trace, pref, qs_env, nl_2c_pot, &
    2906           4 :                                 basis_set_RI, basis_set_RI, ri_data%hfx_pot)
    2907             :          END IF
    2908             : 
    2909             :          !And that from the metric: [S^-1*R*S^-1*(Q|R)*S^-1]_UV d/dx S_UV
    2910         126 :          IF (.NOT. ri_data%same_op) THEN
    2911             :             CALL dbt_contract(1.0_dp, t_2c_RI, ri_data%t_2c_pot(1, 1), 0.0_dp, t_2c_RI_tmp, &
    2912             :                               contract_1=[2], notcontract_1=[1], &
    2913             :                               contract_2=[1], notcontract_2=[2], &
    2914             :                               map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2915          28 :                               unit_nr=unit_nr_dbcsr, flop=nflop)
    2916          28 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2917             : 
    2918             :             CALL dbt_contract(1.0_dp, t_2c_RI_tmp, ri_data%t_2c_inv(1, 1), 0.0_dp, t_2c_RI, &
    2919             :                               contract_1=[2], notcontract_1=[1], &
    2920             :                               contract_2=[1], notcontract_2=[2], &
    2921             :                               map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2922          28 :                               unit_nr=unit_nr_dbcsr, flop=nflop)
    2923          28 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2924             : 
    2925          28 :             pref = 0.5_dp*2.0_dp*hf_fraction*spin_fac
    2926          28 :             CALL get_2c_der_force(force, t_2c_RI, t_2c_der_metric, atom_of_kind, kind_of, idx_to_at_RI, pref)
    2927             : 
    2928          28 :             IF (use_virial_prv) THEN
    2929           0 :                CALL dbt_copy(t_2c_RI, t_2c_virial)
    2930           0 :                CALL dbt_copy_tensor_to_matrix(t_2c_virial, virial_trace)
    2931             :                CALL calc_2c_virial(work_virial, virial_trace, pref, qs_env, nl_2c_met, &
    2932           0 :                                    basis_set_RI, basis_set_RI, ri_data%ri_metric)
    2933             :             END IF
    2934             :          END IF
    2935         126 :          CALL dbt_clear(t_2c_RI)
    2936         126 :          CALL dbt_clear(t_2c_RI_tmp)
    2937         126 :          CALL dbt_clear(t_R)
    2938         126 :          CALL dbt_clear(t_3c_help_1)
    2939         126 :          CALL dbt_clear(t_3c_help_2)
    2940         126 :          CALL timestop(handle)
    2941             : 
    2942         494 :          IF (use_virial_prv) THEN
    2943          16 :             DO k_xyz = 1, 3
    2944          52 :                DO j_xyz = 1, 3
    2945         156 :                   DO i_xyz = 1, 3
    2946             :                      virial%pv_fock_4c(i_xyz, j_xyz) = virial%pv_fock_4c(i_xyz, j_xyz) &
    2947         144 :                                                        + work_virial(i_xyz, k_xyz)*cell%hmat(j_xyz, k_xyz)
    2948             :                   END DO
    2949             :                END DO
    2950             :             END DO
    2951             :          END IF
    2952             :       END DO !i_spin
    2953             : 
    2954         116 :       CALL dbt_batched_contract_finalize(t_3c_int)
    2955         116 :       CALL dbt_batched_contract_finalize(t_3c_int_2)
    2956         116 :       CALL dbt_batched_contract_finalize(t_3c_1)
    2957         116 :       CALL dbt_batched_contract_finalize(t_3c_2)
    2958         116 :       CALL dbt_batched_contract_finalize(t_3c_3)
    2959         116 :       CALL dbt_batched_contract_finalize(t_3c_4)
    2960         116 :       CALL dbt_batched_contract_finalize(t_3c_5)
    2961         116 :       CALL dbt_batched_contract_finalize(t_3c_sparse)
    2962             : 
    2963         116 :       CALL para_env%sync()
    2964         116 :       t2 = m_walltime()
    2965             : 
    2966         116 :       CALL dbt_copy(t_3c_int, ri_data%t_3c_int_ctr_2(1, 1), move_data=.TRUE.)
    2967             : 
    2968             :       !clean-up
    2969         116 :       CALL dbt_destroy(rho_ao_1)
    2970         116 :       CALL dbt_destroy(rho_ao_2)
    2971         116 :       CALL dbt_destroy(t_3c_ao_ri_ao)
    2972         116 :       CALL dbt_destroy(t_3c_ri_ao_ao)
    2973         116 :       CALL dbt_destroy(t_3c_int)
    2974         116 :       CALL dbt_destroy(t_3c_int_2)
    2975         116 :       CALL dbt_destroy(t_3c_1)
    2976         116 :       CALL dbt_destroy(t_3c_2)
    2977         116 :       CALL dbt_destroy(t_3c_3)
    2978         116 :       CALL dbt_destroy(t_3c_4)
    2979         116 :       CALL dbt_destroy(t_3c_5)
    2980         116 :       CALL dbt_destroy(t_3c_help_1)
    2981         116 :       CALL dbt_destroy(t_3c_help_2)
    2982         116 :       CALL dbt_destroy(t_3c_sparse)
    2983         116 :       CALL dbt_destroy(t_SVS)
    2984         116 :       CALL dbt_destroy(t_R)
    2985         116 :       CALL dbt_destroy(t_2c_RI)
    2986         116 :       CALL dbt_destroy(t_2c_RI_tmp)
    2987             : 
    2988         464 :       DO i_xyz = 1, 3
    2989         348 :          CALL dbt_destroy(t_3c_der_RI(i_xyz))
    2990         348 :          CALL dbt_destroy(t_3c_der_AO(i_xyz))
    2991         348 :          CALL dbt_destroy(t_2c_der_RI(i_xyz))
    2992         464 :          IF (.NOT. ri_data%same_op) CALL dbt_destroy(t_2c_der_metric(i_xyz))
    2993             :       END DO
    2994             : 
    2995         464 :       DO i_xyz = 1, 3
    2996        1490 :          DO i_mem = 1, SIZE(t_3c_der_AO_comp, 1)
    2997        1026 :             CALL dealloc_containers(t_3c_der_AO_comp(i_mem, i_xyz), dummy_int)
    2998        1374 :             CALL dealloc_containers(t_3c_der_RI_comp(i_mem, i_xyz), dummy_int)
    2999             :          END DO
    3000             :       END DO
    3001        2168 :       DEALLOCATE (t_3c_der_AO_ind, t_3c_der_RI_ind)
    3002             : 
    3003         342 :       DO ibasis = 1, SIZE(basis_set_AO)
    3004         226 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
    3005         226 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
    3006         226 :          CALL init_interaction_radii_orb_basis(orb_basis, dft_control%qs_control%eps_pgf_orb)
    3007         342 :          CALL init_interaction_radii_orb_basis(ri_basis, dft_control%qs_control%eps_pgf_orb)
    3008             :       END DO
    3009             : 
    3010         116 :       IF (use_virial) THEN
    3011           4 :          CALL release_neighbor_list_sets(nl_2c_met)
    3012           4 :          CALL release_neighbor_list_sets(nl_2c_pot)
    3013           4 :          CALL neighbor_list_3c_destroy(nl_3c)
    3014           4 :          CALL dbcsr_release(virial_trace)
    3015           4 :          CALL dbt_destroy(t_2c_virial)
    3016           4 :          CALL dbt_destroy(t_3c_virial)
    3017             :       END IF
    3018             : 
    3019        2552 :    END SUBROUTINE hfx_ri_forces_Pmat
    3020             : 
    3021             : ! **************************************************************************************************
    3022             : !> \brief the general routine that calls the relevant force code
    3023             : !> \param qs_env ...
    3024             : !> \param ri_data ...
    3025             : !> \param nspins ...
    3026             : !> \param hf_fraction ...
    3027             : !> \param rho_ao ...
    3028             : !> \param rho_ao_resp ...
    3029             : !> \param mos ...
    3030             : !> \param use_virial ...
    3031             : !> \param resp_only ...
    3032             : !> \param rescale_factor ...
    3033             : ! **************************************************************************************************
    3034         130 :    SUBROUTINE hfx_ri_update_forces(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, &
    3035         130 :                                    mos, use_virial, resp_only, rescale_factor)
    3036             : 
    3037             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3038             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    3039             :       INTEGER, INTENT(IN)                                :: nspins
    3040             :       REAL(KIND=dp), INTENT(IN)                          :: hf_fraction
    3041             :       TYPE(dbcsr_p_type), DIMENSION(:, :), OPTIONAL      :: rho_ao
    3042             :       TYPE(dbcsr_p_type), DIMENSION(:), OPTIONAL         :: rho_ao_resp
    3043             :       TYPE(mo_set_type), DIMENSION(:), INTENT(IN), &
    3044             :          OPTIONAL                                        :: mos
    3045             :       LOGICAL, INTENT(IN), OPTIONAL                      :: use_virial, resp_only
    3046             :       REAL(dp), INTENT(IN), OPTIONAL                     :: rescale_factor
    3047             : 
    3048             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_update_forces'
    3049             : 
    3050             :       INTEGER                                            :: handle, ispin
    3051             :       INTEGER, DIMENSION(2)                              :: homo
    3052         130 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
    3053             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    3054         390 :       TYPE(dbcsr_type), DIMENSION(2)                     :: mo_coeff_b
    3055             :       TYPE(dbcsr_type), POINTER                          :: mo_coeff_b_tmp
    3056             : 
    3057         130 :       CALL timeset(routineN, handle)
    3058             : 
    3059         144 :       SELECT CASE (ri_data%flavor)
    3060             :       CASE (ri_mo)
    3061             : 
    3062          32 :          DO ispin = 1, nspins
    3063          18 :             NULLIFY (mo_coeff_b_tmp)
    3064          18 :             CPASSERT(mos(ispin)%uniform_occupation)
    3065          18 :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, eigenvalues=mo_eigenvalues, mo_coeff_b=mo_coeff_b_tmp)
    3066             : 
    3067          18 :             IF (.NOT. mos(ispin)%use_mo_coeff_b) CALL copy_fm_to_dbcsr(mo_coeff, mo_coeff_b_tmp)
    3068          32 :             CALL dbcsr_copy(mo_coeff_b(ispin), mo_coeff_b_tmp)
    3069             :          END DO
    3070             : 
    3071          32 :          DO ispin = 1, nspins
    3072          18 :             CALL dbcsr_scale(mo_coeff_b(ispin), SQRT(mos(ispin)%maxocc))
    3073          14 :             homo(ispin) = mos(ispin)%homo
    3074             :          END DO
    3075             : 
    3076          14 :          CALL hfx_ri_forces_mo(qs_env, ri_data, nspins, hf_fraction, mo_coeff_b, use_virial)
    3077             : 
    3078             :       CASE (ri_pmat)
    3079             : 
    3080             :          CALL hfx_ri_forces_Pmat(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, use_virial, &
    3081         216 :                                  resp_only, rescale_factor)
    3082             :       END SELECT
    3083             : 
    3084         274 :       DO ispin = 1, nspins
    3085         274 :          CALL dbcsr_release(mo_coeff_b(ispin))
    3086             :       END DO
    3087             : 
    3088         130 :       CALL timestop(handle)
    3089             : 
    3090         130 :    END SUBROUTINE hfx_ri_update_forces
    3091             : 
    3092             : ! **************************************************************************************************
    3093             : !> \brief Calculate the derivatives tensors for the force, in a format fit for contractions
    3094             : !> \param t_3c_der_RI_comp compressed RI derivatives
    3095             : !> \param t_3c_der_AO_comp compressed AO derivatives
    3096             : !> \param t_3c_der_RI_ind ...
    3097             : !> \param t_3c_der_AO_ind ...
    3098             : !> \param t_2c_der_RI format based on standard atomic block sizes
    3099             : !> \param t_2c_der_metric format based on standard atomic block sizes
    3100             : !> \param ri_ao_ao_template ...
    3101             : !> \param basis_set_AO ...
    3102             : !> \param basis_set_RI ...
    3103             : !> \param ri_data ...
    3104             : !> \param qs_env ...
    3105             : !> \param nl_2c_pot ...
    3106             : !> \param nl_2c_met ...
    3107             : !> \param nl_3c_out ...
    3108             : !> \param t_3c_virial ...
    3109             : ! **************************************************************************************************
    3110        3120 :    SUBROUTINE precalc_derivatives(t_3c_der_RI_comp, t_3c_der_AO_comp, t_3c_der_RI_ind, t_3c_der_AO_ind, &
    3111             :                                   t_2c_der_RI, t_2c_der_metric, ri_ao_ao_template, &
    3112             :                                   basis_set_AO, basis_set_RI, ri_data, qs_env, &
    3113             :                                   nl_2c_pot, nl_2c_met, nl_3c_out, t_3c_virial)
    3114             : 
    3115             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    3116             :          DIMENSION(:, :), INTENT(INOUT)                  :: t_3c_der_RI_comp, t_3c_der_AO_comp
    3117             :       TYPE(block_ind_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_der_RI_ind, t_3c_der_AO_ind
    3118             :       TYPE(dbt_type), DIMENSION(3), INTENT(OUT)          :: t_2c_der_RI, t_2c_der_metric
    3119             :       TYPE(dbt_type), INTENT(INOUT)                      :: ri_ao_ao_template
    3120             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
    3121             :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
    3122             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    3123             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3124             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    3125             :          OPTIONAL, POINTER                               :: nl_2c_pot, nl_2c_met
    3126             :       TYPE(neighbor_list_3c_type), OPTIONAL              :: nl_3c_out
    3127             :       TYPE(dbt_type), INTENT(INOUT), OPTIONAL            :: t_3c_virial
    3128             : 
    3129             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'precalc_derivatives'
    3130             : 
    3131             :       INTEGER                                            :: handle, i_mem, i_xyz, n_mem, natom, &
    3132             :                                                             nkind, nthreads
    3133             :       INTEGER(int_8)                                     :: nze, nze_tot
    3134         130 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: dist1, dist2, dist_AO_1, dist_AO_2, &
    3135         130 :                                                             dist_RI, dummy_end, dummy_start, &
    3136         260 :                                                             end_blocks, start_blocks
    3137             :       INTEGER, DIMENSION(3)                              :: pcoord, pdims
    3138         260 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
    3139             :       REAL(dp)                                           :: compression_factor, memory, occ
    3140             :       TYPE(dbcsr_distribution_type)                      :: dbcsr_dist
    3141        1690 :       TYPE(dbcsr_type), DIMENSION(1, 3)                  :: t_2c_der_metric_prv, t_2c_der_RI_prv
    3142         390 :       TYPE(dbt_pgrid_type)                               :: pgrid
    3143        3380 :       TYPE(dbt_type)                                     :: t_2c_template, t_2c_tmp, t_3c_template
    3144         130 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :, :)    :: t_3c_der_AO_prv, t_3c_der_RI_prv
    3145             :       TYPE(dft_control_type), POINTER                    :: dft_control
    3146             :       TYPE(distribution_2d_type), POINTER                :: dist_2d
    3147             :       TYPE(distribution_3d_type)                         :: dist_3d, dist_3d_out
    3148         130 :       TYPE(mp_cart_type)                                 :: mp_comm_t3c, mp_comm_t3c_out
    3149             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    3150             :       TYPE(neighbor_list_3c_type)                        :: nl_3c
    3151             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    3152         130 :          POINTER                                         :: nl_2c
    3153         130 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3154         130 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3155             : 
    3156         130 :       NULLIFY (qs_kind_set, dist_2d, nl_2c, particle_set, dft_control, para_env)
    3157             : 
    3158         130 :       CALL timeset(routineN, handle)
    3159             : 
    3160             :       CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, distribution_2d=dist_2d, natom=natom, &
    3161         130 :                       particle_set=particle_set, dft_control=dft_control, para_env=para_env)
    3162             : 
    3163             :       !TODO: is such a pgrid correct?
    3164             :       !Dealing with the 3c derivatives
    3165         130 :       nthreads = 1
    3166         130 : !$    nthreads = omp_get_num_threads()
    3167         130 :       pdims = 0
    3168         520 :       CALL dbt_pgrid_create(para_env, pdims, pgrid, tensor_dims=[MAX(1, natom/(ri_data%n_mem*nthreads)), natom, natom])
    3169             : 
    3170             :       CALL create_3c_tensor(t_3c_template, dist_RI, dist_AO_1, dist_AO_2, pgrid, &
    3171             :                             ri_data%bsizes_RI, ri_data%bsizes_AO, ri_data%bsizes_AO, &
    3172             :                             map1=[1], map2=[2, 3], &
    3173         130 :                             name="der (RI AO | AO)")
    3174             : 
    3175        4550 :       ALLOCATE (t_3c_der_AO_prv(1, 1, 3), t_3c_der_RI_prv(1, 1, 3))
    3176         520 :       DO i_xyz = 1, 3
    3177         390 :          CALL dbt_create(t_3c_template, t_3c_der_RI_prv(1, 1, i_xyz))
    3178         520 :          CALL dbt_create(t_3c_template, t_3c_der_AO_prv(1, 1, i_xyz))
    3179             :       END DO
    3180         130 :       IF (PRESENT(t_3c_virial)) THEN
    3181           4 :          CALL dbt_create(t_3c_template, t_3c_virial)
    3182             :       END IF
    3183         130 :       CALL dbt_destroy(t_3c_template)
    3184             : 
    3185         130 :       CALL dbt_mp_environ_pgrid(pgrid, pdims, pcoord)
    3186         130 :       CALL mp_comm_t3c%create(pgrid%mp_comm_2d, 3, pdims)
    3187             :       CALL distribution_3d_create(dist_3d, dist_RI, dist_AO_1, dist_AO_2, &
    3188         130 :                                   nkind, particle_set, mp_comm_t3c, own_comm=.TRUE.)
    3189             : 
    3190             :       CALL build_3c_neighbor_lists(nl_3c, basis_set_RI, basis_set_AO, basis_set_AO, dist_3d, ri_data%ri_metric, &
    3191         130 :                                    "HFX_3c_nl", qs_env, op_pos=1, sym_jk=.TRUE., own_dist=.TRUE.)
    3192             : 
    3193         130 :       IF (PRESENT(nl_3c_out)) THEN
    3194           4 :          CALL dbt_mp_environ_pgrid(pgrid, pdims, pcoord)
    3195           4 :          CALL mp_comm_t3c_out%create(pgrid%mp_comm_2d, 3, pdims)
    3196             :          CALL distribution_3d_create(dist_3d_out, dist_RI, dist_AO_1, dist_AO_2, &
    3197           4 :                                      nkind, particle_set, mp_comm_t3c_out, own_comm=.TRUE.)
    3198             :          CALL build_3c_neighbor_lists(nl_3c_out, basis_set_RI, basis_set_AO, basis_set_AO, dist_3d_out, &
    3199             :                                       ri_data%ri_metric, "HFX_3c_nl", qs_env, op_pos=1, sym_jk=.FALSE., &
    3200           4 :                                       own_dist=.TRUE.)
    3201             :       END IF
    3202         130 :       DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
    3203         130 :       CALL dbt_pgrid_destroy(pgrid)
    3204             : 
    3205         130 :       n_mem = ri_data%n_mem
    3206             :       CALL create_tensor_batches(ri_data%bsizes_RI, n_mem, dummy_start, dummy_end, &
    3207         130 :                                  start_blocks, end_blocks)
    3208         130 :       DEALLOCATE (dummy_start, dummy_end)
    3209             : 
    3210      553138 :       ALLOCATE (t_3c_der_AO_comp(n_mem, 3), t_3c_der_RI_comp(n_mem, 3))
    3211        3758 :       ALLOCATE (t_3c_der_AO_ind(n_mem, 3), t_3c_der_RI_ind(n_mem, 3))
    3212             : 
    3213         130 :       memory = 0.0_dp
    3214         130 :       nze_tot = 0
    3215         518 :       DO i_mem = 1, n_mem
    3216             :          CALL build_3c_derivatives(t_3c_der_RI_prv, t_3c_der_AO_prv, ri_data%filter_eps, qs_env, &
    3217             :                                    nl_3c, basis_set_RI, basis_set_AO, basis_set_AO, &
    3218             :                                    ri_data%ri_metric, der_eps=ri_data%eps_schwarz_forces, op_pos=1, &
    3219        1164 :                                    bounds_i=[start_blocks(i_mem), end_blocks(i_mem)])
    3220             : 
    3221        1682 :          DO i_xyz = 1, 3
    3222        1164 :             CALL dbt_copy(t_3c_der_RI_prv(1, 1, i_xyz), ri_ao_ao_template, move_data=.TRUE.)
    3223        1164 :             CALL dbt_filter(ri_ao_ao_template, ri_data%filter_eps)
    3224        1164 :             CALL get_tensor_occupancy(ri_ao_ao_template, nze, occ)
    3225        1164 :             nze_tot = nze_tot + nze
    3226             : 
    3227        1164 :             CALL alloc_containers(t_3c_der_RI_comp(i_mem, i_xyz), 1)
    3228             :             CALL compress_tensor(ri_ao_ao_template, t_3c_der_RI_ind(i_mem, i_xyz)%ind, &
    3229        1164 :                                  t_3c_der_RI_comp(i_mem, i_xyz), ri_data%filter_eps_storage, memory)
    3230        1164 :             CALL dbt_clear(ri_ao_ao_template)
    3231             : 
    3232             :             !put AO derivative as middle index
    3233        1164 :             CALL dbt_copy(t_3c_der_AO_prv(1, 1, i_xyz), ri_ao_ao_template, order=[1, 3, 2], move_data=.TRUE.)
    3234        1164 :             CALL dbt_filter(ri_ao_ao_template, ri_data%filter_eps)
    3235        1164 :             CALL get_tensor_occupancy(ri_ao_ao_template, nze, occ)
    3236        1164 :             nze_tot = nze_tot + nze
    3237             : 
    3238        1164 :             CALL alloc_containers(t_3c_der_AO_comp(i_mem, i_xyz), 1)
    3239             :             CALL compress_tensor(ri_ao_ao_template, t_3c_der_AO_ind(i_mem, i_xyz)%ind, &
    3240        1164 :                                  t_3c_der_AO_comp(i_mem, i_xyz), ri_data%filter_eps_storage, memory)
    3241        3880 :             CALL dbt_clear(ri_ao_ao_template)
    3242             :          END DO
    3243             :       END DO
    3244             : 
    3245         130 :       CALL neighbor_list_3c_destroy(nl_3c)
    3246         520 :       DO i_xyz = 1, 3
    3247         390 :          CALL dbt_destroy(t_3c_der_RI_prv(1, 1, i_xyz))
    3248         520 :          CALL dbt_destroy(t_3c_der_AO_prv(1, 1, i_xyz))
    3249             :       END DO
    3250             : 
    3251         130 :       CALL para_env%sum(memory)
    3252         130 :       compression_factor = REAL(nze_tot, dp)*1.0E-06*8.0_dp/memory
    3253         130 :       IF (ri_data%unit_nr > 0) THEN
    3254             :          WRITE (UNIT=ri_data%unit_nr, FMT="((T3,A,T66,F11.2,A4))") &
    3255          14 :             "MEMORY_INFO| Memory for 3-center HFX derivatives (compressed):", memory, ' MiB'
    3256             : 
    3257             :          WRITE (UNIT=ri_data%unit_nr, FMT="((T3,A,T60,F21.2))") &
    3258          14 :             "MEMORY_INFO| Compression factor:                  ", compression_factor
    3259             :       END IF
    3260             : 
    3261             :       !Deal with the 2-center derivatives
    3262         130 :       CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
    3263         390 :       ALLOCATE (row_bsize(SIZE(ri_data%bsizes_RI)))
    3264         390 :       ALLOCATE (col_bsize(SIZE(ri_data%bsizes_RI)))
    3265         530 :       row_bsize(:) = ri_data%bsizes_RI
    3266         530 :       col_bsize(:) = ri_data%bsizes_RI
    3267             : 
    3268             :       CALL build_2c_neighbor_lists(nl_2c, basis_set_RI, basis_set_RI, ri_data%hfx_pot, &
    3269         130 :                                    "HFX_2c_nl_pot", qs_env, sym_ij=.TRUE., dist_2d=dist_2d)
    3270             : 
    3271         520 :       DO i_xyz = 1, 3
    3272             :          CALL dbcsr_create(t_2c_der_RI_prv(1, i_xyz), "(R|P) HFX der", dbcsr_dist, &
    3273         520 :                            dbcsr_type_antisymmetric, row_bsize, col_bsize)
    3274             :       END DO
    3275             : 
    3276             :       CALL build_2c_derivatives(t_2c_der_RI_prv, ri_data%filter_eps_2c, qs_env, nl_2c, basis_set_RI, &
    3277         130 :                                 basis_set_RI, ri_data%hfx_pot)
    3278         130 :       CALL release_neighbor_list_sets(nl_2c)
    3279             : 
    3280         130 :       IF (PRESENT(nl_2c_pot)) THEN
    3281           4 :          NULLIFY (nl_2c_pot)
    3282             :          CALL build_2c_neighbor_lists(nl_2c_pot, basis_set_RI, basis_set_RI, ri_data%hfx_pot, &
    3283           4 :                                       "HFX_2c_nl_pot", qs_env, sym_ij=.FALSE., dist_2d=dist_2d)
    3284             :       END IF
    3285             : 
    3286             :       !copy 2c derivative tensor into the standard format
    3287             :       CALL create_2c_tensor(t_2c_template, dist1, dist2, ri_data%pgrid_2d, ri_data%bsizes_RI_split, &
    3288         130 :                             ri_data%bsizes_RI_split, name='(RI| RI)')
    3289         130 :       DEALLOCATE (dist1, dist2)
    3290             : 
    3291         520 :       DO i_xyz = 1, 3
    3292         390 :          CALL dbt_create(t_2c_der_RI_prv(1, i_xyz), t_2c_tmp)
    3293         390 :          CALL dbt_copy_matrix_to_tensor(t_2c_der_RI_prv(1, i_xyz), t_2c_tmp)
    3294             : 
    3295         390 :          CALL dbt_create(t_2c_template, t_2c_der_RI(i_xyz))
    3296         390 :          CALL dbt_copy(t_2c_tmp, t_2c_der_RI(i_xyz), move_data=.TRUE.)
    3297             : 
    3298         390 :          CALL dbt_destroy(t_2c_tmp)
    3299         520 :          CALL dbcsr_release(t_2c_der_RI_prv(1, i_xyz))
    3300             :       END DO
    3301             : 
    3302             :       !Repeat with the metric, if required
    3303         130 :       IF (.NOT. ri_data%same_op) THEN
    3304             : 
    3305             :          CALL build_2c_neighbor_lists(nl_2c, basis_set_RI, basis_set_RI, ri_data%ri_metric, &
    3306          32 :                                       "HFX_2c_nl_RI", qs_env, sym_ij=.TRUE., dist_2d=dist_2d)
    3307             : 
    3308         128 :          DO i_xyz = 1, 3
    3309             :             CALL dbcsr_create(t_2c_der_metric_prv(1, i_xyz), "(R|P) HFX der", dbcsr_dist, &
    3310         128 :                               dbcsr_type_antisymmetric, row_bsize, col_bsize)
    3311             :          END DO
    3312             : 
    3313             :          CALL build_2c_derivatives(t_2c_der_metric_prv, ri_data%filter_eps_2c, qs_env, nl_2c, &
    3314          32 :                                    basis_set_RI, basis_set_RI, ri_data%ri_metric)
    3315          32 :          CALL release_neighbor_list_sets(nl_2c)
    3316             : 
    3317          32 :          IF (PRESENT(nl_2c_met)) THEN
    3318           0 :             NULLIFY (nl_2c_met)
    3319             :             CALL build_2c_neighbor_lists(nl_2c_met, basis_set_RI, basis_set_RI, ri_data%ri_metric, &
    3320           0 :                                          "HFX_2c_nl_RI", qs_env, sym_ij=.FALSE., dist_2d=dist_2d)
    3321             :          END IF
    3322             : 
    3323         128 :          DO i_xyz = 1, 3
    3324          96 :             CALL dbt_create(t_2c_der_metric_prv(1, i_xyz), t_2c_tmp)
    3325          96 :             CALL dbt_copy_matrix_to_tensor(t_2c_der_metric_prv(1, i_xyz), t_2c_tmp)
    3326             : 
    3327          96 :             CALL dbt_create(t_2c_template, t_2c_der_metric(i_xyz))
    3328          96 :             CALL dbt_copy(t_2c_tmp, t_2c_der_metric(i_xyz), move_data=.TRUE.)
    3329             : 
    3330          96 :             CALL dbt_destroy(t_2c_tmp)
    3331         128 :             CALL dbcsr_release(t_2c_der_metric_prv(1, i_xyz))
    3332             :          END DO
    3333             : 
    3334             :       END IF
    3335             : 
    3336         130 :       CALL dbt_destroy(t_2c_template)
    3337         130 :       CALL dbcsr_distribution_release(dbcsr_dist)
    3338         130 :       DEALLOCATE (row_bsize, col_bsize)
    3339             : 
    3340         130 :       CALL timestop(handle)
    3341             : 
    3342        1560 :    END SUBROUTINE precalc_derivatives
    3343             : 
    3344             : ! **************************************************************************************************
    3345             : !> \brief This routines calculates the force contribution from a trace over 3D tensors, i.e.
    3346             : !>        force = sum_ijk A_ijk B_ijk. An iteration over the blocks is made, which index determin
    3347             : !>        the atom on which the force acts
    3348             : !> \param force ...
    3349             : !> \param t_3c_contr ...
    3350             : !> \param t_3c_der ...
    3351             : !> \param atom_of_kind ...
    3352             : !> \param kind_of ...
    3353             : !> \param idx_to_at ...
    3354             : !> \param pref ...
    3355             : !> \param do_mp2 ...
    3356             : !> \param deriv_dim the dimension of the tensor corresponding to the derivative (by default 1)
    3357             : ! **************************************************************************************************
    3358        3862 :    SUBROUTINE get_force_from_3c_trace(force, t_3c_contr, t_3c_der, atom_of_kind, kind_of, idx_to_at, &
    3359             :                                       pref, do_mp2, deriv_dim)
    3360             : 
    3361             :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    3362             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_contr
    3363             :       TYPE(dbt_type), DIMENSION(3), INTENT(INOUT)        :: t_3c_der
    3364             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: atom_of_kind, kind_of, idx_to_at
    3365             :       REAL(dp), INTENT(IN)                               :: pref
    3366             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_mp2
    3367             :       INTEGER, INTENT(IN), OPTIONAL                      :: deriv_dim
    3368             : 
    3369             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_force_from_3c_trace'
    3370             : 
    3371             :       INTEGER                                            :: deriv_dim_prv, handle, i_xyz, iat, &
    3372             :                                                             iat_of_kind, ikind, j_xyz
    3373             :       INTEGER, DIMENSION(3)                              :: ind
    3374             :       LOGICAL                                            :: do_mp2_prv, found
    3375             :       REAL(dp)                                           :: new_force
    3376        3862 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :), TARGET  :: contr_blk, der_blk
    3377             :       REAL(dp), DIMENSION(3)                             :: scoord
    3378             :       TYPE(dbt_iterator_type)                            :: iter
    3379             : 
    3380        3862 :       CALL timeset(routineN, handle)
    3381             : 
    3382        3862 :       do_mp2_prv = .FALSE.
    3383        3862 :       IF (PRESENT(do_mp2)) do_mp2_prv = do_mp2
    3384             : 
    3385        3862 :       deriv_dim_prv = 1
    3386        3862 :       IF (PRESENT(deriv_dim)) deriv_dim_prv = deriv_dim
    3387             : 
    3388             : !$OMP PARALLEL DEFAULT(NONE) &
    3389             : !$OMP SHARED(t_3c_der,t_3c_contr,force,do_mp2_prv,deriv_dim_prv,pref,idx_to_at,atom_of_kind,kind_of) &
    3390        3862 : !$OMP PRIVATE(i_xyz,j_xyz,iter,ind,der_blk,contr_blk,found,new_force,iat,iat_of_kind,ikind,scoord)
    3391             :       DO i_xyz = 1, 3
    3392             :          CALL dbt_iterator_start(iter, t_3c_der(i_xyz))
    3393             :          DO WHILE (dbt_iterator_blocks_left(iter))
    3394             :             CALL dbt_iterator_next_block(iter, ind)
    3395             : 
    3396             :             CALL dbt_get_block(t_3c_der(i_xyz), ind, der_blk, found)
    3397             :             CPASSERT(found)
    3398             :             CALL dbt_get_block(t_3c_contr, ind, contr_blk, found)
    3399             : 
    3400             :             IF (found) THEN
    3401             : 
    3402             :                !take the trace of the blocks
    3403             :                new_force = pref*SUM(der_blk(:, :, :)*contr_blk(:, :, :))
    3404             : 
    3405             :                !the first index of the derivative tensor defines the atom
    3406             :                iat = idx_to_at(ind(deriv_dim_prv))
    3407             :                iat_of_kind = atom_of_kind(iat)
    3408             :                ikind = kind_of(iat)
    3409             : 
    3410             :                IF (.NOT. do_mp2_prv) THEN
    3411             : !$OMP ATOMIC
    3412             :                   force(ikind)%fock_4c(i_xyz, iat_of_kind) = force(ikind)%fock_4c(i_xyz, iat_of_kind) &
    3413             :                                                              + new_force
    3414             :                ELSE
    3415             : !$OMP ATOMIC
    3416             :                   force(ikind)%mp2_non_sep(i_xyz, iat_of_kind) = force(ikind)%mp2_non_sep(i_xyz, iat_of_kind) &
    3417             :                                                                  + new_force
    3418             :                END IF
    3419             : 
    3420             :                DEALLOCATE (contr_blk)
    3421             :             END IF
    3422             :             DEALLOCATE (der_blk)
    3423             :          END DO !iter
    3424             :          CALL dbt_iterator_stop(iter)
    3425             :       END DO
    3426             : !$OMP END PARALLEL
    3427        3862 :       CALL timestop(handle)
    3428             : 
    3429        7724 :    END SUBROUTINE get_force_from_3c_trace
    3430             : 
    3431             : ! **************************************************************************************************
    3432             : !> \brief Update the forces due to the derivative of the a 2-center product d/dR (Q|R)
    3433             : !> \param force ...
    3434             : !> \param t_2c_contr A precontracted tensor containing sum_abcdPS (ab|P)(P|Q)^-1 (R|S)^-1 (S|cd) P_ac P_bd
    3435             : !> \param t_2c_der the d/dR (Q|R) tensor, in all 3 cartesian directions
    3436             : !> \param atom_of_kind ...
    3437             : !> \param kind_of ...
    3438             : !> \param idx_to_at ...
    3439             : !> \param pref ...
    3440             : !> \param do_mp2 ...
    3441             : !> \param do_ovlp ...
    3442             : !> \note IMPORTANT: t_tc_contr and t_2c_der need to have the same distribution
    3443             : ! **************************************************************************************************
    3444         610 :    SUBROUTINE get_2c_der_force(force, t_2c_contr, t_2c_der, atom_of_kind, kind_of, idx_to_at, &
    3445             :                                pref, do_mp2, do_ovlp)
    3446             : 
    3447             :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    3448             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_2c_contr
    3449             :       TYPE(dbt_type), DIMENSION(3), INTENT(INOUT)        :: t_2c_der
    3450             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: atom_of_kind, kind_of, idx_to_at
    3451             :       REAL(dp), INTENT(IN)                               :: pref
    3452             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_mp2, do_ovlp
    3453             : 
    3454             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_2c_der_force'
    3455             : 
    3456             :       INTEGER                                            :: handle, i_xyz, iat, iat_of_kind, ikind, &
    3457             :                                                             j_xyz, jat, jat_of_kind, jkind
    3458             :       INTEGER, DIMENSION(2)                              :: ind
    3459             :       LOGICAL                                            :: do_mp2_prv, do_ovlp_prv, found
    3460             :       REAL(dp)                                           :: new_force
    3461         610 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :), TARGET     :: contr_blk, der_blk
    3462             :       REAL(dp), DIMENSION(3)                             :: scoord
    3463             :       TYPE(dbt_iterator_type)                            :: iter
    3464             : 
    3465             :       !Loop over the blocks of d/dR (Q|R), contract with the corresponding block of t_2c_contr and
    3466             :       !update the relevant force
    3467             : 
    3468         610 :       CALL timeset(routineN, handle)
    3469             : 
    3470         610 :       do_mp2_prv = .FALSE.
    3471         610 :       IF (PRESENT(do_mp2)) do_mp2_prv = do_mp2
    3472             : 
    3473         610 :       do_ovlp_prv = .FALSE.
    3474         610 :       IF (PRESENT(do_ovlp)) do_ovlp_prv = do_ovlp
    3475             : 
    3476             : !$OMP PARALLEL DEFAULT(NONE) &
    3477             : !$OMP SHARED(t_2c_der,t_2c_contr,force,do_mp2_prv,do_ovlp_prv,pref,idx_to_at,atom_of_kind,kind_of) &
    3478             : !$OMP PRIVATE(i_xyz,j_xyz,iter,ind,der_blk,contr_blk,found,new_force) &
    3479         610 : !$OMP PRIVATE(iat,jat,iat_of_kind,jat_of_kind,ikind,jkind,scoord)
    3480             :       DO i_xyz = 1, 3
    3481             :          CALL dbt_iterator_start(iter, t_2c_der(i_xyz))
    3482             :          DO WHILE (dbt_iterator_blocks_left(iter))
    3483             :             CALL dbt_iterator_next_block(iter, ind)
    3484             : 
    3485             :             IF (ind(1) == ind(2)) CYCLE
    3486             : 
    3487             :             CALL dbt_get_block(t_2c_der(i_xyz), ind, der_blk, found)
    3488             :             CPASSERT(found)
    3489             :             CALL dbt_get_block(t_2c_contr, ind, contr_blk, found)
    3490             : 
    3491             :             IF (found) THEN
    3492             : 
    3493             :                !an element of d/dR (Q|R) corresponds to 2 things because of translational invariance
    3494             :                !(Q'| R) = - (Q| R'), once wrt the center on Q, and once on R
    3495             :                new_force = pref*SUM(der_blk(:, :)*contr_blk(:, :))
    3496             : 
    3497             :                iat = idx_to_at(ind(1))
    3498             :                iat_of_kind = atom_of_kind(iat)
    3499             :                ikind = kind_of(iat)
    3500             : 
    3501             :                IF (do_mp2_prv) THEN
    3502             : !$OMP ATOMIC
    3503             :                   force(ikind)%mp2_non_sep(i_xyz, iat_of_kind) = force(ikind)%mp2_non_sep(i_xyz, iat_of_kind) &
    3504             :                                                                  + new_force
    3505             :                ELSE IF (do_ovlp_prv) THEN
    3506             : !$OMP ATOMIC
    3507             :                   force(ikind)%overlap(i_xyz, iat_of_kind) = force(ikind)%overlap(i_xyz, iat_of_kind) &
    3508             :                                                              + new_force
    3509             :                ELSE
    3510             : !$OMP ATOMIC
    3511             :                   force(ikind)%fock_4c(i_xyz, iat_of_kind) = force(ikind)%fock_4c(i_xyz, iat_of_kind) &
    3512             :                                                              + new_force
    3513             :                END IF
    3514             : 
    3515             :                jat = idx_to_at(ind(2))
    3516             :                jat_of_kind = atom_of_kind(jat)
    3517             :                jkind = kind_of(jat)
    3518             : 
    3519             :                IF (do_mp2_prv) THEN
    3520             : !$OMP ATOMIC
    3521             :                   force(jkind)%mp2_non_sep(i_xyz, jat_of_kind) = force(jkind)%mp2_non_sep(i_xyz, jat_of_kind) &
    3522             :                                                                  - new_force
    3523             :                ELSE IF (do_ovlp_prv) THEN
    3524             : !$OMP ATOMIC
    3525             :                   force(jkind)%overlap(i_xyz, jat_of_kind) = force(jkind)%overlap(i_xyz, jat_of_kind) &
    3526             :                                                              - new_force
    3527             :                ELSE
    3528             : !$OMP ATOMIC
    3529             :                   force(jkind)%fock_4c(i_xyz, jat_of_kind) = force(jkind)%fock_4c(i_xyz, jat_of_kind) &
    3530             :                                                              - new_force
    3531             :                END IF
    3532             : 
    3533             :                DEALLOCATE (contr_blk)
    3534             :             END IF
    3535             : 
    3536             :             DEALLOCATE (der_blk)
    3537             :          END DO !iter
    3538             :          CALL dbt_iterator_stop(iter)
    3539             : 
    3540             :       END DO !i_xyz
    3541             : !$OMP END PARALLEL
    3542         610 :       CALL timestop(handle)
    3543             : 
    3544        1220 :    END SUBROUTINE get_2c_der_force
    3545             : 
    3546             : ! **************************************************************************************************
    3547             : !> \brief Get the force from a contraction of type SUM_a,beta (a|beta') C_a,beta, where beta is an AO
    3548             : !>        and a is a MO
    3549             : !> \param force ...
    3550             : !> \param t_mo_coeff ...
    3551             : !> \param t_2c_MO_AO ...
    3552             : !> \param atom_of_kind ...
    3553             : !> \param kind_of ...
    3554             : !> \param idx_to_at ...
    3555             : !> \param pref ...
    3556             : !> \param i_xyz ...
    3557             : ! **************************************************************************************************
    3558          54 :    SUBROUTINE get_MO_AO_force(force, t_mo_coeff, t_2c_MO_AO, atom_of_kind, kind_of, idx_to_at, pref, i_xyz)
    3559             : 
    3560             :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    3561             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_mo_coeff, t_2c_MO_AO
    3562             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: atom_of_kind, kind_of, idx_to_at
    3563             :       REAL(dp), INTENT(IN)                               :: pref
    3564             :       INTEGER, INTENT(IN)                                :: i_xyz
    3565             : 
    3566             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_MO_AO_force'
    3567             : 
    3568             :       INTEGER                                            :: handle, iat, iat_of_kind, ikind, j_xyz
    3569             :       INTEGER, DIMENSION(2)                              :: ind
    3570             :       LOGICAL                                            :: found
    3571             :       REAL(dp)                                           :: new_force
    3572          54 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :), TARGET     :: mo_ao_blk, mo_coeff_blk
    3573             :       REAL(dp), DIMENSION(3)                             :: scoord
    3574             :       TYPE(dbt_iterator_type)                            :: iter
    3575             : 
    3576          54 :       CALL timeset(routineN, handle)
    3577             : 
    3578             : !$OMP PARALLEL DEFAULT(NONE) &
    3579             : !$OMP SHARED(t_2c_MO_AO,t_mo_coeff,pref,force,idx_to_at,atom_of_kind,kind_of,i_xyz) &
    3580          54 : !$OMP PRIVATE(iter,ind,mo_ao_blk,mo_coeff_blk,found,new_force,iat,iat_of_kind,ikind,scoord,j_xyz)
    3581             :       CALL dbt_iterator_start(iter, t_2c_MO_AO)
    3582             :       DO WHILE (dbt_iterator_blocks_left(iter))
    3583             :          CALL dbt_iterator_next_block(iter, ind)
    3584             : 
    3585             :          CALL dbt_get_block(t_2c_MO_AO, ind, mo_ao_blk, found)
    3586             :          CPASSERT(found)
    3587             :          CALL dbt_get_block(t_mo_coeff, ind, mo_coeff_blk, found)
    3588             : 
    3589             :          IF (found) THEN
    3590             : 
    3591             :             new_force = pref*SUM(mo_ao_blk(:, :)*mo_coeff_blk(:, :))
    3592             : 
    3593             :             iat = idx_to_at(ind(2)) !AO index is column index
    3594             :             iat_of_kind = atom_of_kind(iat)
    3595             :             ikind = kind_of(iat)
    3596             : 
    3597             : !$OMP ATOMIC
    3598             :             force(ikind)%fock_4c(i_xyz, iat_of_kind) = force(ikind)%fock_4c(i_xyz, iat_of_kind) &
    3599             :                                                        + new_force
    3600             : 
    3601             :             DEALLOCATE (mo_coeff_blk)
    3602             :          END IF
    3603             : 
    3604             :          DEALLOCATE (mo_ao_blk)
    3605             :       END DO !iter
    3606             :       CALL dbt_iterator_stop(iter)
    3607             : !$OMP END PARALLEL
    3608             : 
    3609          54 :       CALL timestop(handle)
    3610             : 
    3611         108 :    END SUBROUTINE get_MO_AO_force
    3612             : 
    3613             : ! **************************************************************************************************
    3614             : !> \brief Print RI-HFX quantities, as required by the PRINT subsection
    3615             : !> \param ri_data ...
    3616             : !> \param qs_env ...
    3617             : ! **************************************************************************************************
    3618         148 :    SUBROUTINE print_ri_hfx(ri_data, qs_env)
    3619             : 
    3620             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    3621             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3622             : 
    3623             :       INTEGER                                            :: i_RI, ibasis, nkind, nspins, unit_nr
    3624         296 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
    3625             :       LOGICAL                                            :: mult_by_S, print_density, print_ri_metric
    3626         148 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: density_coeffs, density_coeffs_2
    3627             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
    3628             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
    3629             :       TYPE(cp_fm_type)                                   :: matrix_s_fm
    3630             :       TYPE(cp_logger_type), POINTER                      :: logger
    3631             :       TYPE(dbcsr_distribution_type)                      :: dbcsr_dist
    3632         148 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao
    3633         296 :       TYPE(dbcsr_type), DIMENSION(1)                     :: matrix_s
    3634             :       TYPE(dft_control_type), POINTER                    :: dft_control
    3635             :       TYPE(distribution_2d_type), POINTER                :: dist_2d
    3636             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
    3637         148 :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
    3638             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
    3639             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    3640             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    3641         148 :          POINTER                                         :: nl_2c
    3642         148 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3643         148 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3644             :       TYPE(qs_rho_type), POINTER                         :: rho
    3645             :       TYPE(section_vals_type), POINTER                   :: input, print_section
    3646             : 
    3647         148 :       NULLIFY (rho_ao, input, print_section, logger, rho, particle_set, qs_kind_set, ri_basis, nl_2c, &
    3648         148 :                dist_2d, col_bsize, row_bsize, para_env, blacs_env, fm_struct, orb_basis, dft_control)
    3649             : 
    3650         148 :       CALL get_qs_env(qs_env, input=input, dft_control=dft_control)
    3651         148 :       logger => cp_get_default_logger()
    3652         148 :       print_density = .FALSE.
    3653         148 :       print_ri_metric = .FALSE.
    3654             : 
    3655             :       !Do we print the RI density coeffs  and/or RI_metric 2c integrals?
    3656         148 :       print_section => section_vals_get_subs_vals(input, "DFT%XC%HF%RI%PRINT")
    3657         148 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_section, "RI_DENSITY_COEFFS"), &
    3658           0 :                 cp_p_file)) print_density = .TRUE.
    3659         148 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_section, "RI_METRIC_2C_INTS"), &
    3660           0 :                 cp_p_file)) print_ri_metric = .TRUE.
    3661             : 
    3662             :       !common stuff
    3663         148 :       IF (print_density .OR. print_ri_metric) THEN
    3664             : 
    3665             :          !Re-calculate the 2-center RI_metric integrals (because not stored and cheap)
    3666             :          !Recalculated the RI_metric 2c-integrals, as it is cheap, and not stored
    3667             :          CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, particle_set=particle_set, &
    3668           0 :                          distribution_2d=dist_2d, para_env=para_env, blacs_env=blacs_env)
    3669           0 :          ALLOCATE (basis_set_RI(nkind), basis_set_AO(nkind))
    3670           0 :          CALL basis_set_list_setup(basis_set_RI, ri_data%ri_basis_type, qs_kind_set)
    3671           0 :          CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_RI)
    3672           0 :          CALL basis_set_list_setup(basis_set_AO, ri_data%orb_basis_type, qs_kind_set)
    3673           0 :          CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_AO)
    3674             : 
    3675           0 :          DO ibasis = 1, nkind
    3676           0 :             ri_basis => basis_set_RI(ibasis)%gto_basis_set
    3677           0 :             CALL init_interaction_radii_orb_basis(ri_basis, ri_data%eps_pgf_orb)
    3678           0 :             orb_basis => basis_set_AO(ibasis)%gto_basis_set
    3679           0 :             CALL init_interaction_radii_orb_basis(orb_basis, ri_data%eps_pgf_orb)
    3680             :          END DO
    3681             : 
    3682           0 :          CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
    3683           0 :          ALLOCATE (row_bsize(SIZE(ri_data%bsizes_RI)))
    3684           0 :          ALLOCATE (col_bsize(SIZE(ri_data%bsizes_RI)))
    3685           0 :          row_bsize(:) = ri_data%bsizes_RI
    3686           0 :          col_bsize(:) = ri_data%bsizes_RI
    3687             : 
    3688           0 :          CALL dbcsr_create(matrix_s(1), "RI metric", dbcsr_dist, dbcsr_type_symmetric, row_bsize, col_bsize)
    3689             : 
    3690             :          CALL build_2c_neighbor_lists(nl_2c, basis_set_RI, basis_set_RI, ri_data%ri_metric, &
    3691           0 :                                       "HFX_2c_nl_pot", qs_env, sym_ij=.TRUE., dist_2d=dist_2d)
    3692             :          CALL build_2c_integrals(matrix_s, ri_data%filter_eps_2c, qs_env, nl_2c, basis_set_RI, &
    3693           0 :                                  basis_set_RI, ri_data%ri_metric)
    3694             : 
    3695           0 :          CALL release_neighbor_list_sets(nl_2c)
    3696           0 :          CALL dbcsr_distribution_release(dbcsr_dist)
    3697             :       END IF
    3698             : 
    3699         148 :       IF (print_density) THEN
    3700           0 :          CALL get_qs_env(qs_env, rho=rho)
    3701           0 :          CALL qs_rho_get(rho, rho_ao_kp=rho_ao)
    3702           0 :          nspins = SIZE(rho_ao, 1)
    3703             : 
    3704           0 :          CALL section_vals_val_get(print_section, "RI_DENSITY_COEFFS%MULTIPLY_BY_RI_2C_INTEGRALS", l_val=mult_by_s)
    3705             : 
    3706             :          CALL get_RI_density_coeffs(density_coeffs, matrix_s(1), rho_ao, 1, basis_set_AO, basis_set_RI, &
    3707           0 :                                     mult_by_s, ri_data, qs_env)
    3708           0 :          IF (nspins == 2) &
    3709             :             CALL get_RI_density_coeffs(density_coeffs_2, matrix_s(1), rho_ao, 2, basis_set_AO, &
    3710           0 :                                        basis_set_RI, mult_by_s, ri_data, qs_env)
    3711             : 
    3712             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%XC%HF%RI%PRINT%RI_DENSITY_COEFFS", &
    3713             :                                         extension=".dat", file_status="REPLACE", &
    3714           0 :                                         file_action="WRITE", file_form="FORMATTED")
    3715             : 
    3716           0 :          IF (unit_nr > 0) THEN
    3717           0 :             IF (nspins == 1) THEN
    3718             :                WRITE (unit_nr, FMT="(A,A,A)") &
    3719           0 :                   "# Coefficients of the electronic density projected on the RI_HFX basis for ", &
    3720           0 :                   TRIM(logger%iter_info%project_name), " project"
    3721           0 :                DO i_RI = 1, SIZE(density_coeffs)
    3722           0 :                   WRITE (unit_nr, FMT="(F20.12)") density_coeffs(i_RI)
    3723             :                END DO
    3724             :             ELSE
    3725             :                WRITE (unit_nr, FMT="(A,A,A)") &
    3726           0 :                   "# Coefficients of the electronic density projected on the RI_HFX basis for ", &
    3727           0 :                   TRIM(logger%iter_info%project_name), " project. Spin up, spin down"
    3728           0 :                DO i_RI = 1, SIZE(density_coeffs)
    3729           0 :                   WRITE (unit_nr, FMT="(F20.12,F20.12)") density_coeffs(i_RI), density_coeffs_2(i_RI)
    3730             :                END DO
    3731             :             END IF
    3732             :          END IF
    3733             : 
    3734           0 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%XC%HF%RI%PRINT%RI_DENSITY_COEFFS")
    3735             :       END IF
    3736             : 
    3737         148 :       IF (print_ri_metric) THEN
    3738             : 
    3739             :          !convert 2c integrals to fm for dumping
    3740             :          CALL cp_fm_struct_create(fm_struct, context=blacs_env, para_env=para_env, &
    3741           0 :                                   nrow_global=SUM(row_bsize), ncol_global=SUM(col_bsize))
    3742           0 :          CALL cp_fm_create(matrix_s_fm, fm_struct)
    3743             : 
    3744           0 :          CALL copy_dbcsr_to_fm(matrix_s(1), matrix_s_fm)
    3745             : 
    3746             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%XC%HF%RI%PRINT%RI_METRIC_2C_INTS", &
    3747             :                                         extension=".fm", file_status="REPLACE", &
    3748           0 :                                         file_action="WRITE", file_form="UNFORMATTED")
    3749           0 :          CALL cp_fm_write_unformatted(matrix_s_fm, unit_nr)
    3750             : 
    3751           0 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%XC%HF%RI%PRINT%RI_METRIC_2C_INTS")
    3752             : 
    3753           0 :          CALL cp_fm_struct_release(fm_struct)
    3754           0 :          CALL cp_fm_release(matrix_s_fm)
    3755             :       END IF
    3756             : 
    3757             :       !clean-up
    3758         148 :       IF (print_density .OR. print_ri_metric) THEN
    3759           0 :          DO ibasis = 1, nkind
    3760           0 :             ri_basis => basis_set_RI(ibasis)%gto_basis_set
    3761           0 :             CALL init_interaction_radii_orb_basis(ri_basis, dft_control%qs_control%eps_pgf_orb)
    3762           0 :             orb_basis => basis_set_AO(ibasis)%gto_basis_set
    3763           0 :             CALL init_interaction_radii_orb_basis(orb_basis, dft_control%qs_control%eps_pgf_orb)
    3764             :          END DO
    3765             : 
    3766           0 :          CALL dbcsr_release(matrix_s(1))
    3767           0 :          DEALLOCATE (row_bsize, col_bsize)
    3768             :       END IF
    3769             : 
    3770         444 :    END SUBROUTINE print_ri_hfx
    3771             : 
    3772             : ! **************************************************************************************************
    3773             : !> \brief Projects the density on the RI basis and return the array of the RI coefficients
    3774             : !> \param density_coeffs ...
    3775             : !> \param ri_2c_ints ...
    3776             : !> \param rho_ao ...
    3777             : !> \param ispin ...
    3778             : !> \param basis_set_AO ...
    3779             : !> \param basis_set_RI ...
    3780             : !> \param multiply_by_S ...
    3781             : !> \param ri_data ...
    3782             : !> \param qs_env ...
    3783             : ! **************************************************************************************************
    3784           0 :    SUBROUTINE get_RI_density_coeffs(density_coeffs, ri_2c_ints, rho_ao, ispin, basis_set_AO, &
    3785           0 :                                     basis_set_RI, multiply_by_S, ri_data, qs_env)
    3786             : 
    3787             :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: density_coeffs
    3788             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: ri_2c_ints
    3789             :       TYPE(dbcsr_p_type), DIMENSION(:, :)                :: rho_ao
    3790             :       INTEGER, INTENT(IN)                                :: ispin
    3791             :       TYPE(gto_basis_set_p_type), DIMENSION(:)           :: basis_set_AO, basis_set_RI
    3792             :       LOGICAL, INTENT(IN)                                :: multiply_by_S
    3793             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    3794             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3795             : 
    3796             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_RI_density_coeffs'
    3797             : 
    3798             :       INTEGER                                            :: a, b, handle, i_mem, idx, n_dependent, &
    3799             :                                                             n_mem, n_mem_RI, natom, &
    3800             :                                                             nblk_per_thread, nblks, nkind
    3801             :       INTEGER(int_8)                                     :: nze
    3802           0 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_block_end, batch_block_start, &
    3803           0 :                                                             dist1, dist2, dist3, dummy1, dummy2, &
    3804           0 :                                                             idx1, idx2, idx3
    3805             :       INTEGER, DIMENSION(2)                              :: ind, pdims_2d
    3806             :       INTEGER, DIMENSION(2, 3)                           :: bounds_cpy
    3807             :       INTEGER, DIMENSION(3)                              :: dims_3c, pcoord_3d, pdims_3d
    3808             :       LOGICAL                                            :: calc_ints, found
    3809             :       REAL(dp)                                           :: occ, threshold
    3810           0 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: blk
    3811           0 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: blk_3d
    3812             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
    3813             :       TYPE(dbcsr_type)                                   :: ri_2c_inv
    3814           0 :       TYPE(dbt_distribution_type)                        :: dist_2d, dist_3d
    3815             :       TYPE(dbt_iterator_type)                            :: iter
    3816           0 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d, pgrid_3d
    3817           0 :       TYPE(dbt_type)                                     :: density_coeffs_t, density_tmp, rho_ao_t, &
    3818           0 :                                                             rho_ao_t_3d, rho_ao_tmp, t2c_ri_ints, &
    3819           0 :                                                             t2c_ri_inv, t2c_ri_tmp
    3820           0 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int_batched
    3821             :       TYPE(dft_control_type), POINTER                    :: dft_control
    3822             :       TYPE(distribution_3d_type)                         :: dist_nl3c
    3823           0 :       TYPE(mp_cart_type)                                 :: mp_comm_t3c
    3824             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    3825             :       TYPE(neighbor_list_3c_type)                        :: nl_3c
    3826           0 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3827           0 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3828             : 
    3829           0 :       NULLIFY (dft_control, para_env, blacs_env, particle_set, qs_kind_set)
    3830             : 
    3831           0 :       CALL timeset(routineN, handle)
    3832             : 
    3833             :       ! Projection of the density on the RI basis: n(r) = sum_pq sum_munu P_pq (pq|mu) (mu|nu)^-1 nu(r)
    3834             :       !                                                 = sum_nu d_nu nu(r)
    3835             :       ! the (pq|mu) (mu|nu)^-1 contraction is already stored in compressed format
    3836             : 
    3837           0 :       IF (.NOT. ri_data%flavor == ri_pmat) THEN
    3838           0 :          CPABORT("Can only calculate and print the RI density coefficients within the RHO flavor of RI-HFX")
    3839             :       END IF
    3840             : 
    3841             :       CALL get_qs_env(qs_env, dft_control=dft_control, para_env=para_env, blacs_env=blacs_env, nkind=nkind, &
    3842           0 :                       particle_set=particle_set, qs_kind_set=qs_kind_set, natom=natom)
    3843           0 :       n_mem = ri_data%n_mem
    3844           0 :       n_mem_RI = ri_data%n_mem_RI
    3845             : 
    3846             :       ! The RI 2c int tensor and its inverse
    3847           0 :       CALL dbcsr_create(ri_2c_inv, template=ri_2c_ints, matrix_type=dbcsr_type_no_symmetry)
    3848             : 
    3849           0 :       SELECT CASE (ri_data%t2c_method)
    3850             :       CASE (hfx_ri_do_2c_iter)
    3851           0 :          threshold = MAX(ri_data%filter_eps, 1.0e-12_dp)
    3852           0 :          CALL invert_hotelling(ri_2c_inv, ri_2c_ints, threshold=threshold, silent=.FALSE.)
    3853             :       CASE (hfx_ri_do_2c_cholesky)
    3854           0 :          CALL dbcsr_copy(ri_2c_inv, ri_2c_ints)
    3855           0 :          CALL cp_dbcsr_cholesky_decompose(ri_2c_inv, para_env=para_env, blacs_env=blacs_env)
    3856           0 :          CALL cp_dbcsr_cholesky_invert(ri_2c_inv, para_env=para_env, blacs_env=blacs_env, upper_to_full=.TRUE.)
    3857             :       CASE (hfx_ri_do_2c_diag)
    3858           0 :          CALL dbcsr_copy(ri_2c_inv, ri_2c_ints)
    3859             :          CALL cp_dbcsr_power(ri_2c_inv, -1.0_dp, ri_data%eps_eigval, n_dependent, &
    3860           0 :                              para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
    3861             :       END SELECT
    3862             : 
    3863           0 :       CALL dbt_create(ri_2c_ints, t2c_ri_tmp)
    3864             :       CALL create_2c_tensor(t2c_ri_ints, dist1, dist2, ri_data%pgrid_2d, &
    3865             :                             ri_data%bsizes_RI_split, ri_data%bsizes_RI_split, &
    3866             :                             name="(RI | RI)")
    3867           0 :       CALL dbt_create(t2c_ri_ints, t2c_ri_inv)
    3868             : 
    3869           0 :       CALL dbt_copy_matrix_to_tensor(ri_2c_ints, t2c_ri_tmp)
    3870           0 :       CALL dbt_copy(t2c_ri_tmp, t2c_ri_ints, move_data=.TRUE.)
    3871           0 :       CALL dbt_filter(t2c_ri_ints, ri_data%filter_eps)
    3872             : 
    3873           0 :       CALL dbt_copy_matrix_to_tensor(ri_2c_inv, t2c_ri_tmp)
    3874           0 :       CALL dbt_copy(t2c_ri_tmp, t2c_ri_inv, move_data=.TRUE.)
    3875           0 :       CALL dbt_filter(t2c_ri_inv, ri_data%filter_eps)
    3876             : 
    3877           0 :       CALL dbcsr_release(ri_2c_inv)
    3878           0 :       CALL dbt_destroy(t2c_ri_tmp)
    3879           0 :       DEALLOCATE (dist1, dist2)
    3880             : 
    3881             :       ! The AO density tensor
    3882           0 :       CALL dbt_create(rho_ao(ispin, 1)%matrix, rho_ao_tmp)
    3883             :       CALL create_2c_tensor(rho_ao_t, dist1, dist2, ri_data%pgrid_2d, &
    3884             :                             ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    3885             :                             name="(AO | AO)")
    3886           0 :       DEALLOCATE (dist1, dist2)
    3887             : 
    3888           0 :       CALL dbt_copy_matrix_to_tensor(rho_ao(ispin, 1)%matrix, rho_ao_tmp)
    3889           0 :       CALL dbt_copy(rho_ao_tmp, rho_ao_t, move_data=.TRUE.)
    3890           0 :       CALL dbt_filter(rho_ao_t, ri_data%filter_eps)
    3891           0 :       CALL dbt_destroy(rho_ao_tmp)
    3892             : 
    3893             :       ! Put in in 3D
    3894           0 :       ALLOCATE (dist1(SIZE(ri_data%bsizes_AO_split)), dist2(SIZE(ri_data%bsizes_AO_split)), dist3(1))
    3895           0 :       dist3(1) = 0
    3896           0 :       CALL dbt_get_info(rho_ao_t, pdims=pdims_2d, proc_dist_1=dist1, proc_dist_2=dist2)
    3897           0 :       CALL dbt_default_distvec(1, 1, [1], dist3)
    3898             : 
    3899           0 :       pdims_3d(1) = pdims_2d(1)
    3900           0 :       pdims_3d(2) = pdims_2d(2)
    3901           0 :       pdims_3d(3) = 1
    3902             : 
    3903           0 :       CALL dbt_pgrid_create(para_env, pdims_3d, pgrid_3d)
    3904           0 :       CALL dbt_distribution_new(dist_3d, pgrid_3d, dist1, dist2, dist3)
    3905             :       CALL dbt_create(rho_ao_t_3d, "rho_ao_3d", dist_3d, [1, 2], [3], ri_data%bsizes_AO_split, &
    3906           0 :                       ri_data%bsizes_AO_split, [1])
    3907           0 :       DEALLOCATE (dist1, dist2, dist3)
    3908           0 :       CALL dbt_pgrid_destroy(pgrid_3d)
    3909           0 :       CALL dbt_distribution_destroy(dist_3d)
    3910             : 
    3911             :       ! copy density
    3912           0 :       nblks = 0
    3913             : !$OMP PARALLEL DEFAULT(NONE) &
    3914             : !$OMP SHARED(rho_ao_t,nblks) &
    3915           0 : !$OMP PRIVATE(iter,ind,blk,found)
    3916             :       CALL dbt_iterator_start(iter, rho_ao_t)
    3917             :       DO WHILE (dbt_iterator_blocks_left(iter))
    3918             :          CALL dbt_iterator_next_block(iter, ind)
    3919             :          CALL dbt_get_block(rho_ao_t, ind, blk, found)
    3920             :          IF (found) THEN
    3921             : !$OMP ATOMIC
    3922             :             nblks = nblks + 1
    3923             :             DEALLOCATE (blk)
    3924             :          END IF
    3925             :       END DO
    3926             :       CALL dbt_iterator_stop(iter)
    3927             : !$OMP END PARALLEL
    3928             : 
    3929           0 :       ALLOCATE (idx1(nblks), idx2(nblks), idx3(nblks))
    3930           0 :       idx3 = 1
    3931           0 :       nblks = 0
    3932             : !$OMP PARALLEL DEFAULT(NONE) &
    3933             : !$OMP SHARED(rho_ao_t,nblks,idx1,idx2) &
    3934           0 : !$OMP PRIVATE(iter,ind,blk,found)
    3935             :       CALL dbt_iterator_start(iter, rho_ao_t)
    3936             :       DO WHILE (dbt_iterator_blocks_left(iter))
    3937             :          CALL dbt_iterator_next_block(iter, ind)
    3938             :          CALL dbt_get_block(rho_ao_t, ind, blk, found)
    3939             :          IF (found) THEN
    3940             : !$OMP CRITICAL
    3941             :             nblks = nblks + 1
    3942             :             idx1(nblks) = ind(1)
    3943             :             idx2(nblks) = ind(2)
    3944             : !$OMP END CRITICAL
    3945             :             DEALLOCATE (blk)
    3946             :          END IF
    3947             :       END DO
    3948             :       CALL dbt_iterator_stop(iter)
    3949             : !$OMP END PARALLEL
    3950             : 
    3951           0 : !$OMP PARALLEL DEFAULT(NONE) SHARED(rho_ao_t_3d,nblks,idx1,idx2,idx3) PRIVATE(nblk_per_thread,A,b)
    3952             :       nblk_per_thread = nblks/omp_get_num_threads() + 1
    3953             :       a = omp_get_thread_num()*nblk_per_thread + 1
    3954             :       b = MIN(a + nblk_per_thread, nblks)
    3955             :       CALL dbt_reserve_blocks(rho_ao_t_3d, idx1(a:b), idx2(a:b), idx3(a:b))
    3956             : !$OMP END PARALLEL
    3957             : 
    3958             : !$OMP PARALLEL DEFAULT(NONE) &
    3959             : !$OMP SHARED(rho_ao_t,rho_ao_t_3d) &
    3960           0 : !$OMP PRIVATE(iter,ind,blk,found,blk_3d)
    3961             :       CALL dbt_iterator_start(iter, rho_ao_t)
    3962             :       DO WHILE (dbt_iterator_blocks_left(iter))
    3963             :          CALL dbt_iterator_next_block(iter, ind)
    3964             :          CALL dbt_get_block(rho_ao_t, ind, blk, found)
    3965             :          IF (found) THEN
    3966             :             ALLOCATE (blk_3d(SIZE(blk, 1), SIZE(blk, 2), 1))
    3967             :             blk_3d(:, :, 1) = blk(:, :)
    3968             : !$OMP CRITICAL
    3969             :             CALL dbt_put_block(rho_ao_t_3d, [ind(1), ind(2), 1], [SIZE(blk, 1), SIZE(blk, 2), 1], blk_3d)
    3970             : !$OMP END CRITICAL
    3971             :             DEALLOCATE (blk, blk_3d)
    3972             :          END IF
    3973             :       END DO
    3974             :       CALL dbt_iterator_stop(iter)
    3975             : !$OMP END PARALLEL
    3976             : 
    3977             :       ! The 1D tensor with the density coeffs
    3978           0 :       pdims_2d(1) = para_env%num_pe
    3979           0 :       pdims_2d(2) = 1
    3980             : 
    3981           0 :       ALLOCATE (dist1(SIZE(ri_data%bsizes_RI_split)), dist2(1))
    3982           0 :       CALL dbt_default_distvec(SIZE(ri_data%bsizes_RI_split), pdims_2d(1), ri_data%bsizes_RI_split, dist1)
    3983           0 :       CALL dbt_default_distvec(1, pdims_2d(2), [1], dist2)
    3984             : 
    3985           0 :       CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d)
    3986           0 :       CALL dbt_distribution_new(dist_2d, pgrid_2d, dist1, dist2)
    3987           0 :       CALL dbt_create(density_coeffs_t, "density_coeffs", dist_2d, [1], [2], ri_data%bsizes_RI_split, [1])
    3988           0 :       CALL dbt_create(density_coeffs_t, density_tmp)
    3989           0 :       DEALLOCATE (dist1, dist2)
    3990           0 :       CALL dbt_pgrid_destroy(pgrid_2d)
    3991           0 :       CALL dbt_distribution_destroy(dist_2d)
    3992             : 
    3993           0 :       CALL dbt_get_info(ri_data%t_3c_int_ctr_3(1, 1), nfull_total=dims_3c)
    3994             : 
    3995             :       ! The 3c integrals tensor, in case we compute them here
    3996           0 :       pdims_3d = 0
    3997           0 :       CALL dbt_pgrid_create(para_env, pdims_3d, pgrid_3d, tensor_dims=[MAX(1, natom/n_mem), natom, natom])
    3998           0 :       ALLOCATE (t_3c_int_batched(1, 1))
    3999             :       CALL create_3c_tensor(t_3c_int_batched(1, 1), dist1, dist2, dist3, pgrid_3d, &
    4000             :                             ri_data%bsizes_RI, ri_data%bsizes_AO, ri_data%bsizes_AO, map1=[1], map2=[2, 3], &
    4001           0 :                             name="(RI | AO AO)")
    4002             : 
    4003           0 :       CALL dbt_mp_environ_pgrid(pgrid_3d, pdims_3d, pcoord_3d)
    4004           0 :       CALL mp_comm_t3c%create(pgrid_3d%mp_comm_2d, 3, pdims_3d)
    4005             :       CALL distribution_3d_create(dist_nl3c, dist1, dist2, dist3, nkind, particle_set, &
    4006           0 :                                   mp_comm_t3c, own_comm=.TRUE.)
    4007           0 :       DEALLOCATE (dist1, dist2, dist3)
    4008           0 :       CALL dbt_pgrid_destroy(pgrid_3d)
    4009             : 
    4010             :       CALL build_3c_neighbor_lists(nl_3c, basis_set_RI, basis_set_AO, basis_set_AO, dist_nl3c, ri_data%ri_metric, &
    4011           0 :                                    "HFX_3c_nl", qs_env, op_pos=1, sym_jk=.TRUE., own_dist=.TRUE.)
    4012             : 
    4013           0 :       n_mem = ri_data%n_mem
    4014           0 :       CALL create_tensor_batches(ri_data%bsizes_RI, n_mem, dummy1, dummy2, batch_block_start, batch_block_end)
    4015             : 
    4016           0 :       calc_ints = .FALSE.
    4017           0 :       CALL get_tensor_occupancy(ri_data%t_3c_int_ctr_2(1, 1), nze, occ)
    4018           0 :       IF (nze == 0) calc_ints = .TRUE.
    4019             : 
    4020           0 :       DO i_mem = 1, n_mem
    4021           0 :          IF (calc_ints) THEN
    4022             :             CALL build_3c_integrals(t_3c_int_batched, ri_data%filter_eps, qs_env, nl_3c, &
    4023             :                                     basis_set_RI, basis_set_AO, basis_set_AO, &
    4024             :                                     ri_data%ri_metric, int_eps=ri_data%eps_schwarz, op_pos=1, &
    4025             :                                     desymmetrize=.FALSE., &
    4026           0 :                                     bounds_i=[batch_block_start(i_mem), batch_block_end(i_mem)])
    4027           0 :             CALL dbt_copy(t_3c_int_batched(1, 1), ri_data%t_3c_int_ctr_3(1, 1), order=[1, 3, 2])
    4028           0 :             CALL dbt_copy(t_3c_int_batched(1, 1), ri_data%t_3c_int_ctr_3(1, 1), move_data=.TRUE., summation=.TRUE.)
    4029           0 :             CALL dbt_filter(ri_data%t_3c_int_ctr_3(1, 1), ri_data%filter_eps)
    4030             :          ELSE
    4031             :             bounds_cpy(:, 2) = [SUM(ri_data%bsizes_RI(1:batch_block_start(i_mem) - 1)) + 1, &
    4032           0 :                                 SUM(ri_data%bsizes_RI(1:batch_block_end(i_mem)))]
    4033           0 :             bounds_cpy(:, 1) = [1, SUM(ri_data%bsizes_AO)]
    4034           0 :             bounds_cpy(:, 3) = [1, SUM(ri_data%bsizes_AO)]
    4035             :             CALL dbt_copy(ri_data%t_3c_int_ctr_2(1, 1), ri_data%t_3c_int_ctr_3(1, 1), &
    4036           0 :                           order=[2, 1, 3], bounds=bounds_cpy)
    4037             :          END IF
    4038             : 
    4039             :          !contract the integrals with the density P_pq (pq|R)
    4040             :          CALL dbt_contract(1.0_dp, ri_data%t_3c_int_ctr_3(1, 1), rho_ao_t_3d, 0.0_dp, density_tmp, &
    4041             :                            contract_1=[2, 3], notcontract_1=[1], &
    4042             :                            contract_2=[1, 2], notcontract_2=[3], &
    4043           0 :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps)
    4044           0 :          CALL dbt_clear(ri_data%t_3c_int_ctr_3(1, 1))
    4045             : 
    4046             :          !contract the above vector with the inverse metric
    4047             :          CALL dbt_contract(1.0_dp, t2c_ri_inv, density_tmp, 1.0_dp, density_coeffs_t, &
    4048             :                            contract_1=[2], notcontract_1=[1], &
    4049             :                            contract_2=[1], notcontract_2=[2], &
    4050           0 :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps)
    4051             : 
    4052             :       END DO
    4053           0 :       CALL neighbor_list_3c_destroy(nl_3c)
    4054             : 
    4055           0 :       IF (multiply_by_s) THEN
    4056             :          CALL dbt_contract(1.0_dp, t2c_ri_ints, density_coeffs_t, 0.0_dp, density_tmp, &
    4057             :                            contract_1=[2], notcontract_1=[1], &
    4058             :                            contract_2=[1], notcontract_2=[2], &
    4059           0 :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps)
    4060           0 :          CALL dbt_copy(density_tmp, density_coeffs_t, move_data=.TRUE.)
    4061             :       END IF
    4062             : 
    4063           0 :       ALLOCATE (density_coeffs(SUM(ri_data%bsizes_RI)))
    4064           0 :       density_coeffs = 0.0
    4065             : 
    4066             : !$OMP PARALLEL DEFAULT(NONE) &
    4067             : !$OMP SHARED(density_coeffs_t,ri_data,density_coeffs) &
    4068           0 : !$OMP PRIVATE(iter,ind,blk,found,idx)
    4069             :       CALL dbt_iterator_start(iter, density_coeffs_t)
    4070             :       DO WHILE (dbt_iterator_blocks_left(iter))
    4071             :          CALL dbt_iterator_next_block(iter, ind)
    4072             :          CALL dbt_get_block(density_coeffs_t, ind, blk, found)
    4073             :          IF (found) THEN
    4074             : 
    4075             :             idx = SUM(ri_data%bsizes_RI_split(1:ind(1) - 1))
    4076             : !$OMP CRITICAL
    4077             :             density_coeffs(idx + 1:idx + ri_data%bsizes_RI_split(ind(1))) = blk(:, 1)
    4078             : !$OMP END CRITICAL
    4079             :             DEALLOCATE (blk)
    4080             :          END IF
    4081             :       END DO
    4082             :       CALL dbt_iterator_stop(iter)
    4083             : !$OMP END PARALLEL
    4084           0 :       CALL para_env%sum(density_coeffs)
    4085             : 
    4086           0 :       CALL dbt_destroy(t2c_ri_ints)
    4087           0 :       CALL dbt_destroy(t2c_ri_inv)
    4088           0 :       CALL dbt_destroy(density_tmp)
    4089           0 :       CALL dbt_destroy(rho_ao_t)
    4090           0 :       CALL dbt_destroy(rho_ao_t_3d)
    4091           0 :       CALL dbt_destroy(density_coeffs_t)
    4092           0 :       CALL dbt_destroy(t_3c_int_batched(1, 1))
    4093             : 
    4094           0 :       CALL timestop(handle)
    4095             : 
    4096           0 :    END SUBROUTINE get_RI_density_coeffs
    4097             : 
    4098             : ! **************************************************************************************************
    4099             : !> \brief a small utility function that returns the atom corresponding to a block of a split tensor
    4100             : !> \param idx_to_at ...
    4101             : !> \param bsizes_split ...
    4102             : !> \param bsizes_orig ...
    4103             : !> \return ...
    4104             : ! **************************************************************************************************
    4105         984 :    SUBROUTINE get_idx_to_atom(idx_to_at, bsizes_split, bsizes_orig)
    4106             :       INTEGER, DIMENSION(:), INTENT(INOUT)               :: idx_to_at
    4107             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: bsizes_split, bsizes_orig
    4108             : 
    4109             :       INTEGER                                            :: full_sum, iat, iblk, split_sum
    4110             : 
    4111         984 :       iat = 1
    4112         984 :       full_sum = bsizes_orig(iat)
    4113         984 :       split_sum = 0
    4114        4848 :       DO iblk = 1, SIZE(bsizes_split)
    4115        3864 :          split_sum = split_sum + bsizes_split(iblk)
    4116             : 
    4117        3864 :          IF (split_sum .GT. full_sum) THEN
    4118        1388 :             iat = iat + 1
    4119        1388 :             full_sum = full_sum + bsizes_orig(iat)
    4120             :          END IF
    4121             : 
    4122        4848 :          idx_to_at(iblk) = iat
    4123             :       END DO
    4124             : 
    4125         984 :    END SUBROUTINE get_idx_to_atom
    4126             : 
    4127             : ! **************************************************************************************************
    4128             : !> \brief Function for calculating sqrt of a matrix
    4129             : !> \param values ...
    4130             : !> \return ...
    4131             : ! **************************************************************************************************
    4132           0 :    FUNCTION my_sqrt(values)
    4133             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: values
    4134             :       REAL(KIND=dp), DIMENSION(SIZE(values))             :: my_sqrt
    4135             : 
    4136           0 :       my_sqrt = SQRT(values)
    4137             :    END FUNCTION
    4138             : 
    4139             : ! **************************************************************************************************
    4140             : !> \brief Function for calculation inverse sqrt of a matrix
    4141             : !> \param values ...
    4142             : !> \return ...
    4143             : ! **************************************************************************************************
    4144           0 :    FUNCTION my_invsqrt(values)
    4145             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: values
    4146             :       REAL(KIND=dp), DIMENSION(SIZE(values))             :: my_invsqrt
    4147             : 
    4148           0 :       my_invsqrt = SQRT(1.0_dp/values)
    4149             :    END FUNCTION
    4150         228 : END MODULE

Generated by: LCOV version 1.15